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Abstract—State estimation in dynamical telepresence systems
is very important in real-world applications as the true state
of the robot is unspecified and sensors provide only a sequence
of noisy measurements. In this research, we proposed a new
technique of state estimation using delayed sensor measurements
of a Telepresence robot for real-time navigation. An Augmented
State Extended Kalman Filter (AS-EKF) is introduced to estimate
the true position of the robot. The proposed algorithm was
successfully tested in a real-environment experimental framework
using a state-of-the-art differential-drive telepresence robot. Our
results show improvements of an average of more than 34% when
compared to traditional EKF.

Index Terms—State estimation, EKF, augmented state, telep-
resence, robot navigation, time delay.

I. INTRODUCTION

A telepresence system is a set of technology which offers
human operators to feel as if they are present to give the
appearance of being present, at a place other than their true
location. Telepresence allows the human operator to control
and navigate a mobile robot around the remote environment
and physically interact with their audiences through video
conferencing [1]. As the mobile robot is controlled by a human
operator through a communication network in a remote site,
the human operator should know the robot’s orientation to
control the robot smoothly.

Telepresence robots suffer significant challenges during
navigation in the remote site mainly due to communication
time delays [2]. If time delays are not duly compensated to
estimate the correct robot pose, the human operator may cause
an accident by crashing obstacles. This is due to inaccurate
recognition of the robot pose by the remote operator.

In this work, we proposed a Bayesian approach to model
the time delay using state estimation techniques that are
useful for non-linear telepresence robot navigation. Filtering
method [3], such as the Extended Kalman Filter (EKF) is
commonly used to acquire an estimation of the true states
from noisy measurements. However, when a filtering processor
is connected to a sensor through a network, there exists a
fundamental communication time delay.

Moreover, if raw sensor data require post-processing, in
order to update states of the dynamical system, additional
post-processing time is needed, resulting in a delay between
the acquisition of a measurement and its availability to the
filter. In such occasions, EKF only algorithms are not adequate
for true robot state estimations. Therefore we propose a new

technique by augmenting past states that consider above-
mentioned delays.

If the time delay is known, the past state can be pre-
dicted applying backward prediction of the current state.
Bar-Shalom [4], [5] proposed an optimal and sub-optimal
algorithm for delayed measurement. In the case of a non-linear
system, it needs modifications for state estimation. Larsen et
al. [6] introduced a method based on extrapolation of a
delayed measurement to present time using past and present
estimates of the Kalman Filter. An extension algorithm is
proposed in [7] that interpolating a delayed measurement
minimizes the computational time even for significant time
delays.

State augmentation is also used in time delayed measure-
ments. Delayed measurements directly correct the past state
and a new prediction of the current state is then obtained from
the corrected past state. Challa ef al. [8] presented a Bayesian
solution to the out of sequence measurement (OOSM) problem
and provided approximate, implementable algorithms for both
cluttered and non-cluttered scenarios involving single and
multiple time-delayed measurement. Van Der Merwe et al.
[9] applied the sigma point Kalman Filter instead of EKF to
the augmented technique to fuse latency lagged observations
for non-linear estimation and multiple sensors fusion. Choi et
al. [10] proposed a state estimator by modelling uncertain
delay as a probabilistic density function combined with the
Augmented State Kalman Filter.

However, the majority of these algorithms reported simula-
tion only results that neither considered a real environment
nor the techniques were applied on a real robot. In this
paper, we proposed the technique of state estimation using
delayed sensor measurements of a real-world differential-drive
telepresence robot navigation.

This work incorporates navigation error such as dead reck-
oning which is observed in differential drive robots. Our
experimental design includes raster scan based path-planning
as a representative scenario for differential-drive telepresence
robots. The contributions of this work include:

e A novel Augmented State Extended Kalman Filter (AS-
EKF) based state estimator is proposed to estimate the
true robot position from noisy sensor measurements and

o Validation of the hypothesis through experimental ver-
ification of the proposed algorithm on a state-of-the-
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Figure 1. Flow diagram of the proposed algorithm

art differential-drive telepresence robot in the real-
environment experimental framework.

An overall flow diagram of the proposed algorithm is shown
in Figure 1. To the best knowledge of the authors, the proposed
Bayesian approach is first of its kind in compensating delays
in differential-drive telepresence robot navigation.

II. PROPOSED METHODOLOGY

In order to propose the delay aware state estimation tech-
nique, firstly we recall the traditional filter equations which are
then used in developing the augmented state-based approach
as described in the following subsections.

A. Filter equations for state estimation

In this research, Extended Kalman Filter (EKF) [3], [11]
was used to estimate the true robot state from noisy sen-
sor measurements. The process governed by the non-linear

stochastic difference equation with estimating the state vector
xER"

Trr1 = f (T, ur, w). (1)
The measurement equation with z € Z"" is represented by
ZE = h(xk,vk) (2)

The non linear function f(-) in Eq. (1) relates to the state
at time step k to the state at step k + 1. The non linear
function h(-) in the measurement Eq. (2) relates the state
T to the measurement zj. Ty represents the actual state
vector including the previous state xzj, an control input uy
and the process noise wy. zj represents the measurement state
vector including the state xj and the measurement noise vg.
The random variables wj and vy represent the process and
measurement noise respectively. () and R are the process and
measurement noise covariance respectively. Complete set of
Extended Kalman Filter estimation equations can be expressed
as:

Time update equations (Prediction):
3)
“)

i,];_t,_l = f(Li'k,Uk,O)
Pk_+1 = AkPkAg + WkaWE

In the Extended Kalman filter, the time update equations
represents the state and covariance estimates from the time
step k to the time step k + 1. Ay and Wy are the process
Jacobians at step k, and (), is the process noise covariance at
step k.

Measurement update equations (Correction):

Ky = P Hif (H Py HE + ViR, V)7L (5)
T = i‘]z + Kk(zk - h(i‘,;,())) (6)
Py = (I - K Hy) Py (7)

In the Extended Kalman Filter, the measurement update
equations correct the state and covariance estimates with the
measurement. Hy and Vj are the measurement Jacobians at
step k, and Ry is the measurement noise covariance at step
k. The Figure 2 shows all estimation equations of Extended
Kalman Filter.

Initial estimates for £;; and P

ﬂ

Measurement Update (“Correct”)

Time Update (“Predict”)

Compute the Kalman Gain
Project the state ahead Kic = P Hi, (HiPi H + ViRV ™
Rievr = Ri u, 0)
Project the error covariance ahead
Piy = AePeAR + W QW

Update the estimate via measurement
R = X + Kie(zie — h(%i, 0))

Update the error covariance
Py = (I = KeH)Pe

Figure 2. Basic operations of Extended Kalman Filter.

In an ideal case considering no time delay in the system, in a
single time occurrence, when sensor measurement data arrives
its coincide with another measurement data at the same time
step available in a filter as shown in Figure 3.

However, in the delayed system considering time delay is
continuous, both time steps do not coincide with each other,
which produces an amount of time delay as shown in Figure 4.
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Figure 4. Delayed measurement data.

In such cases, the measurement equation should be redefined
as [7],

2 = W(Tg—r, Vi—r), ®)
where 7 is assumed time delay.

B. Proposed technique for state estimation

When sensor measurements are corrupted by the time delay,
the current state cannot be directly corrected using the current
measurement, since a delayed sensor measurement is actually
carrying information about a past measurement state. There-
fore, the past measurement state corresponding to a delayed
measurement should be determined before using the delayed
measurement during the state estimation. The current state also
needs to be corrected after correcting the appropriate past state.
In this work, we have proposed a technique to use Augmented
State Extended Kalman Filter (AS-EKF) for state estimation
with delayed measurements as depicted in Figure 1.

We augmented the past measurement states into several
augmented state vectors. The current measurement state which
also contains information of the past measurement state di-
rectly corrects the augmented state vector. In this way, in
a delayed system, we can determine the corresponding past
state in the augmented state vector. After that, the past state is
updated using the delayed measurement data and the current
state is simultaneously corrected in the augmented state vector.

For one time step delay, the prediction equation is modified
as

_ f(mkvukvwk) ’ (9)

Tk Tk

Th41

T
where [z}, ={]
measurement equation is

is the augmented state vector. The

Tr41

ZkZh [0 I] sVE | (10)

Tk

where [ is the identity matrix, the current measurement 2y,
T 7T
can be used to update [z}, ]

For multistep delays, the prediction equation can be defined
as

f(xkv uk)

, I 0 0 0
Tpy = Th, W (11D

i 0 0

0 0 I 0

= f(xk’uk’wk)’
where x}c is the augmented state vector defined by
[:UT x¥ x¥ ]T and n is the maximum number
k k—1 k—n

of delayed time steps. The measurement equation can be
rewritten as

T

0 Tk
Z;c =h 1 Th—1, | » Vk—1p (12)
0 LTk—n
= h(zy,vy),

where 75 represents the time delay, which is less than n,
and I is placed at the corresponding time step k — 7.

If the time delay 71 is given, the augmented state vector
can be estimated recursively via the EKF algorithm. In the
prediction stage, state prediction is carried out by the predic-
tion equation (Eq. (11)). The error covariance is propagated
by the Jacobian of the prediction model and the process
noise covariance((Q). The measurement update stage or mea-
surement model is based on the prediction model and the
error covariance (Eq. (12)). The Jacobian of the measurement
model and the measurement noise(R) are needed to obtain the
Kalman gain (K).

The AS-EKF is implemented in the augmented state vector
using prediction and measurement update stages of EKF algo-
rithm. The proposed technique provides a better and consistent
state estimation for delayed telepresence robot navigation
systems.

III. RESULTS AND DISCUSSIONS
A. Experimental framework

To demonstrate and evaluate the performance of the pro-
posed state estimator, we have built an experimental frame-
work implementing some research elements with a com-
mercially available telepresence robot. The major functional
components and toolsets being used in this experiment are
depicted in Figure 5 followed by a brief description.

We have used Beam+' robot (a state-of-the-art market
leading telepresence robot) in our experiments due to its telep-
resence capability and control through WiFi communication.

Thttps://suitabletech.com/products/beam
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Figure 5. The experimental framework.

ROS? is used to navigate and control the robot. Several
ROS packages that solve basic robotics problems including
pose estimation, localisation in a map and mobile navigation
were used in this work which includes several commands for
launching nodes, introspecting topics and publishing control
actions as a host to the Telepresence robot. Using ROS
commands we instructed the robot to navigate following the
predefined trajectory, monitored its progress, controlled it
along the way, and received feedback when it has succeeded
(or failed). A ROS driver rosbeam® (a ROS node to access
the hardware) was used for the experimental purposes. The
original driver was modified and installed in our Beam+ robot
to communicate with the host computer.

We captured robot’s navigation data using Vicon motion
capture system*. We have attached retroreflective markers on
the robot to represent it as a rigid body. Vicon cameras were
used to record the movement of the robot. They operate in
three dimensions and tend to have high resolution and high
accuracy.

The proposed state estimation algorithm was implemented
in a Linux based computer as a host computer. The host
computer connects the Telepresence robot using ROS driver
and sends ROS control command to the robot to form a raster-
scan navigation path and receives 3D positional data of the
navigation captured by the Vicon motion cameras through
WiFi.

All the experiments were carried out in the real environment
framework using all the research elements. We assumed that
there is an amount of time difference between sending a
control command and the moment when the measurement data
enters into the estimator. Therefore, we can not predict the
actual pose of the robot. The proposed algorithm can solve

the problem by estimating the true state/position of the robot.
2Wwww.ros.org/core-components/

3https://github.com/xlz/rosbeam

“https://www.vicon.com/

B. Evaluation

We have evaluated the proposed algorithm considering only
delayed robot navigation measurement. It is worth noting that
the proposed approach is unique and therefore there is no
existing state-of-the-art method to directly compare with. In
evaluating our approach we consider the traditional EKF as
the base line and show comparative improvements using the
proposed approach.

The robot velocity was assumed to have white Gaussian
noise and the measurement data was also corrupted by the
sensor noise. As the Beam+ telepresence robot is also a
differential-drive robot, it has produced an enormous amount
of dead-reckoning errors during navigation. In a differential-
drive mobile robot, incremental odometry errors are usually
caused by kinematic imperfections of the robot [12]. Using
the UMBMark method we have measured the dead-reckoning
accuracy of the robot to find out the variance in the robot
navigation and modelled it in the proposed algorithm. We have
captured actual robot path using Vicon cameras which has a
low variance (3.58mm?) as reported in a previous work [13].
The Vicon captured positional data is also used as the noisy
measurement by introducing random white noise.

During the experiments, we have considered several aug-
mented states (n € [2,4]) with different time delay and
evaluated the performances of the proposed estimator. The
parameters used in the experiments are listed in the Table I.

Table T
PARAMETERS USED IN THE EXPERIMENT.

Experimental parameters \ Value
Initial position (z,y, z, 0) | (0,0,0,0)
Robot variance (G’QAG = o%/) ‘ 2.13
Time delay (%) | 0.25-0.5 sec
Time steps (1) | 2-4

All the experiments were carried out in the AS-EKF based
experimental framework to obtain the robot’s actual position.
The proposed AS-EKF algorithm successfully estimated the
robot’s position during navigation and compensated the robot’s
current position from the noisy measurement data as described
before and shown in Figure 6.

The estimated robot path produced from the AS-EKF sys-
tem was compared with the absolute robot path to evaluate the
navigation performance. The errors were calculated in terms of
root mean square error (RMSE) for the individual assumption
of 7 values. Two sets of results were obtained, one using
traditional EKF filter and the other with the assumption of
delayed measurement incorporated in the Augmented State
EKF model. The navigation performance with traditional EKF
is shown in column 1 of Figure 6 for 7, = 0.25 & 7, = 0.5,
respectively. The related performance results with AS-EKF
for both 0.25 and 0.5 sec time delay are shown in the other
columns of Figure 6 for n = 2,3, 4.
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Figure 6. Robot navigation using traditional EKF with delayed measurements & improvements using AS-EKF for n = 2,3,4. RI: 7, = 0.25, R2: 73, = 0.5.
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Figure 7. RMSE values for traditional EKF and AS-EKF considering n €
[2,4] for 7, = 0.25 and 1, = 0.5.

The results represented that proposed AS-EKF based algo-
rithm provides better state estimation compared to traditional
EKF. The experimental output produced a more accurate result
with increasing the number of state vector with considering
delayed measurements. The quantitative RMSE values are
shown in Figure 7 which indicate improvements of 22.20%
to 45.03%.

IV. CONCLUSIONS

In this paper, state estimation of a telepresence robot with
delayed navigation measurement was presented. Extended
Kalman Filter combining with Augmented State Extended
Kalman Filter has successfully implemented, estimating the
actual position of the robot and modelling the time delay

in the robot navigation. The AS-EKF based estimated robot
path was compared with the traditional EKF based robot
path to evaluate the improvement in navigation performance.
The proposed methodology was experimentally tested and
verified in the real-environment experimental setup with a
state-of-the-art commercially available telepresence robot. To
the best knowledge of the authors, the proposed AS-EKF
based algorithm is first of its kind to estimate robot pose
in compensating measurement delays in a differential-drive
telepresence robot navigation.
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