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Parameter estimation for Load-sharing system subject to Wiener 

degradation process using E-M algorithm 

 

Abstract- In practice, many systems exhibit load-sharing behavior, where the surviving 

components share the total load imposed on the system. Different from general systems, the 

components of load-sharing systems are interdependent in nature, in such a way that when one 

component fails, the system load has to be shared by the remaining components, which increases 

the failure rate or degradation rate of the remaining components. Due to the load-sharing 

mechanism among components, parameter estimation and reliability assessment are usually 

complicated for load-sharing systems. Although load-sharing systems with components subject to 

sudden failures have been intensely studied in literatures with detailed estimation and analysis 

approaches, those with components subject to degradation are rarely investigated. In this paper, 

we propose the parameter estimation method for load-sharing systems subject to continuous 

degradation with a constant load. Likelihood function based on degradation data of components 

is established as a first step. The maximum likelihood estimators for unknown parameters are 

deduced and obtained via EM algorithm considering the non-closed form of the likelihood function. 

Numerical examples are used to illustrate the effectiveness of the proposed method. 

 

Key words-Load-sharing system, continuous degradation, Wiener degradation, constant load, EM 

algorithm 

1 Introduction 

The assumption of independence among components in a system is commonly adopted in 

reliability engineering for the convenience of analysis. However, more often than not, systems are 

subject to various types of component dependence, which increasingly challenges the assumption 

of independence. There are several models to describe such dependence in practice. In some cases, 

components in a system share the total load on the system. Consider a system consisting of parallel 
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connected components, when the components fail one by one, system load is redistributed among 

the surviving components. Generally, this is referred to as load-sharing 1. 

Early studies on load-sharing systems can be found in Daniels2, Birnbaum and Saunders3, 

Harlow and Phoenix4 and Lee et al.5. While Durham and Lynch6, Yang and Younis7 and Singh et 

al. 8 are among the more recent investigations on load-sharing systems. Meanwhile, applications 

and implementations of load-sharing systems in different areas are also investigated such as 

computer systems9, power grids10 and gear systems11. Most research from literatures on load-

sharing systems investigated the characteristics of reliability with a certain known load-sharing 

rule. The assumption that model parameters are known a priori is always involved in related 

literatures, whereas few has studied the parameter estimations of the model on the basis of real 

data. Exceptions can be found in the following existing works: Kim and Kvam 12 estimated the 

parameters under the assumption of an exponential underlying lifetime distribution and equal load-

sharing rule; Singh et al. 8 introduced Bayesian approach to estimate the parameters; Deshpande 

et al. 13 modeled load-sharing system with a family of semiparametric distributions and suggested 

the estimates for the parameters; Park14,15 detailed the maximum likelihood estimates (MLE) of 

the parameters for load-sharing systems with components that have exponential, Weibull, normal 

and lognormal distributed life in these two works. 

Note that an assumption of parametric or semiparametric lifetime distributions is commonly 

introduced in previous literatures on load-sharing systems. This implies that the functioning 

condition of the components are supposed to be invariant and the component failures are supposed 

to be sudden and catastrophic. However, this is not always a proper assumption, considering the 

varying working conditions and the slow but cumulative system damage. Recently, with advances 

of modern technologies, systems are becoming increasingly more reliable, which may go through 

a long period of deterioration in terms of performance before eventually fail. In such situations, 

degradation model has been pointed out to be more convenient and flexible in Singpurwalla16. In 

a degradation model, performance degradation of a certain product is concerned rather than a mere 

failure time. The system is supposed to fail when the performance degrades below a specific 

threshold, which means that the system lifetime can also be modeled with respect to the 

corresponding degradation model. On the basis of a proper degradation model, a series of works 

on reliability assessment, maintenance17, forecasting18 and warranty policies can be further studied.  
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In previous literatures on load-sharing systems, several conventional parametric models have 

been investigated. As first proposed in Whitmore and Schenkelberg19, Wiener degradation process 

can effectively characterize the scenario where the degradation increment is supposed to be a 

cumulation of additive tiny independent effects in infinitesimal time interval. This independent 

increment characteristic of Wiener degradation process provides multiple convenient properties in 

application20. Meanwhile, a closed form expression of lifetime distribution induced by degradation 

endows the Wiener degradation process many facilities in practice. Except for Wiener process, 

Gamma process21,22 and Inverse Gaussian degradation process23 can also be implemented in 

degradation model. For more details of stochastic models characterizing degradation, readers can 

refer to24,25.  

As mentioned above, when failure models are not adequate for a load-sharing system, 

degradation model can be incorporated. However, there are few literatures focusing on load-

sharing systems subject to degradation. As an exception, Liu et al.26 considered a load-sharing 

system with components subject to continuous degradation processes, where system reliability and 

maintenance policies are investigated under constant and cumulative load respectively. Yet the 

parameters of the degradation processes are assumed to be constant and known and in advance. In 

this paper, we will assess the load-sharing system subject to degradation with unknown parameters. 

Likelihood function is established based on observed degradation data of components. As the exact 

failure time of a degrading component is supposed to be unobservable, the closed form of 

likelihood function directly based on observed data cannot be attained. Numerical methods are 

essential to obtain the MLEs for the parameters. Different from Park15, where a Newton type 

method is used for parameter estimation, we introduce an EM algorithm to calculate the parameters 

from MLEs. 

The rest of the paper is organized as follows. In section 2, we propose the assumptions and 

interpretations for load-sharing systems subject to Wiener degradation. Section 3 gives a direct 

establishment of likelihood function based on the censored data set. In section 4, we introduce and 

implement the EM algorithm for the MLE. In section 5, we give detailed process to solve the 

MLEs through EM algorithm. Numerical examples and simulation study are illustrated in section 

6. Concluding remarks are given in section 7. 
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2 Load-sharing systems subject to degradation 

2.1 General model assumptions. 

For a load-sharing system subject to component degradation, the degradation level of a component 

is concerned instead of conventional failure time. The basic assumptions are listed as follows for 

the model formulation in this paper: 

1) The system is composed of 𝐽 components. The components in the system are functioning 

independently and follow an identical mean degradation path. 

2) Each component is subject to a continuous degradation path. Degradation level at time 𝑡 

of the 𝑗-th component is denoted by 𝑋𝑗(𝑡; 𝜃𝑗), with parameter vector 𝜃𝑗. 

3) A component fails immediately when its degradation level exceeds a pre-specified 

threshold 𝜔. 

4) Total load of the system is redistributed among the remaining components with an instant 

and additive impact on each component after a component failure. 

5) The system fails instantly when and only when all the components fail. 

 

      In this paper, we consider a commonly used type of continuous degradation process which has 

independent increment property: Wiener process. We denote the increment of the degradation as 

∆𝑋𝑗(𝑡) = 𝑋𝑗(𝑡 + ∆𝑡; 𝜃𝑗) − 𝑋𝑗(𝑡; 𝜃𝑗). The probability density function (PDF) for the degradation 

increment of component 𝑗 is defined as 𝑓𝑗(∆𝑋𝑗(𝑡)|𝜃𝑗 , ∆𝑡). 

     

2.2 Wiener degradation process 

    Wiener process is commonly employed to characterize a continuous degradation process27. In 

this paper, we confine the Wiener process to a linear shift form. Under the assumption of Wiener 

degradation process with linear shift, the performance of component 𝑗 at time 𝑡 can be modeled as: 

𝑋𝑗(𝑡; 𝜃𝑗) = 𝜇𝑗𝑡 + 𝜎𝑗𝐵(𝑡), 

where 𝜃𝑗 = (𝜇𝑗 , 𝜎𝑗) is the parameter vector for component 𝑗, 𝜇𝑗 is the drift parameter and 𝜎𝑗 is the 

diffusion parameter. 𝐵(𝑡)  is the standard Brownian motion. The corresponding PDF for the 

increment of component 𝑗 in time ∆𝑡 can be defined  by: 

𝑓𝑗(∆𝑋𝑗(𝑡)|𝜃𝑗 , ∆𝑡) = (2𝜋𝜎𝑗
2∆𝑡)

−
1
2 exp {−

(∆𝑋𝑗(𝑡) − 𝜇𝑗∆𝑡)
2

2𝜎𝑗
2∆𝑡

},                        (1) 
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under a pre-specified critical threshold 𝜔, the failure time of a component can be defined as: 

𝑇𝑗 = inf{𝑡: 𝑋𝑗(𝑡;  𝜇𝑗 ,  𝜎𝑗) ≥ 𝜔| 𝜇𝑗 ,  𝜎𝑗}.                                             (2) 

    The corresponding distribution of 𝑇𝑖 is an inverse Gaussian distribution with the respective PDF 

and the cumulative density function (CDF) as follows: 

𝑓𝐼𝐺(𝑇𝑗|𝜔, 𝜇𝑗 , 𝜎𝑗) =
1

√2𝜋 𝜎𝑗
2𝑇𝑗

3

𝑒𝑥𝑝 {−
(𝜔 − 𝜇𝑗𝑇𝑗)

2

2 𝜎𝑗
2𝑇𝑗

},                                 (3) 

𝐹𝐼𝐺(𝑇𝑗|𝜔, 𝜇𝑗 , 𝜎𝑗) = Φ(
𝜇𝑗𝑇𝑗 − 𝜔

𝜎𝑗√𝑇𝑗
) + 𝑒𝑥𝑝 {

2𝜇𝑗𝑇𝑗
𝜎𝑗
2
}Φ(

−𝜇𝑗𝑇𝑗 − 𝜔

𝜎𝑗√𝑇𝑗
),                    (4) 

where Φ is the CDF of standard normal distribution.  

 

2.3 Load-sharing rule 

The mode of load redistribution among the remaining components is determined by load-sharing 

rules. Most of the existing work regarding load-sharing systems has assumed a known load-sharing 

rule. Conventional load-sharing rules investigated in literatures include equal load-sharing, tapered 

load-sharing, local load-sharing, nearest-neighbor load-sharing and hybrid load-sharing rule. For 

more details on this load-sharing rules, readers are referred to Durham et al. 28 

    In this paper, we consider the widely applied equal load-sharing rule, under which the total load 

is redistributed among the remaining components equally. We also confine the total load on system 

𝐿(𝑡) at time 𝑡 to a constant load 𝐿. Denote the load for component 𝑗 at time 𝑡 by 𝐿𝑗(𝑡), then the 

total performance deterioration of a single component in the system at time 𝑡 is the accumulation 

of cumulative degradation and the current load. We still denote the total performance for 

component 𝑗 at time 𝑡 by 𝑋𝑗(𝑡) for convenience, which can be represented as: 

𝑋𝑗(𝑡; 𝜃𝑗) = 𝜇𝑗𝑡 + 𝜎𝑗𝐵(𝑡) + 𝐿𝑗(𝑡),                                              (5) 

under the equal load-sharing rule, 

𝐿𝑗(𝑡) =
𝐿

𝐽 − 𝑁(𝑡)
,                                                            (6) 

and 𝑋𝑗(𝑡; 𝜃𝑗) can be further represented as: 

𝑋𝑗(𝑡;  𝜃𝑗) = 𝜇𝑗𝑡 + 𝜎𝑗𝐵(𝑡) +
𝐿

𝐽 − 𝑁(𝑡)
,                                         (7) 
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3 The construction of likelihood for load-sharing systems with degrading 

components 

In this section we will construct the likelihood function for load-sharing systems subject to 

degradation. Although Park 14,15 detailed the likelihood function for load-sharing systems with 

exponential, Weibull, normal and log-normal components, load-sharing systems with degrading 

components cannot be constructed through the existing steps in these literatures. First, we provide 

a brief description of the available data for components during a test of such systems. Let 𝑁(𝑡) be 

the number of failed components in the system by time 𝑡.  

Consider a single system sample for degradation test. As detailed in significant number of 

literatures, in such a test, degradation performance of each component is measured at time 𝑡𝑖 , 𝑖 =

1,⋯ ,𝑁, and let 𝑡0 = 0. Denote 𝑋𝑗(𝑡𝑖) as the degradation performance of component j at time 𝑡𝑖 . 

Without loss of generality, we label all the components in the order of their failure times, i.e., 𝑋𝑗 

denote the degradation path of the j-th failing component. After a component fails, its degradation 

performance of this component can no longer be observed. Note that in equation (2), when the 

interval between  𝑡𝑖  and 𝑡𝑖−1 , , 𝑖 = 1,⋯ ,𝑁  is small enough, simultaneous failures of multiple 

components in each interval can be neglected in the sense of probability. In this paper, we assume 

that there is at most one component failure during an inspection interval. Note that this assumption 

holds in the context of the article. 

    As the exact failure time of each component cannot be observed, the results through a single test 

can be listed as below: 

𝑋1(𝑡1) , ⋯ , 𝑋1(𝑡𝑖1)

𝑋2(𝑡1) , ⋯ , 𝑋1(𝑡𝑖2)

⋮ ⋮

𝑋𝐽(𝑡1) , ⋯ , 𝑋𝐽(𝑡𝑖𝐽)

 

where 𝑡𝑖1 < 𝑡𝑖2 < ⋯ < 𝑡𝑖𝐽, and the j-th component fails in (𝑡𝑖𝑗 , 𝑡𝑖𝑗+1). In the last observation at 

time 𝑡𝑁, the whole system has failed in (𝑡𝑖𝐽 , 𝑡𝑖𝐽+1), so it is natural to terminate the test at 𝑡𝑖𝐽+1 and 

denote 𝑡𝑖𝐽+1 = 𝑡𝑁. Additionally, following the routine of degradation test in significant number of 

literatures, we consider a test with fixed inspection interval: ∆𝑡 = 𝑡𝑘+1 − 𝑡𝑘, where 𝑘 = 1,⋯ , 𝑡𝑁. 

The parameter estimation in this paper is based on the observations listed above. When each 

component subject to a continuous degradation process, it is easy to verify 
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𝒫{∆𝑁(𝑡) = 𝑁(𝑡 + ∆𝑡) − 𝑁(𝑡) ≥ 2} = 𝑜(∆𝑡),                                    (8) 

which means the assumption of no simultaneous failures are observed within each time interval of 

∆𝑡 is acceptable. 

    For component 𝑗, let ∆𝑋𝑗
𝑘 = 𝑋𝑗(𝑡𝑘) − 𝑋𝑗(𝑡𝑘−1), where 𝑋𝑗(𝑡0) = 0, 𝑗 = 1,⋯ , 𝐽; under the equal 

load-sharing rule, the following equation holds: 

𝐿𝑗(𝑡𝑘) =

{
  
 

  
 
𝐿

𝐽
,                   𝑘 ∈ {0,⋯ , 𝑖1},   

𝐿

𝐽 − 1
, 𝑘 ∈ {𝑖1 + 1,⋯ , 𝑖2}

⋮
𝐿,           𝑘 ∈ {𝑖𝐽−1 + 1,⋯ , 𝑖𝐽}.  

,                                      (9) 

    Due to the independent increment property of the degradation process considered in this paper, 

∆𝑋𝑗
𝑘  is independently distributed. With respect to the drift of ∆𝑋𝑗

𝑘  in the interval (𝑡𝑘−1, 𝑡𝑘−1) 

induced by ∆𝐿𝑗
𝑘 = 𝐿𝑗(𝑡𝑘) − 𝐿𝑗(𝑡𝑘−1), the PDF of ∆𝑋𝑗

𝑘 can be represented as: 

∆𝑋𝑗
𝑘~𝑓𝑗(∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘|𝜃𝑗 , ∆𝑡), 𝑗 = 1,⋯ , 𝐽, 𝑘 = 1,⋯ , 𝑖𝑗 ,                  (10) 

where 𝑓𝑗(⋅ |𝜃𝑗 , ∆𝑡) is previously defined in section 2.1. 

Meanwhile, the real failure time of component 𝑗 is censored within the interval  (𝑡𝑖𝑗 , 𝑡𝑖𝑗+1), 𝑗 ∈

{1,⋯ , 𝐽 − 1} . The likelihood for the real lifetime 𝑇(𝑗)  contributed by component j within the 

interval  (𝑡𝑖𝑗 , 𝑡𝑖𝑗+1)  is 𝐹𝐼𝐺 (𝑡𝑖𝑗+1 − 𝑡𝑖𝑗  |𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜃𝑗)  under Wiener degradation. Thus, the 

complete likelihood function based on the data for 𝜃𝑗 can be represented as follows: 

𝐿(𝜃𝑗) =∏𝑓𝑗(∆𝑋𝑗
𝑘 − ∆𝐿𝑗

𝑘|𝜃𝑗 , ∆𝑡)

𝑖𝑗

𝑘=1

∗ 𝐹𝑗 (𝑡𝑖𝑗+1 − 𝑡𝑖𝑗),                      (11) 

and the complete likelihood for 𝜃 = (𝜃1, ⋯ , 𝜃𝐽) is 

𝐿(𝜃) =∏∏𝑓𝑗(∆𝑋𝑗
𝑘 − ∆𝐿𝑗

𝑘|𝜃𝑗 , ∆𝑡)

𝑖𝑗

𝑘=1

∗ 𝐹𝑗 (𝑡𝑖𝑗+1 − 𝑡𝑖𝑗)

𝐽

𝑗=1

,                   (12) 

where 𝐹𝑗 (𝑡𝑖𝑗+1 − 𝑡𝑖𝑗) is a consistent notation for the CDF of lifetime of component j instead of 

𝐹𝐼𝐺 (𝑡𝑖𝑗+1 − 𝑡𝑖𝑗  |𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜃𝑗) under Wiener degradation through this paper.     

Since 𝐹𝑗 (𝑡𝑖𝑗+1 − 𝑡𝑖𝑗) in the above likelihood function of the CDF is not in a closed form under 
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Wiener degradation pattern, we need to resort to numerical methods for the direct maximization 

of the likelihood function. One conventional and widely utilized method is the Newton-Raphson 

type of numerical methods. However, this type of methods can be very sensitive to the starting 

value or the results of each iteration, which leads to difficulty in convergence to the real solution. 

Also, when the number of parameters is large, the ineffectiveness of Newton-Raphson method 

becomes significant. A compromise to deal with such a problem is to ignore the censoring interval 

for each component, emitting the second item of each 𝐹𝑗 (𝑡𝑖𝑗+1 − 𝑡𝑖𝑗) in the right side of equation 

(12). This can cause a significant loss of information from the data especially when the number of 

components is large. In this paper, we introduce the EM algorithm to overcome the difficulty in 

pursuing the MLE for the parameters from complete likelihood function.  

4 The EM algorithm and its application in the likelihood function 

In this part, we give a brief review of EM algorithm. We transform the likelihood function into the 

form based on complete data instead of censored data and implement it into the EM algorithm for 

the numerical calculation of the MLE of parameters. 

 

4.1  EM algorithm 

EM algorithm is an iteration method to find the maximum likelihood or maximum posteriori of 

parameters for a statistical model when latent variables are involved. The EM algorithm was first 

introduced by Dempster et al. 29. Further studies on the EM algorithm can be found in 30–32. 

Although in some cases, especially when the target function is sharp around its maximum, the 

performance of EM algorithm may be not as fast as Newton methods. However, in cases of large 

number of parameters and a potential smooth character of the target function around the maximum, 

the EM algorithm can give a stable and faster performance with the aid of powerful computers.  

    We first give a brief introduction of the EM algorithm in the application for missing or censored 

data. The conventional EM algorithm can be divided in two steps: Expectation step (E-step) and 

Maximization step (M-step). In the E-step, expectation of the log-likelihood function is computed, 

with respect to the conditional distribution of the unobserved data given the observed data. The 

calculation is based on the current estimation of parameters; In the M-step, the quantity of the 

conditional expectation in E-step is maximized and the estimation of parameters for next iteration 

is calculated. To facilitate the application of the EM algorithm in this paper for our problem, some 
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necessary details are provided in advance. Denote the set of observed data by X, the censored or 

missing data by Z and the vector of unknown parameters by 𝜃. The likelihood function based on 

the complete data can be written as: 

𝐿(𝜃|𝑋, 𝑍) = 𝑝(𝑋, 𝑍|𝜃).                                                     (13) 

• Expectation-step: 

𝑄(𝜃|𝜃(𝑛)) = 𝐸𝑍|𝑋,𝜃(log𝐿(𝜃|𝑋, 𝑍));                                         (14) 

• Maximization-step: 

𝜃(𝑛+1) = argmax
𝜃

𝑄(𝜃|𝜃(𝑛)),                                              (15) 

where 𝜃(𝑛) denotes the parameter estimates in the 𝑛th iteration.  

 

4.2 The implementation of E-M algorithm in likelihood function 

To implement the EM algorithm, we first denote the real lifetime of component j in interval 

(𝑡𝑖𝑗 , 𝑡𝑖𝑗+1) by 𝑍𝑗 . Note that 𝑍𝑗 is unobservable or latent, meanwhile, {𝑋𝑗(𝑡1),⋯ , 𝑋𝑗 (𝑡𝑖𝑗)} is the 

observed data set for component j. The distribution of 𝑍𝑗 can be represented by a truncated inverse 

Gaussian distribution under Wiener degradation with the PDF as follows: 

𝑓𝑗 (𝑍𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜃𝑗) =
𝑓𝐼𝐺 (𝑍𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜃𝑗)

𝐹𝐼𝐺 (𝑡𝑖𝑗+1 − 𝑡𝑖𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜃𝑗)
.                        (16) 

    Likewise, as in the notation of 𝐹𝑗 (𝑡𝑖𝑗+1 − 𝑡𝑖𝑗), we replace 𝑓𝑗 (𝑍𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜃𝑗) by 𝑓𝑗(𝑍𝑗) for 

simplicity. The complete likelihood function based on {𝑋𝑗(𝑡1),⋯ , 𝑋𝑗 (𝑡𝑖𝑗)}  and 𝑍𝑗  can be 

constructed as follows:  

𝐿′(𝜃) =∏∏𝑓𝑗(∆𝑋𝑗
𝑘 − ∆𝐿𝑗

𝑘|𝜃𝑗 , ∆𝑡)

𝑖𝑗

𝑘=1

∗ 𝑓𝐼𝐺 (𝑍𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜃𝑗)

𝐽

𝑗=1

.                (17) 

The notation of 𝐿′(𝜃) is to distinguish the likelihood based on pseudo complete data from 𝐿(𝜃) 

in the former sections. The corresponding log-likelihood function can be represented as 

log𝐿′(𝜃) =∑(∑log 𝑓𝑗(∆𝑋𝑗
𝑘 − ∆𝐿𝑗

𝑘|𝜃𝑗 , ∆𝑡)

𝑖𝑗

𝑘=1

+ log 𝑓𝐼𝐺 (𝑍𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜃𝑗))

𝐽

𝑗=1

.      (18) 

    Denoting the parameter estimation of 𝜃  in the t-th iteration by 𝜃(𝑡) = (𝜃1
(𝑡)
, ⋯ , 𝜃𝐽

(𝑡)
) , the 
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expectation of the second item in the log-likelihood function is therefore given by 

𝐸 (𝑓𝐼𝐺 (𝑍𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜃𝑗) |𝜃𝑗
(𝑡)
) = ∫ 𝑙𝑜𝑔 𝑓𝐼𝐺 (𝑍𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜃𝑗) ∙ 𝑓𝑗(𝑍𝑗)𝑑𝑍𝑗

𝑡𝑖𝑗+1

0

,   (19) 

and the target expectation function in the E-step is 

𝑄(𝜃|𝜃(𝑛)) = 𝐸(log𝐿′(𝜃)|𝜃(𝑛)) =∑∑log 𝑓𝑗(∆𝑋𝑗
𝑘 − ∆𝐿𝑗

𝑘|𝜃𝑗 , ∆𝑡)

𝑖𝑗

𝑘=1

𝐽

𝑗=1

 

+∑𝐸 (log 𝑓𝐼𝐺 (𝑍𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜇𝑗 , 𝜎𝑗) |𝜃𝑗
(𝑛))

𝐽

𝑗=1

.                       (20) 

    Based on the calculation of the second item in the equation above, 𝑄(𝜃|𝜃(𝑛)) in the E-step is 

available. Then in the M-step, the maximization of 𝑄(𝜃|𝜃(𝑛)) is computed to obtain the parameter 

estimation 𝜃(𝑛+1)  of 𝜃  for the (𝑡 + 1) -th iteration. When |𝜃(𝑛+1) − 𝜃(𝑛)| < 𝜀 , where 𝜀  is a pre-

specified small constant, the iteration is terminated and the associated result can be considered as 

an approximation of the parameter 𝜃. Details under two types of degradation processes will be 

illustrated in the next section. 

 

5 ML estimation of unknown parameters based on EM algorithm 

In this section, we will illustrate the detailed access to the parameters of MLEs based on the 

likelihood function using EM algorithm.  In the previous section, we illustrate the framework of 

EM algorithm for the likelihood function based on complete data. In this section, we will derive 

the explicit form of likelihood function under Wiener degradation processes, where the EM 

algorithm is implemented as introduced in the previous section. 

As the expectation item in 𝑄(𝜃|𝜃(𝑛)) is a in a summation form, it is equivalent to investigate 

the parameters for each component in the summation. In the case of Wiener degradation, by 

substituting equation (2), and denote 𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) by 𝜔𝑗, we have 

log 𝑓𝐼𝐺 (𝑍𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜇𝑗 , 𝜎𝑗) = log 𝑓𝐼𝐺(𝑍𝑗|𝜔𝑗 , 𝜇𝑗 , 𝜎𝑗) 

= 𝐶𝑗 − log 𝜎𝑗 +
𝜔𝑗𝜇𝑗
𝜎𝑗
2
−
3

2
log 𝑍𝑗                                                             
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−
𝜔𝑗

2

2 ∗ 𝜎𝑗
2 ∗ 𝑍𝑗

−
𝜇𝑗
2 ∗ 𝑍𝑗

2𝜎𝑗
2 ,                                                             (21) 

where 𝐶𝑗  is a constant irrelevant to (𝜇𝑗 , 𝜎𝑗) . The expectation of the log-likelihood function is 

formulated as 

𝐸[log 𝑓𝐼𝐺(𝑍𝑗|𝜔𝑗 , 𝜇𝑗 , 𝜎𝑗)] = 𝐶𝑗 − log 𝜎𝑗 +
𝜔𝑗𝜇𝑗
𝜎𝑗
2
−
𝜇𝑗
2

2𝜎𝑗
2 𝐸𝑗1

(𝑛) −
𝜔𝑗

2

2𝜎𝑗
2
𝐸𝑗2
(𝑛) −

3

2
𝐸𝑗3
(𝑛),        (22) 

where 

{
 
 
 

 
 
 𝐸𝑗1

(𝑛) = 𝐸𝑍𝑗(𝑍𝑗|𝜇𝑗
(𝑛), 𝜎𝑗

(𝑛)) = ∫ 𝑍𝑗 ∙ 𝑓𝑗
∗(𝑍𝑗|𝜔𝑗 , 𝜇𝑗

(𝑛), 𝜎𝑗
(𝑛))𝑑𝑍𝑗

𝑡𝑖𝑗+1

0

,                

𝐸𝑗2
(𝑛) = 𝐸𝑍𝑗 (

1

𝑍𝑗
|𝜇𝑗
(𝑛), 𝜎𝑗

(𝑛)) = ∫
1

𝑍𝑗
∙ 𝑓𝑗

∗(𝑍𝑗|𝜔𝑗 , 𝜇𝑗
(𝑛), 𝜎𝑗

(𝑛))𝑑𝑍𝑗

𝑡𝑖𝑗+1

0

,              

𝐸𝑗3
(𝑛) = 𝐸𝑍𝑗(𝑙𝑜𝑔 𝑍𝑗 |𝜇𝑗

(𝑛), 𝜎𝑗
(𝑛)) = ∫ 𝑙𝑜𝑔 𝑍𝑗 ∙ 𝑓𝑗

∗(𝑍𝑗|𝜔𝑗 , 𝜇𝑗
(𝑛), 𝜎𝑗

(𝑛))𝑑𝑍𝑗

𝑡𝑖𝑗+1

0

.   

          (23) 

      Note that all the three items above should be calculated in each iteration of the EM algorithm. 

Following the direct result of Theorem 1 in Ye et al. 33, 𝐸𝑗3
(𝑛)

 can be represented as: 

𝐸𝑗1
(𝑛) =

𝜔

𝜇𝑗
(𝑛) [1 − 𝐹𝐼𝐺 (

𝜔2

(𝑡𝑖𝑗+1 − 𝑡𝑖𝑗) 𝜇𝑗
(𝑛)2

|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜇𝑗
(𝑛), 𝜎𝑗

(𝑛)
)]

𝐹𝐼𝐺 (𝑡𝑖𝑗+1 − 𝑡𝑖𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜇𝑗
(𝑛), 𝜎𝑗

(𝑛))
.               (24) 

      𝐸𝑗3
(𝑛)

 is a constant that does not depend on parameter (𝜇𝑗
(𝑛), 𝜎𝑗

(𝑛)
) in each iteration of the EM 

algorithm, thus in the M-step, the maximization of the parameters is free of 𝐸𝑗3
(𝑛)

  due to the 

derivation process. In other words, the numerical result of 𝐸𝑗3
(𝑛)

  is not concerned and will be 

integrated into 𝐶𝑗 in the rest of the paper. For the calculation of 𝐸𝑗2
(𝑛)

, numerical methods are needed. 

As the integral process is on a bounded interval (0, 𝑡𝑖𝑗+1) , so numerical methods for such a 

problem are very fast and robust. By substituting the results and the equal load-sharing rule into 

the aforementioned framework, the EM algorithm can be implemented as follows  

• E-step: 

   𝑄(𝜃|𝜃(𝑛)) = 𝐸(log𝐿′(𝜃)|𝜃(𝑛)) = ∑ ∑ 𝑙𝑜𝑔 𝑓𝑗(∆𝑋𝑗
𝑘 − ∆𝐿𝑗

𝑘|𝜃𝑗 , ∆𝑡)
𝑖𝑗
𝑘=1

𝐽
𝑗=1  

 +∑𝐸 (log 𝑓𝑗 (𝑍𝑗|𝜔 − 𝑋𝑗 (𝑡𝑖𝑗) , 𝜇𝑗 , 𝜎𝑗) |𝜃𝑗
(𝑛)
)

𝐽

𝑗=1
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=∑∑(𝐶𝑗𝑘
∗ − log 𝜎𝑗 −

1

2𝜎𝑗
2
(∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘 − ∆𝑡𝜇𝑗)

2
)

𝑖𝑗

𝑘=1

𝐽

𝑗=1

                

+∑(𝐶𝑗 − log 𝜎𝑗 +
𝜔𝑗𝜇𝑗
𝜎𝑗
2
−
𝜇𝑗
2

2𝜎𝑗
2 𝐸𝑗1

(𝑛) −
𝜔𝑗

2

2𝜎𝑗
2
𝐸𝑗2
(𝑛))

𝐽

𝑗=1

                      

 = 𝐶 +∑(

−𝑖𝑗 log 𝜎𝑗 −

1

2𝜎𝑗
2
(𝑋𝑗 (𝑡𝑖𝑗) − 𝐿 (

1

𝐽 − 𝑗 + 1
−
1

𝐽
) − 𝑡𝑖𝑗𝜇𝑗)

2)

𝐽

𝑗=1

        

+∑(− log 𝜎𝑗 +
1

𝜎𝑗
2
(𝜔𝑗𝜇𝑗 −

𝜇𝑗
2
𝐸𝑗1
(𝑛) −

𝜔𝑗
2

2
𝐸𝑗2
(𝑛)))

𝐽

𝑗=1

,        (25) 

where 𝐶𝑗𝑘
∗ , 𝐶𝑗 and 𝐶 are all constants free of unknown parameters. 

• M-step: 

By differentiating 𝑄(𝜃|𝜃(𝑛)) in the E-step with respect to each 𝜇𝑗, we obtain 

𝜕𝑄(𝜃|𝜃(𝑛))

𝜕𝜇𝑗
=
∆𝑡

𝜎𝑗
2
∑(∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘 − ∆𝑡𝜇𝑗)

𝑖𝑗

𝑘=1

+
1

𝜎𝑗
2
(𝜔𝑗 − 𝐸𝑗1

(𝑛)𝜇𝑗) 

=
∆𝑡

𝜎𝑗
2
(𝑋𝑗 (𝑡𝑖𝑗) − 𝐿 (

1

𝐽 − 𝑗 + 1
−
1

𝐽
) − 𝑡𝑖𝑗𝜇𝑗) +

1

𝜎𝑗
2
(𝜔𝑗 − 𝐸𝑗1

(𝑛)
𝜇𝑗).                        (26) 

By differentiating 𝑄(𝜃|𝜃(𝑛)) in the E-step in terms of each 𝜎𝑗, it follows 

𝜕𝑄(𝜃|𝜃(𝑡))

𝜕𝜎𝑗
=∑(−

1

𝜎𝑗
+
1

𝜎𝑗
3
(∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘 − ∆𝑡𝜇𝑗)

2
)

𝑖𝑗

𝑘=1

 

                      + (−
1

𝜎𝑗
+
1

𝜎𝑗
3
(𝜇𝑗

2𝐸𝑗1
(𝑡) + 𝜔𝑗

2𝐸𝑗2
(𝑡) − 2𝜔𝑗𝜇𝑗)) 

= −
𝑖𝑗 + 1

𝜎𝑗
+
1

𝜎𝑗
3

(

 
 ∑(∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘 − ∆𝑡𝜇𝑗)

2

𝑖𝑗

𝑘=1

+(𝜇𝑗
2𝐸𝑗1

(𝑡) + 𝜔𝑗
2𝐸𝑗2

(𝑡) − 2𝜔𝑗𝜇𝑗))

 
 
.                                               (27) 

By solving 
𝜕𝑄(𝜃|𝜃(𝑡))

𝜕𝜇𝑗
= 0 and 

𝜕𝑄(𝜃|𝜃(𝑡))

𝜕𝜎𝑗
= 0, the MLEs for the (𝑡 + 1) iteration can be obtained 

as: 
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𝜇𝑗
(𝑡+1) =

𝑋𝑗 (𝑡𝑖𝑗) − 𝐿 (
1

𝐽 − 𝑗 + 1 −
1
𝐽) + 𝜔𝑗

∆𝑡 ∙ 𝑡𝑖𝑗 + 𝐸𝑗1
(𝑡)

,                                       (28) 

and,  

𝜎𝑗
(𝑡+1)2

=
∑ (∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘 − ∆𝑡𝜇𝑗

(𝑡+1))
2
+ (𝜇𝑗

2𝐸𝑗1
(𝑡) + 𝜔𝑗

2𝐸𝑗2
(𝑡) − 2𝜔𝑗𝜇𝑗

(𝑡+1))
𝑖𝑗
𝑘=1

𝑖𝑗 + 1
 

 =
𝑖𝑗∆𝑡 ∙ 𝑡𝑖𝑗𝜇𝑗

(𝑡+1)2 − 2∆𝑡𝜇𝑗
(𝑡+1)∑ (∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘)

𝑖𝑗
𝑘=1 + ∑ (∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘)
2𝑖𝑗

𝑘=1

𝑖𝑗 + 1
                             

+
𝜇𝑗
2𝐸𝑗1

(𝑡) + 𝜔𝑗
2𝐸𝑗2

(𝑡) − 2𝜔𝑗𝜇𝑗
(𝑡+1)

𝑖𝑗 + 1
                                                                                   

=

𝑖𝑗∆𝑡 ∙ 𝑡𝑖𝑗𝜇𝑗
(𝑡+1)2 − 2∆𝑡𝜇𝑗

(𝑡+1) (𝑋𝑗 (𝑡𝑖𝑗) − 𝐿 (
1

𝐽 − 𝑗 + 1
−
1
𝐽)
)

𝑖𝑗 + 1
                                              

+
∑ (∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘)
2𝑖𝑗

𝑘=1

𝑖𝑗 + 1
+
𝜇𝑗
2𝐸𝑗1

(𝑡) +𝜔𝑗
2𝐸𝑗2

(𝑡) − 2𝜔𝑗𝜇𝑗
(𝑡+1)

𝑖𝑗 + 1
                                                         

=
𝑖𝑗∆𝑡 ∙ 𝑡𝑖𝑗𝜇𝑗

(𝑡+1)2 − 2∆𝑡𝜇𝑗
(𝑡+1)

((∆𝑡 ∙ 𝑡𝑖𝑗 + 𝐸𝑗1
(𝑡)) 𝜇𝑗

(𝑡+1) − 𝜔𝑗)

𝑖𝑗 + 1
                                              

+
∑ (∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘)
2𝑖𝑗

𝑘=1

𝑖𝑗 + 1
+
𝜇𝑗
2𝐸𝑗1

(𝑡) +𝜔𝑗
2𝐸𝑗2

(𝑡) − 2𝜔𝑗𝜇𝑗
(𝑡+1)

𝑖𝑗 + 1
                                                        

=
1

𝑖𝑗 + 1
𝜇𝑗
(𝑛+1)2

(𝐸𝑗1
(𝑛)(1 − 2∆𝑡) + ∆𝑡 ∙ 𝑡𝑖𝑗(𝑖𝑗 − 2∆𝑡))                                 

+
1

𝑖𝑗 + 1
(2𝜔𝑗𝜇𝑗

(𝑛+1)(∆𝑡 − 1) + 𝜔𝑗
2𝐸𝑗2

(𝑛))                                                                                

+
1

𝑖𝑗 + 1
∑((∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘)
2
)

𝑖𝑗

𝑘=1

.                                                                                         (29) 

Note that the third item in the equation 
1

𝑖𝑗+1
∑ ((∆𝑋𝑗

𝑘 − ∆𝐿𝑗
𝑘)
2
)

𝑖𝑗
𝑘=1   does not depend on the 

results from the 𝑡 -th iteration, but only related to 𝑗 , we can calculate it before implementing 

algorithm and substitute the result into each iteration.  
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6 Simulation study 

6.1 Numerical example 

In this section, we use a numerical example to illustrate the effectiveness of the proposed parameter 

estimation approach. We generate artificial degradation data according to pre-specified parameters. 

Then we apply the EM algorithm on the simulated data. The number of components are set as 3. 

The degradation parameters and failure thresholds of the components are set as: 

𝜇1 = 1, 𝜎1 = 2, 𝜇2 = 2, 𝜎2 = 4, 𝜇3 = 3, 𝜎3 = 3, 

𝜔1 = 35, 𝜔2 = 65, 𝜔3 = 85 

The simulated data set is illustrated in Table 6.1. When the degradation performance of any 

component exceeds the corresponding failure threshold, the observation is terminated and the exact 

failure time is censored. 

Based on the data set in Table 1, we use the EM algorithm in our approach according to the 

preceding procedures to estimate the parameters. Initial values of the EM procedure are set as 

𝜇1 = 0, 𝜎1 = 1, 𝜇2 = 1, 𝜎2 = 1, 𝜇3 = 1, 𝜎3 = 1 

 

Table 1. Simulated data set for a load-sharing system with 3 components subject to Wiener 

degradation 

Observation Time Component 1 Component 2 Component 3 

1 0 0 0 

2 2.0734 4.3589 1.8328 

3 6.7431 5.0391 2.4822 

4 3.2254 6.0425 5.4578 

5 5.9497 13.5013 6.1937 

6 7.5872 20.6374 13.3039 

7 5.9711 27.8062 11.1694 

8 6.1047 31.9922 13.8626 

9 7.7896 28.6627 16.1383 

10 15.9467 33.0312 20.0959 

11 22.4856 41.0521 24.0345 

12 20.7858 44.5077 24.4391 

13 27.8557 50.1461 27.3496 

14 30.3065 54.5540 29.8552 

15 32.1802 54.8402 34.7384 



  15 
   

16  57.5157 41.0184 

17  55.8664 47.3486 

18  60.9203 47.7549 

19  57.8319 50.9869 

20  58.0564 50.3446 

21  61.3184 50.0042 

22   52.9835 

23   60.5847 

24   61.2747 

25   65.3866 

26   67.7085 

27   74.0692 

28   73.7973 

29   76.8924 

30   81.1523 

31   83.5498 

 

The estimation results are listed in Table 2. From Table 2, the final estimated values through EM 

algorithm after 17 iterations are 

𝜇̂1 = 0.9063, 𝜎̂1 = 1.8904, 

𝜇̂2 = 2.1016, 𝜎̂2 = 3.9605, 

𝜇̂3 = 3.0558, 𝜎̂3 = 2.9397. 

The deviation of the estimated values from the real ones are acceptable and the convergence of 

the iterations are fast (within 17 iterations). 

 

Table 2. Iterations of EM algorithm sequences 

Iteration 𝝁𝟏 𝝈𝟏 𝝁𝟐 𝝈𝟐 𝝁𝟑 𝝈𝟑 

0 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1 0.6431 1.7233 2.0211 3.9187 3.1123 2.9433 

2 0.7476 1.7647 2.0415 3.9354 3.0824 2.9416 

3 0.8611 1.8213 2.0822 3.9462 3.0751 2.9408 

4 0.8689 1.8515 2.0911 3.9518 3.0476 2.9404 

5 0.8727 1.8721 2.0934 3.9533 3.0489 2.9402 

6 0.8928 1.8813 2.0954 3.9546 3.0502 2.9399 

7 0.9014 1.8844 2.0971 3.9558 3.0513 2.9398 
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8 0.9027 1.8864 2.0979 3.9570 3.0523 2.9398 

9 0.9033 1.8871 2.0987 3.9581 3.0531 2.9397 

10 0.9041 1.8878 2.0992 3.9588 3.0538 2.9397 

11 0.9045 1.8883 2.0997 3.9593 3.0545 2.9397 

12 0.9051 1.8888 2.1002 3.9598 3.0551 2.9397 

13 0.9056 1.8893 2.1007 3.9601 3.0554 2.9397 

14 0.9061 1.8897 2.1011 3.9603 3.0557 2.9397 

15 0.9062 1.8901 2.1013 3.9604 3.0558 2.9397 

16 0.9063 1.8893 2.1015 3.9605 3.0558 2.9397 

17 0.9063 1.8904 2.1016 3.9605 3.0558 2.9397 

 

6.2 Comparative study 

We illustrate the properties of the EM algorithm in this case by comparing the estimated results 

with those using Newton type methods, i.e., the classical quasi Newton method in Fletcher34. The 

programs of Newton type methods can be found in existing literatures. In this part, we set 

component number at 2. The initial values of the parameters are: 

𝜇1 = 1, 𝜎1 = 2, 𝜇2 = 2, 𝜎2 = 4 

The data used in this analysis is identical to that of Component 1 and 2 in Table 1. 

The results are listed in Table 3. As the starting values have significant influence on the 

performance of Newton type methods, we choose different starting values for both the two 

methods around the real values of parameters.  

 

Table 3. Estimated results of the parameters through the proposed EM method and the 

Newton type method 

 𝝁𝟏 𝝈𝟏 𝝁𝟐 𝝈𝟐 

Initial value 0.0000 0.5000 1.0000 1.0000 

EM 0.9092 1.8904 2.1016 3.9605 

Newton 0.2044 2.2513 0.7736 2.4982 

Initial value 0.5000 1.0000 1.5000 2.0000 

EM 0.9063 1.8904 2.1016 3.9605 

Newton 0.2044 2.4541 1.2377 -0.8454 

Initial value 0.5000 1.5000 2.0000 3.0000 

EM 0.9063 1.8901 2.1016 3.9605 

Newton 0.9066 1.8932 2.1016 3.9602 
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Initial value 1.0000 1.0000 1.5000 3.5000 

EM 0.9063 1.8904 2.1016 3.9605 

Newton 0.9066 1.8932 2.1016 3.9602 

Initial value 2.0000 2.0000 2.5000 3.5000 

EM 0.9063 1.8904 2.1016 3.9605 

Newton 0.9066 1.8932 2.1016 3.9602 

 

From Table 3, we generate initial values for both the two methods artificially. The proposed EM 

algorithm has a robust performance. However, the Newton type method is quite sensitive to the 

initial values. In the first two trials, the initial values are far from the real parameters and the 

Newton type method fails to converge. Pitfalls are significant for the Newton type method in this 

specific estimation problem. Although this may not hold in other problems, we can still conclude 

that our method provides a better and more robust performance than Newton type method. Actually 

EM algorithm generally outperform Newton type methods in cases under large scale of parameters 

or sparse prior parameter information. 

7 Concluding remarks 

In this paper, we deal with an estimation issue for load-sharing systems subject to degradation. As 

the actual failure time for each component cannot be observed, the closed form of the MLE cannot 

be derived. We introduce EM method for the parameter estimation in this case. Under the Wiener 

degradation model, we illustrate the procedure of the proposed EM algorithm and give the closed 

form parameter estimates for each step. Numerical results of the estimated parameters can be 

obtained through our method. Meanwhile, we compare the proposed EM algorithm with the 

Newton type method and show the advantage of EM method against the Newton type method 

through the numerical study. 

    In future research, the model assumption can be extended and more degradation models in 

addition to Wiener degradation model can be investigated for modeling and parameter estimation. 

Meanwhile, the application of EM algorithm is possible to be extended to more general systems 

for parameter estimation. 
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