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Stabilisation of Highly Nonlinear Hybrid Systems
by Feedback Control Based on Discrete-Time State

Observations
Chen Fei, Weiyin Fei, Xuerong Mao, Dengfeng Xia, Litan Yan

Abstract— Given an unstable hybrid stochastic differential
equation (SDE), can we design a feedback control, based on the
discrete-time observations of the state at times 0, τ, 2τ, · · · , so
that the controlled hybrid SDE becomes asymptotically stable?
It has been proved that this is possible if the drift and diffusion
coefficients of the given hybrid SDE satisfy the linear growth
condition. However, many hybrid SDEs in the real world do not
satisfy this condition (namely, they are highly nonlinear) and
there is no answer to the question yet if the given SDE is highly
nonlinear. The aim of this paper is to tackle the stabilization
problem for a class of highly nonlinear hybrid SDEs. Under some
reasonable conditions on the drift and diffusion coefficients, we
show how to design the feedback control function and give an
explicit bound on τ (the time duration between two consecutive
state observations), whence the new theory established in this
paper is implementable.

Index Terms—Highly nonlinear; Itô formula; Markov chain;
Asymptotic stability; Lyapunov functional.

I. INTRODUCTION

Many systems in the real word may experience abrupt
changes in their structures and parameters due to sudden
changes of system factors, for example, a failure of a power
station in a network, a change of interest rate in an economic
system, an environmental change in an ecological system.
Hybrid stochastic differential equations (SDEs; also known
as SDEs with Markovian switching) have been widely used to
model these systems (see, e.g., [2], [10], [20], [21], [22]).

Hybrid SDEs are in general described by

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t). (1)

Here the state x(t) takes values in Rn and the mode r(t)
is a Markov chain taking values in a finite space S =
{1, 2, · · · , N}, B(t) is a Brownian motion and f and g are
referred to as the drift and diffusion coefficient, respectively.
One of the important issues in the study of hybrid SDEs is
the analysis of stability (see, e.g., [7], [22], [20], [26], [27],
[28], [29], [31]).
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In the case when a given hybrid SDE is unstable, can
we design a feedback control u(x([t/τ ]τ), r(t), t), based
on the discrete-time observations of the state x(t) at times
0, τ, 2τ, · · · , so that the controlled system

dx(t) =
(
f(x(t), r(t), t) + u(x([t/τ ]τ), r(t), t)

)
dt

+ g(x(t), r(t), t)dB(t) (2)

becomes stable? Here τ > 0 is a constant which stands for
the duration between two consecutive state observations, and
[t/τ ] is the integer part of t/τ . This is significantly different
from the stabilisation by a continuous-time (regular) feedback
control u(x(t), r(t), t), because the regular feedback control
requires the continuous observations of the state x(t) for
all t ≥ 0, while the feedback control u(x([t/τ ]τ), r(t), t)
needs only the discrete observations of the state x(t) at times
0, τ, 2τ, · · · . The latter is clearly more realistic and costs less
in practice. Moreover, a larger of τ means a less frequent
observations to be made. It is therefore more desirable in
practice to choose larger τ whenever possible. Our aims here
are therefore not only to design the control function u but also
give an explicit bound, say τ∗ on τ in the sense whenever
τ ≤ τ∗ the controlled system is stable.

The answer to the stabilization question above is yes when
both drift and diffusion coefficients of the given hybrid SDE
satisfy the linear growth condition (see, e.g., [16], [17], [18],
[25], [30]). However, many hybrid SDEs in the real world
do not satisfy this linear growth condition (namely, they
are highly nonlinear), for example, the SDEs discussed in
Examples 6.1 and 6.2 later ((see, e.g., [2], [10], [4] for more on
highly nonlinear hybrid SDEs). Unfortunately, there is so far
no answer to the question if the given SDE is highly nonlinear.
It is therefore necessary and important to establish a new
theory which shows how to design the feedback controls based
on the discrete-time state observations in order to stabilise
highly nonlinear hybrid SDEs.

The key challenge of this paper lies in the difficulties arisen
from the highly nonlinear drift and diffusion coefficients. All
papers so far in this direction (see, e.g., [16], [17], [18],
[25], [30]) impose the critical linear growth condition on the
coefficients. Many known techniques dependent on this linear
growth condition does not work in this paper. We need to
develop new techniques to overcome the difficulties arisen
from the high nonlinearity. We should also mention that there
are already papers on the stability of highly nonlinear SDEs
(see, e.g., [10], [11], [12], [21]) but the stability criteria in
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these papers/books are not applicable to the design of feedback
controls based on the discrete-time state observations for
highly nonlinear SDEs. Comparing with the existing papers,
we highlight a number of main contributions of this paper:

(i) This is the first paper that studies the design of a feedback
control based on the discrete-time state observations in order
to stabilize a given unstable highly nonlinear hybrid SDE.

(ii) In order to make the new theory established in this paper
implementable, we propose three conditions on the control
function. In particular, one key condition is in terms of M-
matrices and hence it can be verified easily. We also explain
how to design the control function step by step to meet these
conditions.

(iii) Under some mild conditions which guarantee the
boundedness of the unique solution of the given SDE, we
show that the discrete-time feedback control can preserve
the boundedness as long as the control function satisfies the
Lipschitz condition. This does not only form the foundation
of the paper but also makes the design of the control function
become much easier.

(iv) A number of new techniques are developed to overcome
the difficulties arisen from the high nonlinearity and discrete-
time control. For example, the technique used in the proof
of the boundedness of the solution to the controlled system
is significantly different from that when the continuous-time
feedback control is used.

The paper is organised as follows. We will give the pre-
liminaries on the highly nonlinear hybrid SDEs and impose
some standing hypotheses which guarantee the boundedness
of the unique solution of the given SDE in Section 2. We
will show the discrete-time feedback control can preserve
the boundedness as long as the control function satisfies the
Lipschitz condition in Section 3. We will in Section 4 propose
three conditions and explain, one by one, there are many
available controls functions which can meet these conditions,
and then show such a discrete-time feedback control can
stabilize the given SDE asymptotically. In Section 5 we will
further discuss the exponential stabilization. Our theory is
illustrated by two examples in Section 6 wile the paper is
conclude in Section 7.

II. CONTROLLED SYSTEM AND STANDING HYPOTHESES

Throughout this paper, unless otherwise specified, we use
the following notation. If A is a vector or matrix, its transpose
is denoted by AT . For x ∈ Rn, |x| denotes its Euclidean
norm. If A is a matrix, we let |A| =

√
trace(ATA) be its

trace norm. If A is a symmetric real-valued matrix (A = AT ),
denote by λmin(A) and λmax(A) its smallest and largest
eigenvalue, respectively. By A ≤ 0 and A < 0, we mean A
is non-positive and negative definite, respectively. Let R+ =
[0,∞). For h > 0, denote by C([−h, 0];Rn) the family of
continuous functions ϕ from [−h, 0] → Rn with the norm
‖ϕ‖ = sup−h≤u≤0 |ϕ(u)|. If both a, b are real numbers, then
a∧ b = min{a, b} and a∨ b = max{a, b}. If A is a subset of
Ω, denote by IA its indicator function; that is, IA(ω) = 1 if
ω ∈ A and 0 otherwise.

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is

increasing and right continuous while F0 contains all P-null
sets). Let B(t) = (B1(t), · · · , Bm(t))T be an m-dimensional
Brownian motion defined on the probability space. Let r(t),
t ≥ 0, be a right-continuous Markov chain on the probability
space taking values in a finite state space S = {1, 2, · · · , N}
with generator Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j
if i 6= j while

γii = −
∑
j 6=i

γij .

We assume that the Markov chain r(·) is independent of the
Brownian motion B(·). It is well known that almost all sample
paths of r(t) are piecewise constant except for a finite number
of simple jumps in any finite subinterval of R+. We stress that
almost all sample paths of r(t) are right continuous.

Suppose that the underlying system is described by a
nonlinear hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (3)

on t ≥ 0 with the initial value x(0) = x0 ∈ Rn, where

f : Rn × S ×R+ → Rn and g : Rn × S ×R+ → Rn×m

are Borel measurable functions. As mentioned in the last
section, we consider the situation in this paper where either
f or g does not satisfy the linear growth condition (namely
not bounded by a linear function). The following assumption
describes this situation.

Assumption 2.1: Assume that for any real number b > 0,
there exists a positive constant Kb such that

|f(x, i, t)− f(x̄, i, t)| ∨ |g(x, i, t)− g(x̄, i, t)| ≤ Kb(|x− x̄|)
(4)

for all x, x̄ ∈ Rn with |x| ∨ |x̄| ≤ b and all (i, t) ∈ S × R+.
Assume also that there exist three constants K > 0, q1 > 1
and q2 ≥ 1 such that

|f(x, i, t)| ≤ K(|x|+|x|q1) and |g(x, i, t)| ≤ K(|x|+|x|q2)
(5)

for all (x, i, t) ∈ Rn × S ×R+.
Condition (5) forces that f(0, i, t) ≡ 0 and g(0, i, t) ≡ 0,

which are required for the stability purpose of this paper. Of
course, if q1 = q2 = 1 then condition (5) is the familiar linear
growth condition. However, let us stress once again that we are
here interested in the hybrid SDEs without the linear growth
condition and we will always assume that q1 > 1 in this
paper. We will refer to condition (5) as the polynomial growth
condition. For the hybrid SDE (71), we see easily that q1 = 3
and q2 = 1.5. This assumption is of course not sufficient to
guarantee the existence of the unique global solution of the
hybrid SDE (3). We therefore impose another Khasminskii-
type condition.

Assumption 2.2: Assume that there exist positive constants
p, q, α, β such that

q ≥ (2q1)∨(2q2+q1−1) and p ≥ (q1+1)∨(2q2−q1+1) (6)
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(where q1 and q2 have been specified in Assumption 2.1) while

xT f(x, i, t) +
q − 1

2
|g(x, i, t)|2 ≤ −α|x|p + β|x|2 (7)

for all (x, i, t) ∈ Rn × S ×R+.
In many hybrid SDEs, p and q are different. In fact, q

could be arbitrarily large sometimes. For example, consider
the hybrid SDE (71) and let q be arbitrarily large. Then

xT f(x, i, t) +
q − 1

2
|g(x, i, t)|2

=

{
x2 − 3x4 + 0.5(q − 1)|x|3 if i = 1,
x2 − 2x4 + 0.125(q − 1)|x|3 if i = 2.

(8)

But
(q − 1)|x|3 ≤ |x|4 + 0.25(q − 1)2x2.

Hence

xT f(x, i, t) +
q − 1

2
|g(x, i, t)|2

≤ −1.875x4 + (1 + 0.125(q − 1)2)x2. (9)

That is, the hybrid SDE (71) satisfies Assumption 2.2 with
any large q and p = 4, α = 1.875, β = 1 + 0.125(q − 1)2

(recalling q1 = 3 and q2 = 1.5).
It is well known (see, e.g., [21, Theorem 5.3 on page

159]) that under Assumptions 2.1 and 2.2, the hybrid SDE
(3) with any initial value x(0) = x0 ∈ Rn has a unique
global solution such that sup0≤t<∞ E|x(t)|q < ∞. Although
the qth moment of solution is bounded, the SDE (3) may not
be stable. In the case when the given SDE (3) is unstable, we
are required to design a feedback control u(x([t/τ ]τ), r(t), t),
based on the discrete-time observations of the state x(t) at
times 0, τ, 2τ, · · · , in the drift part so that the controlled system

dx(t) =[f(x(t), r(t), t) + u(x(δt), r(t), t)]dt

+ g(x(t), r(t), t)dB(t), t ≥ 0, (10)

becomes stable, where δt = [t/τ ]τ and the control function
u : Rn × S ×R+ → Rn is a Borel measurable. In this paper,
we will design the control function to satisfy the following
assumption.

Assumption 2.3: Assume that there exists a positive number
κ such that

|u(x, i, t)− u(y, i, t)| ≤ κ|x− y| (11)

for all x, y ∈ Rn, i ∈ S and t ≥ 0. Moreover, for the stability
purpose, assume that u(0, i, t) ≡ 0.

This assumption implies

|u(x, i, t)| ≤ κ|x|, ∀(x, i, t) ∈ Rn × S ×R+. (12)

.

III. BOUNDEDNESS

As pointed out, the qth moment of the solution of the given
SDE (3) is bounded. The following theorem, which forms the
foundation of this paper, shows that the controlled SDE (10)
preserves this nice property.

Theorem 3.1: Under Assumptions 2.1, 2.2 and 2.3, the
controlled system (10) with any initial value x(0) = x0 ∈ Rn

has a unique global solution x(t) on t ≥ 0 and the solution
has the property that

sup
0≤t<∞

E|x(t)|q <∞. (13)

Proof. We observe that the controlled system (10) is in fact
a hybrid stochastic differential delay equation (SDDE) with
a bounded variable delay. In fact, if we define the bounded
variable delay ζ : R+ → [0, τ ] by

ζ(t) = t− kτ for kτ ≤ t < (k + 1)τ, k = 0, 1, 2, · · · ,

then the controlled system (10) can be written as

dx(t) =
(
f(x(t), r(t), t) + u(x(t− ζ(t)), r(t), t)

)
dt

+ g(x(t), r(t), t)dB(t) (14)

on t ≥ 0 with the initial value x(0) = x0 ∈ Rn. Let Ū(x) =
|x|q . By the Itô formula,

dŪ(x(t)) = L̄Ū(x(t), x(t− ζ(t)), r(t), t)dt

+ q|x|q−2xT (t)g(x(t), r(t), t)dB(t),

where the function L̄Ū : Rn ×Rn × S ×R+ → R is defined
by

L̄Ū(x, y, i, t) =

q|x|q−2xT [f(x, i, t) + u(y, i, t)] +
q

2
|x|q−2|g(x, i, t)|2

+
q(q − 2)

2
|x|q−4|xT g(x, i, t)|2

≤ q|x|q−2
[
xT [f(x, i, t) + u(y, i, t)] +

q − 1

2
|g(x, i, t)|2

]
.

By Assumptions 2.2 and 2.3,

L̄Ū(x, y, i, t) ≤ −qα|x|q+p−2 + qβ|x|q + qκ|x|q−1|y|.

Let us now choose a constant ε ∈ (0, 1) sufficiently small for

e−τ + ετ < 1. (15)

By the well-known Young inequality,

qκ|x|q−1|y| =
( (qκ)q/(q−1)

(qε)1/(q−1)
|x|q
)(q−1)/q(

qε|y|q
)1/q

≤ (q − 1)(qκ)q/(q−1)

q(qε)1/(q−1)
|x|q + ε|y|q.

Hence

L̄Ū(x, y, i, t)

≤ −qα|x|q+p−2 +
(
qβ +

(q − 1)(qκ)q/(q−1)

q(qε)1/(q−1)

)
|x|q + ε|y|q

≤ C − Ū(x) + εŪ(y), (16)

where

C := sup
u≥0

[
−qαuq+p−2 +

(
1+qβ+

(q − 1)(qκ)q/(q−1)

q(qε)1/(q−1)

)
uq
]
.

By [21, Theorem 7.13 on page 280], we can hence conclude
that the SDDE (14), namely the controlled system (10) with
any initial value x(0) = x0 ∈ Rn has a unique global solution
x(t) on t ≥ 0 and the solution has the property that E|x(t)|q <
∞ for all t ≥ 0.



4

In the remaining proof, we will show the stronger result
(13). Set tk = kτ for k = 0, 1, 2 · · · . By the Itô formula, we
can show that for t ∈ [tk, tk+1],

etEŪ(x(t)) = etkEŪ(x(tk))

+ E
∫ t

tk

es[Ū(x(s)) + L̄Ū(x(s), x(s− ζ(s)), r(s), s)]ds.

Using (16), we see

etEŪ(x(t))

≤ etkEŪ(x(tk)) + E
∫ t

tk

es[C + εŪ(x(s− ζ(s)))]ds

= etkEŪ(x(tk)) + E
∫ t

tk

es[C + εŪ(x(tk))]ds

= etkEŪ(x(tk)) + (et − etk)[C + εEŪ(x(tk))]. (17)

In particular,

etk+1EŪ(x(tk+1))

≤ etkEŪ(x(tk)) + (etk+1 − etk)[C + εEŪ(x(tk))].

This implies

EŪ(x(tk+1)) ≤ e−τEŪ(x(tk)) + (1− e−τ )[C + εEŪ(x(tk))]

≤ Cτ + (e−τ + ετ)EŪ(x(tk)). (18)

Consequently

EŪ(x(tk+1))

≤ Cτ + (e−τ + ετ)[Cτ + (e−τ + ετ)EŪ(x(tk−1))]

≤ Cτ [1 + (e−τ + ετ) + · · ·+ (e−τ + ετ)k]

+ (e−τ + ετ)k+1Ū(x(0))

≤ Cτ

1− (e−τ + ετ)
+ |x(0)|q. (19)

Furthermore, it follows from (17) that

sup
tk≤t≤tk+1

[
etEŪ(x(t))

]
≤ etkEŪ(x(tk)) + (etk+1 − etk)[C + εEŪ(x(tk))].

This, together with (19), yields

sup
tk≤t≤tk+1

EŪ(x(t))

≤ EŪ(x(tk)) + (eτ − 1)[C + εEŪ(x(tk))]

≤ C(eτ − 1) + [1 + ε(eτ − 1)]EŪ(x(tk))]

≤ C(eτ − 1) + [1 + ε(eτ − 1)]
( Cτ

1− (e−τ + ετ)
+ |x(0)|q

)
.

(20)

As this holds for any k ≥ 0, the required assertion (13) must
hold. The proof is complete. 2

This theorem implies a number of nice properties of the
solution. For example, for any t ≥ 0, x(t) is bounded in Lq̄ for
any q̄ ∈ (0, q] while both f(x(t), r(t), t) and g(x(t), r(t), t)
are in L2. These properties will play their fundamental roles
when we discuss the stabilisation of the SDDE (10) in the
next section.

IV. ASYMPTOTIC STABILISATION

We have just shown that the controlled system (10) pre-
serves the boundedness of the given SDE (3) as long as the
control function satisfies Assumption 2.3. However, such a
control may not be able to stabilise the given SDE. We need
more carefully design the control function in order for the
controlled system (10) to be stable. In this section, we will
step by step explain how to design the control function to
meet a number of conditions under our standing Assumptions
2.1-2.3, and then show such designed control function will
indeed guarantee the asymptotic stability of the controlled
system (10). Let us begin to state our first condition.

Condition 4.1: Design the control function u : Rn × S ×
R+ → Rn so that we can find constants αi > 0, ᾱi > 0 and
βi, β̄i ∈ R (i ∈ S) for both

xT [f(x, i, t) + u(x, i, t)] +
1

2
|g(x, i, t)|2 ≤ −αi|x|p + βi|x|2

(21)

and

xT [f(x, i, t) + u(x, i, t)] +
q1

2
|g(x, i, t)|2 ≤ −ᾱi|x|p + β̄i|x|2

(22)

to hold for all (x, i, t) ∈ Rn × S ×R+ and for both

A1 := −2diag(β1, · · · , βN )− Γ,

A2 := −(q1 + 1)diag(β̄1, · · · , β̄N )− Γ (23)

to be nonsingular M-matrices.
Regarding the theory on M-matrices we refer the reader

to [21, Section 2.6]. Let us explain that there are lots of
such control functions available under Assumption 2.2. For
example, in the case when the state x(t) of the given SDE
(3) is observable in any mode i ∈ S (otherwise it is more
complicated and we will explain later), we could, for example,
design the control function u(x, i, t) = Ax, where A is a
symmetric n×n real-valued matrix such that λmax(A) ≤ −2β.
Then

xTu(x, i, t) ≤ −2β|x|2, ∀(x, i, t) ∈ Rn × S ×R+.

By Assumption 2.2, we further have

xT [f(x, i, t) + u(x, i, t)] +
1

2
|g(x, i, t)|2 ≤ −α|x|p − β|x|2

as well as

xT [f(x, i, t) + u(x, i, t)] +
q1

2
|g(x, i, t)|2 ≤ −α|x|p − β|x|2

while

A1 = 2diag(β, · · · , β)−Γ and A2 = (q1+1)diag(β, · · · , β)−Γ

which are nonsingular M-matrices (see, e.g., [21, Theorem
2.10]). That is, the control function u(x, i, t) = Ax meets
Condition 4.1. Of course, in application, we need to make full
use of the special forms of both coefficients f and g to design
the control function u more wisely in order to meet our further
conditions more easily.
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To state our second condition, we set

(θ1, · · · , θN )T := A−1
1 (1, · · · , 1)T ,

(θ̄1, · · · , θ̄N )T := A−1
2 (1, · · · , 1)T . (24)

As A1 and A2 are nonsingular M-matrices, all θi and θ̄i are
positive. Define a function U : Rn × S → R+ by

U(x, i) = θi|x|2 + θ̄i|x|q1+1, (x, i) ∈ Rn × S (25)

while define a function LU : Rn × S ×R+ → R by

LU(x, i, t)

= 2θi

[
xT [f(x, i, t) + u(x, i, t)] +

1

2
|g(x, i, t)|2

]
+ (q1 + 1)θ̄i|x|q1−1

[
xT [f(x, i, t) + u(x, i, t)] +

q1

2
|g(x, i, t)|2

]
+

N∑
j=1

γij(θj |x|2 + θ̄j |x|q1+1). (26)

Please note that LU is a single function (not L acting on U ).
By (21)-(24), we observe

LU(x, i, t)

≤ 2θi(−αi|x|p + βi|x|2) +

N∑
j=1

γijθj |x|2

+ (q1 + 1)θ̄i|x|q1−1(−ᾱi|x|p + β̄i|x|2) +

N∑
j=1

γij θ̄j |x|q1+1

≤ −2θiαi|x|p − |x|2 − (q1 + 1)θ̄iᾱi|x|p+q1−1 − |x|q1+1.
(27)

This observation makes the following condition possible.
Condition 4.2: Find four positive constants γj , j =

1, 2, 3, 4, such that

LU(x, i, t) + γ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ γ2|f(x, i, t)|2 + γ3|g(x, i, t)|2 ≤ −γ4|x|2 (28)

for all (x, i, t) ∈ Rn × S ×R+.
Let us explain why it is always possible to meet this

condition. In fact, by Assumption 2.1 and (27), we have

LU(x, i, t) + γ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ γ2|f(x, i, t)|2 + γ3|g(x, i, t)|2

≤ −|x|q1+1 − |x|2 − (q1 + 1)θ̄iᾱi|x|p+q1−1

+ 8γ1θ
2
i |x|2 + 2γ1(q1 + 1)2θ̄2

i |x|2q1

+ 2γ2K
2(|x|2 + |x|2q1) + 2γ3K

2(|x|2 + |x|2q2). (29)

Recalling (6), we have p+ q1 − 1 ≥ 2(q1 ∨ q2) and hence

|x|2q1 ∨ |x|2q2 ≤ |x|2 + |x|p+q1−1.

It then follows from (29) that

LU(x, i, t) + γ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ γ2|f(x, i, t)|2 + γ3|g(x, i, t)|2

≤ −|x|q1+1 −
[
(q1 + 1)θ̄iᾱi

− 2γ1(q1 + 1)2θ̄2
i − 2K2(γ2 + γ3)

]
|x|p+q1−1

−
[
1− 8γ1θ

2
i − 2γ1(q1 + 1)2θ̄2

i − 4K2(γ2 + γ3)
]
|x|2.

(30)

If we choose positive constants γ1-γ3 sufficiently small for

(q1 + 1) min
i∈S

θ̄iᾱi ≥ 2γ1(q1 + 1)2 max
i∈S

θ̄2
i + 2K2(γ2 + γ3)

and

0.5 ≥ 8γ1 max
i∈S

θ2
i + 2γ1(q1 + 1)2 max

i∈S
θ̄2
i + 4K2(γ2 + γ3)

then

LU(x, i, t) + γ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ γ2|f(x, i, t)|2 + γ3|g(x, i, t)|2

≤ −0.5|x|2 − |x|q1+1, (31)

namely we can have γ4 = 0.5. (Please note that (31) is stronger
than (28) but it will illustrate Condition 4.6) later.) Of course,
in application, we need to make full use of the special forms
of both coefficients f and g to choose γ1 - γ4 more wisely
in order to have a larger bound on τ , which is the duration
between the two consecutive state observations, as stated in
our third condition.

Condition 4.3: Make sure the duration between the two
consecutive state observations satisfies

τ <

√
γ4γ1

2κ2
and τ ≤

√
γ1γ2√
2κ
∧ γ1γ3

κ2
∧ 1

4κ
. (32)

In the introduction, we have explained that a larger of τ
means a less frequent observations to be made so is more
desirable in practice. However, a large τ could also mean
information received via discrete-time state observations is
not enough for the feedback control to stabilize the given
unstable system. There is hence a balance on τ . Condition
4.3 means that the feedback control can certainly stabilize
the given system as long as the discrete-time observations are
frequently enough.

We can now state our first stabilisation result in this paper.
Theorem 4.4: Under Assumptions 2.1, 2.2 and 2.3, we can

design the control function u to satisfy Condition 4.1 and
then choose four positive constants γj , j = 1, 2, 3, 4, to meet
condition 4.2. If we further make sure τ to be sufficiently
small for Condition 4.3 to hold, then the solution of the
controlled system (10) has the property that for any initial
value x(0) = x0 ∈ Rn,∫ ∞

0

E|x(t)|2dt <∞. (33)

That is, the controlled system (10) is H∞-stable in L2.
Proof. To make the proof more understandable, we divide it
into three steps.

Step 1. We will use the method of Lyapunov functionals to
prove the theorem. For this purpose, we define two segments
x̂t := {x(t + s) : −2τ ≤ s ≤ 0} and r̂t := {r(t + s) :
−2τ ≤ s ≤ 0} for t ≥ 0. For x̂t and r̂t to be well defined for
0 ≤ t < 2τ , we set x(s) = x0 and r(s) = r0 for s ∈ [−2τ, 0).
The Lyapunov functional used in this proof will be of the form

V (x̂t, r̂t, t) = U(x(t), r(t))

+ c

∫ 0

−τ

∫ t

t+s

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dvds (34)
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for t ≥ 0, where U has been defined by (25) and c is a positive
constant to be determined later while we set

f(x, i, v) = f(x, i, 0), g(x, i, v) = g(x, , i, 0),

u(x, i, v) = u(x, i, 0)

for (x, i, v) ∈ Rn×S× [−2τ, 0). We claim that V (x̂t, r̂t, t) is
an Itô process on t ≥ 0. In fact, by the generalised Itô formula
(see, e.g., [21]), we have

dU(x(t), r(t)) = LU(x(t), x(δt), r(t), t)dt+ dM(t) (35)

for t ≥ 0, where M(t) is a continuous local martingale with
M(0) = 0 (the explicit form of M(t) is of no use in this paper
so we do not state it here but it can be found in [21, Theorem
1.45 on page 48]) and LU : Rn × Rn × S × R+ → R is
defined by

LU(x, y, i, t)

= 2θi

[
xT [f(x, i, t) + u(y, i, t)] +

1

2
|g(x, i, t)|2

]
+ (q1 + 1)θ̄i|x|q1−1

[
xT [f(x, i, t) + u(y, i, t)] +

1

2
|g(x, i, t)|2

]
+

(q1 + 1)(q1 − 1)

2
θ̄i|x|q1−3|xT g(x, i, t)|2

+

N∑
j=1

γij(θj |x|2 + θ̄j |x|q1+1).

On the other hand, the fundamental theory of calculus shows

d
(
c

∫ 0

−τ

∫ t

t+s

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dvds

)
=
(
cτ
[
τ |f(x(t), r(t), t) + u(x(δv), r(v), v)|2

+ |g(x(t), r(t), t)|2
]

− c
∫ t

t−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv
)
dt. (36)

Summing (35) and (36) yields

dV (x̂t, r̂t, t) = LU(x(t), x(δt), r(t), t)dt+ dM(t)

+
(
cτ
[
τ |f(x(t), r(t), t) + u(x(δv), r(v), v)|2

+ |g(x(t), r(t), t)|2
]

− c
∫ t

t−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv
)
dt. (37)

That is, V (x̂t, r̂t, t) is an Itô process as claimed. Furthermore,
it is easy to see that

LU(x, y, i, t) ≤
LU(x, i, t) + [2θi + (qi + 1)θ̄i|x|q1−1]xT [u(y, i, t)− u(x, i, t)],

where the function LU has been defined by (26). It then
follows from (37) that

dV (x̂t, r̂t, t) ≤ LV (x̂t, r̂t, t)dt+ dM(t), (38)

where

LV (x̂t, r̂t, t) = LU(x(t), r(t), t)

+ [2θr(t) + (q1 + 1)θ̄r(t)|x(t)|q1−1]xT (t)[u(x(δt), r(t), t)

− u(x(t), r(t), t)]

+ cτ
[
τ |f(x(t), r(t), t) + u(x(δt), r(t), t)|2

+ |g(x(t), r(t), t)|2
]

− c
∫ t

t−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv. (39)

Moreover, by Theorem 3.1 and Assumptions 2.1 and 2.3, it is
straightforward to see that

sup
0≤t<∞

E|LV (x̂t, r̂t, t)| <∞. (40)

Step 2. Let us now estimate LV (x̂t, r̂t, t). Let c = κ2/γ1.
(Please recall that c is a free parameter in the definition of the
Lyapunov functional.) By Assumption 2.3, we have

[2θr(t) + (q1 + 1)θ̄r(t)|x(t)|q1−1]xT (t)[u(x(δt), r(t), t)

− u(x(t), r(t), t)]

≤ γ1

[
2θr(t)|x(t)|+ (q1 + 1)θ̄r(t)|x(t)|q1

]2
+

κ2

4γ1
|x(t)− x(δt)|2. (41)

By Condition (4.3), we also have

2cτ2 ≤ γ2 and cτ ≤ γ3. (42)

It then follows from (39) along with Condition 4.2 and
inequality (12) that

LV (x̂s, r̂s, s) ≤ LU(x(s), r(s), s)

+ γ1

[
2θr(s)|x(s)|+ (q1 + 1)θ̄r(s)|x(s)|q1

]2
+ γ2|f(x(s), r(s), s)|2 + γ3|g(x(s), r(s), s)|2

+
2κ4τ2

γ1
|x(δs)|2 +

κ2

4γ1
|x(s)− x(δs)|2

− κ2

γ1

∫ s

s−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv

≤ −γ4|x(s)|2 +
2τ2κ4

γ1
|x(δs)|2 +

κ2

4γ1
|x(s)− x(δs)|2

− κ2

γ1

∫ s

s−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv.

But, noting κτ ≤ 1/4 from Condition 4.3, we have

2τ2κ4

γ1
|x(δs)|2 ≤

4τ2κ4

γ1
|x(s)|2 +

κ2

4γ1
|x(s)− x(δs)|2.
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Consequently,

LV (x̂s, r̂s, s) ≤ −
(
γ4 −

4τ2κ4

γ1

)
|x(s)|2 +

κ2

2γ1
|x(s)− x(δs)|2

− κ2

γ1

∫ s

s−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv. (43)

Step 3. Fix the initial value x0 arbitrarily. Let k0 > 0 be a
sufficiently large integer such that |x0| < k0. For each integer
k ≥ k0, define the stopping time

ζk = inf{t ≥ 0 : |x(t)| ≥ k},

where throughout this paper we set inf ∅ = ∞ (as usual ∅
denotes the empty set). By Theorem 3.1, we see that ζk is
increasing to infinity with probability 1 as k → ∞. By the
generalised Itô formula (see, e.g., [21, Lemma 1.9 on page
49]), we obtain from (38) that

EV (x̂t∧ζk , r̂t∧ζk , t ∧ ζk)

= V (x̂0, r̂0, 0) + E
∫ t∧ζk

0

LV (x̂s, r̂s, s)ds (44)

for any t ≥ 0 and k ≥ k0. Recalling (40), we can let k →∞
and then apply the dominated convergence theorem as well as
the Fubini theorem to get

EV (x̂t, r̂t, t) = V (x̂0, r̂0, 0) +

∫ t

0

ELV (x̂s, r̂s, s)ds (45)

for any t ≥ 0. By (43), we have

ELV (x̂s, r̂s, s) ≤

−
(
γ4 −

4τ2κ4

γ1

)
E|x(s)|2 +

κ2

2γ1
E|x(s)− x(δs)|2

− κ2

γ1
E
∫ s

s−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv. (46)

On the other hand, it follows from the SDDE (10) that

E|x(s)− x(δs)|2

=E
∣∣∣ ∫ s

δs

[f(x(v), r(v), v) + u(x(δv), r(v), v)]dv

+

∫ s

δs

g(x(v), r(v), v)dB(v)
∣∣∣2

≤2E
∫ s

δs

(
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
)
dv

≤2E
∫ s

s−τ

(
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
)
dv. (47)

Substituting (43) into (45) yields

EV (x̂t, r̂t, t) ≤ V (x̂0, r̂0, 0)−
(
γ4 −

4τ2κ4

γ1

)∫ t

0

E|x(s)|2ds.

(48)

By Condition (4.3), γ4 − 4τ2κ4/γ1 > 0. Hence∫ t

0

E|x(s)|2ds ≤ γ1V (x̂0, r̂0, 0)

γ4γ1 − 4τ2κ4
.

Letting t→∞ we obtain that∫ ∞
0

E|x(s)|2ds ≤ γ1V (x̂0, r̂0, 0)

γ4γ1 − 4τ2κ4
(49)

as required. The proof is therefore complete. 2
In general, it does not follow from (33) that

limt→∞ E|x(t)|2 = 0. However, in our case, this is
possible. In fact, we can show a stronger result that
limt→∞ E|x(t)|q̄ = 0 for any q̄ ∈ [2, q). We state this as our
second theorem in this section.

Theorem 4.5: Under the same conditions of Theorem 4.4,
the solution of the controlled hybrid SDDE (10) has the
property that for any q̄ ∈ [2, q) and any initial value x0 ∈ Rn,

lim
t→∞

E|x(t)|q̄ = 0. (50)

That is, the controlled system (10) is asymptotically stable in
Lq̄ .
Proof. Fix the initial vale x0 ∈ Rn arbitrarily. By Theorem
3.1,

C1 := sup
0≤t<∞

E|x(t)|q <∞. (51)

For any 0 ≤ t1 < t2 <∞, the Itô formula shows

E|x(t2)|2 − E|x(t1)|2

=E
∫ t2

t1

(
2xT (t)[f(x(t), r(t), t) + u(x(δt), r(t), t)]

+ |g(x(t), r(t), t)|2
)
dt.

By conditions (5) and (12), we see∣∣E|x(t2)|2 − E|x(t1)|2
∣∣

≤E
∫ t2

t1

(
2|x(t)|

[
K(|x(t)|+ |x(t)|q1)

+ κ|x(δt)|
]

+K2
[
|x(t)|+ |x(t)|q2

]2)
dt

≤
∫ t2

t1

C2

(
1 + E|x(t)|q + E|x(δt)|q

)
dt,

where C2 is a constant independent of t1 and t2. This, together
with (51), implies∣∣E|x(t2)|2 − E|x(t1)|2

∣∣ ≤ C2(1 + 2C1)(t2 − t1).

That is, E|x(t)|2 is uniformly continuous in t on R+. It then
follows from (33) that

lim
t→∞

E|x(t)|2 = 0. (52)

That is, the assertion (50) holds when q̄ = 2. Let us now fix
any q̄ ∈ (2, q). For a constant σ ∈ (0, 1), the Hölder inequality
shows

E|x(t)|q̄ = E
(
|x(t)|2σ|x(t)|q̄−2σ

)
≤
(
E|x(t)|2

)σ(E|x(t)|(q̄−2σ)/(1−σ)
)1−σ

.
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In particular, letting σ = (q − q̄)/(q − 2), we get

E|x(t)|q̄ ≤
(
E|x(t)|2

)(q−q̄)/(q−2)(E|x(t)|q
)(q̄−2)/(q−2)

≤ C(q̄−2)/(q−2)
1

(
E|x(t)|2

)(q−q̄)/(q−2)
. (53)

This, along with (52), implies the required assertion (50). 2
Theorem 4.4 shows that it is possible to design a control

function for the controlled system (10) to become H∞-stable
in L2. We now show it is also possible to make the controlled
system become H∞-stable in Lq̄ for some q̄ > 2. For this
purpose, we will replace Condition 4.2 by the following one.

Condition 4.6: Find five positive constants γj , j =
1, · · · , 5, such that

LU(x, i, t) + γ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ γ2|f(x, i, t)|2 + γ3|g(x, i, t)|2

≤ −γ4|x|2 − γ5|x|q1+1 (54)

for all (x, i, t) ∈ Rn × S ×R+.
Recalling the paragraph below Condition 4.2, in particular,

inequality (31), we see it is always possible to find such
five positive constants provided the control function u meets
condition 4.1 under our standing Assumptions 2.1–2.3.

Theorem 4.7: Under Assumptions 2.1, 2.2 and 2.3, we can
design the control function u to satisfy Condition 4.1 and
then choose five positive constants γj , j = 1, · · · , 5, to meet
condition 4.6. If we further make sure τ to be sufficiently small
for Condition 4.3 to hold, then the solution of the controlled
system (10) has the property that for any q̄ ∈ [2, q1 + 1] and
any initial value x(0) = x0 ∈ Rn,∫ ∞

0

E|x(t)|q̄dt <∞. (55)

That is, the controlled system (10) is H∞-stable in Lq̄ for any
q̄ ∈ [2, q1 + 1].
Proof. We use the same notation as in the proof of Theorem
4.4. Bearing in mind of our new Condition 4.6, we can see
from the proof there that

LV (x̂s, r̂s, s) ≤ −γ5|x(s)|q1+1

−
(
γ4 −

4τ2κ4

γ1

)
|x(s)|2 − κ2

2γ1
|x(s)− x(δs)|2

− κ2

γ1

∫ s

s−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv (56)

instead of (43). We can then further have

EV (x̂t, r̂t, t) ≤ V (x̂0, r̂0, 0)− γ5

∫ t

0

E|x(s)|q1+1ds

−
(
γ4 −

4τ2κ4

γ1

)∫ t

0

E|x(s)|2ds (57)

instead of (48). It then follows easily that∫ ∞
0

E(|x(s)|2 + |x(s)|q1+1)ds <∞.

But for any q̄ ∈ [2, q1 + 1], |x(s)|q̄ ≤ |x(s)|2 + |x(s)|q1+1.
We hence obtain the required assertion (55). The proof is
complete. 2

V. EXPONENTIAL STABILISATION

In the previous section we have shown that under Assump-
tions 2.1-2.3, it is possible to design a feedback control based
on the discrete-time state observations to make the controlled
system (10) become H∞-stable in Lq̄ (q̄ ∈ [2, q1 + 1] or
asymptotic stable in Lq̄ (q̄ ∈ [2, q)). Although both stabilities
are important and widely used in applications, they do not
reveal the rate at which the solution tends to zero. In this
section, we will further show that it is also possible to design a
feedback control based on the discrete-time state observations
to make the controlled system (10) become exponentially
stable either in Lq̄ (q̄ ∈ [2, q)) or almost surely. For this
purpose, we need to replace Conditions 4.2 and 4.3 by stronger
conditions.

Condition 5.1: Find five positive constants γj , j =
1, 2, 3, 4, 5, such that

LU(x, i, t) + γ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ γ2|f(x, i, t)|2 + γ3|g(x, i, t)|2

≤ −γ4|x|2 − γ5|x|p+q1−1 (58)

for all (x, i, t) ∈ Rn × S ×R+.
Condition 5.2: Make sure the duration between the two

consecutive state observations satisfies

τ <

√
γ4γ1

2κ2
and τ ≤

√
γ1γ2√
2κ
∧ γ1γ3

κ2
∧ 1

4
√

2κ
. (59)

We should point out that the last term 1/4κ in (32) is now
replaced by 1/4

√
2κ in (59) so the bound on τ here could be

smaller than before. We should also point out that it is always
possible to meet Condition 5.1 under Assumption 2.1 - 2.3.
For example, if we choose positive constants γ1-γ3 sufficiently
small for

0.5(q1 + 1) min
i∈S

θ̄iᾱi ≥ 2γ1(q1 + 1)2 max
i∈S

θ̄2
i + 2K2(γ2 + γ3)

and

0.5 ≥ 4γ1 max
i∈S

θ2
i + 2γ1(q1 + 1)2 max

i∈S
θ̄2
i + 4K2(γ2 + γ3),

it then follows from (30) that

LU(x, i, t) + γ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ γ2|f(x, i, t)|2 + γ3|g(x, i, t)|2

≤ −0.5|x|2 −
(
0.5(q1 + 1) min

i∈S
θ̄iᾱi

)
|x|p+q1−1,

namely we can have γ4 = 0.5 and γ5 = 0.5(q1 +
1) mini∈S θ̄iᾱi. In application, we naturally need to make full
use of the special forms of both coefficients f and g to choose
γ1 - γ5 more wisely.

Theorem 5.3: Under Assumptions 2.1,2.2 and 2.3, we can
design the control function u to satisfy Condition 4.1 and then
choose five positive constants γj , j = 1, 2, 3, 4, 5, to meet
condition 5.1. If we further make sure τ to be sufficiently small
for Condition (59) to hold, then the solution of the controlled
system (10) has the property that for any q̄ ∈ [2, q) and any
initial value x(0) = x0 ∈ Rn,

lim sup
t→∞

1

t
log(E|x(t)|q̄) < 0. (60)
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That is, the controlled system (10) is exponentially stable in
Lq̄ .
Proof. We will use the same Lyapunov functional V (x̂t, r̂t, t)
as defined by (34) with the same c = κ2/γ1. Fix any initial
value x0 ∈ Rn. By the method of stopping times as we did
in Step 3 of the proof of Theorem 4.4, we can show that

eεtEV (x̂t, r̂t, t) ≤ V (x̂0, r̂0, 0) +

∫ t

0

eεsE
(
εV (x̂s, r̂s, s)

+ LV (x̂s, r̂s, s)
)
ds (61)

for all t ≥ 0, where ε is a sufficiently small positive number
to be determined later. Setting

a1 = min
i∈S

θi, a2 = max
i∈S

θi, a3 = max
i∈S

θ̄i,

we then have

a1e
εtE|x(t)|2 ≤ V (x̂0, r̂0, 0) +

εκ2

γ1
Ψ1(t)

+

∫ t

0

eεs
(
εa2E|x(s)|2 + εa3E|x(s)|q1+1 + ELV (x̂s, r̂s, s)

)
ds,

(62)

where

Ψ1(t) =

E
∫ t

0

eεs
(∫ 0

−τ

∫ s

s+u

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dvdu

)
ds.

As we did in Step 2 of the proof of Theorem 4.4, we can show
that

LV (x̂s, r̂s, s) ≤ −
(
γ4 −

4τ2κ4

γ1

)
|x(s)|2

− γ5|x(s)|p+q1−1 +
3κ2

8γ1
|x(s)− x(δs)|2

− κ2

γ1

∫ s

s−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv. (63)

Making use of (47), we get

ELV (x̂s, r̂s, s) ≤ −
(
γ4 −

4τ2κ4

γ1

)
E|x(s)|2 − γ5E|x(s)|p+q1−1

− κ2

4γ1
E
∫ s

s−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv. (64)

Moreover, we clearly have

E|x(s)|q1+1 ≤ E|x(s)|2 + E|x(s)|p+q1−1. (65)

Substituting (64) and (65) into (62) yields

a1e
εtE|x(t)|2 ≤ V (x̂0, r̂0, 0) +

εκ2

γ1
Ψ1(t)− κ2

4γ1
Ψ2(t)

−
(
γ4 −

4τ2κ4

γ1
− εa2 − εa3

)∫ t

0

eεsE|x(s)|2ds

− (γ5 − εa3)

∫ t

0

eεsE|x(s)|p+q1−1ds, (66)

where

Ψ2(t) = E
∫ t

0

eεs
∫ s

s−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv.

On the other hand, it is easy to see that

Ψ1(s)

≤ E
∫ t

0

eεs
(
τ

∫ s

s−τ

[
τ |f(x(v), r(v), v) + u(x(δv), r(v), v)|2

+ |g(x(v), r(v), v)|2
]
dv
)
ds

= τΨ2(t).

We can now choose ε > 0 so small for

ετ ≤ 1

4
, ε(a2 + a3) ≤ γ4 −

4τ2κ4

γ1
, εa3 ≤ γ5.

Consequently, we obtain from (66) that

E|x(t)|2 ≤
(
V (x̂0, r̂0, 0)/a1

)
e−εt, ∀t ≥ 0. (67)

Finally, for any q̄ ∈ [2, q), by (53) and (67), we get

E|x(t)|q̄ ≤

C
(q̄−2)/(q−2)
1

(
V (x̂0, r̂0, 0)/a1

)(q−q̄)/(q−2)
e−εt(q−q̄)/(q−2).

(68)

This implies the required assertion (60). The proof is complete.
In general, it is not possible to imply the almost surely ex-

ponential stability from the q̄th moment exponential stability.
However, in our situation, this is possible as described in the
following theorem.

Theorem 5.4: Let all the conditions of Theorem 5.3 hold.
Then the solution of the controlled system (10) has the
property that any initial value x(0) = x0 ∈ Rn,

lim sup
t→∞

1

t
log(|x(t)|) < 0 a.s. (69)

That is, the controlled system (10) is almost surely exponen-
tially stable.
Proof. Fix the initial vale x0 ∈ Rn arbitrarily. Let tk = kτ for
k = 0, 1, 2, · · · . By the Itô formula and the Burkholder-Davis-
Gundy inequality (see, e.g., [21, pp.70–76]), we can show that

E
(

sup
tk≤t≤tk+1

|x(t)|2
)
≤ E|x(tk)|2

+ E
∫ tk+1

tk

(
2|x(t)||f(x(t), r(t), t) + u(x(δt), r(t), t)|

+ |g(x(t), r(t), t)|2
)
dt

+6E
(∫ tk+1

tk

|x(t)|2|g(x(t), r(t), t)|2dt
)1/2

.

But

6E
(∫ tk+1

tk

|x(t)|2|g(x(t), r(t), t)|2dt
)1/2

≤6E
[(

sup
tk≤t≤tk+1

|x(t)|
)(∫ tk+1

tk

|g(x(t), r(t), t)|2dt
)1/2]

≤0.5E
(

sup
tk≤t≤tk+1

|x(t)|2
)

+ 18E
∫ tk+1

tk

|g(x(t), r(t), t)|2dt.
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Hence

E
(

sup
tk≤t≤tk+1

|x(t)|2
)
≤ 2E|x(tk)|2

+ E
∫ tk+1

tk

(
4|x(t)||f(x(t), r(t), t) + u(x(δt), r(t), t)|

+ 38|g(x(t), r(t), t)|2
)
dt. (70)

Let q̄ = (q1 + 1) ∨ (2q2). Recalling (6) and q1 > 1, we see
q̄ ∈ [2, q). By Assumption 2.1, it is almost straightforward to
show from (70) that

E
(

sup
tk≤t≤tk+1

|x(t)|2
)
≤ 2E|x(tk)|2

+ C3

∫ tk+1

tk

(
E|x(t)|2 + E|x(δt)|2 + E|x(t))|q̄

)
dt,

where C3 and the following C4 are all positive constants
independent of k. Using (67) and (68), we hence have

E
(

sup
tk≤t≤tk+1

|x(t)|2
)
≤ C4e

−ε̄tk ,

where ε̄ = ε(q − q̄)/(q − 2). Consequently
∞∑
k=0

P
(

sup
tk≤t≤tk+1

|x(t)| > e−0.25ε̄tk
)
≤
∞∑
k=0

C4e
−0.5ε̄tk <∞.

The well-known Borel-Cantelli lemma (see, e.g., [21, p.10])
shows that for almost all ω ∈ Ω, there is positive integer
k0 = k0(ω) such that

sup
tk≤t≤tk+1

|x(t)| ≤ e−0.25ε̄tk , k ≥ k0.

Hence, for almost all ω ∈ Ω,
1

t
log(|x(t)|) ≤ − 0.25ε̄τk

τ(k + 1)
, t ∈ [tk, tk+1], k ≥ k0.

This implies

lim sup
t→∞

1

t
log(|x(t)|) ≤ −0.25ε̄ < 0 a.s.

which is the assertion. The proof is complete.

VI. EXAMPLES

To illustrate our theoretical results, we will discuss a couple
of examples.

Example 6.1: Let us consider a scalar hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t), (71)

where the coefficients f and g are defined by

f(x, 1, t) = x− 3x3, f(x, 2, t) = x− 2x3,

g(x, 1, t) = |x|3/2, g(x, 2, t) = 0.5|x|3/2, (72)

B(t) is a scalar Brownian motion, r(t) is a Markov chain on
the state space S = {1, 2} with its generator

Γ =

(
−1 1
1 −1

)
. (73)

This is a simple version of hybrid SDE models appeared
frequently in finance and population systems (see, e.g., [2],
[10], and [4] for more on highly nonlinear hybrid SDEs).

Recalling the discussions after Assumptions 2.1 and 2.2, we
know that the SDE (71) satisfies Assumptions 2.1 and 2.2 with
any large q and p = 4, α = 1, β = 1 + 0.5(q − 1)2, q1 = 3
and q2 = 1.5.

We first consider the case where the system is fully observ-
able and controllable in both mode 1 and 2. That is, we could
use a feedback control in both modes to stabilise the given
unstable hybrid SDE (71). In our notation, we will use the
control function u : R× S ×R+ → R define by

u(x, 1, t) = −3x, u(x, 2, t) = −2x. (74)

Obviously, Assumption 2.3 is satisfied with κ = 3. By
Theorem 3.1, the controlled system

dx(t) = [f(x(t), r(t), t) + u(x(δt), r(t), t)]dt

+ g(x(t), r(t), t)dB(t) (75)

has a unique global solution on t ≥ 0 for any initial value
x0 ∈ R and the solution has the property that

sup
0≤t<∞

E|x(t)|q <∞ ∀q > 2. (76)

Let us now verify Condition 4.1. It is straightforward to
show that, for (x, i, t) ∈ R× S ×R+,

x[f(x, i, t) + u(x, t, i)] +
1

2
|g(x, t, i)|2

≤
{

−2.75x4 − 1.75x2 if i = 1,
−1.9375x4 − 0.9375x2 if i = 2,

and

x[f(x, i, t) + u(x, t, i)] +
q1

2
|g(x, t, i)|2

≤
{

−2.25x4 − x2 if i = 1,
−1.8125x4 − 0.8125x2 if i = 2.

Namely, (21) and (22) hold with

α1 = 2.75, β1 = −1.75, α2 = 1.9375, β2 = −0.9375

and

ᾱ1 = 2.25, β̄1 = −1, ᾱ2 = 1.8125, β̄2 = −0.8125

respectively. Moreover,

A1 =

(
4.5 −1
−1 2.875

)
and A2 =

(
5 −1
−1 4.25

)
,

which are both M-matrices. That is, Condition 4.1 is satisfied.
By (24), we then have

θ1 = 0.3246073, θ2 = 0.4607330,

θ̄1 = 0.2592593, θ̄2 = 0.2962963.

The function U defined by (25) becomes

U(x, i) =

{
0.3246073x2 + 0.2592593x4 if i = 1,
0.4607330x2 + 0.2962963x4 if i = 2.

By (27), we also have

LU(x, i, t) ≤
{
−2.78534x4 − x2 − 2.333334x6 if i = 1,
−2.78534x4 − x2 − 2.148148x6 if i = 2.



11

Choosing γ1 = 0.5, γ2 = 0.1 and γ3 = 1, we can then further
show (by elementary calculations) that

LU(x, i, t) + γ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ γ2|f(x, i, t)|2 + γ3|g(x, i, t)|2

≤ −0.4442002x2 − 0.895611x6. (77)

That is, Condition 5.1 is satisfied with additional γ4 =
0.4442002 and γ5 = 0.895611. Consequently, Condition 5.2
becomes τ < 0.02618194. By Theorems 5.3 and 5.4, we can
therefore conclude that the controlled system (75) with the
control function (74) is not only exponentially stable in Lq̄ for
any q̄ ≥ 2 but also almost surely provided τ < 0.02618194.

We perform a computer simulation with τ = 0.02 and the
initial vale x(0) = 1 and r(0) = 1. The sample paths of the
Markov chain and the solution of the SDDE (75) are plotted
in Figure 6.1. The simulation supports our theoretical results
clearly.

0 2 4 6 8 10

1
.0

1
.4

1
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.8

t

x(
t)

Figure 6.1: The computer simulation of the sample paths of the
Markov chain and the SDDE (75) with the control function (74) and
τ = 0.02 using the Euler–Maruyama method with step size 10−4.

Example 6.2: We continue with the hybrid SDE (71) but
consider the case where the system is observable only in mode
1 but not in mode 2 so we could only use a feedback control in
mode 1 (namely the system is not controllable or observable
in mode 2 so have to set the control function to be 0 in
mode 2). As the system is not controllable in mode 2, we will
need to assume that the system will switch to mode 1 from
2 sufficiently faster than that from mode 1 to 2. Accordingly,
instead of (73), we now assume the Markov chain r(t) has the
generator

Γ =

(
−1 1
6 −6

)
. (78)

Moreover, we now design the control function

u(x, 1, t) = −4x, u(x, 2, t) = 0. (79)

Obviously, Assumption 2.3 is satisfied with κ = 4. The global
solution of the controlled system (75) still has property (76).
It is straightforward to show that, for (x, i, t) ∈ R× S ×R+,

x[f(x, i, t) + u(x, t, i)] +
1

2
|g(x, t, i)|2

≤
{

−2.75x4 − 2.75x2 if i = 1,
−1.9375x4 + 1.0625x2 if i = 2,

and

x[f(x, i, t) + u(x, t, i)] +
q1

2
|g(x, t, i)|2

≤
{

−2.25x4 − 2.25x2 if i = 1,
−1.8125x4 + 1.1875x2 if i = 2.

Namely, (21) and (22) hold with

α1 = 2.75, β1 = −2.75, α2 = 1.9375, β2 = 1.0625

and

ᾱ1 = 2.25, β̄1 = −2.25, ᾱ2 = 1.8125, β̄2 = 1.1875

respectively. Moreover,

A1 =

(
6.5 −1
−6 3.875

)
and A2 =

(
10 −1
−6 1.25

)
,

which are both M-matrices. That is, Condition 4.1 is satisfied.
By (24), we then have

θ1 = 0.2540717, θ2 = 0.6514658,

θ̄1 = 0.3461538, θ̄2 = 2.4615385.

The function U defined by (25) becomes

U(x, i) =

{
0.2540717x2 + 0.3461538x4 if i = 1,
0.6514658x2 + 2.4615385x4 if i = 2.

By (27), we also have

LU(x, i, t) ≤
{
−2.397394x4 − x2 − 3.115384x6 if i = 1,
−3.52443x4 − x2 − 17.84615x6 if i = 2.

Choosing γ1 = 0.1, γ2 = 0.25 and γ3 = 1, we can then
further show

LU(x, i, t) + γ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ γ2|f(x, i, t)|2 + γ3|g(x, i, t)|2

≤ −0.4741703x2 − 0.6736681x6. (80)

That is, Condition 5.1 is satisfied with additional γ4 =
0.4741703 and γ5 = 0.6736681. Consequently, Condition 5.2
becomes τ < 0.00625. By Theorems 5.3 and 5.4, we can
therefore conclude that the controlled system (75) with the
control function (79) is not only exponentially stable in Lq̄

for any q̄ ≥ 2 but also almost surely provided τ < 0.00625.
We perform a computer simulation with τ = 0.005 and the

initial vale x(0) = 1 and r(0) = 1. The sample paths of the
Markov chain and the solution of the SDDE (75) are plotted
in Figure 6.2. The simulation supports our theoretical results
once again.
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Figure 6.2: The computer simulation of the sample paths of the
Markov chain and the SDDE (10) with the control function (78) and
τ = 0.005 using the Euler–Maruyama method with step size 10−4.

VII. CONCLUSION

In this paper we have discussed the stabilisation of highly
nonlinear hybrid SDEs by the feedback controls based on the
discrete-time observations of the states. We pointed out that
the existing results on the stabilisation of nonlinear hybrid
SDEs require the coefficients of the underlying SDEs satisfy
the linear growth condition. On the other hand, many hybrid
SDE models in the real world do not fulfil this linear growth
condition (namely, they are highly nonlinear). There is hence
a need to develop a new theory on the stabilisation for the
highly nonlinear SDE models. In this paper we consider a
class of hybrid SDEs which are not stable but their solutions
are bounded in qth moment. We then show that the controlled
SDEs preserve the moment boundedness as long as the control
functions satisfy the Lipschitz condition. We then show how to
design the control functions more wisely so that the controlled
SDEs become stable. The stability discussed in this paper
include the H∞-stable in Lq̄ , asymptotic stability in q̄th
moment, qth moment exponential stability and almost surely
exponential stability. The key technique used is this paper is
the method of Lyapunov functionals. A couple of examples
and computer simulations have been used to illustrate our
theory.
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