
Stratis Software Design∗

October 16, 2024

Contents

I Background 3

1 Problem Statement 3
1.1 Goal: Bring advanced features to users in a simpler form 4
1.2 Proposal: Implement a hybrid Volume Managing Filesystem . . . 4
1.3 Requirements . 5

II Solution Overview 6

2 Introduction 6

3 Stratis and the Linux storage stack 7

4 Conceptual Model 7
4.1 Blockdevs, pools, and filesystems 7
4.2 Attributes and features of a pool 8

5 Scalability and Performance Considerations 8

III Implementation 8

6 Software Components 8

7 User Experience 9
7.1 Known shortcomings . 9

∗This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

1

8 D-Bus Programmatic API 10
8.1 Overview . 10
8.2 D-Bus Access Control . 10

8.2.1 Security Policy . 10
8.3 Querying stratisd state via D-Bus 11

9 JSON RPC IPC mechanism 11
9.1 Overview . 11

10 Internals 11
10.1 Data Tier Requirements . 11
10.2 Data Tier . 12

10.2.1 Blockdevs . 12
10.2.2 Flex . 12
10.2.3 Thin Provisioning . 12
10.2.4 Thin Volumes . 13
10.2.5 Filesystem . 13

10.3 Data Tier Metadata . 13
10.3.1 Requirements . 13
10.3.2 Conventions . 14
10.3.3 Design Overview . 14
10.3.4 BlockDev Data Area (BDA) 15
10.3.5 Metadata Area (MDA) 18
10.3.6 Metadata Volume (MDV) 20
10.3.7 The MDA and Very Large Pools 20
10.3.8 Metadata and Recovery 20

10.4 Cache Tier . 21
10.4.1 Requirements . 21
10.4.2 Cache Tier Metadata . 21

10.5 Encryption . 22
10.6 Block Device Characteristic Requirements (stratisd 3.4.0) 22

10.6.1 Pre-existing pools and caches 23
10.6.2 Newly created pools and caches 23
10.6.3 Adding block devices to an existing pool or to its cache . 23
10.6.4 Notes . 24

11 Implementation Details 24
11.1 ’stratis’ command-line tool . 24
11.2 stratisd . 24
11.3 devicemapper names . 25

11.3.1 Naming convention Requirements 25
11.3.2 Naming Convention . 25

11.4 devicemapper minimum version 26
11.5 OS Integration: Boot and initrd 26
11.6 OS Integration: udev . 26
11.7 OS Integration: /dev entries . 27

2

11.8 Snapshots . 27
11.9 Backstore Internals . 27

11.9.1 Demand-based allocations 28
11.9.2 Block device growth . 28

11.10Operation States . 28
11.11Licensing . 29

A Encryption implementation details 30
A.1 On-disk format . 30

A.1.1 LUKS2 token format . 30
A.1.2 Encrypted Stratis metadata format 31

A.2 Encrypted device creation . 31
A.3 Encrypted device discovery . 32
A.4 Encrypted device activation . 32
A.5 Encrypted device destruction . 32
A.6 Key consistency for encrypted pools 33
A.7 Key management . 33

About this Document

This document can be found in the stratis-docs repo, and is written using LYX.

Summary

Stratis is an easily configured, tightly integrated solution for storage that works
within the existing Linux storage management stack. To achieve this, Stratis
prioritizes a straightforward command-line experience, a rich API, and a fully
automated, externally-opaque approach to storage management. It builds upon
elements of the existing storage stack as much as possible.

Part I

Background

1 Problem Statement

Linux has gained many storage-related features over the years, but each of these
features has required the user to manage the configuration of these features in a
layered, additive manner. Genuinely new and useful features such as thin pro-
visioning, RAID, and multipath are dependent on the user correctly configuring
many different layers via different tools to achieve a complete result. Further-
more, since each layer’s configuration tool only has a command-line interface
(CLI), higher-level management tools must each construct input and parse the

3

https://github.com/stratis-storage/stratis-docs/blob/master/docs/design/StratisSoftwareDesign.lyx

human-oriented output for each of these layers’ CLIs. This causes a waste of
effort and opportunity for bugs, as each higher-level tool builds its own internal
API for the feature on top of the lower level tool’s CLI.

1.1 Goal: Bring advanced features to users in a simpler
form

Linux storage features are modular and stackable. This promotes flexibility and
allows independent development efforts, but leads to a huge number of possible
configurations. This requires the user to manage the stack because there’s not
enough commonality to enable effective automation.

But really, there is a single configuration that can work for most use cases.
By assuming a fixed layering of storage features (some perhaps optional), we
enable software to effectively manage these on behalf of the user.

Automated management then leads to less administrative burden placed
on the user. The user still specifies resources, desired features, and results –
what hardware resources to use, what features to enable, how storage should
be logically presented – using a smaller number of concepts with well-defined
relations. Software manages the rest, and handles most runtime issues without
user involvement.

1.2 Proposal: Implement a hybrid Volume Managing Filesys-
tem

In the past ten years, volume-managing filesystems (VMFs) such as ZFS and
Btrfs have come into vogue and gained users, after being previously available
only on other UNIX-based operating systems. These incorporate what would
be handled by multiple tools under traditional Linux into a single tool. Redun-
dancy, thin provisioning, volume management, and filesystems become features
within a single comprehensive, consistent configuration system. Where a tra-
ditional Linux storage stack exposes the layers of block devices to the user to
manage, VMFs hide everything in a pool. The user puts raw storage in the
pool, the VMF manages the storage in the pool, providing the features the user
wants, and allows the user to create filesystems from the pool without being
concerned with the details.

Unfortunately, existing VMFs aren’t easily used on enterprise Linux distri-
butions like RHEL. ZFS isn’t an option RHEL can embrace due to licensing,
Ubuntu notwithstanding. Btrfs has no licensing issues, but maintaining up-to-
date support for it in enterprise kernels proved difficult.

We can see from the many developer-years of effort that have gone into these
two projects that writing a VMF is a tremendous, time-consuming undertaking.
We also can hear our users demanding their features and ease of use.

Rather than writing a new VMF from scratch, Stratis proposes to satisfy
VMF-like requirements by managing existing technologies on behalf of the user,
so that users can manage their storage using high-level concepts like “pool” and

4

“filesystem”, and remain unconcerned with the more complex details under the
covers.

This is also a chance to learn from the benefits and shortcomings of existing
solutions. We should not just copy ZFS. ZFS is now fifteen years old and the
storage landscape has changed since its design. We seek to satisfy the same
needs that ZFS does, but also integrate more tightly into today’s increasingly
automated storage management solutions that span the data center as well as
the local machine. This is made possible by a hybrid, userspace-based approach.

1.3 Requirements

1. Make features easier to use in combination with each other : thin provi-
sioning, snapshots, multipath, encryption, hardware reconfiguration, mon-
itoring, and a caching tier

2. Simple and comprehensive command-line interface

(a) Simple

i. Single way to do things

ii. Do not expose internal implementation details. Gives Stratis
more implementation freedom, and of little value since internals
are too complex to make manual user repairs practical

iii. User typically will not use on a daily basis

A. Consistent commands that a user can guess at, and probably
be right

B. Require explicitness from the user for potentially data-losing
operations, such as giving a “–force” option.

(b) Comprehensive

i. User must master only one tool

ii. Helps user learn: if task not possible through tool, it must not
be worth doing (or a good idea)

3. Programmatic language-neutral API for higher-level management tool in-
tegration

(a) A clear next step for users after hitting the limitations of scripting
the CLI

(b) Encourages tight integration and use of all features by higher-level
tools

4. Event-driven monitoring and alerts

(a) Monitoring and alert messages expressed in terms of Stratis user-
visible simple concepts, not implementation details

(b) Low CPU/memory overhead to monitoring

5

(c) Only alert when action really is needed

(d) Fail gracefully if alerts are unheeded

5. Eliminate manual resizing of filesystems

(a) Numerous problem reports throughout the years indicate that resiz-
ing filesystems is an area where users feel unease, due to potential
data loss if a mistake is made. No real reason to require the user do
this any more.

(b) Simpler for DevOps

(c) Makes storage “demand-allocated”, similar to virtual memory. Cur-
rent technology allows us to manage a filesystem’s actual usage up
(growfs) or down (thin provisioning).

6. Initrd-capable

(a) Allows root fs, all other filesystems except /boot to use Stratis.
Needed for ease of use

(b) Limited environment – alternate IPC mechanism that works in the
initrd is available

7. Adaptable to emerging storage technologies

(a) Persistent memory

i. Block-appearing pmem can be used by Stratis

8. Implementable in 1-2 years

(a) We’re already behind, waiting another 10 years isn’t an option

Part II

Solution Overview

2 Introduction

Stratis is a local storage solution that lets multiple logical filesystems share a
pool of storage that is allocated from one or more block devices. Instead of an
entirely in-kernel approach like ZFS or Btrfs, Stratis uses a hybrid user/kernel
approach that builds upon existing block capabilities like device-mapper, exist-
ing filesystem capabilities like XFS, and a user space daemon for monitoring
and control.

The goal of Stratis is to provide the conceptual simplicity of volume-managing
filesystems, and surpass them in areas such as monitoring and notification, au-
tomatic reconfiguration, and integration with higher-level storage management
frameworks.

6

3 Stratis and the Linux storage stack

Stratis simplifies many aspects of local storage provisioning and configuration.
This, along with its API, would let projects dependent on configuring local
storage do so much more easily.

For example, installing the OS to a Stratis pool using Anaconda. After
selecting the disks to use for the pool, the first benefit would be the complex
flow around sizing of filesystems could be omitted. Second, since Stratis has an
API, Anaconda could use it, instead of needing work in Blivet to build an API
on top of command line tools.

Other management tools like Cockpit, virtualization products like RHEV, or
container products like Atomic would find it much simpler and less error-prone
to use storage and snapshots with Stratis, for the same two reasons: don’t need
to worry about per-filesystem sizing (only that the pool has enough “backing
store”); and the API, which allows better tool-to-tool integration than using
CLI programmatically.

Figure 1: Future Stratis Position in the Linux Storage Management Stack

4 Conceptual Model

4.1 Blockdevs, pools, and filesystems

Stratis’s conceptual model consists of blockdevs, pools, and filesystems. A pool
is created from one or more blockdevs (block devices), and then filesystems are
created from the pool. Filesystems are mountable hierarchical collections of files
that allocate backing storage from the pool as it is needed. The key difference

7

between a Stratis filesystem and a conventional Unix filesystem is that Stratis
filesystem sizing and maintenance are not managed by the user, but by Stratis.

4.2 Attributes and features of a pool

A pool is created with an initial set of one or more blockdevs. Blockdevs may
also be added after the pool is created. The pool’s primary collection of block-
devs is called the data tier.

A pool also optionally has a cache tier that uses a separate collection of faster
blockdevs to improve performance instead of increasing the pool’s capacity.

Since a single system may have multiple pools, each pool has a name, as does
each filesystem within a pool. These are both settable by the user. Blockdevs,
pools, and filesystems also have UUIDs, which are not settable by the user.

Stratis supports large numbers of blockdevs and up to 2
24filesystems per

pool. However, practical limits on these values may compel users to restrict
themselves to smaller numbers of blockdevs and filesystems.

A new filesystem is either a new empty filesystem or a snapshot of an exist-
ing filesystem within the pool. Stratis currently does not distinguish between
snapshots and filesystems.

5 Scalability and Performance Considerations

Stratis doesn’t optimize performance within its data tier, instead focusing there
on flexibility and integrity. Improved performance is the job of caching tier, or
perhaps building the pool using blockdevs with higher IOPs, such as SSDs.

Part III

Implementation

6 Software Components

Stratis consists of a command-line tool, stratis, and a service, stratisd.
stratis implements the command-line interface, and converts commands into

D-Bus API calls to stratisd.
stratisd implements the D-Bus interface, and manages and monitors Stratis

internal pool blockdevs, as described below. It is started by the system and
continues to run as long as Stratis pools or blockdevs are present in the system.

stratisd includes a simulator engine. The simulator engine is purely com-
putational and does not affect the environment, although it does communicate
over the D-Bus.

Figure 2 shows the basic Stratis architecture.

8

Figure 2: Stratis Architecture

7 User Experience

Stratis has a command-line tool that enables the administrator to create a
Stratis pool from one or more blockdevs, and then allocate filesystems from
the pool.

See reference implementation at https://github.com/stratis-storage/

stratis-cli for the most up-to-date status of the CLI design.
This component is not required to be installed, in cases such as an appliance

where a higher-level application such as Cockpit or Ansible uses the D-Bus API
directly.

7.1 Known shortcomings

Stratis’ goal is to hide the complexity of its implementation from the user, but
by using a reuse/layering approach to its implementation, there will be places
where Stratis’ implementation details will peek through. This could cause user
confusion, and also could threaten Stratis integrity if the user makes changes.

• For Stratis filesystems, ’df’ will report the current used and free sizes as
seen and reported by XFS. This is not useful information, because the
filesystem’s actual storage usage will be less due to thin provisioning, and
also because Stratis will automatically grow the filesystem if it nears XFS’s
currently sized capacity.

• Users should not try to reformat or reconfigure XFS filesystems that are
managed by Stratis. Stratis has no way to enforce this or warn the user
to avoid this, other than in the documentation.

9

https://github.com/stratis-storage/stratis-cli
https://github.com/stratis-storage/stratis-cli

• Stratis will use many device-mapper devices, which will show up in ‘dm-
setup‘ listings and /proc/partitions. Similarly, ‘lsblk‘ output on a Stratis
system will reflect Stratis’ internal workings and layers.

• Stratis requires a userspace daemon, which must remain running at all
times for proper monitoring and pool maintenance.

8 D-Bus Programmatic API

The Stratis service process exposes a D-Bus interface, for other programs to
integrate support for Stratis. This is considered the primary Stratis interface.
The command-line tool uses the D-Bus API.

8.1 Overview

The D-Bus API is part of stratisd. It is a thin layer that receives messages on
the D-Bus, processes them, transmits them to the Stratis engine, receives the
results from the engine, and returns the result to the invoker of the API. When
processing method calls, its responsibilities are confined to:

• Receiving arguments and verifying that they conform to the signature of
the invoked method.

• Transforming method arguments received on the D-Bus to arguments of
the appropriate type to be passed to engine methods.

• Converting tuple arguments used to represent non-mandatory arguments
to values which inhabit the Rust Option type.

• Invoking the appropriate engine methods and capturing their return val-
ues.

• Marshalling the appropriate return values to place on the D-Bus along
with the return code and message.

• Adding or removing objects from the D-Bus tree.

The D-Bus API is implemented using the dbus-rs library1.
The Stratisd D-Bus API Reference Manual contains a description of the API.

8.2 D-Bus Access Control

8.2.1 Security Policy

Most stratisd D-Bus methods require root permissions. However, listing opera-
tions do not; these can be done by an unprivileged user. The default permissions
are specified in the policy file, stratisd.conf, included in the stratisd distribution.

1https://github.com/diwic/dbus-rs

10

https://github.com/diwic/dbus-rs

These defaults permit all actions by root users but restrict unprivileged users
to read-only actions. Systems administrators can adjust permissions by editing
the stratisd D-Bus policy files.

8.3 Querying stratisd state via D-Bus

stratisd exposes a reporting interface that allows users to query the state of
stratisd’s internal data structures for debugging and error reporting. The D-Bus
query returns a JSON string that can be parsed to detect state programmat-
ically; however, the report interface is unstable, and consequently the names
and schemas of provided reports do not follow the semantic versioning rules to
which the rest of stratisd’s API conforms.

9 JSON RPC IPC mechanism

9.1 Overview

Due to restrictions in the initramfs where D-Bus is not currently present, there
is an alternate mechanism for IPC in the initramfs. This IPC mechanism im-
plements a JSON RPC framework passed over Unix sockets. The motivation
for using Unix sockets is that:

1. They are available in the initramfs as a form of IPC

2. They allow passing file descriptors from process to process in the same
network packet as the JSON

The JSON RPC IPC mechanism uses the exact same code for the stratisd stor-
age engine and is simply a thin layer that handles all of the network operations
and input parsing to provide arguments to the engine. The initramfs IPC API
is more limited than that of the D-Bus API and is not versioned for backwards
compatibility given that it is expected that the corresponding CLI will be used
to communicate with the minimal daemon.

10 Internals

Stratis internals aim to be opaque to the user. This allows its implementation
maximum flexibility to do whatever it needs in Stratis version 1, as well as to
be extended in later versions without violating any user-visible expectations.

10.1 Data Tier Requirements

The data tier of Stratis must manage blockdevs on behalf of the user to provide
the following:

1. Managed filesystems that consume only as much space as the files they
contain

11

2. Fast snapshots of existing filesystems

3. The ability to add individual blockdevs to grow the physical space avail-
able to filesystems

4. Encryption

10.2 Data Tier

The data tier achieves these requirements by layering device-mapper (DM) de-
vices on top of the pool’s blockdevs. The topmost layer consists of thin devices
allocated from a thinpool. Stratis initializes these thin devices with a filesystem,
and manages the DM devices and filesystems to meet the above requirements.

10.2.1 Blockdevs

This layer is responsible for discovering existing blockdevs in a pool, initializing
and labeling new blockdevs unambiguously as part of the pool, setting up any
disk-specific parameters, and storing pool metadata on each blockdev. The
minimum blockdev size Stratis will accept is 1 GiB. Blockdevs may be encrypted
or unencrypted. See 10.5 for details on the implementation of encryption.

10.2.2 Flex

Pools need to cope with the addition of block devices.
Stratis allows adding a blockdev to an existing pool, and using it to grow

the pool’s allocated space.
The flexibility layer contains four linear DM devices made up of segments

from lower-level devices. The first two devices will be used by Layer 4 (Thin
Provisioning) as metadata and data devices. The flex layer will track what
lower-level devices these are allocated from, and allow the two devices to grow
as needed.

The third linear DM device is a spare metadata device to be used in the
case that the metadata device requires offline repair. It will not usually be
instantiated on the system, but guarantees there is room if needed. This device’s
size tracks the size of the metadata device, both as initially allocated, and as
the metadata device is extended.

The fourth and final linear DM device is used for the Metadata Volume
(MDV, see 10.3.6). The MDV is used to store metadata about upper layers,
layer five and above.

The initial sizes of all flex layer devices should be chosen to allow an entire
pool to fit within a single blockdev of the minimum size (1 GiB).

10.2.3 Thin Provisioning

The two linear targets from L3 are used as a metadata device and data device
for a DM thinpool device. The thinpool device implements a copy-on-write

12

(CoW) algorithm, so that blocks in the data device are only allocated as needed
to back the thin volumes created from the thinpool.

Stratis manages the thinpool device by extending the two subdevices in the
thinpool when either runs low on available blocks. If the pool approaches a
point where it no longer has empty lower-level space to extend onto, Stratis
alerts the user and takes action to avoid data corruption.

10.2.4 Thin Volumes

Stratis creates thin volumes from the thin pool. It will automatically give a new
volume a default size, format it with a filesystem, and make it available to the
user.

Stratis also enables creating a new volume as a read/write snapshot of an
existing volume. Although the underlying implementation does not require
maintaining the relation between a snapshot and its origin, Stratis records this
relation in its metadata. This relation may be of use to users who may, for
example, use snapshots for backups and may make use of the origin information
to identify a particular backup snapshot to restore from.

10.2.5 Filesystem

Stratis monitors each filesystem’s usage against its capacity and automatically
extends them online without user intervention. Extending involves changing
the thin dev’s logical size, and then using a tool such as xfs_growfs to grow the
filesystem.

10.3 Data Tier Metadata

Stratis must track the blockdevs that make up the data tier of the pool, the
three linear targets that span the block devices, the thinpool device and the
attributes of the thin devices and filesystems created from the thinpool.

10.3.1 Requirements

1. Uniquely identify a blockdev as used by Stratis, which pool it is a member
of, and parameters needed to recreate all layers

2. Detect incomplete or corrupted metadata and recover via second copy

3. Allow for blockdevs being expanded underneath Stratis

4. Redundant on each blockdev to tolerate unreadable sectors2

5. Redundant across blockdevs to handle missing or damaged members. Can
provide metadata of missing blockdevs

2Recovery from accidental start-of-blockdev overwrite by placing a second copy at the end
of the disk was also considered, but raised other issues that outweighed its benefit.

13

6. Handle thousand+ blockdevs in a pool

7. Handle million+ filesystems in a pool and updates without writing to each
blockdev

8. Extensible/upgradable metadata format

10.3.2 Conventions

Sectors are 512 bytes in length3.
UUIDs are written as un-hyphenated ASCII encodings of their lower-case

hexadecimal representation4 except in JSON-formatted metadata where they
are unhyphenated.

All checksums are calculated using an implementation of the CRC-32C
(Castagnoli) algorithm.

10.3.3 Design Overview

Stratis metadata is in three places:

1. Blockdev Data Area (BDA)

(a) Signature Block within Static Header

(b) Metadata Area (MDA)

2. Metadata Volume (MDV)

(Specific DM targets such as the thinpool also place their own metadata on
disk.)

Information is duplicated across all blockdevs within an on-disk metadata
format called the Blockdev Data Area (BDA). The BDA consists of a binary
Signature Block, and the Metadata Area (MDA), which stores information in a
text-based JSON format. Both the binary and text-based portions of the BDA
define redundancy and integrity-checking measures.

The Metadata Volume (MDV) stores metadata on Layers 5 and up in a con-
ventional block device and filesystem that is part of the Flex layer. Choosing
to split overall metadata storage into two schemes allows upper layers’ meta-
data to be free of limitations that would apply if a single scheme was used. For
example, on-disk metadata formats find it hard to support runtime size exten-
sion, may keep redundant copies to ensure reliability, and aggressively check for
corruption. This can work well with small amounts of data that is infrequently
changed, but has trouble as data grows, or we wish to do updates in-place.

3Historically this is the minimum storage unit of a hard drive. Many Linux kernel APIs
assume this value is constant (as does this document), and use another term such as ’block
size’ for dealing with cases where the minimum storage unit is different.

4UUIDs are 128-bit values and therefore require only 16 bytes to represent their numeric
value. However, since each ASCII value requires a byte, and the hexadecimal representation
of an 128-bit value requires 32 hexadecimal digits, the chosen encoding requires 32 bytes.

14

Upper-level metadata can achieve redundancy and integrity by building on
the pre-existing lower layers, and work under looser restrictions around updating
in place, and the total size to which it may grow. It can reuse an existing,
well-tested solution for solving data organization and storage issues – a general-
purpose filesystem.

10.3.4 BlockDev Data Area (BDA)

Figure 3: BDA format

The BDA consists of a fixed-length Static Header of sixteen sectors, which con-
tains two copies of the Signature Block; and the metadata area (MDA), whose
length is specified in the Signature Block. These are written to the beginning
of the blockdev as described below.

Stratis reserves the first 16 sectors of each blockdev for the Static Header.

15

When initializing or modifying the Signature Block, identical data is written to
locations 1 and 2.

Static Header
sector offset length (sectors) contents

0 1 unused
1 1 Signature Block location 1
2 7 unused
9 1 Signature Block location 2
10 6 unused

Signature Block

byte offset length (bytes) description

0 4 checksum of signature block (bytes at offset 4
length 508)

4 16 Stratis signature:
’ !Stra0tis\x86\xff\x02^\x41rh’

20 8 Device size in 512-byte sectors (u64)
28 1 Signature Block version (u8) (value = 1)
29 3 unused
32 32 UUID of the Stratis pool
64 32 UUID of the blockdev
96 8 sector length of blockdev metadata area

(MDA) (u64)
104 8 sector length of reserved space (u64)
112 8 flags (u64)
120 8 initialization time: UNIX timestamp (seconds

since Jan 1 1970) using UTC (u64)
128 384 unused

• No flags are yet defined, so ’flags’ field is zeroed.

• All ’unused’ fields are zeroed, and are reserved for future use.

• If not zero, blockdev metadata area length (offset 96) must be a number
divisible by four of at least 2032.

• The BDA is followed immediately by reserved space, whose size is specified
in the signature block (offset 104).

• Minimum length of BDA (static header and MDA) plus Reserved Space
is 2048 sectors (1 MiB).

• When a blockdev is removed from a pool, or is part of a pool that is
destroyed, Stratis wipes the Static Header.

• The purpose of the unused sectors is twofold. First, placing the Signature
Block copy locations in two separate 4K blocks helps to prevent a single

16

bad write operation on 4K-block disks from corrupting both copies. Sec-
ond, using a single sector for the Signature Block helps to minimize the
likelihood of corruption on disks with 512 byte blocks.

• Each time that Stratis writes one or both Signature Block locations, it
also zeroes the unused sectors that share the same 4K block.

The MDA is divided into four equal-size regions, numbered 0-3. When updating
metadata, identical data is written to either the odd (1 and 3) or even (0 and 2)
regions, chosen by examining the timestamps and overwriting the older of two
pairs.

Each MDA region’s update consists of a fixed-length MDA Region Header,
followed by variable-length JSON data.

MDA Region Header

byte offset length (bytes) description

0 4 checksum covering remainder of MDA header
4 4 checksum covering JSON data
8 8 length of JSON data in bytes (u64)
16 8 UNIX timestamp (seconds since Jan 1 1970)

using UTC (u64)
24 4 nanoseconds (u32)
28 1 Region Header version (u8) (value = 1)
29 1 Variable-length metadata version (u8) (value =

1)
30 2 unused
32 variable JSON data

• Metadata updates write to the older of the odd or even MDA regions.
This is determined by lowest timestamp, and then lowest nanoseconds if
timestamps are equal.

• MDA updates include the MDA Header, which includes the current time.
However, if using the current time would not result in the update having
the latest time across all MDA regions on all blockdevs in the pool, instead
use a time of one nanosecond later than the latest MDA region time across
all blockdevs.

• The procedure for updating metadata is:

1. Determine which regions in the MDA to use (odd or even) as de-
scribed above.

2. Write MDA header and JSON data to the first MDA region (0 or 1)

3. Perform a Flush/FUA

4. Write MDA header and JSON data to the second MDA region (2 or
3)

5. Perform a Flush/FUA

17

6. Repeat for additional blockdevs. Also see 10.3.7

• Multiple blockdevs being updated with the same metadata must write
identical data to each MDA region, but which regions (odd or even) is used
may vary, if the blockdevs have received differing numbers of metadata
updates over time.

10.3.5 Metadata Area (MDA)

The MDA contains a JSON object that represents the pool’s overall configura-
tion from L0 to L4.

Top level objects:

key JSON type required description

name string y the name of the pool
backstore object y the block devices in the pool
flex_devs object y layout of the data and metadata

linear devices
thinpool_dev object y parameters of the thinpool device

started boolean as of stratisd 3.2.0 indicates whether a pool is started
or stopped

backstore: An object describing the data tier and the cache tier.

key JSON type required description

data_tier object y the block devices in the data tier
cap object y the cap device, from which

segments are allocated to the flex
layer

cache_tier object n the block devices in the cache tier

data_tier: An object describing the data tier.

key JSON type required description

blockdev object y Settings and mappings describing
block devices that make up the tier

blockdev: An object describing physical block devices that make up the tier.

key JSON type required description

devs array y an array of base_block_dev objects
allocs array y an array of arrays of base_dev

objects

base_dev: An object describing an allocation from a block device.

18

key JSON type required description

parent string y UUID of the device the segment is
created from

start integer y the starting sector offset within the
parent device

length integer y the length in sectors of the segment

base_block_dev: An object describing a block device in the lowest layer.

key JSON type required description

uuid string y The UUID of the block device, as
recorded in its Signature Block

user_info string n user-provided information for tracking
the device

hardware_info string n uniquely identifying information for
the blockdev, such as SCSI VPD83 or

serial number

cap: An object describing a view of the top-level linear device provided by the
backstore to the flex layer.

key JSON type required description

allocs array y an array of pairs of integers
representing the starting offset and
length of an allocation in sectors

cache_tier: An object describing the cache tier. Identical format to data_tier
except VDO layer is not supported.

flex_devs: An object with four keys that define the linear segments that make
up each device in the Flex layer.

key JSON type required description

meta_dev array y an array of pairs of integers representing
the starting offset and length of an

allocation in sectors that make up the
metadata volume (MDV)

thin_meta_dev array y an array of pairs of integers representing
the starting offset and length of an

allocation in sectors that make up the thin
metadata device

thin_meta_dev_spare array y an array of pairs of integers representing
the starting offset and length of an

allocation in sectors that make up the thin
metadata spare device

thin_data_dev array y an array of pairs of integers representing
the starting offset and length of an

allocation in sectors that make up the thin
data device

19

thinpool_dev: An object that defines properties of the thinpool device.

key JSON type required description

data_block_size integer y the size in sectors of the
thinpool data block

feature_args array since stratisd 3.1 the feature args passed to the
thin pool on setup

fs_limit integer since stratisd 3.1 the maximum number of
filesystems able to be created

in this pool
enable_overprov boolean since stratisd 3.1 indicates whether

overprovisioning is allowed on
this pool

10.3.6 Metadata Volume (MDV)

The Metadata Volume is formatted with an XFS filesystem that is used by
Stratis to store information on user-created thin filesystems (L5-L7). This in-
formation is stored in the filesystem as individual JSON files.

10.3.7 The MDA and Very Large Pools

Stratis pools with very large numbers of blockdevs will encounter two issues.
First, updating the metadata on all blockdevs in the pool may become a per-
formance bottleneck. Second, the default MDA size may become inadequate to
contain the information required.

To solve the first issue, Stratis caps the number of blockdevs that receive
updated metadata information. A reasonable value for this cap might be in
the range of 6 to 10, and should try to spread metadata updates across path-
independent blockdevs, if this can be discerned, or randomly. This limits exces-
sive I/O when blockdevs are added or removed from the pool, but maximizes
the likelihood that up-to-date pool metadata is retrievable in case of failure.

To solve the second issue, Stratis monitors how large its most recent serialized
metadata updates are, and increases the size of MDA areas on newly added
devices when a fairly low threshold – %50 – is reached in comparison to the
available MDA region size. This ensures that by the time sufficient blockdevs
have been added to the pool to be in danger of serialized JSON data being too
large, there are enough blockdevs with enlarged MDA space that they can be
used for MDA writes.

10.3.8 Metadata and Recovery

Bad things happen.
In order to recover from disk errors, Stratis uses checksums over the critical

metadata, and writes duplicate copies to a single blockdev, as well as across
multiple blockdevs, when possible. It takes this approach – copies – rather than

20

a mechanism that might make it possible to partially repair corrupted metadata
for three reasons:

1. This metadata is relatively small.

2. Partially reconstructed information has limited value. This is due to the
layered nature of Stratis. It’s not sufficient to know some subset of the
device mapping levels. Since they are layered, recovering only some lay-
outs allows no data to be recovered without also knowing how others are
mapped on top, and vice versa.

3. Stratis metadata on the block devices should require relatively few updates
per day, since the changes it would reflect are blockdevs being added to
the pool, or thinpool data device expansions. Infrequent updates reduces
the likelihood of corruption5.

Filesystem metadata is stored on the Metadata Volume on an XFS filesystem.
Partial data recovery of that information is possible.

In addition to Stratis-specific metadata, device-mapper layers such as thin,
as well as XFS filesystems, all have their own metadata. Stratis would rely on
running each of their specific repair/fsck tools in case they reported errors.

10.4 Cache Tier

The Cache Tier is a secondary optional stack that, if present, serves as a cache
for the DataTier. If present, the Cache Tier sits directly underneath the Flex
Layer. Its structure is similar to the lower levels of the Data Tier.

10.4.1 Requirements

1. Caching may be configured for write-back and write-through modes.

2. Stratis concatenates all cache blockdevs and uses the resulting device to
cache the thinpool device. This lets all filesystems benefit from the cache.

3. Cache blocksize should match thinpool datablock size.

4. Removing cache tier comes with performance hit and “rewarming” phase

10.4.2 Cache Tier Metadata

Cache Tier Metadata Requirements

1. Identify all blockdevs that are part of the pool’s cache tier and other
cache-specific configuration parameters (e.g. WT/WB, block size, cache
policy)

2. Cache tier supports up to 8 devices.

5citation needed?

21

10.5 Encryption

stratisd encrypts devices at the blockdev level. If Stratis devices are encrypted,
the following conditions will hold:

• Each blockdev will be encrypted with a distinct and randomly generated
MEK (Media Encryption Key).

• All blockdevs in a pool will be encrypted, or all blockdevs in a pool will
be unencrypted. Stratis will support mixed usage for pools, where some
pools are encrypted and others are not.

• A distinct passphrase (used to generate the KEK or Key Encryption Key)
will be supported for each pool, although it will be possible to use the
same passphrase for every pool, if desired.

• The user will be required to choose whether or not a pool is encrypted
at pool creation time and must identify their choice by an additional ar-
gument in the CLI’s “pool create” command. Encryption of an already
existing pool will not be supported.

• Re-encryption will not be supported initially; this functionality will be
considered and added in a later step.

• If a pool was encrypted on creation, then all blockdevs added to the data
tier will be automatically encrypted with a randomly generated MEK and
the pool’s designated KEK.

• On any encrypted blockdev, the Stratis metadata will itself be encrypted;
it will be inaccessible until the encrypted blockdev is opened.

• The use of a cache tier and of encryption will be mutually exclusive. If a
pool is encrypted, an attempt to add a blockdev to the cache tier will be
rejected.

• The default cipher specified by cryptsetup 2.1, aes-xts-plain64, is used
to encrypt all encrypted devices. The MEK is 512 bits.

The above conditions require an implementation which makes use of the LUKS2
header. In particular, for a blockdev to be decrypted with its pool-specific KEK,
it will be necessary to include information within the device header which allows
the device to be identified as belonging to a particular Stratis pool. The LUKS2
header includes support for LUKS tokens, which will allow stratisd to identify
the pool to which a device belongs; the LUKS1 header does not.

10.6 Block Device Characteristic Requirements (stratisd
3.4.0)

stratisd endeavors to enforce sufficient consistency in the characteristics of the
block devices that make up a pool to ensure continuous proper operation of
Stratis pools.

22

At present, stratisd takes into account the physical and the logical sector
size of a block device, i.e, those values obtained by the BLKBPSZGET and
the BLKSSZGET ioctls. stratisd’s requirements for creating new pools or pool
caches or for adding block devices to an existing pool or its cache are quite
stringent. It follows a more relaxed policy with pre-existing pools or caches.

10.6.1 Pre-existing pools and caches

With existing pools stratisd makes use of a rule intended to guard against
changes in the logical and physical sector size presented by the cap device to
the layers above. stratisd may automatically extend the cap device to accom-
modate pool usage. If the cap device is extended to make use of a block device
which has a larger logical or physical sector size than the devices that it was
using previously, the sector sizes exported by the cap device will change to the
larger size. This can have the unfortunate effect of making XFS filesystems
previously created above the cap device unmountable. To prevent this situa-
tion, stratisd enforces the following rule: If the cap device can be extended so
that its logical or physical sector size could change, stratisd places the pool in
“no_pool_changes” mode and logs a warning encouraging the user to migrate
their data to a new pool. A pool in “no_pool_changes” mode can not take any
action, including auto-extending.

With regard to existing pool caches, the danger of dynamically changing
sector sizes does not exist. stratisd always makes use of all the block devices
belonging to the cache when forming its cache device, so there is no check
necessary for existing cache devices.

10.6.2 Newly created pools and caches

If the user wishes to create a new pool or a new cache it is required that all
the block devices specified at creation have the same logical and physical sector
size.

10.6.3 Adding block devices to an existing pool or to its cache

It is not possible to perform any operations on a pool that is in “no_pool_changes”
mode, so it is not possible to add additional devices to such a pool’s data or
cache tier.

As a consequence of this rule, it can be assumed that all pools to which
devices are being added can be assumed to have certain properties. In partic-
ular, both the data tier and the cache tier have achieved their terminal sector

sizes. These are the respective sector sizes that the cap device would have if it
were extended across all block devices that belong to the data tier and is the
maximum of the respective sector sizes of all the individual block devices in the
data tier. Since the cache always makes use of all its devices, it achieves its
terminal sector sizes when constructed.

Taking these facts into account, the following rule is used when initializing
a cache:

23

1. all the block devices specified for the cache must have the same logical
and physical sector size.

2. the logical sector size of all the devices specified for the cache must be the
same as the terminal logical sector size of the data tier.

and the following rule when adding devices to either the data or cache tier:

1. all the block devices specified must have the same logical and physical
sector size

2. both sector sizes of all the devices specified must be the same as the
respective terminal sector sizes of that tier

10.6.4 Notes

Because stratisd must support pools that were previously created without the
restrictions of uniform logical and physical sector size that stratisd began impos-
ing in the 3.4.0 release, these rules do not guarantee total uniformity of either
physical or logical sector size in the devices that make up a pool or a cache.
They guarantee only that the devices that extend the data or cache tier after
stratisd 3.4.0 will all have the same logical and physical sector size.

11 Implementation Details

11.1 ’stratis’ command-line tool

Stratis’ command-line tool is written in Python. Since it is only used after
the system is booted by the administrator, Python’s interpreted nature and
overhead is not a concern.

11.2 stratisd

Stratisd needs to be implemented in a compiled language, in order to meet the
requirement that it operate in a preboot environment. A small runtime memory
footprint is also important.

stratisd is written in Rust. The key features of Rust that make it a good
choice for stratisd are:

• Compiled with minimal runtime (no GC)

• Memory safety, speed, and concurrency

• Strong stdlib, including collections

• Error handling

• Libraries available for D-Bus, devicemapper, and JSON serialization

• FFI to C libs if needed

24

https://www.rust-lang.org/en-US/

• Will be available on RHEL 8 in delivery timeframe; currently packaged in
Fedora

Other alternatives considered were C and C++. Rust was preferred over them
for increased memory safety and productivity reasons.

11.3 devicemapper names

If stratisd terminates unexpectedly and is restarted, it needs to rebuild its knowl-
edge of the running system. This includes not only re-enumerating blockdevs
to find Stratis pool members, but also determining the current state of the de-
vicemapper targets that make up pools. A restarting stratisd needs to handle
if none, some, or all of the expected DM devices are present, and if present DM
devices are working correctly, or in an error state.

To these ends, Stratis uses consistent naming for devicemapper targets. This
lets stratisd more easily determine if DM devices already exist, and avoids leak-
ing old DM mappings.

11.3.1 Naming convention Requirements

• Globally unique

• Maximum 127 characters

• Differentiate between Stratis and other DM devices

• Forward-compatible to allow Stratisd updates

• Human-readable

• Easily parsable

11.3.2 Naming Convention

Stratis DM names consist of five required and two optional parts, separated by
a ’-’.

Part Name Max length Required Description

1 stratis-id 7 y Universal DM differentiator: ’stratis’
2 format-version 1 y Naming convention version: ’1’
3 private 7 n Optional indicator ’private’
4 pool-id or dev-id 32 y ASCII hex UUID of the associated pool or, in

the case of encryption, the block device
5 layer-name 16 y Name of the Stratis layer this device is in
6 layer-role 16 y Name of the role of the device within the layer
7 role-unique-id 40 n Role-specific unique differentiator between

multiple devices within the layer with the same
role

25

• The maximum length (adding 6 ’-’s as separator) is 125, to stay within
the DM name limit of 127 characters.

• “private” is included in names for DM devices that are internal and that
should be excluded from content scanning by tools such as blkid.

• Characters for each part are drawn solely from the character classes ’[a-
z]’ and ’[0-9]’ except that part 7 may also use the ’-’ character. These
restrictions meet D-Bus and udev requirements6.)

• Encryption uses device UUIDs because there may be multiple encrypted
devices in one pool so using the pool UUID would result in naming colli-
sions

11.4 devicemapper minimum version

Stratisd devicemapper minor version 37 or greater, for DM event poll() support
and support for event_nr in list_devices ioctl.

11.5 OS Integration: Boot and initrd

Since we want to allow Stratis to be used for system files, Stratis needs to run in
the initrd preboot environment. This allows it to activate pools and filesystems
so that they can be mounted and accessible during the transition to the main
phase of operation.

The use of D-Bus is not possible in the preboot environment. Therefore,
Stratis has an alternate IPC mechanism to be used in the initramfs. This can
be accessed through the stratis-min and stratisd-min exectutables.

Stratis packages distribute a dracut module, systemd generator, and service
file to automate set up of all needed pools, encrypted or unencrypted, during
the boot process and /etc/fstab mount operations.

11.6 OS Integration: udev

The udev library “libudev” enables access to the udev device database. This
allows library users to enumerate block devices on the system, and includes
attributes describing their contents, such as what filesystem or volume man-
ager signature was detected. (libudev uses libblkid for this, which recently had
Stratis signature support added.) The primary benefit of this is to perform the
time-consuming block device scan only once, and to alleviate library users from
interpreting block device contents.

On boot, Stratis uses libudev to enumerate Stratis block devices on the
system, reads the Stratis metadata from each, and activates pools that are
complete. Later, during the main running phase, Stratis monitors udev events
for newly-added block devices, so that if missing Stratis pool members are con-
nected to complete a pool, the pool can be activated and used.

6See libdm/libdm-common.c _is_whitelisted_char() in the lvm2 code for more.

26

11.7 OS Integration: /dev entries

Stratis allows the user to create filesystems, which then can be mounted and
used via mount(8) and the fstab(5). Stratisd provides a udev rule that gener-
ates a /dev/stratis directory. It creates /dev/stratis/<poolname> for each
pool present on the system, and
/dev/stratis/<poolname>/<filesystemname> for each filesystem within the
pool. Changes such as creations, removals, and renames are reflected in the
entries under /dev/stratis. These entries give the user a well-known path to a
device to use for mounting the Stratis filesystem. Filesystems may also be listed
in /etc/fstab using XFS UUID. However, if the device is encrypted, it is rec-
ommended that users take advantage of the stratis-fstab-setup@.service

systemd unit file to automate pool unlock prior to mounting.

11.8 Snapshots

Stratis’s current snapshot implementation is characterized by a few traits:

• A snapshot and its origin are not linked in lifetime. i.e. a snapshotted
filesystem may live longer than the filesystem it was created from.

• A snapshot of a filesystem is another filesystem.

• A filesystem may be snapshotted while it is mounted or unmounted.

• Each snapshot uses around half a gigabyte of actual backing storage, which
is needed for the XFS filesystem’s log.

These may change in the future.

11.9 Backstore Internals

The backstore is divided into two tiers: the data tier, and an optional cache
tier. Each tier has its own set of physical block devices. The goal of each tier is
to provide a single linear device that the flex layer (or another tier) can easily
build on top of.

A tier is created with a certain feature set, which results in an internal
layering of devices as needed to support those features. The features a tier
supports are fixed at tier creation time. However, the block devices that make
up the tier may change. New blockdevs may be added.

This requires each tier to support:

• add_blockdev (add a new blockdev to the tier)

• blockdevs (list/iterate)

The tier includes optional internal support for multiple features, which also are
implemented using DM devices.

At the “bottom” of the tier are blockdevs. These blockdevs are mapped
through layers that add value, such as encryption.

27

Each layer takes a list of blockdevs and converts it to a list of “better”
blockdevs, whose total size is likely different.

While each intermediate layer may provide an array of blockdevs, the “cap”
layer of the tier presents a single linear blockdev that maintains the location of
each presented block and never shrinks, and hides the interior complexity of the
tier from upper users.

The ordering of layers (from bottom to top) within a tier is:

1. blockdev
Blockdevs supply available space to the tier.

2. encryption
This layer provides optional encryption for all block devices available in
the pool.

3. cap
If presented with more than one blockdev, or the blockdev has a nonzero
offset, the “cap” layer will ensure the Tier presents a single blockdev with
consistent block mapping for use above the tier by creating a Linear device
that never relocates previously-mapped block ranges.

11.9.1 Demand-based allocations

Layers should not consume the entire space available to them when constructing
devices, but instead grow existing mapped allocations (or create new ones) as
the total demands of upper layers grow larger. This is preferred over a “greedy”
strategy because it provides a better user experience to allow the amount of
space allocated to both data and metadata to be calculated dynamically if
requirements change.

11.9.2 Block device growth

The logical separation between the backstore and thin pool allows relatively
simple support for growing block devices that can change in size like loopback
devices or RAID arrays. Because the cap device abstracts away the complexity
of the underlying block devices, newly exposed block device segments can be
added to the cap device without any support needing to be added to the thin
pool. The thin pool will simply see that more space is now available and allocate
it lazily as needed.

11.10 Operation States

When encountering errors, Stratis must handle them if possible, but there are
also errors that are severe enough to hamper Stratis’s ability to function. When
these occur, instead of terminating, Stratis continues by transitioning to a less-
capable operation state. This allows some measure of continued monitoring and
enables its condition to be visible to the user through the API.

28

Action availability state Description

fully_operational All pool operations are available in this
state. No restrictions are imposed.

no_ipc_requests Pool operations triggered by an IPC
request are disabled. This is often due
to a failed IPC command that could
not be fully rolled back. Manual
resolution of the bad roll back state
will allow the pool to resume fully
operational state again.

no_pool_changes Any operations that modify the state
of the pool will be disabled. This
includes IPC requests and background
operations such as extending the thin
pool and filesystem.

11.11 Licensing

Currently, stratisd and all Rust libraries included in the stratis-storage organi-
zation meant for stratisd are licensed as MPLv2. This conclusion was reached
after careful consideration of compatibility with other licenses in the open source
ecosystem. MPLv2 allows some major benefits:

1. It is compatible with more permissive licenses in the open source ecosystem
such as BSD and MIT licenses. Given the prevalence of more permissive
licenses in the Rust ecosystem, this is an important consideration.

2. It is compatible with GPL code. This permits stratisd to incorporate
GPL code and become effectively GPL without ever changing the MPLv2
license.

3. If GPL code is incompatible with the license of a dependency added later,
MPLv2 allows the removal of GPL code and migration of the GPL code
into a separate service to permit the addition of the conflicting dependency.
This can all be done without relicensing.

After evaluating the options, the MPLv2 seemed to be the most flexible license
that still fulfilled the requirements for this project.

References

[1] Anne Mulhern. justbytes documentation. http://pythonhosted.org/

justbytes/.

[2] Anne Mulhern. The computation and representation of address ranges:
With an introduction to the python justbytes library. https://mulhern.
fedorapeople.org/justbytes_presentation.pdf, August 2016.

29

http://pythonhosted.org/justbytes/
http://pythonhosted.org/justbytes/
https://mulhern.fedorapeople.org/justbytes_presentation.pdf
https://mulhern.fedorapeople.org/justbytes_presentation.pdf

Appendices

A Encryption implementation details

Stratis uses libcryptsetup to manage FDE (full disk encryption) for each block
device added to an encrypted pool.

A.1 On-disk format

Stratis uses the LUKS2 encryption format as the basis for the encryption im-
plementation. The LUKS2 header contains information that can be used to
identify a device as a Stratis encrypted device.

A.1.1 LUKS2 token format

LUKS2 tokens contain the necessary information to describe how to unlock the
device. No private information is contained in the tokens. Stratis uses two
tokens, one standard cryptsetup token which allows activating the device using
a passphrase stored in the kernel keyring and another Stratis-defined token that
contains activation information required by Stratis. Token IDs are statically
assigned for each token for a number of reasons:

• Using static IDs, stratisd does not have to do a scan of all of the tokens
followed by heuristics to recognize a token. Instead, it chooses the static
ID, and if the format does not match what was expected, it is not treated
as a Stratis encrypted device.

• As other activation methods are added, activation of a pool can specify
one token ID to use for activation of all devices in the pool and expect
that they will all be unlocked using the same mechanism.

• New tokens may be added without breaking changes to the assignment of
existing token IDs.

The Stratis token has an ID of 0, the LUKS2 keyring token has an ID of 1, and
the Clevis token has an ID of 2.

LUKS2 keyring token

The kernel keyring token contains information for LUKS2 integration with keys
in the kernel keyring. This token is a standard token supported by cryptsetup,
and details for the format can be found in the cryptsetup documentation. In-
teraction with this token is handled by standard libcryptsetup API methods.

30

Stratis token

The Stratis token is used for device identification and activation, and the values
are set directly by Stratis. The format specification is as follows:

{
" type " : " s t r a t i s " ,
" k ey s l o t s " : [] ,
" activation_name " : <DEVICEMAPPER_NAME>,
"pool_uuid " : <POOL_UUID>,
"device_uuid " : <DEVICE_UUID>,
"pool_name" : <POOL_NAME>

}

See below for an explanation of each JSON value:

<DEVICEMAPPER_NAME>

This is the managed name that will show up in devicemapper when the device
is activated using libcryptsetup. While the name can be seen on the system by
querying devicemapper, managing encrypted Stratis devices outside of Stratis
is not supported so this is considered an internal name.

<POOL_UUID>

This UUID corresponds to the Stratis pool that owns this block device.
The pool UUID in the token matches the pool UUID in the encrypted Stratis
metadata.

<DEVICE_UUID>

This UUID corresponds to the device UUID for this specific block device.
The device UUID in the token matches the device UUID in the encrypted Stratis
metadata.

<POOL_NAME>

This name is duplicated from the pool level metadata and updated when the
pool name is changed to facilitate starting pools by name for encrypted devices.

A.1.2 Encrypted Stratis metadata format

Once the LUKS2 volume is unlocked, the encrypted Stratis metadata should be
accessible through the unencrypted logical devicemapper device in exactly the
same way as an unencrypted Stratis device.

A.2 Encrypted device creation

Stratis does not wipe the device prior to initializing it with a LUKS2 header.
This means that an attacker can deduce the following from examining a disk
that has been initialized using Stratis without any prior preparation:

31

• The amount of data currently stored on disk that is encrypted. For ex-
ample, if a disk has sectors that were zeroed or contain unencrypted data
previously stored on the disk at the end of an encrypted segment, this
can give insight into how many encrypted blocks are stored on the device.
To prevent this, the device should be wiped with random data prior to
providing it to a Stratis pool.

• The contents of unencrypted data that was previously stored on the disk
prior to initialization by Stratis. cryptsetup’s LUKS2 implementation
does not overwrite all of the data on the disk by default, so without prior
preparation, any sectors that have not been overwritten with encrypted
data will still contain the data previously stored on the disk. To prevent
this, the disk should be zeroed or wiped with random data.

A.3 Encrypted device discovery

Stratis identifies encrypted devices belonging to Stratis by their Stratis token.
It does not attempt to activate any device until it receives a D-Bus command
to activate all devices. When the command is received, stratisd attempts to
unlock the devices using the LUKS2 keyring token previously set by stratisd. If
activation of devices yields a set of devices that can form a complete pool, the
pool is set up.

A.4 Encrypted device activation

Devices are activated with the activation name in the Stratis token. See A.1.1
for an explanation of the Stratis token. Device activation results in a new,
activated device path with the canonical path name

/dev/mapper/<activation_name>

where the unencrypted data can be accessed. Because of the design and use of
libcryptsetup, encrypted devices can also be activated outside of Stratis using
libcryptsetup or the cryptsetup CLI as long as the required passphrase is in the
kernel keyring.

A.5 Encrypted device destruction

Destroying an encrypted Stratis device does not wipe the entire device as the
cost of this operation is linearly proportional with respect to disk size. Instead,
Stratis uses libcryptsetup to destroy all of the keyslots, wiping all of the en-
crypted MEK (media encryption key) data in each keyslot. It then obtains the
size of the LUKS2 metadata on this device and does an additional wipe of the
remaining LUKS2 metadata. This provides the following device properties on
pool destruction:

• The MEK data is destroyed so the data stored on the device will be un-
recoverable.

32

• If this device is used when creating another pool later, Stratis will be able
to reinitialize it and will consider this device unowned due to the wipe of
the LUKS2 metadata.

• The encrypted data will be left on the device but will be inaccessible due
to the destruction of the key.

Additional security may be achieved by zeroing the disk or overwriting it with
random data using external tools.

A.6 Key consistency for encrypted pools

Stratis takes steps to ensure that the same passphrase used during initial cre-
ation of the pool is the passphrase that is used for adding encrypted block
devices at a later time. stratisd runs a check prior to adding block devices to
an encrypted pool to verify that the passphrase in the kernel keyring with the
key description recorded in the LUKS2 metadata can unlock the block devices
that have already been encrypted and added to the pool. This prevents the
passphrase data associated with a key description from being accidentally or
intentionally changed between pool creation and addition of encrypted block
devices which would result in an unusable pool and loss of data on the next
occasion when the pool must be set up.

A.7 Key management

Stratis provides facilities for key management. The kernel keyring is used as
the backing store for the keys provided through the D-Bus API to allow proper
access controls for passphrases. The architecture of key input has been carefully
designed to avoid leaving keys in memory after they are no longer in use. The
key is not directly sent over D-Bus; D-Bus traffic is not encrypted so this would
leak the plaintext passphrase. Instead, the client side provides the server side
with a file descriptor from which to read the passphrase so that no data is
ever exposed in the D-Bus method call. When a user provides a key using the
interactive mode in the CLI or D-Bus API, input buffering is turned off on
the client side so the key is never stored in userspace memory. On the server
side, stratisd reads the key into a memory block managed by libcryptsetup so
that as soon as the memory is no longer in use, libcryptsetup will wipe the
memory using a method that will not be optimized out by the compiler. All of
this guarantees that the key data will only be available in one memory location
while it is in use, and that the memory will be securely wiped after use.

33

	I Background
	Problem Statement
	Goal: Bring advanced features to users in a simpler form
	Proposal: Implement a hybrid Volume Managing Filesystem
	Requirements

	II Solution Overview
	Introduction
	Stratis and the Linux storage stack
	Conceptual Model
	Blockdevs, pools, and filesystems
	Attributes and features of a pool

	Scalability and Performance Considerations

	III Implementation
	Software Components
	User Experience
	Known shortcomings

	D-Bus Programmatic API
	Overview
	D-Bus Access Control
	Security Policy

	Querying stratisd state via D-Bus

	JSON RPC IPC mechanism
	Overview

	Internals
	Data Tier Requirements
	Data Tier
	Blockdevs
	Flex
	Thin Provisioning
	Thin Volumes
	Filesystem

	Data Tier Metadata
	Requirements
	Conventions
	Design Overview
	BlockDev Data Area (BDA)
	Metadata Area (MDA)
	Metadata Volume (MDV)
	The MDA and Very Large Pools
	Metadata and Recovery

	Cache Tier
	Requirements
	Cache Tier Metadata

	Encryption
	Block Device Characteristic Requirements (stratisd 3.4.0)
	Pre-existing pools and caches
	Newly created pools and caches
	Adding block devices to an existing pool or to its cache
	Notes

	Implementation Details
	'stratis' command-line tool
	stratisd
	devicemapper names
	Naming convention Requirements
	Naming Convention

	devicemapper minimum version
	OS Integration: Boot and initrd
	OS Integration: udev
	OS Integration: /dev entries
	Snapshots
	Backstore Internals
	Demand-based allocations
	Block device growth

	Operation States
	Licensing

	Encryption implementation details
	On-disk format
	LUKS2 token format
	Encrypted Stratis metadata format

	Encrypted device creation
	Encrypted device discovery
	Encrypted device activation
	Encrypted device destruction
	Key consistency for encrypted pools
	Key management

