Crop production is associated with a range of potential environmental impacts, including field em... more Crop production is associated with a range of potential environmental impacts, including field emissions of greenhouse gases, loss of nitrogen and phosphorous nutrients to water and toxicity effects on humans and natural ecosystems. Farmers can mitigate these environmental impacts by changing their farming systems; however these changes have implications for production and profitability. To address these trade-offs, a farm-level model was constructed to capture the elements of a rice-based production system in northern Thailand. Life Cycle Assessment (LCA) was used to generate environmental impacts, across a range of indicators, for all crops and associated production processes in the model. A baseline, profit maximising combination of crops and resource use was generated and compared with a greenhouse gas minimising scenario and an alternative inputs (fertilisers and insecticides) scenario. Greenhouse gas minimisation showed a reduction in global warming potential of 13%; other impact indicators also decreased. Associated profit foregone was 10% as measured by total gross margin. With the alternative farm inputs (ammonium sulphate, organic fertiliser and fipronil insecticide), results indicated that acidification, eutrophication, freshwater and terrestrial ecotoxicity impacts were reduced by 43, 37, 47 and 91% respectively with relatively small effects on profit.
Crop production is associated with a range of potential environmental impacts, including field em... more Crop production is associated with a range of potential environmental impacts, including field emissions of greenhouse gases, loss of nitrogen and phosphorous nutrients to water and toxicity effects on humans and natural ecosystems. Farmers can mitigate these environmental impacts by changing their farming systems; however these changes have implications for production and profitability. To address these trade-offs, a farm-level model was constructed to capture the elements of a rice-based production system in northern Thailand. Life Cycle Assessment (LCA) was used to generate environmental impacts, across a range of indicators, for all crops and associated production processes in the model. A baseline, profit maximising combination of crops and resource use was generated and compared with a greenhouse gas minimising scenario and an alternative inputs (fertilisers and insecticides) scenario. Greenhouse gas minimisation showed a reduction in global warming potential of 13%; other impact indicators also decreased. Associated profit foregone was 10% as measured by total gross margin. With the alternative farm inputs (ammonium sulphate, organic fertiliser and fipronil insecticide), results indicated that acidification, eutrophication, freshwater and terrestrial ecotoxicity impacts were reduced by 43, 37, 47 and 91% respectively with relatively small effects on profit.
Uploads
Papers by Bhanupong Phrommarat