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Abstract—As spectrum utilization efficiency is the major bottle-
neck in current wireless networking, many stakeholders discuss
that spectrum should be shared rather than being exclusively
allocated. Shared spectrum access raises many challenges which,
if not properly addressed, degrades the performance level of
the co-existing networks. Coexistence scenarios may involve two
or more networks: same or different types; operated by the
same or different operators. The complex interactions among the
coexisting networks can be addressed by the machine learning
tools which by their nature embrace uncertainty and can model
the complex interactions. In this tutorial, we start with the basics
of coexistence of wireless networks in the unlicensed bands. Then,
we focus on WiFi and LTE-U coexistence. After providing a brief
overview of machine learning topics such as supervised learning,
unsupervised learning, reinforcement learning, we overview five
particular examples which exploit learning schemes to enable
efficient spectrum sharing entailing a generic cognitive radio
setting as well as LTE and WiFi coexistence scenarios. We
conclude with a list of challenges and research directions.

I. SPECTRUM SHARING IN WIRELESS NETWORKS

Spectrum sharing is the situation where at least two users
or technologies are authorized to use the same portion of the
radio spectrum on a non-exclusive manner1. We overview the
current state of spectrum sharing and provide a taxonomy of
spectrum sharing scenarios. We can list the main challenges in
providing peaceful coexistence as follows: (i) scarcity of the
resources, (ii) heterogeneity of the coexisting networks, (iii)
power asymmetry, and (iv) lack of coordination, communica-
tion, and cooperation among the coexisting networks.

II. COEXISTENCE IN THE UNLICENSED BANDS: THE CASE
OF WIFI AND LTE-U

The success of IEEE 802.11 networks in the unlicensed
bands, i.e., 2.4 GHz and 5 GHz, has proved the efficiency
and feasibility of using spectrum in a license-exempt manner.
Currently, even the cellular providers consider expanding
their network’s capacity with unlicensed spectrum to cope
with the increasing wireless traffic demand. More particularly,
Qualcomm’s 2013 proposal [1] of aggregating 5GHz bands
with the licensed carriers of an LTE network has paved the
way for LTE unlicensed networks.

However, operation in the unlicensed bands has to address
the coexistence challenges. For example, WiFi networks at 2.4
GHz bands, e.g., 802.11b/g/n, have to find the best channel

1S. Forge, R. Horvitz, and C. Blackman. Perspectives on the value of shared
spectrum access. Final Report for the European Commission, 2012.

among three non-overlapping channels for operation in a
very-dense WLAN deployment. Additionally, 2.4 GHz band
accommodates also non-WiFi technologies such as Bluetooth,
ZigBee, or microwave ovens which all create interference on
WLANs. As for 5GHz which has many more non-overlapping
channels compared to 2.4 GHz, the more severe challenge is to
coexist with technologies other than 802.11n/ac/ax networks,
namely unlicensed LTE networks and radars.

The main coexistence mechanism of WiFi is listen-before-
talk (LBT) which is also known as carrier sense multiple
access with collision avoidance (CSMA/CA). A station with
a traffic to transmit has to first check whether the medium
is free or not. To decide on the state of the medium, two
approaches exist: carrier sense and energy detection. In car-
rier sensing, a WiFi node decodes the preamble of a WiFi
frame that is received above some energy detection level.
The node extracts the information from the PLCP header
which carries information about the occupancy duration of
the medium by that ongoing flow. This mechanism is also
referred to as channel reservation. With this information, a
WiFi node knows when to re-start sensing the medium for a
transmission opportunity. Energy detection (ED) is a simpler
approach in which a candidate transmitter decides that the air
is free if the signal level is below a predefined ED threshold.
This approach is used for detecting inter-technology signals,
where the received signal is not decodable, i.e., it belongs
to other technologies (or corrupted WiFi signals). Despite its
simplicity, ED requires more effort on a potential transmitter
as it must constantly sense the energy level in the air to detect
a transmission opportunity.

As LTE follows a scheduled medium access on the licensed-
spectrum, there is no notion or necessity of politeness or
LBT in more technical terms. However, it is vital for LTE
unlicensed to implement such mechanisms for coexistence
with WiFi and other unlicensed LTE networks at 5 GHz
bands. Currently, frequency-domain sharing is a first step only.
In other words, an LTE small cell first checks the channel
activities and selects a clear channel, if any.

For time sharing, there are two approaches taken by two
variants of LTE unlicensed: duty cycling by LTE-U and
LBT by License-Assisted-Access (LAA). LTE-U which is an
industry-led effort lets small cells apply duty cycling where
during the OFF periods WiFi can access the medium. As this
approach does not mandate LBT before turning small cell
transmissions on, it may degrade WiFi performance drastically.
LAA requires LBT similar to WiFi’s CSMA/CA. LAA speci-
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fication is led by 3GPP and aims to develop a global solution
in contrast to LTE-U which is only compliant to countries like
US, Korea, China where LBT is not mandatory. We overview
basics of these two variants and list the major issues in their
peaceful coexistence with WiFi networks.

III. BACKGROUND ON MACHINE LEARNING

We provide a sparse overview of learning approaches:
supervised, unsupervised, and reinforcement learning.

IV. THE ROLE OF MACHINE LEARNING IN SPECTRUM
SHARING AND COEXISTENCE

In this part, we examine the literature using ML approaches
to solve the coexistence issues as our case studies.

Is the channel idle or busy?- This question is at the heart of
coexistence of networks in a multi-channel environment, as the
first step of coexistence is to choose a channel that is clear. For
cognitive radio networks, it is mandatory to detect the channel
state to avoid violating the rules of secondary spectrum access.
Casting this question into a binary classification problem, au-
thors [2] introduce several (un)supervised learning algorithms
to correctly identify the state of a channel. While supervised
approaches require the real channel state information from the
Primary Users, unsupervised learning such as K-means does
not require any input from the PUs - which is a desirable
property of classification scheme in a practical setting.

Which unlicensed channel to select for each LAA SBS
for inter-operator coexistence?- As we expect multiple LAA
operators deploy their small cells independently, there is
surely the question of how to select an unlicensed channel
to aggregate, particularly in case there are more cells than the
number of available channels. One way of channel selection
is to let every LAA BS learn from its own observations via
trial-and-error, Q-learning [3].

Which unlicensed carrier to aggregate and how long
to use this carrier?- Q-learning framework can also be
applied to an LAA setting where an LAA BS needs to select
an unlicensed carrier and the transmission duration on the
selected carrier [4].

Can WiFi exploit ML for defending itself against LTE-
U interference?- Different than the literature which develops
coexistence solutions to be deployed at the LTE base stations
for WiFi/LTE setting, [5] proposes to also equip the WiFi
APs with a tool that estimates the ON-duration of an existing
LTE-U network in the neighborhood. Moreover, the developed
solution can estimate the remaining airtime for the WiFi
AP based on the LTE’s predicted ON duration. Key idea of
WiPLUS is to detect the times where LTE-U has an ongoing
transmission using the data passively collected from the MAC
FSM of the NIC. However, although LTE-U signal may not be
detected above the ED level, it may still have a severe impact
on WiFi. Thus, PHY-layer analysis solely on signal level is
short of detecting the moderate interference regime. WiPLUS
overcomes this challenge by combining data from MAC FSM
states and ARQ missing acknowledgments. Sampled data from
a testbed has a lot of noise due to imperfections of the
measuring devices and the complex interactions among the

coexisting systems as well as PHY and MAC layers. WiPLUS
applies K-means clustering to detect outliers on the estimated
LTE-U on-durations. After filtering the data points based on
the signal’s frequency harmonics, WiPLUS calculates the LTE-
U on-time as the average of the data points, each of which
corresponds to an estimate of LTE-U on-time.

Can we estimate WiFi link performance by learning
from real-world link capacity measurements?- In a multi-
AP setting, an AP can select the operation channel based on
the expected capacity of the existing links. The traditional way
is to take the SNIR-based capacity estimate into account, i.e.,
Shannon’s capacity formula. However, this capacity model
may sometimes fail to represent the complex interactions
between PHY and MAC layers, e.g., partially-overlapping
channels in case of channel bonding in new 802.11ac/ax
standards. The idea of [6] is to use supervised learning as a tool
to model the complex interactions among many factors such
as power and PHY rate of a neighboring WiFi link implicitly
rather than modelling it explicitly.

V. OPEN RESEARCH DIRECTIONS

Machine learning-based solutions can embrace the complex-
ity and uncertainty prevalent in the complex scenarios, espe-
cially hybrid horizontal spectrum sharing, by learning from
the observations. However, a wireless network poses peculiar
challenges such as the energy limitations, real-time operation,
and sometimes fast changes in the operation environment that
render learning less effective. We overview such challenges
and conclude with some open questions in this tutorial.
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