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Abstract: 
The CCNU summarization system, PUSMS (Proceeding to Using Semantic Method for Summarization), 
join in TAC (formerly DUC) for the first time. For the update summarization tasks, we used syntactic-
based anaphora resolution and sentence compression algorithms in our system. Term significance was 
then obtained by frequency-related topic significance and query-related significance by obtaining co-
occurrence information with query terms. For the pilot QA summarization task, a semantic orientation 
recognition module which used WordNet::Similarity::Vector to obtain all of the main part-of-speech 
terms’ similarity with benchmark words derived from General Inquirer is used in PUSMS pilot system. 
We also developed a document classifier and a snippets-related content extracting module for the pilot 
tasks. In all, our initial job can be boiled down to be introducing semantic method into our former 
statistical summarization system.  By analyzing the evaluation results, we found that we were preceding 
the right target but still have a long way to go. 
 
1 Introduction 
Although be fresh for TAC, we have spend many years in automated summarization area. In this report, 
we focus on how the semantic method involved in our summarization system and the changes it makes. 
Our system, PUSMS (Proceeding to Using Semantic Method for Summarization) performed not bad in 
TAC 2008, and we argued that given more experience, our performance can be better.  And we did made 
valuable improvement in several areas, this paper is focusing on introduce the valuable improvement 
other than every details of building a summarization system. 
 
2 The PUSMS System Architecture 
PUSMS consists of the following five steps: 
1. Content extracting and sentence splitting. 
2. Syntactic-based anaphora resolution and sentence compression 
3. Term significance computation for each of the document sets. 
4. Sentence scoring. 
5. Dynamic sentence choosing and Redundancy removal. 

These steps are common for the main and pilot tasks, and details of them can be found in section 2.1-
2.5, respectively. For the update summarization task, the historical information is removed in step 4, 
which is described in section 2.6. And for the pilot QA summarization, a semantic orientation 
classification step is added between step 2 and 3, which is described in section 2.7. 

 
2.1 Content Extracting and Sentence Splitting 
The document preparation step begins with content extracting. For the main task, content extracting is 
simpler and need little operation because all the test data is uniform in style and have specific tags to 
mark different functional parts. But for pilot task, since all the experiment data come from BLOG, content 
extracting became very complex.  There are no definite tags to be used and the test data content varied 



greatly. In PUSMS, we used the Stanford HTMLParser1 for deriving text contents from BLOG. The 
HTMLParser is very powerful but still have some problem in derived all meaningful content from BLOG, 
in some cases, the HTMLParser derived noting from some source BLOG; and in other, the HTMLParser 
return meaningful information including some useless information like date line and BLOG introduction. 
We add some rules to solve this problem.  

We develop a sentence splitter in PUSMS. The sentence splitter absorbed a majority of rules from a 
Perl sentence splitter with the following additional changes made to compensate for erroneous splits: 
1. Remove all double quotation marks. 
2. Wherever there is a colon, we eliminate the content lead it as well as itself.  
3. Wherever there is a semicolon, we treat the content lead and follow it as complete sentences 
respectively.  
4. We eliminate all question sentences and plaint sentences to avoiding their influences for fluency of 
summaries. 
 
2.2 Anaphora Resolution  
We used JavaRAP developed by Long Qiu et al.[1] to build a syntactic-based anaphora resolution module 
in PUSMS. JavaRAP is an implementation of the classic Resolution of Anaphora Procedure (RAP) given 
by Lappin and Leass (1994). It resolves third person pronouns, lexical anaphors, and identifies pleonastic 
pronouns.  

The problem we found in using JavaRAP in the summarization area.  We proposed that anaphora 
resolution should be classified into two classes in summarization field: anaphora resolution within a 
sentence and cross sentences. The former make sentences contain more redundancy information while the 
later make the sentence more complete and understandable, since most summarization system extracted 
complete sentences and organized them into summaries.  So we made some changes on JavaRAP and 
used only cross-sentences RAP in PUSMS. 
 

ORG 

The takeoff went perfectly, Alain Garcia, an Airbus engineering executive, told the LCI 
television station in Paris.  
 Its comparative lack of noise was the result of demands by customers that Airbus make the 
plane even more quiet than it already was, a process that took six months.  

Within-sentences 
And 

Cross-sentences 

The takeoff went perfectly, Alain Garcia, an Airbus engineering executive, told the LCI 
television station in Paris.  
  <The takeoff's> comparative lack of noise was the result of demands by customers that 
Airbus make the plane even more quiet than <the plane> already was, a process that took 
six months.  

Cross-sentences 
Only 

The takeoff went perfectly, Alain Garcia, an Airbus engineering executive, told the LCI 
television station in Paris.  
  <The takeoff's> comparative lack of noise was the result of demands by customers that 
Airbus make the plane even more quiet than it already was, a process that took six months. 

 
Table 1:  Example of different anaphora resolution results 

 
2.3 Syntactic-based Sentence Compression  
We used a syntactic-based sentence compression in PUSMS.  We performed all compression by the 
support of a maximum-entropy-inspired parser developed by Charniak[3][4], which parsed down sentences 
to Penn tree-bank style parse trees.  After that, we built a rule-based sentence compression module with 
Tsurgeon, a tree-transformation utility built on top of the Tregex tree-matching engine.  

We proposed the following five rules as shown in Table 2. These rules is made to eliminate as much as 
possible redundancy information while keep the sentences grammatical. They are indexed by the decrease 
                                                           
1 http://sourceforge.net/projects/htmlparser 



of the confidence for using them, i.e. using rule n (1≤n≤4) is less likely to create ungrammatical 
sentences than rule n+1. Rule 1 eliminates prepositional phrases whose father node is a clause or attached 
by comma or appear successively.  Rule 2 eliminates subordinate clause. Rule 3 deal with the appositive. 
Rule 4 eliminate gerund phrases or subordinate clause. Rule 5 eliminate noun phrase like “, John said”. 

Another problem of sentence compression is that important information may be trimmed even if the 
sentence is grammatical. A dynamic selection algorithm is advanced in PUSMS in the sentence scoring 
stage to avoid important information be eliminated, details can be found in section 2.5.   

 
RULE Tregex pattern command Tsurgeon command 

1 @PP|ADVP=pp  [ >, S |  $,  /,/ | $, ADVP | $,  PP ] delete pp 
2 SBAR=sb !<< FRAG [ >, S | $, /,/ | > NP | $. /,/ ] delete sb 
3 @NP|SBAR=nn $. /,/=cr  [ $, /,/=cl | >>, S] delete nn cr cl 
4 VP [ < VBG | < VBD]   > ( S > ( @PP|SBAR=gre > NP)) delete gre 
5 NP=np  $, /,/=cl $. ( VP=vp <: @VBD|VBN ) delete np cl vp 

 
Table 2:  Example of different anaphora resolution results 

 
2.4 Sentence Scoring 
To evaluate whether a sentence is appropriately included in the summary, two factors are considered. One 
is the association between a sentence and the query, and the other consideration is the information density 
of a sentence compared to other sentences in the topic set. Generally, more responsive a sentence is to the 
query and more information density the sentence contains, more possible the sentence is to be included in 
the final summary. 

Before obtain sentence score, we applied the removal of stop words and word stemming in PUSMS. 
And sentence scores are obtained from two sentence scoring model. 
Query-related Sentence Scoring 
In PUSMS, the association between a sentence and the query is obtained with a modified relevance-based 
language modeling described in Jagadeesh et al., 2005.  

In Jagadeesh et al., 2005,  It has been shown that relevance-based language modeling (Lavrenko and 
Croft, 2001) along with semantic representation of words in higher dimensions using HAL spaces (Lund 
and Burgess, 1996) can be extended to calculate the relevance score of a sentence towards the information 
need. The relevance-based language modeling assumes both the query and the document as samples from 
an unknown relevance model R, then it approximates P(w|R), the probability of observing a word w in the 
documents relevant to a particular information need R, using P(w|Q), where Q = q1, q2…qk is the 
information need expressed in the form of query words. By definition, the conditional probability can be 
expressed in terms of the joint probability of observing w with the query words q1, q2…qk. 

 
   Assumes the query words q1, q2…qk to be independent of each other while keeping their dependencies 
on w intact. Using this assumption the joint probability can be calculated as: 

 
P(qi|w), can be incorporated into the above expression using the probabilistic interpretation of 

Hyperspace Analogue to Language (HAL) model. Hyperspace Analogue to Language model constructs 
the dependencies of a word w on other words based on their occurrence in the context of w in a 
sufficiently large corpus. 
  Although International Institute of Information Technology (IIIT) did very well in DUC, we found that 
there is a technical problem with formulating the task in this way. In fact, given a particular information 



need Q = q1, q2…qk, if choice has to be made between a word having looser correlation with all words in 
R and a word having tighter correlation with part of words in R and no correlation with the other words in 
R,  people usually, in general,  prefer the later. 

 Let’s see a toy example about the Jaggedness model. Assumes that there are only two q1, q2 in Q and 
two observing words w1 , w2.   P(w1) = P(w2)=0.1, P(q1|w1)= P(q2|w1)=0.1, P(q1|w2)=0.01,  P(q2|w2)=0.9. 
So the joint probability can be calculated as: 

3
1 1 2 1 1 1 2 1P(w ,q , )  P(w ) P(q |w ) P(q |w ) 0.1 0.1 0.1 10q −= = ×i i × =  

3
2 1 2 2 1 2 2 2P(w ,q , )  P(w ) P(q |w ) P(q |w ) 0.1 0.01 0.9 0.9 10q −= = × ×i i = ×

=

=

 

   The Jaggedness model prefers w1, but in intuition, w2  have high correlations with q2  and contain more 
important information than w1 do. This problem is enlarged and becomes insolvable when Q contains a lot 
of words, the joint probability of Jaggedness model becomes extreme small and indiscriminate. So we 
proposed the following evolved formulation to calculate the joint probability: 

1 1
1

( , ) ( ) ( | )
k

k i
i

P w q q P w P q w
=

… = ∑  

    Let’s see the toy example again, in our formulation, the joint probability can be calculated as: 
1 1 2 1 1 1 2 1( , , )  ( ) ( ( | ) ( | )) 0.1 (0.1 0.1) 0.02P w q q P w P q w P q w= + = × +i  

2 1 2 2 1 2 2 2P(w ,q , )  P(w ) (P(q |w ) P(q |w )) 0.1 (0.01 0.9) 0.091q = + = × +i  

The effectiveness of the evolved formulation is shown in section 4. 
For the same reason, assuming that the different words in a sentence are independent and removing the 

constant terms, the relevance of a sentence S, can be expressed as, 

( ) ( | ) ( ) ( | )( | )
( | ) i j i ji

j ji
W S q W S qW S

P w P q w P w pHAL q wP w R
P S R

L L L
∈ ∈∈= = =
∑ ∑ ∑ ∑∑

 

    Where L is the length of S and the pHAL, probabilistic HAL, can be interpreted as, given a word w 
what is the probability of associating a word w0 with w in a window of size K. 

 
Query-independent sentence scoring 
In our opinion, signature terms are those terms which occur with high frequency in the whole topic set, 
rather than in the single document it’s located. So we proposed a novel inverse-probability-rate model to 
obtain the information density of a sentence.  Probability rate is a language model originally used in 
information retrieval area. We adopted and improved the method. The following describes the detail of 
the inverse-probability-rate model. 

In our model, a sentence is denoted by a vector 
  1 1 2 2{ , , , ,n nS t w t w t w= < > < > < >" }
Where wi is the weight of feature ti. 

( | )(1 ( | ))log
( | )(1 ( | ))

i i
i

i i

p t Cpos p t Cnegw
p t Cneg p t Cpos

−
=

−
 

Where Cpos is all the documents in the whole topic set, Cneg is the document where 
ti is located. 

So the query-independent sentence score can be obtained as follow: 

i
1( )

i
QI S w

n
= ∑  

 
Sentence scoring  



The final score of sentence is  
 

1 1

( ) ( | )Score(S )= +(1- )
( ) ( | )

i i
i k k

i i
i i

QI S P S R

QI S P S R
β β

= =
∑ ∑
i i  

Where k is the number of sentences in the whole document set, β is the factor of mixing the query-
related and query-independent score. We trainedβ in the DUC 2007 data, and the experienced value ofβ 
is 0.1. 
2.5 Dynamic sentence choosing and Redundancy removal. 
    In PUSMS, since the syntactic-based sentence compression module produced multi-candidate sentences 
and inclined to eliminate important information, a novel dynamic sentence choosing method is proposed.  

The basic idea of our dynamic choosing method is that a compression is permitted only if the 
informational density of the compressed sentence should be larger than the original sentence. A 
compression is done only if the following conditional expression fulfilled: 

original cut original

original cut original

Score(S ) Score(S ) Score(S )
Length(S ) Length(S ) Length(S )

α
−

≤
−

i  

   Where Scoreoriginal and Scorecut  is the score of the original sentence and the compressed sentence 
according to section 2.4.  αis the compressional intensity control factor,  and its experienced value is 0.8 
according to the 2007 TAC data. 
    The dynamic sentence choosing method is iterately performed five times, by using one rule in table 2 
one by one. 

After the dynamic sentence choosing process, all sentences in the whole topic set can get a score and be 
sorted degressively. 

To avoid including redundancy information in the summary, we used an evolved Maximal Marginal 
Relevance method in PUSMS. The basic idea of the MMR method is to choose the most significant 
sentence while minimize the redundancy between a candidate sentence and former selected sentences. 
The MMR method can be defined as the following: 

arg m ax[ ( ) (1 ) m ax ( , )]
ji

i i S FS R F
S Score S sim i jS Sλ λ

∈∈ −
= − −i i  

Where F is collection of the selected sentences, R is collection of the sorted sentences in the topic set 
Sim(Si,Sj) is the cosine-similarity between candidate sentence Si and former selected sentence Sj. PUSMS 
choose candidate sentence Si  iterately until given length of the summary is reached. 
2.6 Removal of the historical information  
In order to remove historical information form topic set B, we used a sentence filtering method in PUSMS. 
The basic idea of this method is to decide which part of information in the current topic set is new 
information and to use the new information to generate summaries. Our sentence filtering method can be 
defined as the following: 

arg m ax[ ( , )]
i j

i i
S R S H

S sim
∈ ∈

= jS S∑  

Where F is collection of all sentences in topic set B, H is collection of all sentences in topic set A. 
Sim(Si,Sj) is the same as described in section 2.5. PUSMS iteratively eliminate sentences which obtained 
highest score in the upper formulation, until the conditional expression as the following is fulfilled: 

( ) ( )
S E S R

C o u n t S C o u n t Sμ
∈ ∈

≥ •  

Where E is collection of former eliminated sentences, μis the filter strength intensity factor. We 
trainedμ in the DUC 2007 data, and the experienced value ofμ is 0.1. 



 2.7 Semantic Orientation Classification  
In TAC 2008, most of the questions in pilot QA summarization task are about the semantic orientation 
problem. A semantic orientation classifier is used in PUSMS to derived positive and negative documents 
form the topic set.     

To build a semantic orientation classifier, we firstly manually find 15 pair of benchmark words from 
General Inquirer, including 5 pair of noun, verb and adjective, respectively. Then we proposed a novel 
word semantic similarity calculating method which is based on WordNet::Similarity::Vector to ensure 
that all part of speech terms can be obtained polarity score.  The polarity score of each noun, verb and 
adjective in sentence S can be obtained as following: 

1 1

( ) ( , ) ( ,
k k

i i
i i

PolarityScore word Sim word PositiveWord Sim word NegativeWord
= =

= −∑ ∑ )

)

 

Where k is the num of benchmark words is the similarity between a word 
and the positive benchmark word obtained from WordNet::Similarity::Vector.  

( , iSim word PositiveWord

Then polarity score of sentence S can be calculated as following: 
( )

1
( ) co ( ) ( 1)

l
Count NOT

i
i

PolarityScore S PolarityS re word
=

= −∑ i  

Where l is number of words in sentence S, Count (NOT) is the number of privative word in sentence S.   
Benchmark words as well as privative words used in PUSMS are shown in Table 3. 

 

 Positive Negative 

Benchmark Words 
(Noun) 

achievement 
respect 

dependability 
joy 

conscience 

disadvantage 
mistake 
chaos 

sorrow 
devil 

Benchmark Words 
(Verb) 

admire 
praise 
trust 
love 

contribute 

harm 
deny 
doubt 
dislike 
deceive 

Benchmark Words 
(Adjective) 

good 
brave 

famous 
positive 
correct 

bad 
incorrect 
untrue 

unhappy 
evil 

Privative Words 
no never none nothing seldom rarely hardly scarely barely not 

doesn't isn't aren't wasn't weren't hasn't haven't hadn't don't didn't 
won't  wouldn't shan't shouldn't can't cannot couldn't mustn't 

 
Table 3: Benchmark Words and Privative words used in PUSMS 
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Table 4: Performance of PUSMS in TAC 2008 Update Summarization Task 

 
3 Results 
3.1 Update Task 
For the update summarization task, PUSMS submitted 3 systems, system 3, 35 and 58, respectively. To 
compare the effectiveness of different module of method, we didn’t use anaphora resolution and sentence 
trimming in system 3, and didn’t used anaphora resolution and sentence trimming and removal of removal 
of the historical information in system 58. The performance of our system can be seen in Table 4. 

As seen in Table 4, PUSMS performed not bad for a new participator in TAC and gained best place of 
18 out of 72 system. We also found that PUSMS performed rather worse in topic set B than in set A. We 
think it is because our over-training  the filter strength intensity factor μ in DUC 2007 data. While only 
very little sentences filtered (10%) in set B, and these filtered sentences have little probability selected 
into summary, our historical information removal module seemed to be of no use. We also found that 
PUSMS perform better when evaluated by human and pyramid than by ROUGE. That may because of 
that we pay great emphasis on using semantic method in PUSMS.  
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Table 5: Performance of PUSMS in TAC 2008 Pilot QA Summarization Task 
 



3.2 Pilot summarization task 
For the pilot QA summarization task, PUSMS submitted 2 systems, system 7, 27, respectively. To 
compare the effectiveness of different module of method, we didn’t use anaphora resolution and sentence 
trimming in system 7. The performance of our system can be seen in Table 5. 

As seen in Table 5, system 27 is performed better than system 7. And system 27 performed very well in 
average score for non-redundancy,  average score for structure/coherence and average score for 
overall fluency/readability. While both system 7 and system 27 performed very bad in average overall 
responsiveness. We were confused at first seen this result, since system 27 performed not bad in pyramid 
F-score. Finally we found that this is mainly because of that we generated too short sentences in PUSMS 
(≤400 words), while TAC permit to submit longer summaries (≤4000 characters).  

 
4 Conclusion 
In this paper we have presented PUSMS, a semantic based summarization system. In all, our initial job 
can be boiled down to be introducing semantic method into our former statistical summarization system. 
By analyzing the evaluation results, we found that we were preceding the right target but still have a long 
way to go. 
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