
CCNU at TAC 2008：Proceeding on Using Semantic Method for Automated
Summarization Yield

Tingting He, Jinguang Chen, Zhuoming Gui, Fang Li
Huazhong Normal University, 430079, Wuhan, China

tthe@mail.ccnu.edu.cn,cjg2003@hutc.zj.cn, Wenzheng38@sina.com, fang__lf@163.com

Abstract:
The CCNU summarization system, PUSMS (Proceeding to Using Semantic Method for Summarization),
join in TAC (formerly DUC) for the first time. For the update summarization tasks, we used syntactic-
based anaphora resolution and sentence compression algorithms in our system. Term significance was
then obtained by frequency-related topic significance and query-related significance by obtaining co-
occurrence information with query terms. For the pilot QA summarization task, a semantic orientation
recognition module which used WordNet::Similarity::Vector to obtain all of the main part-of-speech
terms’ similarity with benchmark words derived from General Inquirer is used in PUSMS pilot system.
We also developed a document classifier and a snippets-related content extracting module for the pilot
tasks. In all, our initial job can be boiled down to be introducing semantic method into our former
statistical summarization system. By analyzing the evaluation results, we found that we were preceding
the right target but still have a long way to go.

1 Introduction
Although be fresh for TAC, we have spend many years in automated summarization area. In this report,
we focus on how the semantic method involved in our summarization system and the changes it makes.
Our system, PUSMS (Proceeding to Using Semantic Method for Summarization) performed not bad in
TAC 2008, and we argued that given more experience, our performance can be better. And we did made
valuable improvement in several areas, this paper is focusing on introduce the valuable improvement
other than every details of building a summarization system.

2 The PUSMS System Architecture
PUSMS consists of the following five steps:
1. Content extracting and sentence splitting.
2. Syntactic-based anaphora resolution and sentence compression
3. Term significance computation for each of the document sets.
4. Sentence scoring.
5. Dynamic sentence choosing and Redundancy removal.

These steps are common for the main and pilot tasks, and details of them can be found in section 2.1-
2.5, respectively. For the update summarization task, the historical information is removed in step 4,
which is described in section 2.6. And for the pilot QA summarization, a semantic orientation
classification step is added between step 2 and 3, which is described in section 2.7.

2.1 Content Extracting and Sentence Splitting
The document preparation step begins with content extracting. For the main task, content extracting is
simpler and need little operation because all the test data is uniform in style and have specific tags to
mark different functional parts. But for pilot task, since all the experiment data come from BLOG, content
extracting became very complex. There are no definite tags to be used and the test data content varied

greatly. In PUSMS, we used the Stanford HTMLParser1 for deriving text contents from BLOG. The
HTMLParser is very powerful but still have some problem in derived all meaningful content from BLOG,
in some cases, the HTMLParser derived noting from some source BLOG; and in other, the HTMLParser
return meaningful information including some useless information like date line and BLOG introduction.
We add some rules to solve this problem.

We develop a sentence splitter in PUSMS. The sentence splitter absorbed a majority of rules from a
Perl sentence splitter with the following additional changes made to compensate for erroneous splits:
1. Remove all double quotation marks.
2. Wherever there is a colon, we eliminate the content lead it as well as itself.
3. Wherever there is a semicolon, we treat the content lead and follow it as complete sentences
respectively.
4. We eliminate all question sentences and plaint sentences to avoiding their influences for fluency of
summaries.

2.2 Anaphora Resolution
We used JavaRAP developed by Long Qiu et al.[1] to build a syntactic-based anaphora resolution module
in PUSMS. JavaRAP is an implementation of the classic Resolution of Anaphora Procedure (RAP) given
by Lappin and Leass (1994). It resolves third person pronouns, lexical anaphors, and identifies pleonastic
pronouns.

The problem we found in using JavaRAP in the summarization area. We proposed that anaphora
resolution should be classified into two classes in summarization field: anaphora resolution within a
sentence and cross sentences. The former make sentences contain more redundancy information while the
later make the sentence more complete and understandable, since most summarization system extracted
complete sentences and organized them into summaries. So we made some changes on JavaRAP and
used only cross-sentences RAP in PUSMS.

ORG

The takeoff went perfectly, Alain Garcia, an Airbus engineering executive, told the LCI
television station in Paris.
 Its comparative lack of noise was the result of demands by customers that Airbus make the
plane even more quiet than it already was, a process that took six months.

Within-sentences
And

Cross-sentences

The takeoff went perfectly, Alain Garcia, an Airbus engineering executive, told the LCI
television station in Paris.
 <The takeoff's> comparative lack of noise was the result of demands by customers that
Airbus make the plane even more quiet than <the plane> already was, a process that took
six months.

Cross-sentences
Only

The takeoff went perfectly, Alain Garcia, an Airbus engineering executive, told the LCI
television station in Paris.
 <The takeoff's> comparative lack of noise was the result of demands by customers that
Airbus make the plane even more quiet than it already was, a process that took six months.

Table 1: Example of different anaphora resolution results

2.3 Syntactic-based Sentence Compression
We used a syntactic-based sentence compression in PUSMS. We performed all compression by the
support of a maximum-entropy-inspired parser developed by Charniak[3][4], which parsed down sentences
to Penn tree-bank style parse trees. After that, we built a rule-based sentence compression module with
Tsurgeon, a tree-transformation utility built on top of the Tregex tree-matching engine.

We proposed the following five rules as shown in Table 2. These rules is made to eliminate as much as
possible redundancy information while keep the sentences grammatical. They are indexed by the decrease

1 http://sourceforge.net/projects/htmlparser

of the confidence for using them, i.e. using rule n (1≤n≤4) is less likely to create ungrammatical
sentences than rule n+1. Rule 1 eliminates prepositional phrases whose father node is a clause or attached
by comma or appear successively. Rule 2 eliminates subordinate clause. Rule 3 deal with the appositive.
Rule 4 eliminate gerund phrases or subordinate clause. Rule 5 eliminate noun phrase like “, John said”.

Another problem of sentence compression is that important information may be trimmed even if the
sentence is grammatical. A dynamic selection algorithm is advanced in PUSMS in the sentence scoring
stage to avoid important information be eliminated, details can be found in section 2.5.

RULE Tregex pattern command Tsurgeon command

1 @PP|ADVP=pp [>, S | $, /,/ | $, ADVP | $, PP] delete pp
2 SBAR=sb !<< FRAG [>, S | $, /,/ | > NP | $. /,/] delete sb
3 @NP|SBAR=nn $. /,/=cr [$, /,/=cl | >>, S] delete nn cr cl
4 VP [< VBG | < VBD] > (S > (@PP|SBAR=gre > NP)) delete gre
5 NP=np $, /,/=cl $. (VP=vp <: @VBD|VBN) delete np cl vp

Table 2: Example of different anaphora resolution results

2.4 Sentence Scoring
To evaluate whether a sentence is appropriately included in the summary, two factors are considered. One
is the association between a sentence and the query, and the other consideration is the information density
of a sentence compared to other sentences in the topic set. Generally, more responsive a sentence is to the
query and more information density the sentence contains, more possible the sentence is to be included in
the final summary.

Before obtain sentence score, we applied the removal of stop words and word stemming in PUSMS.
And sentence scores are obtained from two sentence scoring model.
Query-related Sentence Scoring
In PUSMS, the association between a sentence and the query is obtained with a modified relevance-based
language modeling described in Jagadeesh et al., 2005.

In Jagadeesh et al., 2005, It has been shown that relevance-based language modeling (Lavrenko and
Croft, 2001) along with semantic representation of words in higher dimensions using HAL spaces (Lund
and Burgess, 1996) can be extended to calculate the relevance score of a sentence towards the information
need. The relevance-based language modeling assumes both the query and the document as samples from
an unknown relevance model R, then it approximates P(w|R), the probability of observing a word w in the
documents relevant to a particular information need R, using P(w|Q), where Q = q1, q2…qk is the
information need expressed in the form of query words. By definition, the conditional probability can be
expressed in terms of the joint probability of observing w with the query words q1, q2…qk.

 Assumes the query words q1, q2…qk to be independent of each other while keeping their dependencies
on w intact. Using this assumption the joint probability can be calculated as:

P(qi|w), can be incorporated into the above expression using the probabilistic interpretation of

Hyperspace Analogue to Language (HAL) model. Hyperspace Analogue to Language model constructs
the dependencies of a word w on other words based on their occurrence in the context of w in a
sufficiently large corpus.
 Although International Institute of Information Technology (IIIT) did very well in DUC, we found that
there is a technical problem with formulating the task in this way. In fact, given a particular information

need Q = q1, q2…qk, if choice has to be made between a word having looser correlation with all words in
R and a word having tighter correlation with part of words in R and no correlation with the other words in
R, people usually, in general, prefer the later.

 Let’s see a toy example about the Jaggedness model. Assumes that there are only two q1, q2 in Q and
two observing words w1 , w2. P(w1) = P(w2)=0.1, P(q1|w1)= P(q2|w1)=0.1, P(q1|w2)=0.01, P(q2|w2)=0.9.
So the joint probability can be calculated as:

3
1 1 2 1 1 1 2 1P(w ,q ,) P(w) P(q |w) P(q |w) 0.1 0.1 0.1 10q −= = ×i i × =

3
2 1 2 2 1 2 2 2P(w ,q ,) P(w) P(q |w) P(q |w) 0.1 0.01 0.9 0.9 10q −= = × ×i i = ×

=

=

 The Jaggedness model prefers w1, but in intuition, w2 have high correlations with q2 and contain more
important information than w1 do. This problem is enlarged and becomes insolvable when Q contains a lot
of words, the joint probability of Jaggedness model becomes extreme small and indiscriminate. So we
proposed the following evolved formulation to calculate the joint probability:

1 1
1

(,) () (|)
k

k i
i

P w q q P w P q w
=

… = ∑

 Let’s see the toy example again, in our formulation, the joint probability can be calculated as:
1 1 2 1 1 1 2 1(, ,) () ((|) (|)) 0.1 (0.1 0.1) 0.02P w q q P w P q w P q w= + = × +i

2 1 2 2 1 2 2 2P(w ,q ,) P(w) (P(q |w) P(q |w)) 0.1 (0.01 0.9) 0.091q = + = × +i

The effectiveness of the evolved formulation is shown in section 4.
For the same reason, assuming that the different words in a sentence are independent and removing the

constant terms, the relevance of a sentence S, can be expressed as,

() (|) () (|)(|)
(|) i j i ji

j ji
W S q W S qW S

P w P q w P w pHAL q wP w R
P S R

L L L
∈ ∈∈= = =
∑ ∑ ∑ ∑∑

 Where L is the length of S and the pHAL, probabilistic HAL, can be interpreted as, given a word w
what is the probability of associating a word w0 with w in a window of size K.

Query-independent sentence scoring
In our opinion, signature terms are those terms which occur with high frequency in the whole topic set,
rather than in the single document it’s located. So we proposed a novel inverse-probability-rate model to
obtain the information density of a sentence. Probability rate is a language model originally used in
information retrieval area. We adopted and improved the method. The following describes the detail of
the inverse-probability-rate model.

In our model, a sentence is denoted by a vector
 1 1 2 2{ , , , ,n nS t w t w t w= < > < > < >" }
Where wi is the weight of feature ti.

(|)(1 (|))log
(|)(1 (|))

i i
i

i i

p t Cpos p t Cnegw
p t Cneg p t Cpos

−
=

−

Where Cpos is all the documents in the whole topic set, Cneg is the document where
ti is located.

So the query-independent sentence score can be obtained as follow:

i
1()

i
QI S w

n
= ∑

Sentence scoring

The final score of sentence is

1 1

() (|)Score(S)= +(1-)
() (|)

i i
i k k

i i
i i

QI S P S R

QI S P S R
β β

= =
∑ ∑
i i

Where k is the number of sentences in the whole document set, β is the factor of mixing the query-
related and query-independent score. We trainedβ in the DUC 2007 data, and the experienced value ofβ
is 0.1.
2.5 Dynamic sentence choosing and Redundancy removal.
 In PUSMS, since the syntactic-based sentence compression module produced multi-candidate sentences
and inclined to eliminate important information, a novel dynamic sentence choosing method is proposed.

The basic idea of our dynamic choosing method is that a compression is permitted only if the
informational density of the compressed sentence should be larger than the original sentence. A
compression is done only if the following conditional expression fulfilled:

original cut original

original cut original

Score(S) Score(S) Score(S)
Length(S) Length(S) Length(S)

α
−

≤
−

i

 Where Scoreoriginal and Scorecut is the score of the original sentence and the compressed sentence
according to section 2.4. αis the compressional intensity control factor, and its experienced value is 0.8
according to the 2007 TAC data.
 The dynamic sentence choosing method is iterately performed five times, by using one rule in table 2
one by one.

After the dynamic sentence choosing process, all sentences in the whole topic set can get a score and be
sorted degressively.

To avoid including redundancy information in the summary, we used an evolved Maximal Marginal
Relevance method in PUSMS. The basic idea of the MMR method is to choose the most significant
sentence while minimize the redundancy between a candidate sentence and former selected sentences.
The MMR method can be defined as the following:

arg m ax[() (1) m ax (,)]
ji

i i S FS R F
S Score S sim i jS Sλ λ

∈∈ −
= − −i i

Where F is collection of the selected sentences, R is collection of the sorted sentences in the topic set
Sim(Si,Sj) is the cosine-similarity between candidate sentence Si and former selected sentence Sj. PUSMS
choose candidate sentence Si iterately until given length of the summary is reached.
2.6 Removal of the historical information
In order to remove historical information form topic set B, we used a sentence filtering method in PUSMS.
The basic idea of this method is to decide which part of information in the current topic set is new
information and to use the new information to generate summaries. Our sentence filtering method can be
defined as the following:

arg m ax[(,)]
i j

i i
S R S H

S sim
∈ ∈

= jS S∑

Where F is collection of all sentences in topic set B, H is collection of all sentences in topic set A.
Sim(Si,Sj) is the same as described in section 2.5. PUSMS iteratively eliminate sentences which obtained
highest score in the upper formulation, until the conditional expression as the following is fulfilled:

() ()
S E S R

C o u n t S C o u n t Sμ
∈ ∈

≥ •

Where E is collection of former eliminated sentences, μis the filter strength intensity factor. We
trainedμ in the DUC 2007 data, and the experienced value ofμ is 0.1.

 2.7 Semantic Orientation Classification
In TAC 2008, most of the questions in pilot QA summarization task are about the semantic orientation
problem. A semantic orientation classifier is used in PUSMS to derived positive and negative documents
form the topic set.

To build a semantic orientation classifier, we firstly manually find 15 pair of benchmark words from
General Inquirer, including 5 pair of noun, verb and adjective, respectively. Then we proposed a novel
word semantic similarity calculating method which is based on WordNet::Similarity::Vector to ensure
that all part of speech terms can be obtained polarity score. The polarity score of each noun, verb and
adjective in sentence S can be obtained as following:

1 1

() (,) (,
k k

i i
i i

PolarityScore word Sim word PositiveWord Sim word NegativeWord
= =

= −∑ ∑)

)

Where k is the num of benchmark words is the similarity between a word
and the positive benchmark word obtained from WordNet::Similarity::Vector.

(, iSim word PositiveWord

Then polarity score of sentence S can be calculated as following:
()

1
() co () (1)

l
Count NOT

i
i

PolarityScore S PolarityS re word
=

= −∑ i

Where l is number of words in sentence S, Count (NOT) is the number of privative word in sentence S.
Benchmark words as well as privative words used in PUSMS are shown in Table 3.

 Positive Negative

Benchmark Words
(Noun)

achievement
respect

dependability
joy

conscience

disadvantage
mistake
chaos

sorrow
devil

Benchmark Words
(Verb)

admire
praise
trust
love

contribute

harm
deny
doubt
dislike
deceive

Benchmark Words
(Adjective)

good
brave

famous
positive
correct

bad
incorrect
untrue

unhappy
evil

Privative Words
no never none nothing seldom rarely hardly scarely barely not

doesn't isn't aren't wasn't weren't hasn't haven't hadn't don't didn't
won't wouldn't shan't shouldn't can't cannot couldn't mustn't

Table 3: Benchmark Words and Privative words used in PUSMS

System ID
m

o
d

 P
y
ra

m
id

 s
co

re
 -

A

n
u

m
S

cu
s

-
A

li
n

g
u

is
ti

c
q

u
a
li

ty
 -

 A

o
v
e
ra

ll

re
sp

o
n

si
v
e
n

e
ss

 -
 A

m
o

d
 P

y
ra

m
id

 s
co

re
 -

B

n
u

m
S

cu
s

-
B

li
n

g
u

is
ti

c
q

u
a
li
ty

 -
 B

o
v
e
ra

ll

re
sp

o
n

si
v
e
n

e
ss

 -
 B

R
o

u
g

e
2

 R
 -

 A

R
o

u
g

e
2

 R
 -

 B

R
o

u
g

e
S

U
4

 R
 -

 A

R
o

u
g

e
S

U
4

 R
 -

 B

B
E
 R

 -
 A

B
E
 R

 -
 B

3 20 23 27 23 39 31 35 32 38 51 25 49 37 55
35 21 18 22 21 33 26 27 38 31 45 21 41 38 49
58 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 27 44 18 45 44 51

nb of
peers

58 58 58 58 58 58 58 58 72 72 72 72 72 72

Table 4: Performance of PUSMS in TAC 2008 Update Summarization Task

3 Results
3.1 Update Task
For the update summarization task, PUSMS submitted 3 systems, system 3, 35 and 58, respectively. To
compare the effectiveness of different module of method, we didn’t use anaphora resolution and sentence
trimming in system 3, and didn’t used anaphora resolution and sentence trimming and removal of removal
of the historical information in system 58. The performance of our system can be seen in Table 4.

As seen in Table 4, PUSMS performed not bad for a new participator in TAC and gained best place of
18 out of 72 system. We also found that PUSMS performed rather worse in topic set B than in set A. We
think it is because our over-training the filter strength intensity factor μ in DUC 2007 data. While only
very little sentences filtered (10%) in set B, and these filtered sentences have little probability selected
into summary, our historical information removal module seemed to be of no use. We also found that
PUSMS perform better when evaluated by human and pyramid than by ROUGE. That may because of
that we pay great emphasis on using semantic method in PUSMS.

System ID

py
ra

m
id

 F
-s

co
re

A
ve

ra
ge

 sc
or

e
fo

r
G

ra
m

m
at

ic
al

ity

A
ve

ra
ge

 sc
or

e
fo

r
N

on
-r

ed
un

da
nc

y

A
ve

ra
ge

 sc
or

e
fo

r
St

ru
ct

ur
e/

C
oh

er
en

ce

A
ve

ra
ge

 sc
or

e
fo

r
O

ve
ra

ll
flu

en
cy

/r
ea

da
bi

lit
y

A
ve

ra
ge

 sc
or

e
fo

r
O

ve
ra

ll
re

sp
on

si
ve

ne
ss

7 24 17 14 17 7 33

27 18 14 9 8 13 35
nb of
peers

36 36 36 36 36 36

Table 5: Performance of PUSMS in TAC 2008 Pilot QA Summarization Task

3.2 Pilot summarization task
For the pilot QA summarization task, PUSMS submitted 2 systems, system 7, 27, respectively. To
compare the effectiveness of different module of method, we didn’t use anaphora resolution and sentence
trimming in system 7. The performance of our system can be seen in Table 5.

As seen in Table 5, system 27 is performed better than system 7. And system 27 performed very well in
average score for non-redundancy, average score for structure/coherence and average score for
overall fluency/readability. While both system 7 and system 27 performed very bad in average overall
responsiveness. We were confused at first seen this result, since system 27 performed not bad in pyramid
F-score. Finally we found that this is mainly because of that we generated too short sentences in PUSMS
(≤400 words), while TAC permit to submit longer summaries (≤4000 characters).

4 Conclusion
In this paper we have presented PUSMS, a semantic based summarization system. In all, our initial job
can be boiled down to be introducing semantic method into our former statistical summarization system.
By analyzing the evaluation results, we found that we were preceding the right target but still have a long
way to go.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 60773167), the 973
National Basic Research Program (No. 2007CB310804), the Project in the National Science &
Technology Pillar Program in the Eleventh Five-year Plan Period (No. 2006BAK11B03), the Program of
Introducing Talents of Discipline to Universities (No. B07042), and the Natural Science Foundation of
Hubei Province (NO. 2006ABC011).

References

[1] Long Qiu, Min-Yen Kan and Tat-Seng Chua. (2004). A Public Reference Implementation of the RAP Anaphora
Resolution Algorithm. In proceedings of the Fourth International Conference on Language Resources and
Evaluation (LREC 2004). Vol. I, pp. 291-294.
[2] Lappin, S. Leass, H. 1994. An algorithm for pronominal anaphora resolution, Computational Linguistics, 20(4),
535-561.
[3]E. Charniak. A maximum-entropy-inspired parser. In Proceedings of the Conference on North American Chapter
of the Association for Computational Linguistics (ANLP-NAACL), pages 132-139, 2000.
[4]E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and MaxEnt discriminative reranking. In Proceedings
of the Annual Meetings of the Association for Computational Linguistics (ACL), pages 173-180, 2005.

http://www.comp.nus.edu.sg/%7Eqiul/Publications/lrec04_JavaRAP.pdf
http://www.comp.nus.edu.sg/%7Eqiul/Publications/lrec04_JavaRAP.pdf
http://www.comp.nus.edu.sg/%7Eqiul/Publications/lrec04_JavaRAP.pdf

	1 Introduction
	2 The PUSMS System Architecture
	2.1 Content Extracting and Sentence Splitting
	2.2 Anaphora Resolution
	2.3 Syntactic-based Sentence Compression
	2.4 Sentence Scoring
	2.5 Dynamic sentence choosing and Redundancy removal.
	2.6 Removal of the historical information
	 2.7 Semantic Orientation Classification
	3.1 Update Task
	3.2 Pilot summarization task
	Acknowledgements
	References

