Thomson Reuters at TAC 2008:
Aggressive Filtering with FastSum for Update and Opinion Summarization

Frank Schilder Ravi Kondadadi

Jochen L. Leidner Jack G. Conrad

Thomson Reuters Corporation
Research & Development

610 Opperman Drive, Saint Paul, MN 55123 USA
FirstName.LastName@ThomsonReuters.com

Abstract

In TAC 2008 we participated in the main task
(Update Summarization) as well as the Senti-
ment Summarization pilot task. We modified
the FastSum system (Schilder and Kondadadi,
2008) and added more aggressive filtering in
order to adapt the system to update summa-
rization and sentiment summarization. For the
Update Summarization task, we show that a
classifier that identifies sentences that are sim-
ilar to typical first sentences of a news article
improves the overall linguistic quality of the
generated summaries. For the Sentiment Sum-
marization pilot task, we use a simple senti-
ment classifier based on a gazetteer of positive
and negative sentiment words derived from the
General Inquirer and other sources to produce
opinion-based summaries for a collection of
blog posts given a set of positive and negative
questions.

1 Introduction

Automatically produced summaries that do not take
into account what the reader already knows arguably
waste his or her time. For the TAC 2008 Up-
date Task, systems were expected to produce sum-
maries that represent a gist of what the user has not
seen before. To this end, we employed a modi-
fied version of FastSum (Schilder and Kondadadi,
2008), a fast query-based multi-document summa-
rizer based solely on word-frequency features over
clusters, documents and topics. Summary sentences
are ranked by a regression Support Vector Machine
(SVM). We extended FastSum with a set of new fea-
tures and filters described below.

Our submission for the update summarization
task focused in particular on improving the linguis-

tic quality of the summaries generated by our Fast-
Sum system. FastSum generates multi-document
summaries without requiring computationally in-
tensive NLP techniques such as parsing. Exper-
iments on last years’ multi-document summariza-
tion tasks showed that our system obtains ROUGE
scores comparable with the top-performing systems.
However, the simple word-based features (e.g., clus-
ter/document frequency) cannot ensure a high lin-
guistic quality in terms of coherence, focus and ref-
erential clarity of the generated summaries. In order
to improve the linguistic quality of the summaries,
we developed a first sentence classifier trained on
news messages from the AQUAINT-2 corpus, be-
cause we noticed that first sentences in news mes-
sages are very focused and rarely contain anaphoric
expressions to pass. This classifier can extract sen-
tences from the entire article that resemble first sen-
tences in news articles. We use this classifier as a
filter before we apply FastSum on the remaining sen-
tences. We also added supplemental features for the
actual summarization task (e.g., ratio between the
number of old versus new entities that are mentioned
in a sentence).

We selected an optimal set of features according
to a feature selection algorithm called LARS (Efron
et al., 2004) for one of our runs. The automatic
and manual scores showed the run that utilized the
full set of features (20 features) to be often only
marginally better than the run that only used the op-
timal set (9 features).

A simple baseline was submitted as our third run.
This run was not manually evaluated, but received
relatively high ROUGE scores. This baseline selects
the temporally ordered first sentences from each ar-
ticle until the word limit is reached. It also performs

cosine similarity-based redundancy removal.

A need for concise summaries does not stop at
facts. Increasingly, monitoring sentiment plays a
role in business and public life (who thinks what
about whom). We describe how our summarization
method can be extended to produce opinion-based
summaries for the Sentiment Summarization Pilot
Task. As another modification to FastSum, we use
a simple sentiment classifier based on a gazetteer of
positive and negative sentiment words derived from
the General Inquirer and other sources. Only sen-
tences that show the same sentiment as the question
are selected for a summary. Because no task-specific
training data for this task was available. The weights
for the FastSum features for this task were derived
from training on news data.

The two runs we submitted differed in the type of
gazetteers we used. The first run used a collection of
sentiment words collected from the General Inquirer
and other sentiment-related sources. The second run
utilized a pruned and human-reviewed gazetteer.

The rest of the paper is organized as follows. Sec-
tion 2 provides information on the exact task defini-
tions and the original FastSum system. Section 3 de-
scribes our approach to the Update Summarization
task while Section 4 provides the same for the Opin-
ion Summarization task. In Section 5, we present
our conclusions, address the activities as a whole,
and discuss future work.

2 Background

This section briefly describes the tasks we partici-
pated in this year as well as our base system called
FastSum (Schilder and Kondadadi, 2008).

2.1 Task descriptions

Main task: update summarization This year’s
main task addressed the challenge of providing an
update summary for a cluster of documents, given
that the user has already read documents on this
topic. Consequently, the update summary should not
contain information that the user is already aware of.

More precisely, the task is divided into two sub-
tasks. The goal of the first summarization sub-task
is to produce a normal query-based multi-document
summary of a cluster of news documents. The sec-
ond sub-task assumes that the information described

in the first cluster is already known to a user who
would like to receive a summary for a second clus-
ter.

The input for this entire update task is a list of
topics, each of which contain a title, a sequence of
questions and two clusters of 10 documents each.
Figure 1 shows the title and questions for one sam-
ple topic. The first cluster of documents needs to be
summarized as a multi-document summary, whereas
the second cluster is to be summarized taking into
account the knowledge present in the information
described by the first cluster.!

<title>

Kyoto Protocol Implementation
</title>

<narrative>

Track the implementation of key
elements of the Kyoto Protocol by
the 30 signatory countries.
Describe what specific measures
will actually be taken or not taken
by various countries in response

to the key climate change mitigation
elements of the Kyoto Protocol.
</narrative>

Figure 1: An update summarization topic

Pilot task: sentiment summarization The Senti-
ment Summarization Pilot Task was concerned with
summarizing blog entries with respect to sentiment-
related questions. The goal was to generate well-
organized, fluent summaries of opinions about spec-
ified expressions (‘“targets”). Figure 2 contains two
questions about Rudy Guiliani.

<target id = "9901" text = "Rudy
Guiliani presidential chances">
<g id = "9901.1" type= "SquishyList">

What did American voters admire

about Rudy Guiliani?

</qg>

<g id = "9901.2" type= "SquishyList">
What qualities did not endear Rudy
Guiliani to some American voters?

Figure 2: Sentiment questions

The new challenges of this task introduced sen-
timent analysis and the less refined nature of the
(blog) data, which was not as coherent and well-
edited as the news data used in previous years within
the Document Understanding Conference (DUC).

!"This summarization scenario is especially relevant in the
event of disasters, when breaking news unfolds.

2.2 FastSum system description

FastSum is a multi-document summarization system
that uses a regression SVM for training a sentence
classifier for good summary sentences similar to (Li
etal., 2007). A part of FastSum is a filtering compo-
nent that sorts out sentences that are unlikely to be
in a good summary (e.g., no word overlap between
query and sentence, difference in length).

Pre-processing and filtering The pre-processing
module carries out tokenization and sentence split-
ting. In addition, a sentence simplification compo-
nent based on a few regular expressions removes
unimportant components of a sentence (e.g., As a
matter of fact,). This processing step does not in-
volve any syntactic parsing. As an initial filter, we
ignore all sentences that do not have at least two
exact word matches or at least three fuzzy matches
with the topic description.?

Feature set Features are mainly based on frequen-
cies of words in sentences, clusters, documents and
topics. The features we used can be divided into
two sets: word-based and sentence-based. Word-
based features are computed based on the relative
frequency of words for different segments (i.e., clus-
ter, document, topic title and description). At run-
time, the different relative frequencies of all words
in a candidate sentence, s, are added up and normal-
ized by the length |s|. Sentence-based features in-
clude the length and position of the sentence in the
document.

Topic title frequency: the relative topic title word
frequency for a title 7 given a sentence s:

Z L fT(t)

| b
Wherefyz{é LG EeT

otherwise

Topic description frequency: the relative topic de-
scription word frequency for a description D

given a sentence s: Z {D(t ,
1 : t,€D
h = ’ .
where fp { 0 otherwise

’Fuzzy matches are defined by the OVERLAP similar-
ity (Bollegala et al., 2007) of at least 0.1.

Content word frequency: the relative content word
frequency pc(t;) of all content words #; |4 oc-
curring in a sentence s. The content word prob-
ability is defined as p.(t;) = &, where n is the
number of times the word occurred in the clus-
ter and NV i 1s the total number of words in the

cluster: Z =i pC(t

Document frequency' the relative document fre-
quency pq(t;) of all content words |, occur-
ring in a sentence s. The document probability
is defined as p4(t;) = 75, where d is the num-
ber of documents the word ¢; occurred in for a
given cluster and D is the total number of doc-

uments in the cluster: ZZ 1]‘0‘1

Headline frequency: the relative headline word fre-
quency of all content words in a sentence s.
The headline probability is defined as py,(t;) =
% where h is the number of times the word oc-
curred in the headline and H i is the total number

of words in the headline: E 1 ph ()

Sentence length: a binary feature with a value of 1
if the number of words is between 8 and 50 and
zero otherwise.

Sentence position (binary): indicates whether the
position of the sentence is less than a prede-
fined threshold.

Sentence position (real): the ratio of the sentence
position over the number of sentences in the
document.

Training In order to learn the feature weights, we
trained a regression SVM (Joachims, 2002) on the
previous year’s news data using the same feature
set. In regression, the task is to estimate the func-
tional dependence of a dependent variable on a set
of independent variables. In our case, the goal is
to estimate the “summary-worthiness” of a sentence
based on the given feature set. In order to get train-
ing data, we computed the word overlap between
the sentences from the document clusters and the
sentences in DUC model summaries. We associ-
ated the word overlap score to the corresponding
sentence to generate the regression data. Note that
this is the overlap score based on exact matches, and

not the OVERLAP score used for computing fuzzy
matches, as described in the previous section.

3 Update summarization

For the update task we made two changes to our
FastSum system: we added more features that would
penalize sentences that are similar to the ones from
the previous cluster. To improve on the linguistic
quality, we also added a first-sentence classifier in
order to allow only sentences that have a low like-
lihood of containing anaphoric expressions (cf. Fig-
ure 3).

3.1 System description

The modified system is mainly build on the system
described in (Schilder and Kondadadi, 2008), with
two important modifications:

e The update summarization part of the main task
demanded supplemental features that could
capture whether the information is old or new.
We added more features to our model in order
to make this distinction.

e We introduced a more aggressive filter that al-
lows only sentences that are similar to typical
first sentences in a news article. Reviewing
automatically generated summaries from pre-
vious years, we noticed that summaries that
were scored highly often contain the first sen-
tences. Note also that a baseline of selecting
first sentences is difficult to beat for the multi-
summarization task. In addition, we wanted
to improve the overall linguistic quality of our
summaries. Because first sentences normally
do not contain anaphoric references or require
references to preceding sentences, they satis-
factorily meet this goal.

3.1.1 Features

The update system has the following features
from FastSum: Topic title frequency, Topic descrip-
tion frequency, Content word frequency and Docu-
ment frequency. In addition to these, we also used
the following features.

0Old Content Word Frequency: the relative content
word frequency p.(t;) of all old content words

Document cluster

Document

Preprocessing & Filtering

Preprocessing

Sentence
Splitter

Sentence
Simplifcation

Filters

Query Query overlap

First Sentence
classifier

Feature Set ————————————— Sentence Ranking

Summary J] removal

Figure 3: FastSum architecture for update summarization

t1..|s| occurring in a sentence s. The old con-
tent word probability is defined as p.(t;) = %,
where n is the number of times the word oc-
curred in the old cluster and NV is the total num-

Zz lpC

ber of words in the old cluster:

Old Document Frequency: the relative document
frequency pqg(t;) of all old content words #; |
occurring in a sentence s. The old document
probability is defined as py(t;) = %, where d is
the number of documents the word t; occurred
in for the old cluster and D is the total number

[s]
. . t;
of documents in the old cluster: %
Old Entities: number of named entities in the sen-
tence that already occurred in the old cluster.’

New Entities: number of new named entities in the
sentence not already mentioned in the old clus-
ter.

Old/New Entity Ratio: the ratio of number of un-
seen named entities in the sentence to the num-
ber of named entities in the sentence that were
already seen.

3We extracted all mentions of persons, companies and lo-
cations using an in-house named entity tagger. We used exact
string matching while matching the named entities.

New Words: number of new content words in the
sentence not already mentioned in the old clus-
ter.

Old Words: number of content words that already
occurred in the old cluster.

Old New word ratio: the ratio of the number of un-
seen content words in the sentence to the num-
ber of content words in the sentence that ap-
peared in the old cluster.

3.1.2 First sentence classifier

Problems that plague automatic summarization
systems include dangling anaphoric expressions
(e.g., pronouns, definite expressions) and incoher-
ence of the extracted text due to missing rhetorical
links. Discourse markers that point to nowhere (e.g.,
therefore) also reduce the readability of extractive
summaries. In order to improve the linguistic quality
of the extractive summaries that FastSum provides,
we introduced a so-called “first sentence” classi-
fier. This is motivated as follows. Instead of solv-
ing these problems by developing robust anaphoric
resolution approaches or a rhetorical parser, we fo-
cussed on extracting sentences that are less likely to
introduce these problems in the first place. First sen-
tences in news articles often comprise the main facts
of the article, are more focused and rarely contain
anaphoric expressions. Hence, we developed a first
sentence classifier in order to select sentences that
look like sentences from the beginning of news arti-
cles in order to improve the linguistic quality of the
extractive summaries. Note that we do not extract
only first sentences from documents, for this year’s
baseline, as this might lose information from the rest
of the document.

To extract the training data for this classifier, we
used the AQUAINT-2 collection. We randomly se-
lected 50,000 documents from this collection. For
each document, the first sentence was added to the
postive training data set and the rest of the sentences
were added to the negative data set. We built a clas-
sifier between the positive and negative data sets us-
ing the following features:

Capitalized words: Number of capitalized words
in the sentence normalized by the number of
words.

Pronouns: Number of pronouns in the sentence
normalized by the number of words.

Definite articles: Number of definite articles in the
sentence normalized by the number of words.

Connector words: Is the first word a connector
word? We used a list of connectors such as
“Because”, “Amid”, “Therefore”, etc.

Quotes: Does the sentence have quotes in it?
Words: Number of words in the sentence.

Testing our first sentence classifier on an unseen
test set of another 50,000 sentences, we obtained an
accuracy of 74.47%. Precision for first sentences
was 70.73% and recall was 83.49%.

3.2 Results

The results from FastSum’s participation in the up-
date task are reported on below. We submitted three
runs of which two were evaluated manually as well
as automatically:

TOC1 (26) The full FastSum system with aggres-
sive filtering using all features

TOC2 (52) The FastSum system after feature engi-
neering via LARS plus aggressive filtering

TOC3 (69) A simple first sentence baseline with re-
dundancy removal based on cosine similarity

We discuss how well our systems did in terms
of linguistic quality, responsiveness, Pyramid
score (Nenkova and Passonneau, 2004) as well as
BE (Hovy et al., 2006) and ROUGE (Lin and Hovy,
2003) scores. We also share observations about the
correlations between manual and automatic evalua-
tion scores in the following sections.

Manual evaluation Summaries were manually
evaluated using the following metrics: (a) Linguistic
Quality: NIST assessors assigned an overall linguis-
tic quality score to each of the automatic and human
summaries. The summaries were scored on a scale
from 1 (very poor) to 5 (very good) taking into ac-
count factors like non-redundancy, focus, structure
and coherence, (b) Responsiveness: NIST assessors
assigned an overall responsiveness score to each of
the automatic and human summaries. The overall

responsiveness score is an integer between 1 (very
poor) and 5 (very good) and is based on both the
linguistic quality of the summary and the amount
of information in the summary that helps to satisfy
the information need expressed in the topic narra-
tive, and (c) Pyramid score: NIST assessors created
“Pyramid” from the four model summaries for each
document set, and annotated peer summaries using
the pyramid guidelines provided by Columbia Uni-
versity.

We received very high scores for linguistic quality
and overall responsiveness but average scores for the
pyramid evaluation. Our best run ranked 4" among
the peer systems for linguistic quality which indi-
cates that the usage of the first sentence filter has a
positive effect on the linguistic quality. For respon-
siveness, we ranked 8" out of 58 peer systems. For
the first sub-task, which is defined as query-based
multi-document summarization, we even rank 15
together with another system.

For the pyramid evaluation, we ranked 237, It is
unclear to us why there is such a difference between
the Responsiveness and Pyramid score even though
the two scores do correlate to each other, as shown
in Figure 4.4

Automatic evaluation At TAC 2008, two auto-
matic metrics were used: (a) ROUGE: NIST com-
puted ROUGE-2 and ROUGE-SU4 scores by run-
ning ROUGE-1.5.5 with stemming but no removal
of stopwords, and BE: NIST ran the BE-1.1 tools in
order to obtain Basic Elements (BE) scores for sys-
tems and model summaries.

Our ROUGE scores were not as high relative to
other systems as they were for the manual evalu-
ation. We only ranked 28" and 29*" for our two
FastSum runs (52/26) out of 71 systems. Analyzing
the correlation between the ROUGE-2 and Respon-
siveness score, two observations can be made. The
Pearson coefficient is still high, but not as high as for
Responsiveness vs. Pyramid score (0.8941). In ad-
dition, Figure 4 indicates that the top 22 systems that
also had a Responsiveness score (ROUGE-2 scores
> (.08) show no correlation between ROUGE-2 and
Responsiveness. The Pearson coefficient for these
systems is 0.0687. Consequently, low ROUGE-2
scores can be seen as indication for low summariza-

“Pearson coefficient: 0.950684.

tion performance, but high ROUGE-2 scores cannot
differentiate good and very good performing sys-
tems.

top Update task:

" t’gg‘ manual vs. automatic metrics

a &A A

25
I
b
e
>
>
B
/DP//
!
'

Responsiveness
2.0

15
L

T T T T T T T
0.04 0.05 006 0.07 008 0.09 0.10

ROUGE-2

— T
Figure 4: Responsiveness/ROUGE-2

For the BE evaluation, a similar picture emerged.
TOC2 with optimized features ranked 27", TOC1
with the full feature set ranked 30" and TOC3, our
first sentence baseline, ranked higher than our other
systems with 12" place.’

Baseline We created our baseline by extracting
first sentences from each document in the cluster
and sorting them according to the document’s times-
tamp. To eliminate any redundancy, a sentence was
added to the summary only if the cosine similarity
between the sentence and the summary was less than
a threshold. We used 0.7 as the threshold in our ex-
periments.

Interestingly enough, our baseline system which
was not manually evaluated ranked 13", although
the ROUGE-2 score still lies within the 95% confi-
dence interval of our two other runs.

4 Opinion summarization

4.1 Related work

Initial notions on opinion-based summarization and
its use in question answering was proposed by par-

>Considering only the top 22 systems, one observes that the
Pearson coefficient for BE and Responsiveness showed a weak
correlation between the automatic and the manual evaluation
metric: 0.4409.

ticipants in the ARDA MPQA initiative,® in the early
2000s (Cardie et al., 2003). It is significant to point
out, however, that this work did not yet describe
a method or system for implementing query-based
sentiment summarization. By contrast, some of the
first collective work on summarizing Question An-
swering for blogs occurred in the context of NTCIR
in 2007 (Evans et al., 2007; Seki et al., 2007). In an
English context, some of the first work performed
in news and blog QA was conducted by (Somasun-
daran et al., 2007) and summarization in the same
field by (Ku et al., 2006).

To our knowledge, this is the first operational
method to summarizing the sentiment in general
blog entries in a QA environment. It is also worth
mentioning that this system is the first of its kind that
is built to scale and exploits a robust set of features.

Related work has been performed, however, in
specific domains within the blogosphere (Conrad
and Schilder, 2007) as well as in specific profes-
sional topics within the application space (Conrad et
al., 2008). In addition, seminal proposals have been
circulated which offer more principled aproaches to
leveraging search (Hearst et al., 2008) and data min-
ing (Agarwal and Liu, 2008) in similar blog-based
contexts.

4.2 Opinion FastSum system description

The overall workflow of the FastSum blog opinion
summarization system is illustrated in Figure 6.

At a high level of abstraction, the principal com-
ponents of the FastSum blog opinion summarizer in-
clude, in sequential order (see shaded boxes in Fig-
ure 5, from top to bottom, left to right):

1. HTML parsing and clean-up module;

2. Question sentiment and target analyzer;

3. FastSum target answer integration module;
4. Feature set for sentence ranking;

Whereas the question analyzer performs several
types of analysis, it is the FastSum answer integra-
tor that is responsible for both the quantity (length)
and quality (filtered, scored, ranked, combined sen-
tences) of the human-readable summary.

SARDA - Advanced Research Development Agency,
MPQA - Multi-Perspective Question Answering.

Preprocessing & Filtering

Preprocessin]
HTML parsing
&Clean-up
entence
ting

Simplifcati
Filters.

Sentiment
tagger
Target overlap

Questions

Target

Figure 5: FastSum architecture for blog opinion summa-
rization

4.3 Preprocessing & filtering

HTML parsing and Clean-Up We modified
FastSum in order to process blogs by (a) utilizing
an HTML parser to extract only text from the blog
entries and (b) ignoring boilerplate language in the
blogs (e.g., Response by). We used the Jericho html-
Parser ’ for parsing the HTML documents. Deleting
boilerplate language was achieved by a simple filter
that (a) computed the density of capitalized words
in a sentence® and (b) by matching a regular expres-
sion that contains frequently used language in blog
entries.

Filtering Sentences were filtered according to
their sentiment and whether the sentence was related
to the target of the questions.

Sentiment tagging We implemented a senti-
ment polarity tagger largely based on unigram
term lookup. While ultimately we believe that
polarity tagging cannot be reduced to a context-
insensitive word lookup task, we wanted to ex-
periment with the impact of gazetteers, since such
simplistic methods represent the largest part of the
published literature, and they provide a baseline
that more complex methods should benchmarked

"http://jerichohtml.sourceforge.net/doc/index.html
¥Sentences that contain more than 50% capitalized words
were automatically excluded.

Polarity | Precision | Recall | F-score (F1)
Positive 46.97% | 51.67% 49.21%
Negative | 59.52% | 33.78% 43.10%
Neutral 61.99% | 73.10% 67.09%
Overall 58.10% | 58.10% 58.10%

Table 1: Component evaluation of sentiment polarity tag-
ger

against.” We created gazetteers of positive and neg-
ative polarity-indicating terms based on the General
Inquirer (Stone et al., 1966), extended it, and also
eliminated some erroneous entries. We then pro-
ceeded to incorporate morphological variations of
the words already in the gazetteer to improve cov-
erage, and eliminated errors created in this process
manually.'” We noticed that many gazetteer entries
were ambiguous in their status, namely whether sen-
timent polarity-bearing and not polarity-bearing. We
thus decided to build two sets of polarity gazetteers,
one as described above, and another one based on
appreciable manual pruning, where all potentially
ambivalent entries were eliminated to improve pre-
cision. For example, the entry incompetent was not
pruned because it always expresses a negative sen-
timent, whereas dependent was removed from the
second gazetteer since it may or may not be used in
a neutral sense, depending on context.

The tagging itself was based on looking up to-
kens, counting positive and negative instances, and
assigning a label as follows:

NEGATIVE if
NEUTRAL if —1<polarity <1
POSITIVE if polarity > +1
where polarity = (#PositiveTok —
#NegativeT ok)/# AllT ok.

polarity < —1

We submitted two runs, one based on the
gazetteer as described above (TOCI1), and another
one based on more aggressive manual gazetteer
pruning performed on the negative gazetter (TOC2);
see Table 2 for synopsis.

We developed a test set of 528 sentences ran-

“We also implemented a simple negation detection; how-
ever, this was not used as it did not outperform a system without
negation detection.

'0This was not technically necessary, since non-words will
almost never be looked up.

domly extracted from the BLOGO6 subset that was
provided by NIST as development data for the pi-
lot task. Each sentence (segmented automatically
by running the pre-processing pipeline of our sys-
tem) was hand-labeled by a human reviewer with
one of the three labels NEGATIVE, NEUTRAL,
or POSITIVE. We performed a component-based
evaluation specifically on the sentiment polarity
tagger used in run TOCI1. Since it is based on
gazetteers, it does not require a training corpus. The
results, given in Table 1, make it clear that recall is-
sues for the negative class are a weak link of this
approach. By contrast, the overall F1 score for the
method was 58.1%.

Target matching Only those sentences whose
polarity matches that of the question are considered.
For those sentences that satisfy this condition, they
are additionally examined for concordance with the
target. Note that the target need not explicitly be
present in the sentence under consideration as long
as it is present in a decaying window centered on a
target description. We matched words with the tar-
get via the Jaro Winkler similarity function in order
to account for misspellings of names (e.g., Guiliani).
We used the Cosine window function for assigning
“targetness” scores to words following an identified
target. Since we did not use any parsing, the win-
dow function allowed to connect targets and senti-
ment words even across sentence boundaries.

4.4 Question & Target analyzer

The most critical component of FastSum’s blog
opinion summarization application is located in the
query sentiment analysis module. Several forms of
analysis take place here. These include:

1. target/topic of the question identified;
2. polarity of the question determined;

3. type of question classified, if possible, which
effectively is a stronger form of the evidence
determined above.

This essential information is subsequently used as
a type of filter against candidate answers present in
the input data sentences delivered by the QA sys-
tems.

Sentiment Pilot Run Pos. Entries | Neg. Entries Type Snippet Use | Pyramid F-Score
TOCI1 (full gazetteer) 6,569 8,180 automatic No 0.176
TOC?2 (pruned gazetteer) 2,959 4,920 automatic No 0.150

Table 2: Gazetteer statistics and sentiment summarization results

Sentence-based evidence that responds to the cur-
rent question is accumulated across blog entries.
FastSum is then deployed to score, rank and prune
the evidence as necessary according to procedures
described above; however, we did not use the first
sentence classifier for the sentiment summaries.

It should also be noted that when multiple ques-
tions are posed for the same set of documents, where
only the polarity is changed, a single summary is ex-
pected, and FastSum delivers but a single summary.
This type of summary is generated based on TAC re-
quirements, despite the fact that such a combination
works against the strengths—the actual granularity
and specificity—designed into FastSum.

4.5 Results

Our results in Table 2 show that TOC1, the run with
the unpruned gazetteer, achieves a slightly better re-
sult overall. Individual performance varies consider-
ably across queries, and two topics achieved a zero
result. Overall our best sentiment summarization
run ranked fourth in terms of Pyramid F-score out
of the fully automatic systems among the 36 total
evaluated runs. However, the associated ROUGE-2
score was very low.

Figure 6 shows how the different system types
compare to each other in terms of F-score and
ROUGE-2. There is an interesting difference be-
tween systems that used snippets and systems that
did not use snippets. Overall, the scores for systems
that did not use snippets are relatively low. More-
over, the Pearson coefficient for this subset of sys-
tems is again very low: 0.3018. The Pearson coeffi-
cient for systems that use snippets is 0.886 (exclud-
ing systems with manual interventions).

5 Conclusion and discussion

This year we modified the FastSum system for the
main and pilot tasks contributing the following:

e Linguistic quality was improved by introduc-
ing a first sentence classifier. Our best system

Snippet Opinion task: .
o No manual vs. automatic
4 Yes evaluation metrics
n
o
<
o <
6 o
Q
P
w
s @ |
2 g
I
>
o
~
o
<
o
T T T T
2 3 4 5
ROUGE-2

Figure 6: Pyramid F-score vs. ROUGE-2.

ranked 4" for overall linguistic quality.

e Update summaries were generated via a regres-
sion SVM using features such as number of
old/new entities.

e The optimal number of features for the regres-
sion SVM used by our first run was determined
via a feature selection algorithm called LARS
showing similar performance as the same sys-
tem using the full set of features. The run
with all features ranked 7" for responsiveness,
whereas the run with the optimized feature set
ranked 8",

e We proposed a simple baseline for the update
task that received high ROUGE scores.

e A sentiment consistency checker was added to
the FastSum system for the pilot task.'!

"Details on the sentiment analyzer will be covered by a
poster.

Automatic evaluations Our findings regarding
ROUGE and BE for the update task point to short-
coming of these automatic metrics. An automatic
metric that takes into account linguistic quality, for
example, may improve this correlation again.

Sentiment Pilot Task: a critique Like summa-
rizing factual text, summarizing sentiments can be
a time saving task, and sentiment continues to play
an important role in a brand and attention oriented
society. The Sentiment Pilot Task therefore repre-
sents a realistic use case, and the use of the BLOGO06
corpus for this is highly appropriate. The manner
in which the evaluation was set up, however, could
be improved: the topics combined questions ask-
ing for positive or negative evidence with respect
to the same topic (see Section 2.1), which implies
that a system based on sentiment polarity consis-
tency could not show its full strength. We therefore
propose that in future tasks of this kind, positive and
negative questions be evaluated separately.

Future work Even though we added features rele-
vant to the update task, scores for this particular task
were not as high as the scores for the query-based
multi-document summarization. We thus want to in-
vestigate other features that capture the update part
of this task more effectively.

For the sentiment summarization, we plan to com-
pare the performance of unigram-gazetteers against
methods that make use of context, since this initially
requires the existence of n-gram authority files with
sentiment phrases, we will explore how to use semi-
supervised learning to bootstrap these resources.

Acknowledgments

We would like to thank our colleagues Dan Dyke for an-
notating our sentiment development data, Steve Rank and
Kajsa Anderson for IT support, Marc Light for sharing
data sampling scripts, and Khalid Al-Kofahi and Peter
Jackson for supporting our TAC participation. We are
also grateful to James Allan for related insightful discus-
sions.

References

Nitin Agarwal and Huan Liu. 2008. Blogosphere: Research issues,
tools, and applications. KDD Explorations, 10(1):19-29, June.

D. Bollegala, Y. Matsuo, and M. Ishizuka. 2007. Measuring Semantic
Similarity between Words Using Web Search Engines. In Proc. of

16th International World Wide Web Conference (WWW 2007), pages
757766, Banff, Canada.

Claire Cardie, Janyce Wiebe, Theresa Wilson, and Diane Litman. 2003.
Combining low-level and summary representations of opinions for
multi-perspective question answering. In Proceedings of the AAAI
Spring Symposium on New Directions in Question Answering, pages
20-27.

Jack G. Conrad and Frank Schilder. 2007. Opinion mining in legal
blogs. In Proceedings of the 11th International Conference on Ar-
tificial Intelligence and Law (ICAIL07), pages 231-236, Palo Alto,
CA. ACM Press.

Jack G. Conrad, Jochen Leidner, and Frank Schilder. 2008. Profes-
sional credibility: Authority on the Web. In Proceedings of the
Second Workshop on Credibility on the Web (WICOW 2008), Napa
Valley, CA. ACM Press.

B. Efron, T. Hastie, .M. Johnstone, and R. Tibshirani. 2004. Least
angle regression. Annals of Statistics, 32(2):407-499.

David Kirk Evans, Lun-Wei Ku, Yohei Seki, Hsin-Hsi Chen, and
Noriko Kando. 2007. Opinion analysis across languages: an
overview of and observations from the NTCIR6 opinion analysis pi-
lot task. In Proceedings of the Workshop on Cross-Language Infor-
mation Processing, volume 4578 (Applications of Fuzzy Sets The-
ory) of Lecture Notes in Computer Science, pages 456—463.

Marti A. Hearst, Matthew Hurst, and Susan T. Dumais. 2008. What
should blog search look like? In Proceedings of the Workshop on
Search and Social Media (SSM0S), Napa Valley, CA. ACM Press.

E. H. Hovy, C.-Y. Lin, L. Zhou, and J. Fukumoto. 2006. Automated
summarization evaluation with Basic Elements. In Proceedings
of the Fifth International Conference on Language Resources and
Evaluation (LREC). ELRA.

Thorsten Joachims. 2002. Optimizing search engines using click-
through data. In Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 133—142.
ACM SIGKDD, ACM.

Lun-Wei Ku, Yu-Ting Liang, and Hsin-Hsi Chen. 2006. Opinion
extraction, summarization and tracking n news and blog corpora.
In Proceedings of the Spring Symposium on Computational Ap-
proaches to Analyzing Weblogs (AAAI-CAAW 2006), Palo Alto, CA.
AAALI Press.

S. Li, Y. Ouyang, W. Wang, and B. Sun. 2007. Multi-document sum-
marization using support vector regression. In Proceedings of DUC
2007, Rochester, USA.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic evaluation of sum-
maries using n-gram co-occurrence statistics. In Proceedings of the
2003 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics on Human Language Technol-
0gy (NAACL), pages 71-78, Morristown, NJ, USA. Association for
Computational Linguistics.

A. Nenkova and R. Passonneau. 2004. Evaluating content selection in
summarization: The Pyramid method. In Proceedings of the HLT-
NAACL Conference. ACL.

Frank Schilder and Ravikumar Kondadadi. 2008. FastSum: Fast
and Accurate Query-based Multi-document Summarization. In Pro-
ceedings of ACL-08: HLT, Short Papers, pages 205-208, Columbus,
Ohio, June. Association for Computational Linguistics.

Yohei Seki, David Kirk Evans, Lun-Wei Ku, Hsin-Hsi Chen, Noriko
Kando, and Chin-Yew Lin. 2007. Overview of opinion analysis pi-
lot task at NTCIR-6. In Proceedings of the Workshop Meeting of the
National Institute of Informatics (NII) Test Collection for Informa-
tion Retrieval Systems (NTCIR), pages 265-278.

Swapna Somasundaran, Theresa Wilson, Janyce Wiebe, and Veselin
Stoyanov. 2007. QA with attitude: Exploiting opinion type analy-
sis for improving question answering in on-line discussions and the
news. In Proceedings of the International Conference on Weblogs
and Social Media (ICWSM 2007).

Philip J. Stone, Dexter C. Dunphy, Marshall S. Smith, and Daniel M.
Ogilvie. 1966. The General Inquirer: A Computer Approach to
Content Analysis. The MIT Press, Cambridge, MA, USA.

