
Using Lexical Resources in a Distance-Based
Approach to RTE

Yashar Mehdad1,2, Matteo Negri1, Elena Cabrio1,2,
Milen Kouylekov1 and Bernardo Magnini1

1Foundazione Bruno Kessler (FBK-irst), 2Univeristy of Trento

{mehdad,negri,cabrio,kouylekov,magnini}@fbk.eu

Abstract

This paper overviews FBK’s participation in the RTE 5 Evaluation Campaign.
Our runs, submitted both to the main (two-way classification), and to the pilot
task, were obtained through different configurations of EDITS (Edit Distance Tex-
tual Entailment Suite) package, the first freely available open source RTE software.
The main sources of knowledge used, the different configurations, and the achieved
results are described, together with ablation tests representing a preliminary anal-
ysis of the actual contribution of different resources to the RTE task.

1 Introduction
This year, FBK’s submitted runs to the RTE5 challenge have been obtained using ED-
ITS (Edit Distance Textual Entailment Suite) [5], an open-source software package
for recognizing Textual Entailment developed at FBK. The package, which is freely
downloadable at http://edits.fbk.eu/ 1, provides a basic framework for a distance-based
approach to the task, with a highly configurable and customizable environment to ex-
periment with different algorithms. Taking advantage of its potential in terms of exten-
sions and integrations with new algorithms and resources, EDITS was used to run our
experiments over both the RTE5 tasks (i.e. the main, and the pilot task).

The paper is structured as follows: Section 2 describes the main features of the ED-
ITS package, its core components, and the workflow. Section 3 presents the resources
we have used as a knowledge source for our RTE5 submissions, and the procedures
to extract lexical entailment rules from them. Section 4 and Section 5 describe the
settings we have experimented for our submissions to the main and to the pilot tasks.
Section 6 concludes the paper reporting the results we obtained, together with some
error analysis.

1The first release of the package, EDITS 1.0, is available under GNU Lesser General Public Licence -
LGPL.
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2 EDITS (Edit Distance Textual Entailment Suite)
The system we have used to take part in the RTE Challenge is the EDITS package (Edit
Distance Textual Entailment Suite) [5], developed by the HLT group at FBK. EDITS
implements a distance-based approach for recognizing textual entailment, which as-
sumes that the distance between T and H is a characteristic that separates the positive
T-H pairs, for which the entailment relation holds, from the negative pairs, for which
the entailment relation does not hold (it is developed according to the two way task).
More specifically, EDITS is based on edit distance algorithms, and computes the T-H
distance as the overall cost of the edit operations (i.e. insertion, deletion and substitu-
tion) that are necessary to transform T into H.

The edit distance approach used in EDITS builds on three components (Figure 1):

• An Edit distance algorithm, which calculates the set of edit operations that
transform T into H. EDITS provides distance algorithms at three levels: i) String
Edit Distance, where the three edit operations are defined over sequences of char-
acters, ii) Token Edit Distance, where edit operations are defined over sequences
of tokens of T and H, and iii) Tree Edit Distance, where edit operations are de-
fined over single nodes of a syntactic representation of T and H. EDITS provides
an implementation of the Levenshtein distance algorithm [4] for String Edit Dis-
tance, a token-based version of the same algorithm for Token Edit Distance, and
the Zhang-Shasha algorithm [9] for Tree Edit Distance.

• A Cost scheme, which defines the cost associated to each edit operation involv-
ing an element of T and an element of H.

• Optional sets of rules, both entailment rules and contradiction rules, providing
specific knowledge (e.g. lexical, syntactic, semantic) about the allowed transfor-
mations between portions of T and H. Each rule has a left hand side (an element
of T) and a right hand side (an element of H), associated to a probability which
indicates if the left hand side entails or contradicts the right hand side. Rules
can be manually defined, or they can be extracted from any external resource
available (e.g. WordNet, corpora, Wikipedia).

Each module, and its corresponding parameters, can be configured by the user through
the EDITS Configuration File (ECF). A basic configuration file includes at least one
distance algorithm and one cost scheme, while rule repositories can be optional. ED-
ITS provides a general framework which allows, through the ECF, to combine in dif-
ferent ways the existing algorithms/cost schemes, or replace them with new ones im-
plemented by the user.

EDITS can work at different levels of complexity, depending on the linguistic anal-
ysis carried out over T and H. An internal representation format, called ETAF (EDITS
Text Annotation Format) is defined such that both linguistic processors and semantic
resources can be easily used within EDITS, resulting in a flexible, modular and exten-
sible approach to TE. The format is used both for representing the input (T-H pairs),
as well as for representing entailment and contradiction rules. ETAF allows to repre-
sent texts at three different levels of annotation: i) as simple strings; ii) as sequences
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Figure 1: EDITS workflow.

of tokens with their associated morpho-syntactic properties; iii) as syntactic trees with
structural relations among nodes.

Given a certain configuration of its three basic components, EDITS can be trained
over a specific RTE dataset in order to optimize its performance. As shown in Figure 1,
in the training phase EDITS produces a distance model for the dataset, which consists
in a distance threshold S (with 0 < S < K) that best separates the positive and negative
examples in the training data. During the test phase EDITS applies the threshold S, so
that pairs resulting in a distance below S are classified as “YES”, while pairs above S
are classified as “NO”. Given the edit distance ED(T,H) for a T-H pair, a normalized
entailment score is finally calculated by EDITS using the following formula:

entailment(T,H) =
ED(T,H)

(ED(T, ) + ED( ,H))
(1)

where ED(T,H) is the function that calculates the edit distance between T and H, and
(ED(T, )+ED( ,H)) is the distance equivalent to the cost of inserting the entire text
of H and deleting the entire text of T. The entailment score has a range from 0 (when
T is identical to H), to 1 (when T is completely different from H).

Once a distance model is available, EDITS can be run over a RTE test set. Be-
sides the entailment judgment (i.e. “YES”/“NO”), for each pair the system provides
the entailment score calculated by the algorithm, and the confidence score of the en-
tailment assignment (i.e. the distance between the entailment score and the threshold S
calculated at a training stage).

In order to estimate the optimal cost of each edit operation in the cost scheme, as
well as being able to weight the costs such as substituting the terms involved in the
entailment rules, a stochastic method based on Particle Swarm Optimization (PSO) [6]
was implemented as another module in EDITS. Configuring the PSO module, we try
to learn the optimal cost for each edit operation in order to improve the prior textual
entailment model. The main goal of using this module is to automatically estimate the
best possible operation costs on the development set. Beside that, such method allows
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to investigate the cost values to better understand how different algorithms approach
the data in textual entailment. Moreover, taking advantage of automatic estimation of
costs, using PSO would allow the user to find the optimal weight of different resources,
and measure their respective contribution on specific datasets.

3 Resources used for RTE5 submissions
An important aspect in dealing with the Textual Entailment problem is represented by
the amount of knowledge required to correctly handle the input T-H pairs. To address
this issue, the main sources of knowledge used for our RTE5 submissions are: i) a list
of stopwords, ii) WordNet, iii) VerbOcean, and iv) Wikipedia.

While stop words are simply handled at a cost scheme level (i.e. by assigning the
minimal edit operation cost, 0, as a fixed cost for their insertion/deletion), the knowl-
edge derived from the other resources is handled at the level of entailment rules, repre-
sented in the ETAF format. Ablation test results reported in Section 6 show the actual
contribution of each resource in our experiments with the RTE5 dataset.

As far as stop words are concerned, a list of the 572 most frequent English words
has been collected. Stop words are used to: i) prevent assigning high costs to the
deletion/insertion of terms that are unlikely to bring relevant information to detect en-
tailment, and ii) to avoid substituting these terms with any content word.

WordNet rules. WordNet 3.0 has been used to extract a set of 2698 English entail-
ment rules for terms connected by the hyponymy and synonymy relations. To reduce the
potentially huge amount of extracted rules, the extraction process is dataset-dependent,
as it considers only the terms in the RTE5 dataset that are connected by the two selected
WordNet relations. For instance, if the words ”car” and ”vehicle” appear in a T/H pair,
and vehicle [has-hyponym] car, then the rule ”car ENTAILS vehicle” is added to the
rules repository with a confidence score equal to 1.

Verbocean rules. Verbocean [2] has been used to extract 18232 entailment rules
for all the English verbs connected by the ”stronger-than” relation. For instance, if
”kill [stronger-than] injure”, then the rule ”kill ENTAILS injure” is added to the rules
repository with a confidence score equal to 1. Experimental results demonstrated that
computing transitive clousures from the first set of verbs directly connected by the
stronger-than relation introduces noise which is detrimental to the overall system’s
performance.

Wikipedia rules. Since, the rules extracted from WordNet and VerbOcean of-
ten feature limited coverage, 58279 lexical entailment rules have been extracted from
Wikipedia as additional source of knowledge. Rule extraction from Wikipedia is moti-
vated by the high coverage of this resource, specifically in dealing with named entities.
Although Wikipedia represents a potentially noisy knowledge resource, experimen-
tal results demonstrated the substantial reliability of the (even suboptimal) rules we
collected. In contrast with the previous conclusions concerning rules derived from Ver-
bocean, it seems that very precise and accurate rules do not always contribute well in
the RTE task.

For this purpose, we computed the Latent Semantic Analysis (LSA) over Wikipedia,
as a huge knowledge resource, between all possible node pairs (terms or lemmas) that
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appear in the dataset. For this goal we used the jLSI (java Latent Semantic Indexing)
tool [11] to measure the relatedness between the term pairs in the dataset. Then, we
estimated a relatedness threshold in order to filter all the pairs which has low similarity.
In this way, we could arrive to a set of pairs, where the first term entails the second one
with a high probability.

The threshold was empirically estimated running a set of experiments. As a result,
we found that 0.7, as a relatedness measure, could be a good tradeoff between pre-
cision and coverage of the extracted rules. Though a higher threshold could increase
precision, leading to more accurate rules, the reduced amount of extracted rules would
directly affect coverage, causing an overall performance decrease.

Applying the extracted entailment rules from Wikipedia, we gained a higher cov-
erage as well as a better performance in our entailment framework. As an example,
the entailment relations between ”Apple” and ”Macintosh”, or between ”Iranian” and
”IRIB” could not be captured using WordNet or other resources. However, the men-
tioned set of rules includes some noise which could be filtered at future.

It’s worth mentioning that all our entailment rules are publicly available and were
presented in ETAF format, which can be easily converted to any other format.

4 Main Task
For our participation in the main task, we applied the tree edit distance and linear edit
distance algorithms over RTE5 dataset. As a preprocessing phase, we used Stanford
dependency parser [10] to transform each pair to dependency parse trees. We also
applied TextPro tagger [8] in order to prepare our pairs for token edit distance algo-
rithm. Each word was tagged as token, lemma, pos, WordNet pos (WNPOS) and full
morphological analysis.

Run 1. In the first run, we applied the Tree Edit Distance algorithm on the parsed
trees of text and hypothesis. In the cost scheme, the cost of deletion and insertion
and substitution of stop-words were set to 0 and we did not allow substitution of stop-
words with content words. In order to estimate the cost of insertion for each token, we
divided them into five classes based on their WNPOS. We set the cost of substitution
to zero while a lexical entailment rule is applied on a node pair, otherwise we set a
dynamic weighted cost for substitution. We integrated the Wikipedia lexical entailment
rules which were extracted based on the RTE5 dataset. Finally the cost scheme were
optimized using our PSO algorithm [6].

Run 2. In the second run, the Token Edit Distance algorithm has been applied
to estimate the distance between text and hypothesis. Same with the first setting, the
cost of deletion, insertion and substitution of stop-words were set to 0. In this run, we
assigned a weight to the cost of substituting two terms while they match an entailment
rule. These weights were automatically estimated using the PSO algorithm for different
sets of entailment rules (Wikipedia and VerbOcean). The weighted entailment rules
could support the idea that different source of knowledge might have different effect
on the task. Moreover, in this way we reduce the noise of Wikipedia extracted rules vs
VerbOcean entailment rules. Furthermore, the weighted dynamic cost of substituting
the terms which does not exist in the entailment rules, were optimized automatically.
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Run 3. Finally, for the last run, we used the same set of rules and same settings
with the second run, however, for each task (IE, IR and QA), one optimized model were
obtained. In other words, we obtained three different thresholds based on the task from
which each pair has been derived. Consequently, the final decision for each pair of text
and hypothesis was dependent on the task annotation of data in the test set. Table 1
summarizes our settings in the three runs we submitted for the main task. It’s worth
mentioning that finally, since the rules extracted from Wordnet were covered totally by
Wikipedia rules, we decided not to use the WordNet rules in RTE5.

Algorithms Rules Cost Scheme Optimization Resources
Tree Token Wiki VO Dynamic Static PSO Task Stop words

Run1 X X X X X
Run2 X X X X X X
Run3 X X X X X X X

Table 1: Main task settings (two way submissions)

5 Pilot Task
In the pilot search task we used EDITS without any peculiar pre- or post- processing
module, a clear evidence of the flexibility of our framework in dealing with many real
world NLP tasks. The main challenge in the pilot task is to face the problem of having
a very unbalanced dataset, with a number of non entailing pairs that is almost ten times
larger than the entailing pairs. Most of the current approaches, in particular machine
learning ones, are not capable of efficient learning from such a dataset.

To cope with this problem, we configured EDITS so that the threshold is estimated
taking into account both the precision and the recall of the entailing pairs simultane-
ously. This way, the system sets a threshold in the model it builts which increase the
F-measure of YES pairs over the whole dataset. Besides that, we configured the swarm
optimization module to estimate the optimal costs using F-measure of entailing pairs as
the fitness function. The underlying intuition is that driving our current system toward
both these directions could be useful in achieving good results in this challenging task.

In the linguistic preprocessing phase, all pairs created by pairing the Ts and the Hs
of the documents of the same topic have been merged in a unique dataset, annotated
with different tools as described earlier, and represented in the ETAF format.

Run 1. In the first run we submitted, the dataset has been parsed using XIP (Xerox
Incremental Parser) [1]. Using the coreference module internal to the parser, both the
intrasentential and intersentential coreferent terms have been annotated. To be more
precise, all the coreferences detected among terms belonging to the documents of the
same topic have been annotated. The tree edit distance algorithm has been used and
rules extracted from Wikipedia have been applied. EDITS has been trained on all the
possible pairings of Ts and Hs of the documents of the same topic. Among all the
models provided by the system (one for each topic), the model whose performances
were better (Topic 3) has been applied as a threshold on the test set.
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Run 2. In the second run, we applied the token edit distance over the whole dataset
previously annotated with TextPro [8]. The costs of insertion, deletion and substitution
of stop-words and the cost of substitution of equal tokens were set to 0. The costs
of substitution, insertion and deletion of content words were automatically estimated
in order to increase the F-measure of entailing pairs. Furthermore, the two sets of
lexical rules extracted from Wikipedia and VerbOcean were integrated into EDITS
configuration and the weighted cost for substitution of terms matching the rules was
automatically estimated using PSO algorithm.

Run 3. In the third run, the model was obtained training EDITS on the whole
dataset without using the entailment rules. All other settings and procedures were
exactly the same as for the second run.

Table 2 summarizes the setting of the runs we submitted to the pilot search task.

Algorithms Rules Training Optimization Resources
Tree Token Wiki VO Topic PSO Metric Stop-w. Coref

Run1 X - X - 03 X F1(YES) X X
Run2 - X X X All X F1(YES) X -
Run3 - X - - All X F1(YES) X -

Table 2: Pilot task settings

6 Submission results
We are presenting our results in four main subsection as follows. At first, we explain
the results we gained for the main task in two-way classification. Then, we describe
our runs and the detailed results of each run in the search pilot task. Furthermore, we
show how different resources can affect the task in our system through the ablation
test. Finally, we analyze the some errors occurred in our system with the discussion
and possible improvements.

6.1 Main Task
Based on the configuration of each run, the results are illusrated in table 3. The best run
was performed using tree edit distance over the dependency parse trees of each pair,
using the rules extracted from Wikipedia by estimating the cost of operations using
PSO [7] module in our settings. It worths mentioning that the highest results, using
development set only, were gained over the setting of the third run, while this setting
performed the lowest on the test set.

In general for the main task, the linear distance approach had a sharp drop (about 9
%) in the accuracy over the test set, while it gained the highest accuracy on the devel-
opment set (65.5 %). The main reason can be explained by overfitting the development
set using the token edit distance approach. However, based on our assumption, this can
be due to the distribution of the development and test set, which needs to be explored
and investigated more.
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Generally stating, the rules we extracted from Wikipedia were efficient in improv-
ing our performance in all runs. Moreover, automatic estimation of optimized cost,
played an important role in enhancing and stabilizing the accuracy over the dataset,
specifically, while the costs were assigned dynamically.

Dev. Main QA IR IE
Acc. Acc. Prc. Acc. Prc. Acc. Prc. Acc. Prc.

Run1 0.626 0.602 0.596 0.53 0.566 0.735 0.735 0.54 0.51
Run2 0.632 0.563 0.559 0.525 0.525 0.71 0.732 0.455 0.47
Run3 0.655 0.568 0.573 0.52 0.54 0.705 0.718 0.48 .496

Table 3: Main task results (two-way submission)

6.2 Pilot Task
Table 4 illustrates the results of our submissions for the pilot task based on the set-
tings described in section 5. As we mentioned earlier, the main challenge in the pilot
search task was due to the unbalance distribution of entailment pairs with the pairs in
which there is no entailment relation. Using our system, estimating the distance tresh-
old using F-measure of entailed pairs, as well as optimizing the costs to move to a
better performance, we could achieve a competetive results with no specific pre or post
processing.

Micro Average Macro avg / topic Macro avg / hypo
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Run1 0.245 0.465 0.321 0.266 0.443 0.332 0.355 0.498 0.415
Run2 0.225 0.648 0.334 0.274 0.635 0.383 0.333 0.680 0.447
Run3 0.218 0.648 0.326 0.275 0.637 0.384 0.330 0.678 0.444

Table 4: Pilot task results

As the results suggest, our best run was performed by estimating the threshold
using token edit distance algorithm, optimizing on F-measure of entailed pairs, trained
on the whole dataset. Moreover, comparing the results of the second and third run, we
can arrive to the conclusion that the lexical entailment rules extracted from Wikipedia
played a role in improving the results.

6.3 Ablation tests
To measure the effectiveness of some modules and resources, we tried to ablate them
from the first run with the same settings. The results of our ablation tests is illustrated
in Table 5. The ablated modules and resources are: 1)the list of stop-words; 2)entail-
ment rules extracted from VerbOcean; 3)entailment rules extracted from Wikipedia and
4)automatic cost estimation using PSO algorithm.

The results indicate that automatic cost estimation has a very high impact on the
performance. Besides that, Wikipedia rules and stop-words are effective resources in
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Table 5: Ablation tests results.
Main Abl. 1 Abl. 2 Abl. 3 Abl. 4
Acc. Acc. rel. Acc. rel. Acc. rel. Acc. rel.

Run1 60.2% 58.7% -1.5% 60.3% +0.1% 59.16% -1% 57.3% -3%

recognizing textual entailment using our settings for the first run. Furthurmore, another
interesting observation reveals that, in contrast with our intuition (and with the results
we obtained on the development set), removing the VerbOcean entailment rules slightly
rises the results. In order to generalize the statement further tests and investigations
must be performed.

6.4 Discussion
Carrying out the error analysis on the output of the system, we noticed that the main
problems of our approach can be found in situations of syntactic misalignment of con-
stituents in T and H. Even if using the tree edit distance algorithm on the dependency
trees of T and H should help us to deal with such cases, at the moment we are not able
to fully exploit the advantages of this kind of representation (e.g., for active/passive al-
ternation or for genitive constructions like John’s brother ⇒ the brother of John). For
example, given pair 187 in Figure 2, the algorithm is not able to detect the entailment
relation between T:[...] are mostly made up of mangrove trees and H: Mangroves are
a kind of tree because of a syntactic misalignment, that brings the system to delete the
nodes of T and insert new ones in H even if the semantics of the costituents is the same.

made

are mostly tree

mangrove

kind

mangrove are a tree

Figure 2: Subtrees extracted from pair 187

This is mainly due to the rigidity of the algorithm. Within a tree, the subtrees are
ordered from left to right according to the alphabetical order of the edges linking the
nodes to their parents. In the implementation of the tree edit distance algorithm EDITS
uses [9], the trees to be compared are numbered using a postorder traversal, meaning
that it visits the nodes of the tree starting with the leftmost leaf descendant of the root
and proceeding to the leftmost descendant of the right sibling of that leaf, the right
sibling(s), then the parent of the leaf and so on up the tree to the root. It means that
once the dependency trees are created, the structure is somehow fixed and the algorithm
applies on it in a mechanical way.

Furthermore, the algorithms implemented in this version of EDITS do not allow us
to apply the edit operations on subtrees, or to take advantage of syntactic rules (e.g. x
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verb active y ⇒ y verb passive by x). We are currently working on implementing a
new generation of more flexible algorithms in order to deal with this challenge which
will be available in the future releases of EDITS.
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