ICL_KBP Approaches to Knowledge Base Population at TAC2010

Yang Song, Zhengyan He, Houfeng Wang
Key Laboratory of Computational Linguistics (Peking University)
Ministry of Education,China
{ysong, hezhengyan, wanghf}@pku.edu.cn

Abstract

This paper reports the ICL_KBP team
participated in the TAC2010-Knowledge
Base Popolation Track. We submitted
results for Entity Linking task and Slot
Filling task. For Entity Linking, we im-
plemented a simple unsupervised method
to select the candidate entities in the
Wikipedia Reference Knowledge Base for
the given query document which describes
the query name-string. For Slot Filling, we
treat it as a binary classification problem
for each candidate slot value and use type
constraint to filter the results. Experimen-
tal results reveals that our method reaches
the median values of all participants for
both tasks.

1 Introduction

The Knowledge Base Population (KBP)
Track at TAC 2010 aims at exploring extraction
of information about entities with reference to
an external knowledge source, Wikipedia Ref-
erence Knowledge Base. It includes two main
tasks, Entity Linking and Slot Filling. The En-
tity Linking task is to determine for each query,
which knowledge base entity is being referred
to, or if the entity is not present in the refer-
ence Knowledge Base. A query will consist of a
namestring and a document-id in the test collec-
tion. Each name-string will occur in the associ-
ated document in the test collection. The pur-
pose of the associated document is to provide
context that might be useful for disambiguating

the name-string. The Slot Filling task involves
learning a pre-defined set of relationships and
attributes for target entities based on the docu-
ments in the test collection. A query in the Slot
Filling task will contain a name-string, docid,
entity-type, node-id, an optional list of slots to
ignore.

For Entity Linking, we first use lucene to in-
dex the Wikipedia Reference Knowledge Base.
And then we use this index to retrieve entities
in the Knowledge Base for each query name-
string. Finally, we adopted a similarity comput-
ing mehtod to rank all the candidates and use
a threshold to determine whether the top-one is
related or non-related.

For Slot Filling, first we query the document
set with a proximity method. After locating the
candidate slot values, we perform binary classifi-
cation on these values, each classifier corespond-
ing with one slot type. Finally, we pass the re-
sults through a type constraint filter to generate
the results.

The remainder of this paper is organized as
follows. Section 2 introduces our Entity Linking
approach. Section 3 gives a detailed description
about our Slot Filling system. The conclusions
are given in Section 4.

2 Entity Linking Approach

2.1 Preprocessing

Wikipedia Reference Knowledge Base con-
tains 818741 entities (see Table 1), includ-
ing 116498 GPE entities, 114523 PER enti-
ties, 55813 ORG entities and 531907 UKN en-

All Entities PER ORG GPE

Overall | 06702 (2250) | 0.7980 (751) | 0.6453 (750) | 0.5661 (749)

All Docs In-KB | 04137 (1020) | 0.5117 (213) | 03050 (304) | 0.4374 (503)
NIL | 0.8820 (1230) | 09126 (538) | 0.8767 (446) | 0.8293 (246)

All Entities PER ORG GPE

Overall | 06753 (1500) | 0.8380 (500) | 0.6580 (500) | 0.5300 (500)

Newswire Docs | In-KB | 03310 (577) | 00222 (45) | 0.0803 (137) | 0.4532 (395)
NIL | 0.8906 (923) | 0.9187 (455) | 0.8760 (363) | 0.8190 (105)

ATl Entities PER ORG GPE

Overall | 06600 (750) | 07211 (251) | 0.6200 (250) | 0.6386 (249)

Web Docs In-KB | 05214 (443) | 06429 (168) | 0.4910 (167) | 0.3796 (108)
NIL | 08509 (307) | 0.8795 (83) | 0.8795 (83) | 0.8369 (141)

Figure 1: Micro-Averaged Accuracy of our Approach on Entity Linking Task

tities. It’s unpractical to make all the entities
as candidates for each given query name-string
which contains a descriptive document. So we
use lucene! to index the Wikipedia Reference
Knowledge Base. When a query name-string is
given, the index is used to select the top 100 enti-
ties as candidates. For some query name-strings,
we can get the full form of it using wikipedia
redirect page. With these full forms about each
given query name-string, we can get more accu-
rate results from the knowledge base index.

Entity Type | # of Entities
GPE 116498
PER 114523
ORG 55813
UKN 531907
Total 818741

Table 1: The count of entities in the Wikipedia Ref-
erence Knowledge Base by type assignment.

2.2 Similarity based Candidates
Selection

The core task of entity linking is selecting can-
didate entities. It must be measured by some
similarity computing method. Because each en-
tity or query name-string is associated with one
document. We use named entities from each
document to represent the entities and query

"http://lucene.apache.org/

name-strings. For doing this, Stanford Named
Entity Recognizer? is adopted to extract named
entities from the Wikipedia Reference Knowl-
edge Base and query documents. We use the
number of intersect between candidate entities
and the query docuemnts which contains the
query name-string as the similarity measure.
And we set a threshold empirically to determine
whether the top one candidate entity is tagged
as the result or NIL. For Entity Linking task
(with no wiki text), we only count the named
entities which appeared in the attributive slots.

2.3 Experimental Results

Highest | Median | Our
2250 queries 0.8680 | 0.6836 | 0.6702
750 ORG queries | 0.8520 | 0.6767 | 0.6453
749 GPE queries | 0.7957 | 0.5975 | 0.5661
751 PER queries | 0.9601 | 0.8449 | 0.7989

Table 2: The micro-averaged accuracy comparison
between our results and other results on Entity Link-
ing

Experimental results are listed in Figure 1 and
Figure 2. The comparison between our results
and other results is detailed in Table 2 and Ta-
ble 3. Our score just reaches the median level
of all the participants. There is a large gap be-
tween our system and the best one. That’s be-
cause we only use a simple unsupervised method

http://nlp.stanford.edu/software/ CRF-NER.shtml

All Entities PER ORG GPE

Overall | 0.6458 (2250) | 0.7403 (751) | 0.6613 (750) | 0.5354 (749)

All Docs In-KB | 0.3980 (1020) | 0.5258 (213) | 0.3059 (304) | 0.3996 (503)
NIL 0.8512 (1230) | 0.8253 (538) | 0.9036 (446) | 0.8130 (246)

All Entities PER ORG GPE

Overall | 0.6427 (1500) | 0.7680 (500) | 0.6860 (500} | 0.4740 (500)

Newswire Docs | In-KB | 0.2981 (577) | 0.0000 (45) | 0.0949 (137) | 0.4025 (395)
NIL 0.8581 (923) | 0.8440 (455) | 0.9091 (363) | 0.7429 (105)

All Entities PER ORG GPE

Overall | 0.6520 (750) | 0.6853 (251) | 0.6120 (250) | 0.6586 (249)

Web Docs In-KB | 0.5282 (443) | 0.6667 (168) | 04790 (167) | 0.3889 (108)
NIL 0.8306 (307) | 0.7229 (83) | 0.8795 (83) | 0.8652 (141)

Figure 2: Micro-Averaged Accuracy of our Approach on Entity Linking Task, No Wiki Text

which doesn’t make the most of training data.
At the same time, the experimental results don’t
drop so much with no wiki text for our simple
method.

Highest | Median | Our
2250 queries 0.7791 | 0.6347 | 0.6458
750 ORG queries | 0.7333 | 0.6293 | 0.6613
749 GPE queries | 0.7076 | 0.4920 | 0.5354
751 PER queries | 0.9001 | 0.8202 | 0.7403

Table 3: The micro-averaged accuracy comparison
between our results and other results on Entity Link-
ing, No Wiki Text

3 Slot Filling Approach

Slot filling is a standard information extrac-
tion task that extracts attributes or properties
of named entities. TAC has extended this task
to large collections of dataset. It is difficult be-
cause we not only have to extract information
from free text, but also have to perform dis-
ambiguation on entity mentions from different
articles.

3.1 Methodology

We interpret this problem as a classification
problem. The basic steps of our approach are:
during the training process, first select sentences
that contains both the query name(or alias) and
slot value , then build one classifier for each

slot type; during the labeling stage, we first re-
trieve document path based on some query rules,
then we find candidate sentences containing the
query word(or alternative name), in the candi-
date sentences we locate name entity and other
formats as candidate slot values, and classify
the candidate values for each slot type, finally
we post process the classification result through
some filters.

3.1.1 Indexing the Document Set

The first step is to index the large document
set in order to improve query speed. We in-
dex the document set using Lucene package, and
build index on the title and text body after re-
moving xml tags.

Furthermore, when we submit queries to the
lucene system, we utilize the lucene query syn-
tax of proximity search. It is based on the simple
observation that some full person name and or-
ganization name do not fully match the name
appear in some document. The person name
may contains another middle name so the query
words will not be adjacent. So when submiting
query we set the proximity length equal to the
number of query words plus one.

3.1.2 Generating Training Data

During the training stage, we are provided
with the query file with query id, query string
and its corresponding ground truth, together
with the tab format answer file describing the

slot type, its value and document path.

First for each answer in tab file, we get the
document and find matching sentence contain-
ing both the query name (or alternative name)
and the slot value of this answer line. For each
matching sentence we generate part-of-speech
and name entity features according to prede-
fined rules and convert features to libsvmm for-
mat.

We treat it as over forty binary classification
problem, and train one classifier for each slot

type.
3.1.3 Matching Alias Names

In order to gain better recall on sentence
matching, that is , finding more training in-
stances for SVM, we use some simple rules to
deduce the alternative name of the query. If the
query name is a full name of a person, we treat
sentence that containing one of his first name
and last name as matching. If the query name
is an organization, the first capital letters of the
query name is chained together and serve as its
alternative name. This way we can cover more
sentences.

3.1.4 Feature Design for Classifier

We tag the matching sentences with Stanford
part-of-speech tagger and name entity tagger.
We add the relative position such as query first
or value first, and whether the two object is ad-
jacent in position. We also add feature that de-
scribes the type of the query word and target
word, such as one kind of name entity or just
noun phrase(for person titles) or just number
format. Then we add all words with position
and part-of-speech tag with position and name
entity tags with position.

3.1.5 Classification and Post Process

During the prediction stage, we are given the
query file with its query name and correspond-
ing ground truth. First we retrieve the docu-
ment with query at a proximity of word count
plus one. Then we find matching sentences by
considering query name or name alias. In these
matching sentences, we generate the part-of-
speech tag and name entity tag using Stanford
toolkit. This way, we can find person age in all

numeric values, person titles in all noun words,
entity type in name entities.

Then we feed the matching query name pair
and its candidate slot value into each of our clas-
sifier to determine the slot type of the candidate
slot value. This way we get a list of candidate
value for each slot of each query. Finally we
post process the result using some rules. These
include whether the slot accepts single value
or list values, whether the slot value can be a
noun, a number, or one of the name entity type.
Another issue is some slot value has too many
candidate, so we limit the number of the per-
son:spouse and person:title slot.

3.2 Experimental Results

The results are given in Table 4. F-scores of
our two submitted result is a little below the
median performance.

System | precision | recall | F-score
Top 1 0.668 | 0.647 0.657
Median 0.214 | 0.105 0.141
Ours 1 0.111 | 0.165 0.133
Ours 2 0.132 | 0.141 0.137

Table 4: The performance of our final system

4 Conclusions

For Entity Linking task, our result only
reaches the median values of all the participants.
The primary reason is that we only use a simple
unsupervised method on this task. Our system
doesn’t make the most of training data and use
very simple document representation and simi-
larity computing methods. Such a system may
be considered as a baseline for this task when
using unsupervised methods.

For Slot Filling task, our system performs not
so good as we cannot handle some of the follow-
ing problem. We treat it as a binary classifica-
tion problem, and the positive training instance
is sparse and there is a data imbalance problem.
The system does not fully utilize the grounded
truth to disambigurate the target query if many
entities have the same name. The system can-
not handle coreference problem, but this is hard

for many system as well. We will try to improve
our model in future.

5 Acknowledgments

This research is supported by National
Natural Science Foundation of Chinese
(N0.60973053) and Research Fund for the
Doctoral Program of Higher Education of
China (No0.20090001110047).

References

F. Li, Z. Zheng, F. Bu, Y. Tang, X. Zhu, M. Huang.
2009. THU QUANTA at TAC 2009 KBP and RTE
Track. In Proceedings of Test Analysis Conference
2009 (TAC2009)

X. Han and J. Zhao. 2009. NLPR_KBP in TAC 2009
KBP Track: A Two-Stage Method to Entity Link-
ing. In Proceedings of Test Analysis Conference
2009 (TAC2009)

Chieu, Hai Leong and Ng, Hwee Tou and Lee, Yoong
Keok. 2003. Closing the gap: learning-based infor-
mation extraction rivaling knowledge-engineering
methods. Proceedings of the 41st Annual Meet-
ing on Association for Computational Linguistics
(ACL 03)

Soderland, Stephen. 1999. Learning Information Ez-
traction Rules for Semi-Structured and Free Text
Machine Learning 34,233-272.

Hai Leong Chieu. 2002. A maximum entropy
approach to information extraction from semi-
structured and free text In Proceedings of the
Eighteenth National Conference on Artificial In-
telligence.

