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Abstract 

In this paper, we report the joint participation of 
NUS and I2R team in Knowledge Base Popula-
tion at Text analysis conference 2010. For Entity 
Linking, we analyze IR approaches and SVM 
classification in the disambiguation stage and 
develop a supervised learner for combining these 
approaches. The combined system performs bet-
ter than the individual components and achieves 
results much better than the median. Further-
more, according to our error analysis, quite some 
errors are caused due to the different Wikipedia 
version is used, which hinder our system to 
show significant better performance.            

1 Introduction 

The aim of Knowledge Base Population (KBP) 
track at Text Analysis Conference (TAC) 2010 is 
to automatically discover information about named 
entities and to incorporate this information in a 
structured Knowledge Base (KB). The task has 
been broken down into two sub tasks: Entity Link-
ing and Slot Filling. We participate in the first sub 
task.  

Given a knowledge base and a document collec-
tion, the Entity Linking task is to determine for 
each name string and the document it appears in, 
which knowledge base entity is being referred to, 
or if the entity is not present in the reference KB.  

KBP track 2010 is a follow-up to the KBP eval-
uation at TAC 2009.  The Entity Linking sub task 
has been explored by several researchers. The gen-
eral approach for Entity Linking consists of two 
stages: name variation and entity disambiguation. 
Name variation is used to find variations for each 
entity in KB and to generate an entity candidate 

set. Entity disambiguation is to link an entity men-
tion with the real world entity it refers to. The cru-
cial component of Entity Linking is the disambigu-
ation process. Varma et al. (2009) reported a dis-
ambiguation algorithm to rank the entity candi-
dates using a search engine. Han and Zhao (2009) 
ranked the candidates based on BOW and Wikipe-
dia semantic knowledge similarity. Zheng et al. 
(2010) proposed a learning to rank algorithm for 
disambiguation. Zhang et al. (2010) used an SVM 
classifier for Entity Linking. Dredze et al. (2010) 
used the ranking SVM algorithm as the candidate 
ranker. 

In this paper, we describe NUS and I2R joint 
participation in TAC 2010 where we used a com-
bined Entity Linking system.  Based on the simi-
larity between the contextual information of doc-
ument and entities in KB, we develop several enti-
ty linking systems using different IR approaches 
(Lucene and Ranking SVM) and SVM classifica-
tion. Finally, these systems are combined using a 
supervised learning method.  

The remainder of the paper is organized as fol-
lows. In section 2 we detail our algorithm includ-
ing name variation and entity disambiguation. Sec-
tion 3 describes the experimental setup and results. 
Finally, Section 4 concludes the paper.  

2 Algorithm 

In this section we describe our algorithm for both 
challenges of Entity Linking: name variation and 
entity disambiguation. 

2.1 Name Variation 

The aim of Name Variation stage is to build a 
Name Dictionary that contains the name variations 



 

of entities in KB and to generate a candidate set 
using this Name Dictionary.  

Name Dictionary Creation. We use Wikipedia 
to build our Name Dictionary since Wikipedia is 
the largest encyclopedia in the world and surpasses 
other knowledge bases in its coverage of concepts 
and up-to-date content. We obtain information 
from Wikipedia using Java Wikipedia Library 1 
(Zesch et al. 2008).  

Firstly, we map the entities in KB to the entity 
page in Wikipedia. Next, we retrieve the corres-
ponding redirect pages, disambiguation pages and 
Wikipedia pages containing the anchor text.  Final-
ly, the titles of the redirect pages and disambigua-
tion, as well as the anchor text are used to con-
struct the Name Dictionary. In Name Dictionary, 
the KB entities are indexed by the name variation 
string.   

Candidates Generation. Using the Name Dic-
tionary created, we can retrieve the candidate enti-
ties in the KB that share the same query mention. 
Moreover, if the name in the query is an acronym, 
expanding it can effectively reduce the ambigui-
tion of the mention. Thus, before the retrieval 
process, we expand the acronym queries from the 
document where the acronym is located.  

As Schwartz and Hearst’s (2003) algorithm only 
allows expansions that are in parenthesis adjacent 
to the acronym or acronym in parenthesis adjacent 
to the expansion (e.g. Israeli Air Force (IAF) or 
IAF (Israeli Air Force)), we extend it to a more 
robust algorithm that can find expansions in the 
whole document.              

2.2 Entity Disambiguation 

The disambiguation stage is to link the mention 
with the KB entity it refers to in the candidate set. 
If the entity to which the mention refers to is not 
present in KB, nil will be returned.  

In this Section, we will describe three systems 
for disambiguation, as well as a combined system.  

2.2.1  Lucene2 System (LS) 

In this system, we treat disambiguation as a rank-
ing problem to select a single correct candidate for 
a query.  As the approach in the paper of Varma et 
al. (2009), we use Lucene to index the Wikipedia 
text of the candidate entities. Each candidate entity 

                                                 
1 http://www.ukp.tu-darmstadt.de/software/jwpl/ 
2 http://lucene.apache.org/java/docs/ 

is indexed as a separate document. In query formu-
lation process, we extract all the paragraphs that 
contain the query mention, and remove the stop 
words. After that, we form a Boolean “OR” query 
of all the tokens. Finally, this query is given to the 
candidate entity index and the relevance score for 
each entity is calculated by Lucene. The entity 
with the highest score is considered as the answer. 

 2.2.2 Supervised Systems 

Ranking SVM3. Supervised machine learning me-
thods are also popular for ranking problems. We 
use a ranking SVM algorithm (Joachims, 2002) for 
disambiguation. In our learning framework, the 
instance is formed by a list of feature vectors. Each 
feature vector depends on both the query and a 
candidate entity. For training instance, we define 
an ordered constraint, where the score for the fea-
ture vector of correct candidate is greater than the 
scores for the feature vectors of incorrect candi-
date. The ranking SVM approach is to learn a 
ranker where the correct candidate should receive a 
higher score than all other candidates. During test-
ing step, the score for each entity in candidate set 
is given by the supervised SVM ranker.  

SVM Classification. We can also consider dis-
ambiguation as a classification issue: deciding 
whether a mention refers to an entity using an 
SVM binary classifier. In this learning framework, 
the training or testing instance is formed by (query, 
entity) pair. The instance is positive if the entity is 
the correct entity, otherwise it is negative. Based 
on the training instances, a binary classifier is gen-
erated using SVM learning algorithm. During dis-
ambiguation, (query, entity) is presented to the 
classifier which then returns a class label and the 
corresponding score.  

Each (query, entity) pair is represented by a fea-
ture vector described below.  

Features for Ranking and Classification. We 
selected features for both ranking SVM and SVM 
classification which have been shown to be helpful 
in previous works and tasks. 

 
Exact Equal Surface. The feature is 1 if the men-
tion in query is same as the title of the candidate. 
Otherwise, the feature value is set to 0. 

                                                 
3http://www.cs.cornell.edu/People/tj/svm_light/svm_ran
k.html 



 

Start With Query. The feature value is 1 if the 
title string of the candidate starts with the men-
tion string of the query and the Exact Equal Sur-
face feature is 0. Otherwise, the feature value is 
set to 0.   

End With Query. The feature value is 1 if the 
title string of the candidate ends with the men-
tion string of the query and the Exact Equal Sur-
face feature is 0. In other case, the feature value 
is set to 0. 

Equal Word Num. The feature value is the num-
ber of same words between the title string of 
candidate entity and the mention string of the 
query.   

Miss Word Num. The feature value is the num-
ber of different words between the title string of 
candidate entity and the mention string of the 
query. 

Bag of Words (BOW). We use token-based fea-
tures to measure the similarity between the query 
document and the Wikipedia text of candidate 
entity. The cosine similarity metric (standard 
tf.idf weighting) is used. 

Similarity Rank. The feature value is the in-
verted rank of candidate’s tf.idf weight in the 
candidate set. 

All Words in Text. The feature value is 1 if all 
words in the title of candidate exist in query 
document. Otherwise, the feature value is 0. 

Word Category Pair. We consider word-category 
pairs as a feature class, i.e., all (w,c) where w is a 
word from Bag of Words of document and c is 
Wikipedia a category to which candidate entity 
belongs.  

NE Number Match. The feature value is the 
number of the same named entities appearing in 
the query document and the Wikipedia text of 
candidate.  

NE Type. This feature is to guarantee that the 
type of entity in document (i.e. Person, Geo-
Political Entity and Organization) is consistent 
with the type of entity in KB. 

Country in Text Match. The feature value is the 
number of same countries appearing in the query 
document and Wikipedia text of candidate enti-
ty. 

Country in Text Miss. The feature value is the 
number of countries that appear in the query 
document but do not appear in the Wikipedia 
text of the candidate entity. 

Country in Title Match. The feature value is the 
number of same countries appearing in the title 
of candidate and in the query document. 

Country in Title Miss. The feature value is the 
number of countries that appear in the title of 
candidate but do not appear in the query docu-
ment. 

City in Title Match. The feature value is the 
number of same cities appearing in the title of 
candidate and in the query document. 

We use case sensitive string comparisons for the 
features.   

Based on the ranking SVM and SVM classifica-
tion models using the above features, we develop 
two supervised systems for disambiguation.  

Ranking First System (RFS). In this system, 
we rank the candidates using the ranking SVM 
model, and the entity with highest rank is chosen 
as the answer. As this model always chooses the 
highest ranked entity as the answer, it does not re-
turn nil unless the candidate set is empty. Thus, we 
use SVM classification model to validate whether 
the highest ranked candidate is the true target enti-
ty. The pair of query and highest ranked candidate 
is given to the binary classifier. If the class label is 
positive, then we return the entity as the answer. 
Otherwise, nil will be returned.  

Classification First System (CFS). In this sys-
tem, we treat the ranking problem as classification. 
We use the SVM classification model to decide if 
each (query, entity) pair is positive.  There may be 
more than 1 candidate that is labeled positive.  
Therefore, we employ the ranking SVM model to 
rank the positive candidates and the entity with the 
highest rank will be chosen.  

 
2.2.3 Supervised combination 
 
After developing the three systems (LS, RFS and 
CFS), we combined them into a final system – 
combined system (CS) using a supervised method. 
In this method, a three-class classifier is used to 
judge which systems (LS, RFS or CFS) should be 
trusted. SVM is chosen since it is state-of-the-art  



 

 
 

  
 

Runs All Queries Non-Nil Nil ORG GPE PER 
CS 0.7938 0.6353 0.9252 0.7960 0.6876 0.8975 

RFS 0.7929 0.6333 0.9252 0.7960 0.6849 0.8975 
CFS 0.7907 0.6716 0.8894 0.7947 0.6796 0.8975 

Median 0.6836 - - 0.6767 0.5975 0.8449 
Highest 0.8680 - - 0.8520 0.7957 0.9601 

 
Table 1: Micro-Averaged Accuracy of Our Runs, Median and Highest 

machine learning algorithm. The three features 
used in this module are the scores given by the 
three systems for their answer. The classes are the 
three systems. 

3 Experiments and Discussions 

3.1 Experimental Setup 

Prior to the experiment, we perform pre-processing 
on the data. In particular, we perform Named Enti-
ty Recognition using an SVM based system trained 
and tested on ACE 2005 with 92.5(P) 84.3(R) 
88.2(F).  In addition, we use an SVM based corefe-
rence resolver trained and tested on ACE 2005 
with 79.5%(P), 66.7%(R) and 72.5%(F).  

For our implementation, we use SVMLight 4 
learner developed by Joachims (1999). The model 
is trained with default learning parameters. The 
features’ values are normalized to [0,1] to avoid 
noise caused by extreme values. 
    Corpora. The training data of KBP 2010 for 
Entity Linking has 3,904 newswire queries and 
1,500 web queries. We select 1,500 of them as our 
training data for supervised combination and the 
remaining queries are used for training both rank-
ing SVM and SVM classification. Also, we use the 
data automatically created by the approach of 
Zhang et al. (2010) for training the SVM models. 
The testing data for Entity Linking this year con-
tains 2,250 queries.  

Wikipedia data5 can be freely obtained for re-
search purposes. It is available in the form of data-
base dumps that are released periodically.  We use 
Wikipedia data to augment the given KB data. This 
allows us to derive name variations mentioned in 
Section 2.1, and then to build our Name Dictionary. 
Furthermore, the Word Category Pair feature is 

                                                 
4 http://www.cs.cornell.edu/People/tj/svm_light/ 
5 http://download.wikipedia.org   

based on Wikipedia’s category information. The 
version we used for our experiments was released 
on Sep. 02, 2009.  

Evaluation. The measure used in KBP-10 to 
evaluate the performance of entity linking is mi-
cro-averaged accuracy: the number of correct links 
divided by the total number of queries.  

3.2 Submissions and Results 

We submit three runs with different approaches. 
The description of our runs is as below: 

• Run 1: Combined System. (CS) 
• Run 2: Ranking First System (RFS) 
• Run 3: Classification First System (CFS) 

Sixteen teams submitted a total of 46 runs to the 
TAC 2010 Entity Linking task. Table 1 shows us 
the results of our runs, as well as the highest and 
median of participants. The micro-averaged accu-
racies are provided for Non-Nil and Nil queries and 
each entity type.  We obtain the following conclu-
sions from the results:    

1) The combined system outperforms the indi-
vidual components and is much better than 
the median of participants.      

2) In the KBP data set, the ambiguations of dif-
ferent entity types are different, which af-
fects the system’s performance. GPE is 
most ambiguous and PER is least ambi-
guous.  

Although our system achieves results better than 
the median, its performance is 7.42% lower than 
the best system. Our system performs at 85.1% on 
the 2009 KBP testing data, but its performance for 
the testing data this year is reduced. According to 
our error analysis, quite some errors are caused due 
to the different Wikipedia version is used. The KB 
in Entity Linking is derived from Wikipedia re-
leased in Oct. 2008.  As mentioned in Section 2.1, 
to build the Name Dictionary, we map the entities 
in KB to the entity pages in Wikipedia released in 



 

Sep. 2009. Different versions of Wikipedia cause 
much mapping failure.           

4 Conclusion 

This paper describes our NUS-I2R system in de-
tail for TAC 2010 Entity Linking task.  We ex-
plored two IR approaches (Lucene and Ranking 
SVM) and SVM classification model for Entity 
Linking. Meanwhile, a large feature set which can 
represent a wide range of information is defined 
for supervised learning. We propose a supervised 
learning method to combine the different systems. 
The combined system outperforms the individual 
components.  
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