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Abstract 

The PolyUCOMP team participated in two 

TAC-KBP2011 tasks: Regular Entity 

Linking and Regular Slot Filling. 

For the entity linking task, a three-step 

entity linking system is developed. Similar 

to some systems in KBP 2010, a list of 

possible candidates are first selected. Then 

the best candidate is identified to decide 

whether a link exists.  In addition, a 

document clustering algorithm is used to 

group NIL queries. This system 

incorporates Wikipedia linking information 

and other textual and contextual features. 

Our system produces a high answer 

coverage and accurate linking result. 

However, the NIL detection system brings 

significant loss in the final F-score.   

For the slot filling task, we developed a 

system which combines query expansion 

and pattern-based reasoning. In expanding 

person queries, name variants are produced 

using different rules. For organization 

acronym queries, an abbreviation 

extraction technique is employed. 

Manually collected triggers are used for 

extracting other slot values. Our system 

ranked above median among all the 

participating systems. 

Introduction 

The regular entity linking task is to match a 

mention string to its corresponding Wikipedia 

entry, which is referred as the Knowledge Base 

(KB) node in the task. Additional task this year 

requires participants to cluster mentions which do 

not appear in the KB.  

Most of the reported works conduct candidate 

generation followed by candidate selection. Some 

systems used simple query expansion methods for 

candidate generation(Chen et al., 2010). Most of 

the systems used combined sources such as bold 

text in the first paragraph(Radford, Hachey, 

Nothman, Honnibal, & Curran, 2010; Varma et al., 

2010), Wikipedia redirects and disambiguation 

pages(Fern, Fisteus, S, & Mart, 2010; Lehmann, 

Monahan, Nezda, Jung, & Shi, 2010; Radford et al., 

2010; Varma et al., 2010), anchor text(Fern et al., 

2010; Lehmann et al., 2010; Radford et al., 2010), 

search engines (like Google)(Lehmann et al., 2010; 

Varma et al., 2010), local fuzzy search(Radford et 

al., 2010; Varma et al., 2010), and text 

matching(Lehmann et al., 2010; Mcnamee, 2010; 

Radford et al., 2010) to generate candidates.  

For candidate selection, some systems treated it as 

an information retrieval task. Varma et al (2010) 

used a TF_IDF weighting scheme with query 

expansion to rank the candidates. Fern et al. (2010) 

applied the PageRank approach to calculate the 

rank of entities based on the concurrence 

information of other entities. Chen et al.(2009) 

applied the VSM model to KB text. Many systems 

used a supervised learning approach with various 

features. Chang et al.(2010) incorporated many 

syntactic and textual features surrounding the 

anchor string such as part of speech, bigrams, and 

trigrams. Some systems have utilized rich features 

including Wikipedia links, similarity between the 

candidate string and the mention string and 

etc.(Lehmann et al., 2010; Mcnamee, 2010). These 

systems have demonstrated outstanding outcomes 

in terms of accuracy.  

Before selecting the highest ranked candidate as 

the answer, one important step is to identify “NIL” 
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queries where no node in KB actually matches the 

mention string. Some systems simply return “NIL” 

when no candidate is found(Chen et al., 2010; 

Radford et al., 2010). Others trained a binary 

classifier (Lehmann et al., 2010; Mcnamee, 2010)  

or employed heuristics (Chang et al., 2010; Fern et 

al., 2010) to resolve the problem.  

When comes to the slot filling task, previous 

researchers use query expansion and information 

extraction techniques (Chen et al., 2010; Chrupala 

et al., 2010; Surdeanu et al., 2010). Chen et al 

(2010) combined the bottom-up information 

extraction with the top-down question answer style 

pipeline. Besides, they used query expansion and 

cross-slot reasoning techniques to enhance the 

algorithms. Chrupala et al (2010) developed a 

system with a two-stage retrieval module, where 

document retrieval and sentence retrieval are done 

in the first stage and relation extraction done in the 

second stage based on distance supervision 

technique. Castelli et al. (2010) built an inference 

engine to derive relations between entities. Bad 

slots were then filtered out using the cross-

document entity co-reference approach. Surdeanu 

et al. (2010) developed a system which is based on 

the distant supervision technique.  

In this paper, our slot filling system incorporates 

query expansion and slot filling techniques to find 

slot values in text. It follows a simple architecture. 

First, we retrieve documents related to the queries 

and then preprocess the documents including 

tokenization, sentence detection, and named entity 

recognition. Second, query expansion is performed 

using different techniques including abbreviation 

extraction and rule-based name variation extraction.  

Third, we extract slot fillers using entity 

substitution if available. Others are based on the 

trigger words manually collected from the English 

Wikipedia. Then, the document relevance score 

given to validate the effectiveness of the extracted 

slot fillers. 

The rest of the paper is organizes as follows. 

Section 2 describes the design and performance 

analysis of the entity linking system. Section 3 

describes the design and the performance analysis 

of the slot filling system. Section 4 is the 

conclusion. 

The Entity Linking System 

Our entity linking system also takes the two step 

approach to first generate the candidates, and then 

through the second selection step to obtain the  

result. As the task this year also requires clustering 

of the results, an additional clustering step is 

developed to handle “NIL” queries. The following 

sub-sections  explain our approaches in detail. 

1.1 Knowledge Base preprocessing and 

preparation  

In order to make use of the rich linking resources 

in Wikipedia, a Wikipedia dump
1
 with only articles 

is prepared for use. The matching process is 

divided into two parts. First, the mention string is 

linked to Wikipedia articles.  Another mapping is 

done from the KB nodes to the Wikipedia articles. 

In principle, the Wikipedia articles should be a 

superset of the KB nodes. However, due to the 

conflict in different Wikipedia versions, there is a 

small set of articles in KB nodes which cannot find 

a mapping in the Wikipedia articles. In our system, 

this portion of the KB nodes is ignored. 

 

The KB nodes are indexed using Lucene
2
 with 

fields including “Title”, “Text”, “Node Id”, “Node 

Type”(a value in the set {ORG, GPE, PER, UNK}), 

and  “facts”(The Wikipedia fact slots). The 

mapped Wikipedia articles are processed using the 

Wikipedia Miner toolkit
3
 described in (Milne & 

Witten, 2008). The indexing process enables 

extensive search and mining in the following sub-

sections. 

 

1.2 Candidate generation 

The primary goal in candidate generation is to 

achieve a high recall so that we can obtain wide 

candidate coverage. Precision should be considered 

if possible, but precision is only a secondary 

consideration in candidate generation. To achieve a 

high recall, several sources are used together to get 

the set of candidates. The sources are listed below: 

 

S 1.  Surface Form to Entity Mapping(SFEM)  

                                                      
1 A Wikipedia dump on 2010/Oct/11 is used in our system 
2 http://lucene.apache.org/ 
3 http://wikipedia-miner.cms.waikato.ac.nz/ 
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First of all, the system tries to find all possible 

“Senses” using the Wikipedia Miner. Senses are 

modeled by Wikipedia pages, they are generated 

through Surface Form to Entity Mapping 

(Cucerzan, 2007). Surface forms are the mentions 

of an entity, and entity is modeled by the 

Wikipedia page, which is also called sense in the 

Wikipedia Miner system. Surface forms can be 

page titles or references (Wikipedia anchors) in 

other Wikipedia pages to this entity. 

 

S 2. Proximity SFEM 

If no such pages (senses) are found, the system will 

try to give suggestions by finding page titles. 

These titles are filtered out by computing their edit 

distances with the mention string to correct some 

spelling errors. 

 

S 3. Tracing of Actual Pages 

In case the returned page are not article pages, such 

as redirect or disambiguation pages, the system 

will follow the links to find article pages with 

actual contents and add them into the candidate set.  

 

S 4. Candidate Augmentation Through Lucene 

To ensure reasonable recall, the system will search 

the mention string in Lucene if the number of 

candidates in Step 4 is less than 7. By so doing, 

sufficient number of candidates is produced for 

selection. 

 

S 5. Candidates from the source documents: 

Apart from retrieving candidates directly from the 

Wikipedia articles, used three methods to find out 

candidates in the source documents similar to the 

LCC 2010 system(Lehmann et al., 2010).  

 

(1) Longer Mentions to identify longer mentions 

of the entity name in the source document 

such as: 

Query: ”Black Panthers”   

Sense: ”New Black Panthers”. 

 

(2) Soft Mentions to identify approximate string 

with the entity name. This type of mention 

aims to find alias with different punctuation 

marks or to correct mis-typed query names. 

Dice coefficient is used to compute the 

similarity between strings as in  

Query: “Carrie Ann Moss”   

Sense: “Carrie-Ann Moss”. 

The threshold for the Dice coefficient test is 

set to 0.6 based on observation. 

 

(3) Acronym Expansion to identify expanded 

forms of an abbreviation. Because a large 

portion of the documents are from newswire, 

abbreviations usually appear in complete form 

and they are followed within parentheses for 

the first time. For the string before the 

parentheses, the system maps the words‟ 

initial letter into query name and allows a gap 

of at most 2 words. For example, 

“Convocation of Anglicans in North 

America” can be mapped into “CANA”.  

There are also cases where the abbreviation 

are not formed by English, in this case, The 

Stanford NER tagging is used to extract the 

named entity right before the parentheses. For 

example, "BA" is the German abbreviation of 

"Federal Labour Agency“. 

 

For the candidates generated above, each candidate 

will be found in the Wikipedia articles, and is 

represented uniquely by its mention string, query 

id, KB node id (sometimes can be NIL) and 

Wikipedia page id.  

1.3 Candidate selection 

Candidate generation in the candidate generation 

module can introduce a lot of noise into the 

candidate set especially the work in Step 4 and 

Step 5. The purpose of candidate selection is to 

filter out these irrelevant candidates.  In our case, 

candidate selection is done through supervised 

learning using SVM
Rank

 
4
 and SVM

light 5
. Learning 

is done through the answer sets from KBP 2009 

and 2010 using ten features associated with the 

candidates as listed in Table 1. These features are 

either translated to binary values or real values 

before applied to the classifiers. Out of the 9 

features, four are textual features, three are 

contextual features, one is semantic feature, and 

one is a confidence score. 

                                                      
4  

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html 
5 http://svmlight.joachims.org/ 
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Textual Features 

The DICE_TEST feature considers the Dice 

Coefficient of the query name and a candidate 

mention in different strategies: In the first strategy, 

the Dice Coefficient is done on the original strings. 

We also adopt two additional variation forms to 

compare only a portion of the long string so that 

the two comparing strings have the same length. 

The variation forms are the left aligned and the 

right aligned strategies. The table below illustrates 

how these three strategies are applied. 

 

Strategy name Short 

string 

Long string 

Both full 

length strings 
Abott Lab     Abbot Laboratory 

Left aligned Abott Lab     Abbot Laboratory 

Right aligned Abott Lab     Abbot Laboratory 

 

If one of the coefficients exceeds the threshold 0.8, 

the feature is valid and assigned with a Boolean 

value (true). The ACRO_TEST feature only 

considers all-uppercase query names, namely, the 

query names in abbreviation form. There are two 

rules in the acronym test. The first one requires 

that some of the initial letters of candidates can 

form the query name in any order such as “CHT” 

and “Chunghwa Telecom Co.”. The second one 

requires that the letters of the query name must be 

found in the same order as that in the candidate 

string.  

 

The third textual feature SUBSTRING_TEST  tests 

the substring matches of the mention string in the 

source document. The last feature, 

WEAK_ALIAS, indicates the failure of getting 

any textual feature. 

Although the set of rules seems loose, by using 

these features in combination, the disambiguation 

power is still considerably high.  

 

Contextual Features 

The context around the mention string plays an 

important role in determining the mapping. We use 

a method similar to the highest ranked system 

LCC(Lehmann et al., 2010) in KBP 2010 by 

modeling the context using Wikipedia articles. The 

rich information from Wikipedia linking provides 

more resources than common term matching. The 

Wikipedia miner(Milne & Witten, 2008) system is 

used to model the context around the mention 

string into Wikipedia concepts (modeled by 

Wikipedia articles). With the use of this tool, we 

can compare the similarity between the candidate 

Wikipedia articles with the context using the 

internal linking similarity. We adopt the 

commonness and relatedness measurements 

described in (Milne & Witten, 2008) and 

(Cucerzan, 2007) as the primary sources for 

context similarity. 

Commonness feature is the probability that this 

anchor text will link to the candidate page. The 

Relatedness feature is the semantic similarity of 

two Wikipedia pages, calculated using the number 

of links between these two pages. To speed up the 

Feature Feature Data 

Type 

Description 

DICE_TEST Textual B Whether the mention string and candidate string pass the DICE_TEST 

ACRO_TEST Textual B Whether the mention string is an acronym of the candidate string 

SUBSTRING_TEST Textual B Whether the mention string and candidate string are substrings to each 

other 

WEAK_ALIAS Textual B If all the above fail, then this is true 

COMMONESS Contextual R Probability of the anchor text refers to this page.  

RELATEDNESS Contextual R Semantic similarity of the Wikipedia page to the mention context.  

LUCENE_SCORE Contextual R For candidates found in Lucene search, the search score is used. 

SAME_TYPE Semantic B Whether the candidate shows the same type in KB nodes and DBpedia or 

NER tagging 

NO_OF_SOURCE Confidence R Number of sources that the candidate string is found 

Table 1 Features in Entity Linking and NIL Detection 



process of link mining, only outwards links are 

considered in our system. To make use of the 

relatedness score, the context near the candidate 

string is modeled through the following steps: 

1. The learning based link detector in Wikipedia 

miner is used to detect links in a window size 

of 20 near the mention string. 

2. The links are ranked based on several criteria 

such as the relatedness and link probability 

with the surrounding links(Milne & Witten, 

2008). If one link is less related to the 

surrounding links or it is too popular, it will be 

given a low score. The judgment is based on a 

pre-trained model shipped with Wikipedia 

miner. Only links with a score in the top 10 are 

reserved. 

3. The window size is incremented by 20 if less 

than 10 links are found. The maximum 

window size is 80 as a termination condition 

even if not enough context terms are found. 

 

Lucene score used in candidate generation is also 

used here as a contextual feature. 

 

Semantic Features 

The SAME_TYPE feature refers to whether the 

mention string is the same semantic type as that of 

the KB node. The Stanford NER tagger
6
 is used to 

identify the a query‟s semantic types. When 

verifying the 2009 and 2010 results with the 

published golden standard, the accuracy only 

reaches 86%. Therefore, DBpedia is included in 

the system to improve accuracy. DBpedia is 

consulted first; NER tagging is used when 

DBpedia‟s answer is unknown. 

 

Ranking is then conducted using The 

SVM
Rank

system. The C parameter for SVM
Rank 

is 

set to 0.01 multiplied by the number of training 

examples. The top ranked candidate is the potential 

linking node for the corresponding query. 

NIL Detection 

Another important procedure is to detect the NIL 

queries. In our system, a binary SVM classifier is 

trained using the same feature set. SVM
light

 is used 

to train the model. For the submitted run, the cost 

factor (-j option in SVM
light

) for positive and 

                                                      
6 http://nlp.stanford.edu/software/CRF-NER.shtml 

negative samples are set as using the system 

default value of 1. 

 

1.4 NIL query Clustering system 

A new task in KBP 2011 requires that all the 

output be clustered based on the underlying 

entities. A sub system that clusters NIL queries is 

developed. The system is also divided into two 

parts: 

P1. NIL query grouping 

As there are a large number of NIL queries in the 

final result, all the NIL queries are first clustered 

based on similarity to the query string. There are 

three tests to determine the string similarity, Dice 

coefficient test, Acronym test and substring test. 

The threshold values of these tests is the same as 

that used in the entity linking part.  If a string passs 

the test with any other string, they are treated as 

similar, the system go through all the NIL queries 

and group the similar queries together. 

 

P2. Inner group clustering 

In each similar group, the queries need to be 

further clustered. Because of time constraint, only 

one similarity measure -- relatedness is used. The 

system models the context near the mention string 

as Wikipedia anchors, and finds the similarity 

between contexts. As the contexts have already 

been modeled in the entity ranking part, the system 

only needs to get the existing context for 

comparison, which makes this step very efficient.  

For each context anchor in a document Di, we 

assign it the similarity score with the most similar 

anchor in document Dj. The average of all these 

scores in document Di is used as the final similarity 

score between di and dj Use Aim to denote the mth 

anchor in Di, Ajn to denote the nth anchor in Dj. 

R(A, B) refers to the relatedness score between two 

anchors, the similarity score is then computed as: 

 

                 
 

            

 

 

  

A simple Hierarchical Agglomerative Clustering 

(HAC) algorithm is used to cluster the documents. 

The threshold used for the HAC is set as 3.0 for the 

submitted run.  



1.5 Performance and evaluation on entity 

linking system  

Due to time constraint, only two runs with slightly 

different threshold are submitted. Their 

performance is listed in Error! Reference source 

not found.. Our system gives a good performance 

in the first step. In the 2011 test data set, the 

system achieved 85.5% coverage on Non-NIL 

queries. However, the final evaluation result shows 

that the performance is lower than average.  

In post evaluation experiments, we found one 

programming error where the binary classifier and 

the rank classifier are used in the wrong order. The 

corrected version of is labeled as Run3 and its 

performance is listed in Error! Reference source 

not found.. Also, when training the binary 

classifier, we did not address the severe imbalance 

between the negative examples and the positive 

examples. With the added cost parameter “-j” in 

SVM
light

 set to 3 to correct this imbalance, RUN4‟s 

performance has further improved.  

 
 Micro 

Average 

B3 

Precision 

B3 

Recall 

B3 F1 

RUN1 0.673 0.582 0.634 0.607 
RUN2 0.672 0.580 0.633 0.605 
RUN3 0.694    0.664    0.619    0.641 

RUN4 0.740  0.713    0.654    0.683 
 

Table 2: Performance Evaluation of the Entity 

Linking System 

 

Given that the highest F1 score among all 

participants is 0.846 and the median F1 score is 

0.716, the system performance is close but still 

below the median. In the analysis, we found that 

the NIL detection system is still working poorly 

even with a penalty to address the data imbalance 

issue. For a trained model without penalty, there 

are 400 results classified as NIL by mistake, given 

that the number of queries that has a real linking in 

KB is only 1124, 35.5% answers are missed in this 

way. At the same time, the system also left 178 

NIL queries undetected. After giving penalty to the 

model, there are still 283 queries classified as NIL 

and 192 NIL missed mistakenly. But, the ranking 

classifier works a little bit better with penalty: 

among 841 queries with a link that the system did 

not classified as NIL. 718 answers are correct, and 

the accuracy is about 85.5%. 

We suspect that the selected features used in the 

system are not appropriate for NIL queries. On the 

other hand, we also notice that the NIL 

classification recall on the 2011 data set (about 

64%) is significantly lower than the test result on 

2010 or 2009 data set (all above 80%). The 

differences in data set may also result in the poor 

performance on NIL detection. This may be 

because the currently used features are not suitable 

for NIL queries. There is a need to find 

discriminating features suitable for NIL queries in 

the future. 

 

The Slot Filling System 

Our slot filling system has three modules. The first 

is for document retrieval and preprocessing. The 

second is for query expansion and third is for 

entity substitution.  

1.6 Document retrieval and preprocessing 

The entire source text is first indexed by the 

Lucene package. Initially, when expanding a query, 

we use Lucene to get the top 50 documents that 

contain the query name. We then employ the 

Stanford NLP package
7
including the named entity 

recognizer tool and part of speech tagger to 

preprocess the documents. We also used the 

OPENNLP package
8

 tokenizer and sentence 

detector to tokenize the documents and find the 

sentence boundaries of the documents.  

For a particular set of slots, including 

org:emeber_of, org:members, org:parents, and 

org:subsidiaries, the Stanford dependency parser is 

used to harvest related slot values. Before 

extracting the slot values, the named entities are 

substituted with one capitalized word. By doing so, 

the named entities with more than one words will 

be parsed as one single constituent in the 

dependency tree. This will help to find the correct 

slot values.  

For other types of slots, for example, per:title, 

per:charges, per:origin, org:political/religious 

affliation, lists of trigger words are used. These 

trigger words are manually collected from the 

English Wikipedia. As for the types of 

per:date_of_birth, org:founded, org:dissolved, etc., 

                                                      
7 http://nlp.stanford.edu/ 
8 http://incubator.apache.org/opennlp/ 
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we simply use pattern based approach to extract 

their slot values. For location slots such as 

per:city_of_birth, per:cities_of_residence, 

org:city_of_headquarters, we use the geo-name 

lists to identify city, country and state. 

1.7 Query expansion 

We employed three methods to expand the queries 

as it is obviously insufficient to retrieve KBP 

source documents by merely using a query name.  

(1) If the query has Wikipedia redirect pages, the 

titles of the redirected pages are used as the 

query expansion. 

(2) For a person query, we list different variations 

of the person‟s name. For example, given the 

query Abdul Rahim Noor, we will obtain the 

variants of this names as shown below:  

Abdul Rahim 
Rahim Noor 
Abdul R. Noor 
Abdul R Noor 
A. Rahim Noor 
A. R. Noor 
A R Noor 
Noor, A R 
Noor, A. R. 
A. Noor 

After generating these variations, the top 50 

documents retrieved by the query name will be 

used to check the occurrence of these variants.  

Only those that appear in the text will be selected 

as the variants That is to say, any of the name 

variants found in the top 50 retrieved documents 

will be added to the extended query set. 

(3) Person names in the background document are 

extracted to expand person queries.   

The Stanford named entity recognizer is used to 

extract all person names in the background 

document to see if that person name contains the 

query name. If so, the person name is added to the 

query extended set; otherwise, we use the Edit 

Distance to measure the similarity between the 

person name and query name, and only keep those 

person names within the threshold.  

 

(4) To find the full names of organization 

acronyms in the background document given 

in the query.   

 

To get the full expressions of the 

organizational queries, the abbreviation 

extraction technique (Schwartz & Hearst, 2003) 

is employed. This technique is described as: 

(i) long form „(„ short form „)‟ 

(ii) short form „(„ long form „)‟ 

These <long form, short form> or <short form, 

long form> pairs are determined by their 

adjacency to the parentheses. For the sake of 

slot filling task, only <long form, short form> 

will be discussed, and the long form and short 

form are considered adjacent to each other. 

Using the (i) pattern, candidates for the long 

form will be recognized. The long form 

candidates contain contiguous words before 

the short form. This algorithm starts from the 

ends of short form and long form and tries to 

capture the shortest long form that matches the 

short form.  See the figure below: 

 
This algorithm initially starts from the end of 

the short form and gets the capitalized letter A 

in short form, then it searches A in the last 

word Administration of the long form. If A is 

not found in Administration, this algorithm 

will move to the next word Safety prior to 

Administration, and check if this word contains 

the letter. It repeats this process until no 

matching is found at the beginning of the long 

form candidates. However, if the letter is found 

in Administration, this algorithm will move to 

the next letter S and next word Safety, and 

check if S is in Safety. The whole process stops 

when it reaches the beginning of the long form 

and short form. Moreover, this algorithm 

places a constraint on the <long form, short 

form> pair that the first character of the word 

in the long form should be the same as the one 

of the short form.  

By so doing, for the query of TACC, its text is: 

The International Atomic Energy Agency’s 

Technical Assistance and Cooperation 

Committee (TACC) failed to reach a final 

decision ...  

Using the abbreviation technique, the long 

form Technical Assistance and Cooperation 

Committee can be extracted for the acronym 



TACC although the word and appears in the 

long form. 

1.8 Entity Substitution 

For the slots org:emeber_of, org:members, 

org:parents, and org:subsidiaries, the Stanford 

dependency parser is used to harvest the related 

slot values. Before extracting the slot values, the 

named entities are substituted with one capitalized 

word. Take the org:parents for example, the 

organization query name is replaced by the symbol 

ORGSUBSID in the sentence. Afterwards, The 

Stanford named entities recognizer is used to find 

organization names in this sentence. These 

organization names serve as the parents of the 

query candidates. They are substituted with the 

symbol ORGPARENT. In the next step, the 

dependency parser is used to obtain relations 

between ORGSUBSID and ORGPARENT.  The 

dependency relations include: 

 

1.nn: noun compound modifier.  

 

2. appos: appositional modifier.   

 

3. amod: adjectival modifier..  

 

4. prep_of: the preposition word of. 

 

5. rcmod: relative cause modifier.   

 

6. poss: possession modifier.  

 

7. conj_and: the conjunction word and. 

 

With these dependency relations, triggers words 

are introduced to build up connection between 

ORGSUBSID and ORGPARENT. The trigger 

words involved in org:parents contain agency, 

subsidiaries, subsidiary, affiliation,  affiliated 

company and so on. Using the dependency 

relations and trigger words, five rules are 

formulated below: 

 

Rule1: appos(ORGSUBSID, TriggerWord) AND  

amod(TriggerWord, ORGPARENT) 

 

Rule2: prep_of(TriggerWord, ORGPARENT) 

AND rcmod (ORGSUBSID, TriggerWord) 

 

Rule3: nn(ORGSUBSID, ORGPARENT) AND 

nn(ORGSUBSID, TriggerWord) 

 

Rule4: appos(TriggerWord, ORGSUBSID) AND 

poss(TriggerWord, ORGPARENT) 

 

Rule5: conj_and(ORGPARENT, TriggerWord)  

    AND conj_and (ORGPARENT, ORGSUBSID) 

 

In these rules, organization names are replaced 

with the tag ORGPARENT or ORGSUBSID and 

trigger words are replaced with the tag 

TriggerWord. In each rule, both dependencies must 

be satisfied will the ORGPARENT be chosen as 

the value for the slot org:parents. Take the 

following sentence as an example: 

 

An article published Sunday by Bernama , the 

Malaysian government news agency , singles 

out .. . 

 

The organization name Malaysian government 

needs to be found as the Bernama‟s parent 

organization. Before extracting the org:parents, 

the named entity recognizer is used to obtain the 

organization names Bernama and Malaysian 

government. Then, Bernama is replaced with the 

symbol ORGSUBSID and Malaysian government 

with ORGPARENT. Based on these entity 

substitutions, the original sentence is changed to: 

 

An article published Sunday by ORGSUBSID , the 

ORGPARENT news agency , singles out …. 

 

Then the Stanford dependency parser is applied to 

obtain the relations between the components in the 

sentence. The dependency relations are listed 

below: 
amod(agency-11, ORGPARENT-9) 

appos(ORGSUBSID-6, agency-11) 

 

Similarly, these rules can be used to obtain the 

subsidiaries for the query name. By doing so, the 

named entities with more than one words will be 

parsed as one single constituent in the dependency 

tree. This will reduces parsing errors and help to 

find the correct slot values. 

For per:title, per:charges, org:political/religious 

affliation, lists of trigger words are manually 

collected from the English Wikipedia. To avoid the 

typos in the texts, we first generate n-grams in the 



sentences. n can be from uni-gram to tri-gram 

determined by the number of trigger words used. 

After n-grams are generated, these n-grams will be 

compared with the triggers by means of the dice 

coefficient used in this paper.  

As far as the types of per:city_of_birth, 

per:cities_of_residence, org:city_of_headquarters 

ect. are considered, the geo-name
9
 lists are used to 

identify city, country and state. For the triggers of 

the slot per:orgin, we use the corresponding 

country name to find their demonym in  

Wikipedia.  

1.9 Slot Filling Evaluation Results 

We submitted one run for the slot filling task and 

the evaluation results of our system, the top two 

team and the median are shown in Table 3. 

 

System Precision Recall F-measure 

Top-1 Team 35.03 25.5 29.52 

Top-2 Team 49.17 12.59 20.05 

Median Team 10.31 16.51 12.69 

PolyU Team 15.29 12.7 13.87 

Table 3: Results of the Slot Filling System 

 

We only used the data provided by LDC for the 

slot filling task and the system has no access to the 

Internet during the evaluation. Result shows that 

our performance is slightly higher than the median 

team, but a long way from the top 2 systems. The 

reasons for low recall and precision are: (1) only 

sentences that contain the query name are 

considered as relevant. In actual text, however, 

slots might appear with no mention of the exact 

query name; (2) only top 50 documents related to 

the query name are used for extracting slot values. 

This is the primary reason why the recall of our 

system is much lower compared to those using 100 

or more retrieved documents.   

Conclusions and Future Work 

This paper describes the entity linking and slot 

filling systems of the Hong Kong Polytechnic 

University team. For the entity linking, the system 

uses various resources and rank candidates based 

on Wikipedia context. The outcome on ranking is 

satisfactory, but the detection of NIL queries is still 

a problem. In the future, investigations will be 

                                                      
9 http://www.geonames.org/ 

conducted on finding suitable features to handle 

the NIL detection problem.  For the additional NIL 

clustering system, our system is very simple. More 

features such as TF-IDF should be explored. 

Furthermore, as the context terms are modeled as 

Wikipedia terms, it is also possible to apply some 

network similarity measures such as the bipartition 

graph method (Tang, Lu, T. Wang, J. Wang, & W. 

Li, 2011). 

 

Although the context modeling using Wikipedia 

anchors can achieve a high accuracy, it is rather 

time consuming to find high quality anchors from a 

span of text. And this method may probably fail in 

informal text. In the future, we will try to find 

more robust solutions with lower computation cost.  

The slot filling system combines the query 

expansion and pattern-based reasoning. 

Techniques like abbreviation extraction, name 

variation, and entity substitution are incorporated 

into this system.  In the future, we can explore  

how to make use of sentences which did not have 

direct query mentions.  Possible direction is to 

identify syntactic features for slot filling task such 

as adding co- reference resolution for named 

entities.  Another possible direction is to classify 

sentences into suitable slot types based on training 

data first before extraction of information is 

conducted. 
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