
PolyUCOMP in TAC 2011 Entity Linking and Slot-Filling

Xu Jian
1
, Zhengzhong Liu

1
, Qin Lu

1
,

i
Yu-Lan Liu

2
,

i
 Chenchen Wang

3

1
Department of Computing, the Hong Kong Polytechnic University, Hong Kong

2
National Tsing Hua University, Taiwan

3
Tongji University, China

{csjxu, hector.liu, csluqin}@polyu.edu.hk

Abstract

The PolyUCOMP team participated in two

TAC-KBP2011 tasks: Regular Entity

Linking and Regular Slot Filling.

For the entity linking task, a three-step

entity linking system is developed. Similar

to some systems in KBP 2010, a list of

possible candidates are first selected. Then

the best candidate is identified to decide

whether a link exists. In addition, a

document clustering algorithm is used to

group NIL queries. This system

incorporates Wikipedia linking information

and other textual and contextual features.

Our system produces a high answer

coverage and accurate linking result.

However, the NIL detection system brings

significant loss in the final F-score.

For the slot filling task, we developed a

system which combines query expansion

and pattern-based reasoning. In expanding

person queries, name variants are produced

using different rules. For organization

acronym queries, an abbreviation

extraction technique is employed.

Manually collected triggers are used for

extracting other slot values. Our system

ranked above median among all the

participating systems.

Introduction

The regular entity linking task is to match a

mention string to its corresponding Wikipedia

entry, which is referred as the Knowledge Base

(KB) node in the task. Additional task this year

requires participants to cluster mentions which do

not appear in the KB.

Most of the reported works conduct candidate

generation followed by candidate selection. Some

systems used simple query expansion methods for

candidate generation(Chen et al., 2010). Most of

the systems used combined sources such as bold

text in the first paragraph(Radford, Hachey,

Nothman, Honnibal, & Curran, 2010; Varma et al.,

2010), Wikipedia redirects and disambiguation

pages(Fern, Fisteus, S, & Mart, 2010; Lehmann,

Monahan, Nezda, Jung, & Shi, 2010; Radford et al.,

2010; Varma et al., 2010), anchor text(Fern et al.,

2010; Lehmann et al., 2010; Radford et al., 2010),

search engines (like Google)(Lehmann et al., 2010;

Varma et al., 2010), local fuzzy search(Radford et

al., 2010; Varma et al., 2010), and text

matching(Lehmann et al., 2010; Mcnamee, 2010;

Radford et al., 2010) to generate candidates.

For candidate selection, some systems treated it as

an information retrieval task. Varma et al (2010)

used a TF_IDF weighting scheme with query

expansion to rank the candidates. Fern et al. (2010)

applied the PageRank approach to calculate the

rank of entities based on the concurrence

information of other entities. Chen et al.(2009)

applied the VSM model to KB text. Many systems

used a supervised learning approach with various

features. Chang et al.(2010) incorporated many

syntactic and textual features surrounding the

anchor string such as part of speech, bigrams, and

trigrams. Some systems have utilized rich features

including Wikipedia links, similarity between the

candidate string and the mention string and

etc.(Lehmann et al., 2010; Mcnamee, 2010). These

systems have demonstrated outstanding outcomes

in terms of accuracy.

Before selecting the highest ranked candidate as

the answer, one important step is to identify “NIL”

mailto:csjxu@comp.polyu.edu.hk

queries where no node in KB actually matches the

mention string. Some systems simply return “NIL”

when no candidate is found(Chen et al., 2010;

Radford et al., 2010). Others trained a binary

classifier (Lehmann et al., 2010; Mcnamee, 2010)

or employed heuristics (Chang et al., 2010; Fern et

al., 2010) to resolve the problem.

When comes to the slot filling task, previous

researchers use query expansion and information

extraction techniques (Chen et al., 2010; Chrupala

et al., 2010; Surdeanu et al., 2010). Chen et al

(2010) combined the bottom-up information

extraction with the top-down question answer style

pipeline. Besides, they used query expansion and

cross-slot reasoning techniques to enhance the

algorithms. Chrupala et al (2010) developed a

system with a two-stage retrieval module, where

document retrieval and sentence retrieval are done

in the first stage and relation extraction done in the

second stage based on distance supervision

technique. Castelli et al. (2010) built an inference

engine to derive relations between entities. Bad

slots were then filtered out using the cross-

document entity co-reference approach. Surdeanu

et al. (2010) developed a system which is based on

the distant supervision technique.

In this paper, our slot filling system incorporates

query expansion and slot filling techniques to find

slot values in text. It follows a simple architecture.

First, we retrieve documents related to the queries

and then preprocess the documents including

tokenization, sentence detection, and named entity

recognition. Second, query expansion is performed

using different techniques including abbreviation

extraction and rule-based name variation extraction.

Third, we extract slot fillers using entity

substitution if available. Others are based on the

trigger words manually collected from the English

Wikipedia. Then, the document relevance score

given to validate the effectiveness of the extracted

slot fillers.

The rest of the paper is organizes as follows.

Section 2 describes the design and performance

analysis of the entity linking system. Section 3

describes the design and the performance analysis

of the slot filling system. Section 4 is the

conclusion.

The Entity Linking System

Our entity linking system also takes the two step

approach to first generate the candidates, and then

through the second selection step to obtain the

result. As the task this year also requires clustering

of the results, an additional clustering step is

developed to handle “NIL” queries. The following

sub-sections explain our approaches in detail.

1.1 Knowledge Base preprocessing and

preparation

In order to make use of the rich linking resources

in Wikipedia, a Wikipedia dump
1
 with only articles

is prepared for use. The matching process is

divided into two parts. First, the mention string is

linked to Wikipedia articles. Another mapping is

done from the KB nodes to the Wikipedia articles.

In principle, the Wikipedia articles should be a

superset of the KB nodes. However, due to the

conflict in different Wikipedia versions, there is a

small set of articles in KB nodes which cannot find

a mapping in the Wikipedia articles. In our system,

this portion of the KB nodes is ignored.

The KB nodes are indexed using Lucene
2
 with

fields including “Title”, “Text”, “Node Id”, “Node

Type”(a value in the set {ORG, GPE, PER, UNK}),

and “facts”(The Wikipedia fact slots). The

mapped Wikipedia articles are processed using the

Wikipedia Miner toolkit
3
 described in (Milne &

Witten, 2008). The indexing process enables

extensive search and mining in the following sub-

sections.

1.2 Candidate generation

The primary goal in candidate generation is to

achieve a high recall so that we can obtain wide

candidate coverage. Precision should be considered

if possible, but precision is only a secondary

consideration in candidate generation. To achieve a

high recall, several sources are used together to get

the set of candidates. The sources are listed below:

S 1. Surface Form to Entity Mapping(SFEM)

1 A Wikipedia dump on 2010/Oct/11 is used in our system
2 http://lucene.apache.org/
3 http://wikipedia-miner.cms.waikato.ac.nz/

http://lucene.apache.org/
http://wikipedia-miner.cms.waikato.ac.nz/

First of all, the system tries to find all possible

“Senses” using the Wikipedia Miner. Senses are

modeled by Wikipedia pages, they are generated

through Surface Form to Entity Mapping

(Cucerzan, 2007). Surface forms are the mentions

of an entity, and entity is modeled by the

Wikipedia page, which is also called sense in the

Wikipedia Miner system. Surface forms can be

page titles or references (Wikipedia anchors) in

other Wikipedia pages to this entity.

S 2. Proximity SFEM

If no such pages (senses) are found, the system will

try to give suggestions by finding page titles.

These titles are filtered out by computing their edit

distances with the mention string to correct some

spelling errors.

S 3. Tracing of Actual Pages

In case the returned page are not article pages, such

as redirect or disambiguation pages, the system

will follow the links to find article pages with

actual contents and add them into the candidate set.

S 4. Candidate Augmentation Through Lucene

To ensure reasonable recall, the system will search

the mention string in Lucene if the number of

candidates in Step 4 is less than 7. By so doing,

sufficient number of candidates is produced for

selection.

S 5. Candidates from the source documents:

Apart from retrieving candidates directly from the

Wikipedia articles, used three methods to find out

candidates in the source documents similar to the

LCC 2010 system(Lehmann et al., 2010).

(1) Longer Mentions to identify longer mentions

of the entity name in the source document

such as:

Query: ”Black Panthers”

Sense: ”New Black Panthers”.

(2) Soft Mentions to identify approximate string

with the entity name. This type of mention

aims to find alias with different punctuation

marks or to correct mis-typed query names.

Dice coefficient is used to compute the

similarity between strings as in

Query: “Carrie Ann Moss”

Sense: “Carrie-Ann Moss”.

The threshold for the Dice coefficient test is

set to 0.6 based on observation.

(3) Acronym Expansion to identify expanded

forms of an abbreviation. Because a large

portion of the documents are from newswire,

abbreviations usually appear in complete form

and they are followed within parentheses for

the first time. For the string before the

parentheses, the system maps the words‟

initial letter into query name and allows a gap

of at most 2 words. For example,

“Convocation of Anglicans in North

America” can be mapped into “CANA”.

There are also cases where the abbreviation

are not formed by English, in this case, The

Stanford NER tagging is used to extract the

named entity right before the parentheses. For

example, "BA" is the German abbreviation of

"Federal Labour Agency“.

For the candidates generated above, each candidate

will be found in the Wikipedia articles, and is

represented uniquely by its mention string, query

id, KB node id (sometimes can be NIL) and

Wikipedia page id.

1.3 Candidate selection

Candidate generation in the candidate generation

module can introduce a lot of noise into the

candidate set especially the work in Step 4 and

Step 5. The purpose of candidate selection is to

filter out these irrelevant candidates. In our case,

candidate selection is done through supervised

learning using SVM
Rank

4
 and SVM

light 5
. Learning

is done through the answer sets from KBP 2009

and 2010 using ten features associated with the

candidates as listed in Table 1. These features are

either translated to binary values or real values

before applied to the classifiers. Out of the 9

features, four are textual features, three are

contextual features, one is semantic feature, and

one is a confidence score.

4

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
5 http://svmlight.joachims.org/

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://svmlight.joachims.org/

Textual Features

The DICE_TEST feature considers the Dice

Coefficient of the query name and a candidate

mention in different strategies: In the first strategy,

the Dice Coefficient is done on the original strings.

We also adopt two additional variation forms to

compare only a portion of the long string so that

the two comparing strings have the same length.

The variation forms are the left aligned and the

right aligned strategies. The table below illustrates

how these three strategies are applied.

Strategy name Short

string

Long string

Both full

length strings
Abott Lab Abbot Laboratory

Left aligned Abott Lab Abbot Laboratory

Right aligned Abott Lab Abbot Laboratory

If one of the coefficients exceeds the threshold 0.8,

the feature is valid and assigned with a Boolean

value (true). The ACRO_TEST feature only

considers all-uppercase query names, namely, the

query names in abbreviation form. There are two

rules in the acronym test. The first one requires

that some of the initial letters of candidates can

form the query name in any order such as “CHT”

and “Chunghwa Telecom Co.”. The second one

requires that the letters of the query name must be

found in the same order as that in the candidate

string.

The third textual feature SUBSTRING_TEST tests

the substring matches of the mention string in the

source document. The last feature,

WEAK_ALIAS, indicates the failure of getting

any textual feature.

Although the set of rules seems loose, by using

these features in combination, the disambiguation

power is still considerably high.

Contextual Features

The context around the mention string plays an

important role in determining the mapping. We use

a method similar to the highest ranked system

LCC(Lehmann et al., 2010) in KBP 2010 by

modeling the context using Wikipedia articles. The

rich information from Wikipedia linking provides

more resources than common term matching. The

Wikipedia miner(Milne & Witten, 2008) system is

used to model the context around the mention

string into Wikipedia concepts (modeled by

Wikipedia articles). With the use of this tool, we

can compare the similarity between the candidate

Wikipedia articles with the context using the

internal linking similarity. We adopt the

commonness and relatedness measurements

described in (Milne & Witten, 2008) and

(Cucerzan, 2007) as the primary sources for

context similarity.

Commonness feature is the probability that this

anchor text will link to the candidate page. The

Relatedness feature is the semantic similarity of

two Wikipedia pages, calculated using the number

of links between these two pages. To speed up the

Feature Feature Data

Type

Description

DICE_TEST Textual B Whether the mention string and candidate string pass the DICE_TEST

ACRO_TEST Textual B Whether the mention string is an acronym of the candidate string

SUBSTRING_TEST Textual B Whether the mention string and candidate string are substrings to each

other

WEAK_ALIAS Textual B If all the above fail, then this is true

COMMONESS Contextual R Probability of the anchor text refers to this page.

RELATEDNESS Contextual R Semantic similarity of the Wikipedia page to the mention context.

LUCENE_SCORE Contextual R For candidates found in Lucene search, the search score is used.

SAME_TYPE Semantic B Whether the candidate shows the same type in KB nodes and DBpedia or

NER tagging

NO_OF_SOURCE Confidence R Number of sources that the candidate string is found

Table 1 Features in Entity Linking and NIL Detection

process of link mining, only outwards links are

considered in our system. To make use of the

relatedness score, the context near the candidate

string is modeled through the following steps:

1. The learning based link detector in Wikipedia

miner is used to detect links in a window size

of 20 near the mention string.

2. The links are ranked based on several criteria

such as the relatedness and link probability

with the surrounding links(Milne & Witten,

2008). If one link is less related to the

surrounding links or it is too popular, it will be

given a low score. The judgment is based on a

pre-trained model shipped with Wikipedia

miner. Only links with a score in the top 10 are

reserved.

3. The window size is incremented by 20 if less

than 10 links are found. The maximum

window size is 80 as a termination condition

even if not enough context terms are found.

Lucene score used in candidate generation is also

used here as a contextual feature.

Semantic Features

The SAME_TYPE feature refers to whether the

mention string is the same semantic type as that of

the KB node. The Stanford NER tagger
6
 is used to

identify the a query‟s semantic types. When

verifying the 2009 and 2010 results with the

published golden standard, the accuracy only

reaches 86%. Therefore, DBpedia is included in

the system to improve accuracy. DBpedia is

consulted first; NER tagging is used when

DBpedia‟s answer is unknown.

Ranking is then conducted using The

SVM
Rank

system. The C parameter for SVM
Rank

is

set to 0.01 multiplied by the number of training

examples. The top ranked candidate is the potential

linking node for the corresponding query.

NIL Detection

Another important procedure is to detect the NIL

queries. In our system, a binary SVM classifier is

trained using the same feature set. SVM
light

 is used

to train the model. For the submitted run, the cost

factor (-j option in SVM
light

) for positive and

6 http://nlp.stanford.edu/software/CRF-NER.shtml

negative samples are set as using the system

default value of 1.

1.4 NIL query Clustering system

A new task in KBP 2011 requires that all the

output be clustered based on the underlying

entities. A sub system that clusters NIL queries is

developed. The system is also divided into two

parts:

P1. NIL query grouping

As there are a large number of NIL queries in the

final result, all the NIL queries are first clustered

based on similarity to the query string. There are

three tests to determine the string similarity, Dice

coefficient test, Acronym test and substring test.

The threshold values of these tests is the same as

that used in the entity linking part. If a string passs

the test with any other string, they are treated as

similar, the system go through all the NIL queries

and group the similar queries together.

P2. Inner group clustering

In each similar group, the queries need to be

further clustered. Because of time constraint, only

one similarity measure -- relatedness is used. The

system models the context near the mention string

as Wikipedia anchors, and finds the similarity

between contexts. As the contexts have already

been modeled in the entity ranking part, the system

only needs to get the existing context for

comparison, which makes this step very efficient.

For each context anchor in a document Di, we

assign it the similarity score with the most similar

anchor in document Dj. The average of all these

scores in document Di is used as the final similarity

score between di and dj Use Aim to denote the mth

anchor in Di, Ajn to denote the nth anchor in Dj.

R(A, B) refers to the relatedness score between two

anchors, the similarity score is then computed as:

A simple Hierarchical Agglomerative Clustering

(HAC) algorithm is used to cluster the documents.

The threshold used for the HAC is set as 3.0 for the

submitted run.

1.5 Performance and evaluation on entity

linking system

Due to time constraint, only two runs with slightly

different threshold are submitted. Their

performance is listed in Error! Reference source

not found.. Our system gives a good performance

in the first step. In the 2011 test data set, the

system achieved 85.5% coverage on Non-NIL

queries. However, the final evaluation result shows

that the performance is lower than average.

In post evaluation experiments, we found one

programming error where the binary classifier and

the rank classifier are used in the wrong order. The

corrected version of is labeled as Run3 and its

performance is listed in Error! Reference source

not found.. Also, when training the binary

classifier, we did not address the severe imbalance

between the negative examples and the positive

examples. With the added cost parameter “-j” in

SVM
light

 set to 3 to correct this imbalance, RUN4‟s

performance has further improved.

 Micro

Average

B3

Precision

B3

Recall

B3 F1

RUN1 0.673 0.582 0.634 0.607
RUN2 0.672 0.580 0.633 0.605
RUN3 0.694 0.664 0.619 0.641

RUN4 0.740 0.713 0.654 0.683

Table 2: Performance Evaluation of the Entity

Linking System

Given that the highest F1 score among all

participants is 0.846 and the median F1 score is

0.716, the system performance is close but still

below the median. In the analysis, we found that

the NIL detection system is still working poorly

even with a penalty to address the data imbalance

issue. For a trained model without penalty, there

are 400 results classified as NIL by mistake, given

that the number of queries that has a real linking in

KB is only 1124, 35.5% answers are missed in this

way. At the same time, the system also left 178

NIL queries undetected. After giving penalty to the

model, there are still 283 queries classified as NIL

and 192 NIL missed mistakenly. But, the ranking

classifier works a little bit better with penalty:

among 841 queries with a link that the system did

not classified as NIL. 718 answers are correct, and

the accuracy is about 85.5%.

We suspect that the selected features used in the

system are not appropriate for NIL queries. On the

other hand, we also notice that the NIL

classification recall on the 2011 data set (about

64%) is significantly lower than the test result on

2010 or 2009 data set (all above 80%). The

differences in data set may also result in the poor

performance on NIL detection. This may be

because the currently used features are not suitable

for NIL queries. There is a need to find

discriminating features suitable for NIL queries in

the future.

The Slot Filling System

Our slot filling system has three modules. The first

is for document retrieval and preprocessing. The

second is for query expansion and third is for

entity substitution.

1.6 Document retrieval and preprocessing

The entire source text is first indexed by the

Lucene package. Initially, when expanding a query,

we use Lucene to get the top 50 documents that

contain the query name. We then employ the

Stanford NLP package
7
including the named entity

recognizer tool and part of speech tagger to

preprocess the documents. We also used the

OPENNLP package
8

 tokenizer and sentence

detector to tokenize the documents and find the

sentence boundaries of the documents.

For a particular set of slots, including

org:emeber_of, org:members, org:parents, and

org:subsidiaries, the Stanford dependency parser is

used to harvest related slot values. Before

extracting the slot values, the named entities are

substituted with one capitalized word. By doing so,

the named entities with more than one words will

be parsed as one single constituent in the

dependency tree. This will help to find the correct

slot values.

For other types of slots, for example, per:title,

per:charges, per:origin, org:political/religious

affliation, lists of trigger words are used. These

trigger words are manually collected from the

English Wikipedia. As for the types of

per:date_of_birth, org:founded, org:dissolved, etc.,

7 http://nlp.stanford.edu/
8 http://incubator.apache.org/opennlp/

http://nlp.stanford.edu/
http://incubator.apache.org/opennlp/

we simply use pattern based approach to extract

their slot values. For location slots such as

per:city_of_birth, per:cities_of_residence,

org:city_of_headquarters, we use the geo-name

lists to identify city, country and state.

1.7 Query expansion

We employed three methods to expand the queries

as it is obviously insufficient to retrieve KBP

source documents by merely using a query name.

(1) If the query has Wikipedia redirect pages, the

titles of the redirected pages are used as the

query expansion.

(2) For a person query, we list different variations

of the person‟s name. For example, given the

query Abdul Rahim Noor, we will obtain the

variants of this names as shown below:

Abdul Rahim
Rahim Noor
Abdul R. Noor
Abdul R Noor
A. Rahim Noor
A. R. Noor
A R Noor
Noor, A R
Noor, A. R.
A. Noor

After generating these variations, the top 50

documents retrieved by the query name will be

used to check the occurrence of these variants.

Only those that appear in the text will be selected

as the variants That is to say, any of the name

variants found in the top 50 retrieved documents

will be added to the extended query set.

(3) Person names in the background document are

extracted to expand person queries.

The Stanford named entity recognizer is used to

extract all person names in the background

document to see if that person name contains the

query name. If so, the person name is added to the

query extended set; otherwise, we use the Edit

Distance to measure the similarity between the

person name and query name, and only keep those

person names within the threshold.

(4) To find the full names of organization

acronyms in the background document given

in the query.

To get the full expressions of the

organizational queries, the abbreviation

extraction technique (Schwartz & Hearst, 2003)

is employed. This technique is described as:

(i) long form „(„ short form „)‟

(ii) short form „(„ long form „)‟

These <long form, short form> or <short form,

long form> pairs are determined by their

adjacency to the parentheses. For the sake of

slot filling task, only <long form, short form>

will be discussed, and the long form and short

form are considered adjacent to each other.

Using the (i) pattern, candidates for the long

form will be recognized. The long form

candidates contain contiguous words before

the short form. This algorithm starts from the

ends of short form and long form and tries to

capture the shortest long form that matches the

short form. See the figure below:

This algorithm initially starts from the end of

the short form and gets the capitalized letter A

in short form, then it searches A in the last

word Administration of the long form. If A is

not found in Administration, this algorithm

will move to the next word Safety prior to

Administration, and check if this word contains

the letter. It repeats this process until no

matching is found at the beginning of the long

form candidates. However, if the letter is found

in Administration, this algorithm will move to

the next letter S and next word Safety, and

check if S is in Safety. The whole process stops

when it reaches the beginning of the long form

and short form. Moreover, this algorithm

places a constraint on the <long form, short

form> pair that the first character of the word

in the long form should be the same as the one

of the short form.

By so doing, for the query of TACC, its text is:

The International Atomic Energy Agency’s

Technical Assistance and Cooperation

Committee (TACC) failed to reach a final

decision ...

Using the abbreviation technique, the long

form Technical Assistance and Cooperation

Committee can be extracted for the acronym

TACC although the word and appears in the

long form.

1.8 Entity Substitution

For the slots org:emeber_of, org:members,

org:parents, and org:subsidiaries, the Stanford

dependency parser is used to harvest the related

slot values. Before extracting the slot values, the

named entities are substituted with one capitalized

word. Take the org:parents for example, the

organization query name is replaced by the symbol

ORGSUBSID in the sentence. Afterwards, The

Stanford named entities recognizer is used to find

organization names in this sentence. These

organization names serve as the parents of the

query candidates. They are substituted with the

symbol ORGPARENT. In the next step, the

dependency parser is used to obtain relations

between ORGSUBSID and ORGPARENT. The

dependency relations include:

1.nn: noun compound modifier.

2. appos: appositional modifier.

3. amod: adjectival modifier..

4. prep_of: the preposition word of.

5. rcmod: relative cause modifier.

6. poss: possession modifier.

7. conj_and: the conjunction word and.

With these dependency relations, triggers words

are introduced to build up connection between

ORGSUBSID and ORGPARENT. The trigger

words involved in org:parents contain agency,

subsidiaries, subsidiary, affiliation, affiliated

company and so on. Using the dependency

relations and trigger words, five rules are

formulated below:

Rule1: appos(ORGSUBSID, TriggerWord) AND

amod(TriggerWord, ORGPARENT)

Rule2: prep_of(TriggerWord, ORGPARENT)

AND rcmod (ORGSUBSID, TriggerWord)

Rule3: nn(ORGSUBSID, ORGPARENT) AND

nn(ORGSUBSID, TriggerWord)

Rule4: appos(TriggerWord, ORGSUBSID) AND

poss(TriggerWord, ORGPARENT)

Rule5: conj_and(ORGPARENT, TriggerWord)

 AND conj_and (ORGPARENT, ORGSUBSID)

In these rules, organization names are replaced

with the tag ORGPARENT or ORGSUBSID and

trigger words are replaced with the tag

TriggerWord. In each rule, both dependencies must

be satisfied will the ORGPARENT be chosen as

the value for the slot org:parents. Take the

following sentence as an example:

An article published Sunday by Bernama , the

Malaysian government news agency , singles

out .. .

The organization name Malaysian government

needs to be found as the Bernama‟s parent

organization. Before extracting the org:parents,

the named entity recognizer is used to obtain the

organization names Bernama and Malaysian

government. Then, Bernama is replaced with the

symbol ORGSUBSID and Malaysian government

with ORGPARENT. Based on these entity

substitutions, the original sentence is changed to:

An article published Sunday by ORGSUBSID , the

ORGPARENT news agency , singles out ….

Then the Stanford dependency parser is applied to

obtain the relations between the components in the

sentence. The dependency relations are listed

below:
amod(agency-11, ORGPARENT-9)

appos(ORGSUBSID-6, agency-11)

Similarly, these rules can be used to obtain the

subsidiaries for the query name. By doing so, the

named entities with more than one words will be

parsed as one single constituent in the dependency

tree. This will reduces parsing errors and help to

find the correct slot values.

For per:title, per:charges, org:political/religious

affliation, lists of trigger words are manually

collected from the English Wikipedia. To avoid the

typos in the texts, we first generate n-grams in the

sentences. n can be from uni-gram to tri-gram

determined by the number of trigger words used.

After n-grams are generated, these n-grams will be

compared with the triggers by means of the dice

coefficient used in this paper.

As far as the types of per:city_of_birth,

per:cities_of_residence, org:city_of_headquarters

ect. are considered, the geo-name
9
 lists are used to

identify city, country and state. For the triggers of

the slot per:orgin, we use the corresponding

country name to find their demonym in

Wikipedia.

1.9 Slot Filling Evaluation Results

We submitted one run for the slot filling task and

the evaluation results of our system, the top two

team and the median are shown in Table 3.

System Precision Recall F-measure

Top-1 Team 35.03 25.5 29.52

Top-2 Team 49.17 12.59 20.05

Median Team 10.31 16.51 12.69

PolyU Team 15.29 12.7 13.87

Table 3: Results of the Slot Filling System

We only used the data provided by LDC for the

slot filling task and the system has no access to the

Internet during the evaluation. Result shows that

our performance is slightly higher than the median

team, but a long way from the top 2 systems. The

reasons for low recall and precision are: (1) only

sentences that contain the query name are

considered as relevant. In actual text, however,

slots might appear with no mention of the exact

query name; (2) only top 50 documents related to

the query name are used for extracting slot values.

This is the primary reason why the recall of our

system is much lower compared to those using 100

or more retrieved documents.

Conclusions and Future Work

This paper describes the entity linking and slot

filling systems of the Hong Kong Polytechnic

University team. For the entity linking, the system

uses various resources and rank candidates based

on Wikipedia context. The outcome on ranking is

satisfactory, but the detection of NIL queries is still

a problem. In the future, investigations will be

9 http://www.geonames.org/

conducted on finding suitable features to handle

the NIL detection problem. For the additional NIL

clustering system, our system is very simple. More

features such as TF-IDF should be explored.

Furthermore, as the context terms are modeled as

Wikipedia terms, it is also possible to apply some

network similarity measures such as the bipartition

graph method (Tang, Lu, T. Wang, J. Wang, & W.

Li, 2011).

Although the context modeling using Wikipedia

anchors can achieve a high accuracy, it is rather

time consuming to find high quality anchors from a

span of text. And this method may probably fail in

informal text. In the future, we will try to find

more robust solutions with lower computation cost.

The slot filling system combines the query

expansion and pattern-based reasoning.

Techniques like abbreviation extraction, name

variation, and entity substitution are incorporated

into this system. In the future, we can explore

how to make use of sentences which did not have

direct query mentions. Possible direction is to

identify syntactic features for slot filling task such

as adding co- reference resolution for named

entities. Another possible direction is to classify

sentences into suitable slot types based on training

data first before extraction of information is

conducted.

References

Castelli, V., Florian, R., & Han, D.-jung. (2010).

Slot Filling through Statistical Processing and

Inference Rules. Proc. TAC 2010 Workshop.

Chang, A. X., Spitkovsky, V. I., Yeh, E., Agirre, E.,

& Manning, C. D. (2010). Stanford-UBC Entity

Linking at TAC-KBP. Proceedings of the Third

Text Analysis Conference (TAC 2010) (Vol. 758).

Chen, Z., Tamang, S., Lee, A., Li, X., Lin, W.-pin,

Snover, M., Artiles, J., et al. (2010). CUNY-

BLENDER TAC-KBP2010 Entity Linking and

Slot Filling System Description. Proceedings of

the Third Text Analysis Conference (TAC 2010).

Chrupala, G., Momtazi, S., Wiegand, M., Kazalski,

S., Xu, F., Roth, B., Balahur, A., et al. (2010).

http://en.wikipedia.org/wiki/Demonym
http://www.geonames.org/

Saarland University Spoken Language Systems at

the Slot Filling Task of TAC KBP 2010. Proc.

TAC 2010 Workshop.

Cucerzan, S. (2007). Large-scale named entity

disambiguation based on Wikipedia data.

Proceedings of EMNLP-CoNLL (Vol. 2007, pp.

708–716).

Fern, N., Fisteus, J. A., S, L., & Mart, E. (2010).

WebTLab : A cooccurrence-based approach to

KBP 2010 Entity-Linking task. Proceedings of the

Third Text Analysis Conference (TAC 2010).

Lehmann, J., Monahan, S., Nezda, L., Jung, A., &

Shi, Y. (2010). LCC Approaches to Knowledge

Base Population at TAC 2010. Proceedings of the

Third Text Analysis Conference (TAC 2010).

Mcnamee, P. (2010). HLTCOE Efforts in Entity

Linking at TAC KBP 2010. Proceedings of the

Third Text Analysis Conference (TAC 2010).

Milne, D., & Witten, I. H. (2008). Learning to link

with wikipedia. Proceeding of the 17th ACM

conference on Information and knowledge mining -

CIKM ’08, 509. New York, New York, USA:

ACM Press. doi:10.1145/1458082.1458150

Radford, W., Hachey, B., Nothman, J., Honnibal,

M., & Curran, J. R. (2010). Document-level Entity

Linking : CMCRC at TAC 2010. Proceedings of

the Third Text Analysis Conference (TAC 2010)

(pp. 1-6).

Schwartz, A. S., & Hearst, M. A. (2003). A simple

algorithm for identifying abbreviation definitions

in biomedical text. Pacific Symposium on

Biocomputing (Vol. 8, pp. 451–462). Citeseer.

Surdeanu, M., McClosky, D., Tibshirani, J., Bauer,

J., Chang, A. X., Spitkovsky, V. I., & Manning, C.

D. (2010). A Simple Distant Supervision Approach

for the TAC-KBP Slot Filling Task. Proc. TAC

2010 Workshop.

Tang, J., Lu, Q., Wang, T., Wang, J., & Li, W.

(2011). A Bipartite Graph Based Social Network

Splicing Method for Person Name Disambiguation.

Varma, V., Bysani, P., Reddy, K., Reddy, V. B.,

Kovelamudi, S., Vaddepally, S. R., Nanduri, R., et

al. (2010). IIIT Hyderabad in Guided

Summarization and Knowledge Base Guided

Summarization Track. Proceedings of the Third

Text Analysis Conference (TAC 2010).

i
 This work was done while they worked in HK

Polytechnic University as exchange students.

