
Event Nugget Detection using Thresholding and Classification Techniques

Taneeya Satyapanich and Tim Finin
University of Maryland, Baltimore County

Baltimore, MD, 21250, USA
taneeya1@umbc.edu, finin@umbc.edu

Abstract

This paper described our Event Nugget Detec-
tion system that we submitted to the TAC KBP
2015. We considered the problem as docu-
ment classification problem. We used confi-
dence scores from classifier to detect the event
by thresholding. Our feature vectors consist
of event nugget context, part of speech tags
of event nugget context and semantic similar-
ity score between event nugget and event sub-
types. Our performance is quite low; we got
F1 measure of 0.33 for both event nugget de-
tection task and coreference task.

1 Introduction

Text Analysis Conference Knowledge Base Popula-
tion (TAC KBP) 2015 is an evaluation workshops in
Natural Language Processing. They provided col-
lection of raw data such as newswires, forums, in-
cluding their annotation that suitable for using as
training corpus. Besides, they have evaluation pro-
cedure to evaluate all of the participant system out-
put. The Event track is one of three tracks that
are provided in this year. In the Event track, we
participated in two subtasks; Event Nugget Detec-
tion, and Event Nugget Detection and Coreference
(Mitamura, 2014; Liu et.al., 2015). Event Nugget
Detection goal is identify all of the event mentions
in document, also classify the event into an event
type/subtype. The event types/subtypes are defined
in the Rich ERE Annotation guidelines. In addition,
systems must identify Realis attribute (ACTUAL,
GENERIC, OTHER), which are also described in

the Rich ERE guidelines. For Event Nugget Detec-
tion and Coreference task, in addition to the system
has to identify and classify the event mentions, it has
to identify event coreference links at the same time.

Event means something that happens or may not
happen at a particular place and time but it is men-
tioned in the document. There have been multi-
ple research that studied the event mention detec-
tion. Supervised machine learning such as (Sam-
mons, et.al., 2014; Grishman, et.al., 2005). (Sam-
mons, et.al., 2014) used supervised machine learn-
ing method plus measuring overlapping of the event
argument and the world knowledge corpus. (Gr-
ishman, et.al., 2005) used Maximum Entropy based
classifiers to detect trigger word to distinguish event
mentions from non-event-mentions. Unsupervised
machine learning has been used in (Ji and Grishman,
2008). They created some inference rules on statis-
tics value of detected triggers word that are associ-
ated with particular types of events to improve the
cross-document event extraction. (Li et.al., 2013)
proposed structured prediction method and global
features to predict the event mention and its argu-
ment that occur in the same sentence simultaneously.

For our system, we considered the event nugget
detection as the classification problem. Our idea is
any words or phrases are considered as event have
some similar characteristics. So we can categorized
them into event and non-event. We will described
our system description about features, classification
model parameters in section 2. Event Detection and
Classification are in section 3. The official experi-
mental results are in section 4. Discussions are in
section 5. And conclusion is in section 6.



2 System Description

For the Event Nugget Detection task, we have to
detect the event mentioned in the document and
classify the event to its type. For this task, anno-
tation guidelines (Mitamura, 2014) classify events
into eight event types: Life, Movement, Business,
Conflict, Contact, Personnel, Transaction, and Jus-
tice events. These eight types have a total of 33
subtypes. We partitioned the event nugget detection
problem into two parts; event detection and event
classification to its subtype. For the event detection
part, we used simple threshold and brute force al-
gorithm to find the event in the document. We will
explain details in the section 3. For the classification
part, we built feature vectors to train the classifica-
tion model using Stanford Classifier tool.

Another task that we participate is the Event
Nugget Detection and Coreference task. This task
we have to link all mentions that are relevant to the
same event altogether. The Event Nugget Detection
and Coreference task, we find the coreference chain
by using the Stanford CoreNLP tool, and then use
matching rules to produce the coreference link of all
mentions in an event. Details of our features and
other tools that were used are described in the fol-
lowing.

2.1 Training data

When we detected event mentions in any document,
they have to be classified to an event subtypes. The
total event subtypes is 33 subtypes. Training data
have to be prepared for using Stanford Classifier.
After we formed the feature vector, we will use Stan-
ford Classifier to build a classification model. Each
training data instance consists of:

• event subtype name as the classname of data

• a set of context words

• part of speech tags of context words

• event nugget (mention)

• semantic similarity score between mention and
event subtypes

We extracted the context of the event nugget from
the source document. Our context is set of words

around the event nugget that have the same part
of speech as the event nugget. We used OpenNLP
(Baldridge, 2005) to find part of speech of any
words. These training data will be regenerate as
useful natural language features later by Stanford
Classifier. The semantic similarity score is mea-
sured by the UMBC semantic similarity system
(Han, 2013). Each line in the training file is a
features vector of an event nugget.

Training corpus are combination of the
LDC2015E69 and LDC2014E121. The
LDC2015E69 (DEFT 2014 Event Nugget Eval-
uation Annotation Data) consists of 200 files.
The LDC2014E121 (DEFT 2014 Event Nugget
Evaluation Training Data) contains 151 files. These
two corpus come with source document and their
annotations data. The total is 351 files. We divided
them into training corpus (80%) and development
data (20%). We have total of 8571 set of training
instances.

2.1.1 Semantic Similarity
We used the UMBC semantic similarity system to
compare similarity between event nugget and its
event type. The UMBC semantic similarity (Han,
2013) is based on LSA word similarity model. LSA
relies on the fact that semantically similar words
are more likely to occur near one another in text.
Thus evidence for word similarity can be computed
from a statistical analysis of a large text corpus.
They built the raw word co-occurrence statistics
from a portion of a 2007 Stanford WebBase dataset
(Stanford, 2001). The UMBC semantic similarity
system has been developed a few versions. The
version that we used is online as the web service
at (http://swoogle.umbc.edu/StsService/GetStsSim).
This version showed its high performance in the Se-
mantic Evaluation (SemEval) 2013 and 2014 seman-
tic similarity task (Han, 2013; Abhay, et. al., 2014).

2.2 Classification Model

We used Stanford Classifier to build the classifi-
cation model. Stanford Classifier (Manning and
Klein., 2003) is a probabilistic classifier. It can give
a probability distribution over the predicted class for
an input. It is a maximum entropy classifier. Max-
imum entropy models are comparable to multiclass
logistic regression models. The advantage of using



this tool is they can generate simple natural language
features for text classification such as n-gram, word
shape, etc. To use the tool we have to prepare the
training file, prop file, and test file. Training file is
example of data and their classes. Test file contains
test data that need to be classified. Prop file is used
to specify the features that the tool will generate for
each training data and classifiers parameters.

We did some experiment to find the best features
that can represent the characteristics of each event
subtypes. Our final feature vectors were produced
follows the configuration in the prop file. Each fea-
ture preprocessing is defined as follows:

1. Context data It is a set of words around the
event nugget. We defined the preprocessor to
do character n-grams, and word n-gram with
possible n-gram length from 1 to 4. It means
that the tool will generate unigram, bigram, tri-
gram, and quadgram for the context data.

2. Part of speech tags They are part of speech
tags of context data. This feature we did word
n-gram with possible n-gram length from 1 to
4. The tool will produce unigram to quadgram
to this data as well.

3. Event nugget It is the word that we brought
from annotation file. We defined that it will be
use as a whole string. Besides that the prefix
and suffix will be generated, character n-gram
with length from 4 to 9, and we check the word
shape with ’dan1’.

4. Semantic similarity score Because of the
score is the numeric data from 0.0 to 1.0. We
have to define this feature as real value.

Note that these parameter values are from experi-
ment. In addition to the feature vector parameters,
we ran grid search to find the optimal parameters
for the classifier model. In addition, because in the
testing step we cannot know the event subtype and
event nugget before classification (they are what we
are predicting), we cannot find the semantic similar-
ity of event nugget and event subtype. So we built
two classifiers, they are almost the same except that
one classifier the semantic similarity score can be
used and another classifier was not used semantic
similarity score.

2.3 Realis

Realis attribute indicates whether or not the event
is occurred. It has three possible values; ACTUAL,
GENERAL, OTHER. They provided some rules in
the task annotation guidelines [].The feature vector
of the event was built from these rules. To predict the
Realis attribute, we trained a classifier model. The
features consist of:

• Verb tense

• Has name entity

• Contain regular occurring words i.e. every, of-
ten, always.

• Contain conditional words i.e. whether, if.

• Negate event

2.4 Coreference Resolution

We find the coreference chain by using Stanford
CoreNLP (Manning, et.al., 2014) . The Stanford
CoreNLP is the collection of Natural Language Pro-
cessing such as part of speech tagger, name entity
recognizer, etc. Coreference resolution is another
function that is provided in the package. We got
the coreference set for each document from Stanford
CoreNLP. Then we match the set with the detected
event mention. The event mentions will be linked
together when the mention has the same event type
with other mentions in the same coreference chain.

3 Event Detection and Classification

As we mentioned above that to accomplish the event
nugget detection task we need the event nugget de-
tection step and event nugget classification step. For
the event detection part, we used a simple brute force
method and experimented event subtypes’ thresh-
olds. Detection and classification procedure is as
followed.

1. Chunking The whole document was split into
chunks follows part of speech tag. Only chunk
of noun and chunk of verb are kept. For ex-
ample, the sentence is ’He has been married
3 times’, part of speech tag of this sentence is
B-NP B-VP I-VP I-VP B-NP I-NP, This sen-
tence is generated three chunks as ’He’, ’has



been married’, ’3 times’. The original sentence
will be used as Context data. Chunks will be
use as Event nugget. And their part of speech
tags will be used as Part of speech tag data. De-
tails in Section 2.2

2. Pre-classify Every chunk was pre-classified
using our non-semantic similarity classifier
model. The classifier model produced the con-
fidence score for each chunk.

3. Thresholding The confidence score for each
chunk was compared with its threshold of the
predicted event subtypes. Each event subtype
has a threshold that we got from experiment in
the training step. The chunk that has higher
confidence score than its threshold of the pre-
dicted event subtype will be kept as our event
nugget. We got a collection of event nuggets
and its predicted event subtype.

4. Semantic similarity measuring The event
nugget and its predicted event subtypes were
measured the semantic similarity using UMBC
STS system.

5. Classifying The testing data in number 1 plus
semantic similarity score from number 3 will
be classified again with the classifier model that
was trained with semantic similarity data. Fi-
nally, the predicted event type from the classi-
fier model is our detected event nugget and its
event subtype.

4 Experimental Results

Testing data consists of 202 documents. They con-
sists of 98 files of newswire data and 104 files of
multi-post discussion forum data. We sent two runs
for the Event Nugget Detection task and the Event
Nugget Coreference task. Two runs are different in
the threshold for selecting the chunk as the event
nuggets. The best result that we got is F1 measure
of 0.33. It is quite low when compare with the best
system of the event nugget task. The details of our
best system performance are in Table 1.

The system performance of mention detection
(plain) in Table 1 showed that our system can detect
correctly 40.76 percent of retrieved events. Also our

Attributes Precision Recall F1
plain 40.76 28.88 33.81

mention type 32.46 23.00 26.93
realis status 21.81 15.45 18.09

mention+realis 16.74 11.86 13.89

Table 1: The system performance

system can retrieve event only 28.88 percent of to-
tal event that should be detected. About the mention
type performance of our system is quite low, our sys-
tem can classify the event correctly about 32.46 per-
cent of overall predicted event. And our system can
classify the event correctly about 23.00 percent of
all of event. For the event nugget coreference task,
other performances are the same with additional of
average CONLL score is 17.80. We will discuss
what reasons are affected our system to has low per-
formance in the next section.

5 Discussion

After we looked through the details of each docu-
ment result, we observed some remarkable points.
We will analyze the system performance in two
parts; mention detection and mention classification.
About mention (event) detection, our system always
produced high precision but low recall. For exam-
ple, the highest precision that we have is 91.67 per-
cent, but the recall is 33.33 percent. The system al-
ways got the low recall because we defined too high
threshold. Most of detected mentions are correct but
we left a lot of event out. If we lower the threshold
it may produce higher recall lower precision, the F1
measure can be higher. Another problem is the men-
tion span that affected the performance. Because we
form the mention span from chunk of part of speech
tag, the mention will not exactly match to the gold
standard. In summary, the brute force and threshold
method is simple but we need more experiment to
select the better threshold.

For mention classification, both the precision and
recall are the same range. It means that our features
cannot reflect the characteristics of event subtypes.
In this part, we can consider the dependency of hap-
pening of event and used as heuristic rules after clas-
sify the event. Some event mentions are less likely
to be in the same sentence such as Nominate and



Charge. Some events often appeared together, for
example, Attack and Injure. We can infer it from the
statistical of training data. It will improve the accu-
racy of the event classification.

About the Realis attribute, it has to include other
information of event. Only the ’yes’ or ’no’ features
that we have cannot discover the right answer. We
may use statistical about event types such as it is the
definitely happened type, or it is inconsistency type,
to predict the Realis attribute.

6 Conclusion

Our Event Nugget Detection system is simple but
low performance, due to its low efficiency in identi-
fying event mention, and event mention span. This
error has been propagate to the event classification.
To improve the performance, we plan to use char-
acteristics of events, applying commonsense knowl-
edge in the future.

References

Jason Baldridge. 2005. The opennlp project. URL:
http://opennlp.apache.org/index.html

Ralph Grishman, David Westbrook, and Adam Meyers.
2005. Nyus english ace 2005 system description. In
Proceedings of ACE 2005 Evaluation Workshop.

Lushan Han, Abhay L. Kashyap, Tim Finin, James May-
field, and Johnathan Weese. 2013. UMBC EBIQUITY-
CORE: Semantic Textual Similarity Systems,. In Sec-
ond Joint Conf. on Lexical and Computational Seman-
tics. Association for Computational Linguistics.

Tan Li Im, Phang Wai San, Chin Kim On, Rayner Alfred,
and Philip Anthony. 2013. Analysing market senti-
ment in financial news using lexical approach. Open
Systems (ICOS), 2013 IEEE Conference on, pp. 145-
149. IEEE.

Heng Ji, and Ralph Grishman. 2008. Refining Event Ex-
traction through Cross-Document Inference. In ACL,
pp. 254-262.

Abhay L. Kashyap, Lushan Han, Roberto Yus, Jennifer
Sleeman, Taneeya Satyapanich, Sunil Gandhi, and
Tim Finin, 2014. Meerkat mafia: Multilingual and
cross-level semantic textual similarity systems,. Pro-
ceedings of the 8th International Workshop on Seman-
tic Evaluation.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint Event
Extraction via Structured Prediction with Global Fea-
tures. ACL

Zhengzhong Liu, Teruko Mitamura, and Eduard Hovy.
2015. Evaluation Algorithms for Event Nugget Detec-
tion: A Pilot Study. In Proceedings of the 3rd Work-
shop on EVENTS at the NAACL-HLT, pp. 53-57.

Yue Ma and Alifah Syamsiyah. 2014. A hybrid approach
to learn description logic based biomedical ontology
from texts. ISWC.

Christopher D. Manning and Dan Klein. 2003. Opti-
mization, Maxent Models, and Conditional Estimation
without Magic. Tutorial at HLT-NAACL 2003 and
ACL 2003.

Christopher D. Manning, Mihai Surdeanu, , John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language Pro-
cessing Toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pp. 55-60.

Teruko Mitamura. 2014. TAC KBP event detection an-
notation guidelines, v1.7. Technical report, Carnegie
Mellon University, September.

Mark Sammons, Yangqiu Song, Ruichen Wang, Gourab
Kundu, Chen-Tse Tsai, Shyam Upadhyay, Siddarth
Ancha, Stephen Mayhew, and Dan Roth. 2014.
Overview of UI-CCG Systems for Event Argument Ex-
traction, Entity Discovery and Linking, and Slot Filler
Validation. Urbana 51 (2014): 61801.

Richard Wicentowski, and Matthew R. Sydes. 2012.
Emotion Detection in Suicide Notes Using Maximum
Entropy Classification. Biomedical Informatics In-
sights 5.Suppl 1 (2012): 5160. PMC.


