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Abstract 

 
We submitted to the TAC 2017 Cold Start 

Knowledge Base Population (CSKB) track with our 

Adept Automatic Knowledge Discovery (A2KD) 

system. A2KD is an end-to-end knowledge base 

population system that uses diverse information-

extraction (IE) algorithms provided by various 

universities, and integrates their output in a coherent 

way in order to populate a knowledge base. By the 

time of submission, the A2KD system had algorithms 

for Entity Discovery and Linking (EDL), Slot Filling 

(SF), and Event Argument Linking (EAL) for 

English and Chinese only. In addition to submitting 

system output for monolingual English and Chinese 

evaluations, we also submitted a bilingual variant 

which used English and Chinese but no Spanish. 

 
1. Introduction 

 

The A2KD system was developed under the 
DARPA-funded DEFT (Deep Exploration and 

Filtering of Text)
1
 program. One objective of the 

DEFT program is to achieve population of a 
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knowledge base by integrating information extraction 

algorithms from multiple providers. Using diverse 

algorithms from multiple sources helps ensure that 

A2KD uses the most reliable algorithm for any given 

kind of information (entities, entity-links, relations, 

events, etc.). A2KD provides a recipe for combining 

disparate information extraction algorithms into a 

single end-to-end system. 

 

In this paper we describe the A2KD system and its 

variants that we used to submit the results to CSKB 

track. Section 2 provides a system overview. In 

Section 3, we briefly describe the various algorithms 

used for EDL, SF and EAL tasks for English and 

Chinese. In Section 4, we describe the mechanism 

employed by A2KD to integrate the output from 

different algorithms at the document level. Section 5 

describes our techniques for doing a corpus-level 

integration of extracted information in a way that 

ensures construction of a coherent Knowledge Base 

(KB). Section 6 describes the final step of KB-level 

processing (KB Resolution). We identified certain 

discrepancies in the output KB that consistently 

resulted from a limitation in an A2KD module (e.g. 

chunk alignment), or in the output of one or more IE 

algorithms (e.g., Stanford’s relation extraction would 

assign very high confidence values to some incorrect 

relations). This made us employ some post-

processing steps that fix these discrepancies. In 

addition to that, A2KD also makes an attempt to do a 

more sophisticated cross-document event co-

referencing. These steps make up the KB Resolver 

module of A2KD, and are described in Section 6. In 

Section 7, we describe the experiments we ran and 

the iterative improvements we made to the system. 

https://www.darpa.mil/program/deep-exploration-and-filtering-of-text
https://www.darpa.mil/program/deep-exploration-and-filtering-of-text


Section 8 lists the variants of A2KD system that we 

used for our submission. In Section 9, we present the 

scores of our submissions, and conclude the paper in 

Section 10. 

 

2. A2KD System Overview 

 

A2KD system has the capability to populate a 

knowledge base from scratch, starting with raw text 

documents. Figure 1 outlines the architecture of the 

A2KD system. 

 

 
Figure 1 A2KD System Architecture 

 

The core of the A2KD system includes modules 

implementing information-extraction algorithms for 

within document entity co-reference (entity coref), 

linking of entities into an external knowledge base 

(entity linking or Wikification), NIL-clustering of 

entities not linked to the knowledge base (NIL 

clustering), extraction of relations and their 

arguments (relation extraction), and extraction of 

events and their arguments (event extraction). A 

majority of these algorithms are implemented by 

various universities that participate in the DEFT 

program. The EAL algorithms for both English and 

Chinese are developed by BBN, so is the SF 

algorithm for Chinese. Table 1 gives a list of the 

algorithms used for English and Chinese languages 

along with the names of the providers. 

 

A2KD reads the input text documents and passes 

them on to the various algorithm modules. Each 

algorithm module produces its own output in the 

form of an HltContentContainer object which 

abstracts a collection of entities (including entity-

mentions and entity-links or NIL-cluster IDs), 

relations (including relation arguments), and events 

(including event arguments), along with their 

justifications in the source documents and confidence 

values assigned by the algorithms. 

 

Once the algorithms are done processing a document, 

their output is combined in a coherent way. To this 

end, A2KD starts by doing chunk alignment. Chunk 

alignment is the process by which document-level 

entities extracted by the entity coref algorithm are co-

referenced with the ones produced by EDL, SF, and 

EAL algorithms. 

 

Algorithm Type Provider for 

English 

Provider for 

Chinese 

Within Document 

Entity Co-reference 

UIUC Stanford 

Entity Linking 

(without NIL- 

Clustering) 

RPI RPI 

NILClustering
2
 UIUC, BBN UIUC, BBN 

Slot Filling Stanford BBN 

Event Argument 

Linking 

BBN BBN 

Table 1: List of Algorithm Providers for the 

A2KD System 

A2KD uses this entity alignment information to 

create a document-level cross-algorithm entity co-

reference mapping. This mapping is then used to 

attach to a coref entity any wikified or NIL-cluster 

IDs that the EDL algorithm has determined for the 

mapped EDL entity. Similarly, this mapping is used 

to replace an SF entity (or an EAL entity) with the 

mapped coref entity whenever the former is an 

argument of a relation (or event). This process of 

merging entity-level attributes or entity-replacement 

using document-level entity-alignment mapping is 

called document-level integration. Along with using 

entities extracted by the entity coref algorithm, 

A2KD also uses additional entities that are extracted 

by the entity-linking algorithm. 

  

After the document-level integration, A2KD does a 

cross-document co-referencing of entities, non-entity 

arguments of relations and events, and the relations 

and events themselves. For entities, this co-

referencing depends, among other things, on whether 

the entities are linked to the same ID in the external 

KB (or to the same NIL-cluster ID) as a result of 

entity linking (or NIL-clustering). For non-entity 

arguments, this co-referencing depends on the type 

and the textual span of the arguments. For relations 

and events, the co-referencing largely depends on the 

type of the relation or event, the roles of its 

arguments, and the particular entities or non-entity 

objects that form the arguments of that relation or 

event. Such a co-referencing also achieves a de-

duplication of artifacts at the corpus level. Once the 

                                                           
2
 BBN’s NIL-clustering is not part of the A2KD 

system, but was used as an alternative to UIUC’s 

NIL-clustering in some of our submissions 



entities and non-entity arguments have been de-

duplicated, they are uploaded to the KB. This is done 

so that the subsequent relation and event de-

duplication stages have access to non-duplicate 

arguments. 

 

Thereafter, A2KD does a final step called KB 

Resolution which aims to fix certain kinds of 

discrepancies that may still exist in the KB. KB 

Resolution also does a more sophisticated cross-

document co-referencing of events. 

 

A2KD provides the end user the ability to search and 

view the content of the KB, or to dump the summary 

of the content to flat files using an in-built reporting 

module. For submission to TAC, we extended the 

reporting module to dump the entire content of the 

KB in the TAC specified format. 

 

3. Algorithms Used in the A2KD System 

 

In this section we will briefly describe the various 

algorithms used in A2KD system. 

 

3.1 Within Document Entity Co-

reference provided by UIUC 

(Illinois-Coref) 

 

UIUC’s DEFT Illinois Co-reference resolver is based 

on the Illinois-Coref system described in (Peng et. al. 

2015), and uses models trained on the ACE 2004 

dataset
3
. The Illinois-Coref system uses a machine 

learning approach to co-reference, with an inference 

procedure that supports straightforward inclusion of 

domain knowledge via constraints. The system first 

uses heuristics based on Named Entity Recognition, 

syntactic parsing, and shallow parsing to identify 

candidate mentions. A pairwise scorer generates 

compatibility scores for pairs of candidate mentions 

based on extracted features, subject to linguistic 

constraints. A left-to-right inference procedure then 

determines the optimal set of links to retain, 

incorporating constraints that may override the 

classifier prediction for a given mention pair. Illinois-

Coref incorporates resources that allow detection of 

non-referring phrases and gender agreement between 

candidate mention pairs. 

 

Illinois-Coref uses Illinois Named Entity Recognizer 

(INER, described (Redman et. al. 2016)) for Named 

Entity Recognition. During the integration of llinois-

Coref in A2KD, we qualitatively determined that 

Illinois-Coref’s entity-types were not very reliable. 
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On the other hand, we found that the entity-types 

generated by INER were much better. We, therefore, 

decided to replace entity-types generated by Illinois-

Coref with those generated by INER. However, we 

subsequently determined BBN’s EAL algorithm and 

Stanford’s SF algorithm to be the most reliable 

algorithms for entity-types. Therefore, in the final 

version of A2KD we decided to replace Illinois-

Coref’s entity-types with those coming from BBN’s 

EAL algorithm, or Stanford’s SF algorithm or INER, 

in that order. 

 

3.2 Within Document Entity Co-

reference provided by Stanford 

(StanfordCoref) 

 

The Stanford algorithm for Chinese within document 

co-reference is described in (Lee et. al. 2013). It uses 

a sieve architecture that applies a battery of 

deterministic co-reference models one at a time from 

highest to lowest precision, where each model builds 

on the previous model’s cluster output. The two 

stages of the sieve-based architecture, a mention 

detection stage that heavily favors recall, followed by 

co-reference sieves that are precision-oriented, offer a 

way to achieve both high precision and high recall. 

Further, this approach makes use of global 

information through an entity-centric model that 

encourages the sharing of features across all mentions 

that point to the same real-world entity. 

 

3.3 Entity-Linking provided by RPI 

(RPI_EDL) 

 

RPI’s Entity-Linking algorithm utilizes a domain and 

language independent system (Wang et al., 2015), 

which is based on an unsupervised collective 

inference approach. Given a set of entity mentions M 
= {m_1, m_2, ..., m_n}, this system first constructs a 

graph for all entity mentions based on their co-

occurrence within a paragraph. Then, for each entity 

mention m, it uses the surface form dictionary <f, 
e_1, e_2, ..., e_k>, where e_1, e_2, ..., e_k is the set of 

entities with surface form f according to their KB 

properties (e.g., labels, names, aliases), to locate a list 

of candidate entities e ∈ E and compute the 

importance score by an entropy based approach 

(Zheng et al., 2014). Finally, it computes similarity 

scores for each entity mention and candidate entity 

pair <m, e> and selects the candidate with the 

highest score as the appropriate entity for linking. For 

Chinese, this system first translates mentions into 

English using name translation dictionaries mined 

from various approaches described in (Ji et al., 2009), 
then applies the same entity linking approach 

described above. 

https://catalog.ldc.upenn.edu/LDC2005T09


 

3.4 NIL-clustering provided by UIUC 

(Illinois Wikifier) 

 

UIUC’s DEFT Illinois Wikifier wraps the Cross-

Lingual Wikifier described in (Ratinov et. al. 2011) 

and adds a NIL-clustering component. The Cross-

Lingual Wikifier uses the inter-language links from 

Wikipedia
4
 entries in 12 languages to train a set of 

cross-lingual embeddings based on words and 

Wikipedia titles in the target languages. Monolingual 

embeddings are computed for Wikipedia titles in 

each target language, replacing the titles to lexical 

contexts. Each language's monolingual embeddings 

are projected into a common space with English 

monolingual embeddings using alignment signals 

from the inter-language Wikipedia links. Dictionaries 

matching tokens and Wikipedia titles in each target 

language to Wikipedia titles in English are used to 

identify strings in input documents that may 

correspond to Wikipedia entries, and identify a set of 

candidate entries as the possible targets. A ranker 

computes the similarity of the context of the 

predicted mention with that of each candidate title to 

select the most likely title. The context is based both 

on the lexical embeddings of the predicted mention 

context, and a representation of predicted mentions 

and their targets in the mention context. A linear 

ranking SVM model is trained to combine these 

inputs, and the best-scoring candidate is used as the 

predicted title. 

 

Some mentions will be identified as likely to refer to 

an entity, but have no viable target Wikipedia titles. 

The Nil Clustering component groups these unlinked 

mentions based on their character-level Jaccard 

similarity, using thresholds tuned on the NIST TAC 

2016 Entity Discovery and Linking data set
5
. These 

thresholds set a minimum match on the character-

level overlap between mentions and also the number 

of mentions that must surpass this threshold to allow 

formation of a group.  The identifiers of such groups 

are set to the same value, indicating that they refer to 

the same unknown entity. 

 

3.5 BBN’s version of NIL-clustering 

(BBN_NilClustering) 

 

BBN implemented a naïve NIL-clustering algorithm 

to cluster together similar entities that could not be 

assigned a wikified ID by RPI_EDL algorithm. For 

each of the entities without a wikified ID, a canonical 
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mention is selected. The selected canonical mention 

is the NAM mention with the longest span. If a NAM 

mention is not available, we select the NOM mention 

with the longest span. Thereafter, these entities are 

merged based on exact match of the selected 

canonical mention’s text. However, entities with 

differing types are not merged together.  

 

3.6 Relation Extraction (SF) algorithm 

provided by Stanford (StanfordSF) 

 

The algorithm uses a rule-based extractor along with 

a self-trained supervised extractor. The rule based 

extractor uses rules based on dependency graph 

structure, surface features, co-reference-chains, and 

edit-distance between an organization-name and a 

URL (to infer org:website relations). The self-trained 

supervised system is a logistic-regression based 

classifier with manually-crafted features and a Long 

Short Term Memory network classifier. This is 

further described in (Zhang et. al. 2016). 

 

3.7 BBN’s Relation Extraction 

algorithm (BBN_SF) 

 

BBN’s relation extraction or Slot Filling algorithm 

used for Chinese combines a set of Neural Network 

models and a pattern-based extractor. The algorithm 

is described in (Min et. al. 2017).  The Neural 

Network models are two sets of Convolutional 

Neural Network (CNN) models, trained from ERE 

and an internally annotated dataset respectively. The 

pattern-based extractor applies proposition and 

lexical patterns to text to find relations. The Slot 

Filling component applies the CNN extractors and 

the pattern-based extractor sequentially, and takes a 

union of their results. 

 

3.8 BBN’s Event Extraction (EAL) 

algorithm (BBN_EAL) 

 

For event extraction, we used BBN’s system that was 

submitted to EAL track of last year’s TAC 

evaluations. BBN’s algorithm employs a simple form 

of joint inference, applies a variety of document-level 

inference rules, and a sieve-based event linking 

system to find events at the document level. 

 

4. Chunk Alignment and Document-Level 

Integration 

 

Chunk alignment is the process of co-referencing an 

entity from a certain “pivot” algorithm with entities 

from non-pivot algorithms by aligning the mention-

spans of non-pivot entities to the mention-spans of 

pivot entities. This helps in ensuring that—despite 



coming from unrelated source algorithms—the 

wikified or NIL-cluster ID for an entity, and the 

relations or events that it takes part in, all refer to the 

same entity. 

  

For example, if from a certain document, the Illinois-

Coref algorithm extracts a PER entity “Barack 

Obama”, while RPI_EDL extracts the same entity as 

“President Barack Obama”, chunk alignment ensures 

a mapping between “Barack Obama” and “President 

Barack Obama” so that the wikified ID of “President 

Barack Obama” can be assigned to the Illinois-Coref 

entity “Barack Obama”. Additionally, if StanfordSF 

extracts the same entity as “US President Barack 

Obama”, chunk alignment ensures that Illinois-

Coref’s “Barack Obama” can replace StanfordSF’s 

“US President Barack Obama” in any relations the 

latter is an argument of. A2KD always treats the 

entity coref algorithm as the pivot algorithm. 

 

We call this process of using entity alignments to 

merge relevant entity-level attributes or to replace 

entities from non-pivot algorithms with entities from 

the pivot algorithm document-level integration. 

Document-level integration essentially creates a 

composite data-structure (a composite 

HltContentContainer object) that contains output of 

all the algorithms in a way that appears to be the 

output of a single composite algorithm. 

 

A2KD’s chunk alignment uses matching rules, as 

modified by algorithm-specific configurations, to 

determine if two textual spans (chunks) should be 

aligned to each other. The following matching rules 

are applied in disjunction with each other and in the 

order that they are listed in.  

 

R1 (exact match): Two textual chunks should be 

aligned if their start and end offsets in the document’s 

text match, and the chunks represent the exact same 

string. 

 

R2 (no prepositions match): Two textual chunks 

should be aligned if their end offsets match, and if the 

longer chunk does not contain any prepositions (e.g. 

“Barack Obama” should match with “President 

Barack Obama” but not with “daughter of Barack 

Obama”). 

 

R3 (exact head match): If the two textual chunks 

have head spans, they should match if and only if the 

head-spans pass the R1 (exact match) test (e.g. 

“daughter of Barack Obama” should match 

“daughter” if both the spans for “daughter” have the 

same offsets in the document text). 

 

In addition to the above rules, the following 

additional rules are applied if either text-span is an 

appositive mention. These rules were added to handle 

the mentions that come out of the BBN_EAL 

algorithm, which outputs appositives along with the 

modified noun-phrase, e.g. "US Senator from 

Massachusetts, Elizabeth Warren". This span would 

not match with either "US Senator from 

Massachusetts" (span-end not matching) or 

"Elizabeth Warren" (presence of a preposition).  

 

R_APPO_1: If either mention is appositive and has a 

head span, we should align the two mentions in 

question only if the appositive’s head span matches 

with the other mention based on rule R2. 

 

BBN_EAL uses the first child mention of an 

appositive as its head, so for the above example of 

appositive mention, the head from BBN_EAL would 

be "US Senator from Massachusetts", which would 

match with “US Senator from Massachusetts” 

coming from another algorithm. However, this would 

still not match if the mention coming from the other 

algorithm was “Elizabeth Warren”. To handle cases 

like those, we apply the following rule if rule 

R_APPO_1 has failed in finding the match. 

 

R_APPO_2: If either mention is appositive and has a 

head span, and rule R_APPO_1 does not result in a 

match, the two mentions in question should match if 

the remaining span of the appositive mention (span 

without the head) matches with the other mention 

based on rule R2. 

 

In addition to matching rules, chunk alignment also 

makes use of the following algorithm-specific 

configuration. 

 

useRelaxedAlignmentRule: This configuration allows 

a chunk from an algorithm to align with a pivot 

chunk if it is contained in the pivot chunk, bypassing 

the other more specific rules. This kind of “relaxed” 

alignment was added to address the issue of some 

Illinois-Coref entities with very long spans missing 

any alignment with StanfordSF or BBN_EAL entities 

at all. The types of mentions to be aligned, and also 

the types of the entities that the mentions map to, 

must nonetheless match in order to weed out noisy 

alignments. Currently, this configuration is used only 

for StanfordSF and BBN_EAL entities when the 

entity coref algorithm is Illinois-Coref and the 

language is English. 

  

5. Cross-Document De-duplication 

 



After integrating artifacts from various algorithms at 

the document level, A2KD does a merging or de-

duplication of these artifacts at the corpus level. This 

is done in order to ensure uniqueness of these 

artifacts. For example, if there are entities from two 

or more different documents that link to the same 

wikified ID, they are essentially a single real world 

entity, and are therefore merged by A2KD to create a 

single Entity object. Similarly, if there’s a 

per:resident relation for that entity that is extracted 

from two or more documents, all instances of that 

relation need to be merged to ensure that A2KD has 

justifications for the same real world relation from all 

the documents that relation appeared in. Note that 

merging of events in this stage is only partial, in the 

sense that the merged events are required to have the 

exact same set of entities or non-entity objects as 

arguments. So, while two contact.meet events with 

the same entity and date arguments will be merged 

together, they will not be merged with a contact.meet 

event with the same entity and date arguments but an 

additional place argument. Such merging happens in 

the KB Resolver stage. 

 

When merging artifacts, A2KD makes sure that the 

final merged or de-duplicated artifact contains all the 

relevant information from artifacts contributing in the 

merging. This includes taking a union of all the 

provenances. In this section, we will describe what 

forms the basis to merge artifacts of different types 

(entities, non-entity arguments, relations, and events) 

and how various attributes (like confidence and 

provenances) for those artifacts are merged. 

 

Table 2 gives a list of attributes for different artifact 

types that A2KD uses to determine the uniqueness of 

artifact of that type. 

 

Merging of the artifacts entails merging their 

attributes. The attributes determining the uniqueness 

of an artifact do not need any merging since they are 

shared across all the artifacts to be merged. Other 

attributes do require merging. Merging of 

provenances or justifications for any artifact type is 

done by taking a union of provenances or 

justifications attached to all the contributing artifacts 

that are taking part in the merging. So, for entities, 

the merging of provenances would entail taking a 

union of all the entity-mentions for the contributing 

entities. For relations, merging of provenances would 

entail taking a union of justifications from all the 

documents that the contributing relations have 

appeared in, and so on. 

 

Merging of the artifacts entails merging their 

attributes. The attributes determining the uniqueness 

of an artifact do not need any merging since they are 

shared across all the artifacts to be merged. Other 

attributes do require merging. Merging of 

provenances or justifications for any artifact type is 

done by taking a union of provenances or 

justifications attached to all the contributing artifacts 

that are taking part in the merging. So, for entities, 

the merging of provenances would entail taking a 

union of all the entity-mentions for the contributing 

entities. For relations, merging of provenances would 

entail taking a union of justifications from all the 

documents that the contributing relations have 

appeared in, and so on. 

 

Artifact Type 
Attributes determining the 

uniqueness of the artifact 

Entity 
Wikified or NIL-cluster ID + 

Entity Type 

Non-Entity Text 

Chunk (e.g. Date, 

Title, Number, 

Temporal Value 

etc.) 

Value of the text chunk + Type 

of the artifact (if the artifact has 

a type) 

Relation or Event 

Argument 

Argument Role + Uniqueness 

attributes depending on the 

artifact-type of the argument 

Relation 
Relation Type + Uniqueness 

attributes of all the arguments 

Event 
Event Type + Uniqueness 

attributes of all the arguments 

Table 2 List of attributes determining uniqueness 

of artifacts 

Merging of the artifacts entails merging their 

attributes. The attributes determining the uniqueness 

of an artifact do not need any merging since they are 

shared across all the artifacts to be merged. Other 

attributes do require merging. Merging of 

provenances or justifications for any artifact type is 

done by taking a union of provenances or 

justifications attached to all the contributing artifacts 

that are taking part in the merging. So, for entities, 

the merging of provenances would entail taking a 

union of all the entity-mentions for the contributing 

entities. For relations, merging of provenances would 

entail taking a union of justifications from all the 

documents that the contributing relations have 

appeared in, and so on. 

 

The following subsections describe how other 

attributes are merged. 

 

5.1 Merging Entities 

 

Merging Canonical Mentions 



 

The A2KD system stores a KB-wide canonical 

mention for each entity, for use in the A2KD UI 

when viewing information for an entity. It is possible 

for entities with different canonical mentions to have 

the same wikified or NIL-cluster ID. For example, 

the canonical mention for an entity can be “President 

Obama” in one document, “Barack Obama” in 

another document, and “POTUS 44” in yet another 

document. These canonical mentions can also have 

different confidences. For example, the entity coref 

algorithm can be 100% confident that “President 

Obama” is the correct canonical mention for the 

entity it extracted from one document, but only 95% 

confident that “POTUS 44” is the canonical mention 

of an entity extracted from another document.  

 

The value of the merged canonical mention is 

determined as the most frequent value of the most 

confident canonical mentions of the entities to be 

merged. The confidence of the merged canonical 

mention is the same as the confidence of the merged 

entity (see below). 

 

Merging Entity Confidences 

 

The confidence of the merged entity is a weighted 

average of confidence of individual entities, weighted 

by number of entity mentions linked to each entity. 

 

5.2 Merging Relations 

 

Merging Relation Confidences 

 

The confidence of a merged relation is a weighted 

average of confidence of the individual relations, 

weighted by the number of provenances of each 

relation. 

 

Merging Relation Argument Confidences 

 

The confidence of a merged argument is a weighted 

average of the confidence of that argument in the 

contributing relations, weighted by the number of 

provenances of that argument in the contributing 

relations. If the number of provenances is zero for 

any argument of the relation, the weight used for the 

weighted average is the number of provenances of 

parent relation. 

 

5.3 Merging Events 

 

Merging Event Confidences 

 

The confidence of a merged event is a weighted 

average of the confidence of the individual events, 

weighted by the number of provenances of each 

event. If an event does not have a confidence 

(BBN_EAL produces events without a confidence 

value), its confidence value is taken as the minimum 

of the confidence values of its arguments. If none of 

the arguments has a confidence value either, a default 

value of 0.5 is used. 

 

Merging Argument Confidences 

 

The confidence of a merged argument is a weighted 

average of the confidence of that argument in the 

contributing events, weighted by the number of 

provenances of that argument in contributing events. 

If the number of provenances is zero for any 

argument of the event, the weight used for the 

weighted average is the number of provenances of 

parent event. If the confidence value for an argument 

is not available, the confidence of the parent event is 

used. If the confidence of the parent event is not 

available either, a default value of 0.5 is used. 

 

6.  KB-Level Processing (KB Resolution) 

 

In the KB produced by above mechanism, we could 

still find certain inconsistencies. For example, we 

often found that more than one entity—with differing 

types—were assigned the same wikified (or NIL-

cluster) ID. Sometimes this could be attributed to 

limitations in entity-typing of the IE algorithms, 

while other times this was due to a limitation of the 

chunk alignment algorithm. Similarly, we saw 

opportunities to improve the output of certain 

algorithms in ways that would make more sense, or 

to make the content of the KB more presentable to an 

end-user. For example, we found that StanfordSF can 

sometimes assign very high confidence values to 

many incorrect relations. In order to fix such issues, 

we run a post-processing step in A2KD which we call 

KB Resolution (since it attempts to resolve the KB to 

a more coherent state). 

Resolving Multiple Entities with the same 

Wikified ID 

A qualitative analysis of the cases where multiple 

entities were linked to the same wikified or NIL-

cluster ID showed that the linked entities usually 

differed in their type (e.g. JFK (LOC) and John F. 

Kennedy (PER) would both be linked to the wikified 

ID for John F. Kennedy (PER)). The correct entity 

out of the ones linked would usually be the entity 



with the most mentions. We therefore resolved this 

issue by keeping the entity with the most entity 

mentions, and removing all other entities from the 

KB. In order to ensure overall consistency, we also 

removed any relations or events that contained the 

removed entities as an argument. While we did not 

do a quantitative impact analysis on SF or EAL 

scores for any fixes made in KB Resolution stage, we 

did manually review sample output. A qualitative 

inspection of the entities (with their corresponding 

relations and events) removed showed that most 

deletions were appropriate. 

Resolving Confidences for StanfordSF Relations 

We scale down the confidence of all relations to 70% 

of the StanfordSF-assigned confidence. We 

experimented with raising the confidence of relations 

with many justifications, and with further lowering 

the confidence of relations for which high-frequency 

arguments were not often linked, but these changes 

had little effect. 

Resolving Entities with Incorrect Mentions 

Due to limitations of our chunk alignment algorithm 

or the output of coref or entity linking algorithms, it 

is possible for a merged entity to have some incorrect 

mentions that actually belong to a different entity. 

For example, when both George H.W. Bush and 

George W. Bush appear in a document, it is possible 

for the coref algorithm to mix up a mention of 

“Bush” for George H.W. Bush with a mention of 

“Bush” for George W. Bush. If the mentions for 

either entity are too few and the confidences assigned 

to them are nearly same, the mixed up mention can 

result in the chunk alignment algorithm aligning 

George W. Bush from coref algorithm with George 

H. W. Bush from entity linking algorithm, and 

merging their mentions. For the final entity for 

George W. Bush, it is possible for there to be a small 

set of mentions with canonical string George H.W. 

Bush depending on how many documents the two 

entities appeared in and were co-referenced 

incorrectly in. 

To address such cases, for entities with a very high 

number of mentions, we look for mentions that have 

canonical strings that represent fewer than 15% of all 

of the mentions. These mentions are split into 

separate entities. Relations and events involving these 

entity mentions as arguments are also edited to point 

to the correct entity. Note that the split entity would 

still have the same wikified (or NIL-cluster) ID as it 

had originally. Since, this step of entity-splitting is 

done after the step of dropping entities with minority 

type that have the same wikified (or NIL-cluster) ID 

(as explained above), we do not end up losing the 

split entities. 

Cross-Document Event Co-reference 

The event co-referencing that happens earlier in 

A2KD (as described in Section 5.3) merges events 

that have the exact same set of arguments. This may 

be insufficient in cases where the same real world 

event appears with different sets of arguments in 

different documents. To address this issue, in the KB 

Resolution stage, we take an additional pass at cross-

document event co-referencing. 

We use an implementation of the cross document 

event co-reference system used by BBN in the 2016 

TAC Event Arguments evaluation. It uses high 

precision rules based on events, arguments, roles, and 

cross document entity co-reference or EDL to 

determine which events to link.  An event is a 

collection of event arguments of identical event type; 

an event argument consists of a filler (entity, a phrase 

such as "twelve monkeys" or "life in prison", or a 

time), a role, an event type, and a probability 

distribution over realis values. The overall function 

of the cross document event co-reference algorithm 

can be thought of as a process of filling in the third 

partition of a tripartite graph. This graph consists of 

partition (A), the event arguments; partition (B), the 

events themselves; and partition (C) the cross 

document events, where an edge between (A) and (B) 

indicates a membership relation of an argument to an 

event, and an edge between (B) and (C) represents an 

equivalence relation between events. 

 

(A) and (B), and all edges between them come from 

the EAL output of the A2KD KB. We discard any 

fillers from (A) that have an entirely Generic realis, 

and any roles not used in any of our rules. The edges 

between (B) (events) and (C) (cross document 

events) are built in two steps: (1) by joining any pair 

of events that share at least two arguments in the 



same role/filler combination (for a limited set of 

roles), have no more than a total of eight fillers 

between the two events, and have no more than four 

fillers in any resulting role; (2) by a reification 

process described below.  

 

For efficiency purposes, step (1) of forming the cross 

document events is done via a partition by event type, 

and a partition by shared event arguments. A 

limitation of this design is that the edges initially 

output by (1) are not equivalence relations, because 

each event will appear in a different partition (or 

multiple partitions) and be processed separately, thus 

the initial links from (B) to (C) are not proper 

equivalence relations. To make them equivalence 

relations, we reify the output so for any three events 

(x), (y) and (z), where (x), (y) are in (C_1) and (y), 

(z) are in (C_2), (C_1) and (C_2) become the same 

partition. This is done via a simple connected 

components algorithm using a breadth-first search 

across partitions (B) and (C). Finally, we form 

confidence and realis values for the output events by 

taking an average weighted by the amount of 

justification each has. 

7. Experiments and Results 

 

Dataset Used 

 

For our experiments to evaluate the A2KD system, 

we used the datasets used for TAC evaluations in 

2016
6
. 

 

The dataset used for our English EDL experiments 

was a set of 169 documents, out of which 84 were 

newswire documents and the remaining were 

discussion forum documents. For our English SF 

experiments, the dataset consisted of a total of 5387 

documents, 3836 out of which were newswire 

documents, and the remaining were discussion forum 

documents. 

 

Given the constraints of time, we were not able to do 

experiments or scoring with A2KD for EAL, or for 

Chinese EDL or SF. 

 

Experiments Run 

 

Most of our experiments dealt with improving the 

EDL scores for English. This was chosen as the main 

                                                           
6
 http://nlp.cs.rpi.edu/kbp/2016/data.html 

focus because the SF and EAL scores depended on 

the quality of EDL output. Below we describe our 

EDL and SF experiments for English. 

 

English EDL Experiments 

 

Most of the English experiments were run without 

KB Resolver. This was because with our initial 

experiments, we found KB Resolver to have only 

marginal effect on the EDL scores, and also because 

we identified more scope of improvement in the core 

A2KD modules of chunk alignment and document-

level integration. 

 

Most of our experiments also did not include UIUC’s 

NIL-clustering, since it became available a little later. 

Also, note that for EDL experiments, the chunk 

alignment configuration useRelaxedAlignmentRule 

(as described in section 4) was not used. This rule 

was added during SF score optimization as will be 

explained in the following sub-section. Nonetheless, 

adding this rule did not have any effect on the final 

best EDL scores that we obtained with our EDL 

experiments. 

 

For our EDL experiments, we focused only on the 

strong_typed_mention_match metric, and all the 

scores we report here pertain to that. These scores are 

summarized in Table 3. Note that for some of the 

experiments, we failed to record the P or R values; 

these are marked as NA in the rows corresponding to 

those experiments. 

 

Our baseline EDL F-score was 0.426. This was using 

mention-heads from BBN_EAL and entity-types 

from StanfordSF and INER (in that order). 

Subsequently, we decided to prefer entity-types from 

BBN_EAL over StanfordSF, since we qualitatively 

observed BBN_EAL entity-types to be the most 

reliable of all IE algorithms used. Since the quality of 

entity-type reassignment depends on the quality of 

chunk alignment, we made certain improvements to 

the latter. We added the alignment rules R_APPO_1 

and R_APPO_2 (as described in Section 5) to better 

align appositive mentions. We also found that the 

A2KD system was not providing the text from 

HEADLINE element of newswire documents to the 

algorithm-modules. This was resulting in missing any 

mentions from the headline text. After fixing this, 

and including a couple other small fixes like 

dropping the leading determiner from a mention-

span, and dropping certain mentions that were group 

words (like people, group, crowd, etc.), the EDL F-

score showed significant improvement and jumped to 

0.512. 

 



Neither Illinois-Coref nor RPI_EDL extracts names 

of posters from discussion forum (DF) documents as 

mentions. Each DF post has the poster name 

mentioned in its metadata. This made us augment the 

A2KD KB with discussion forum poster names as a 

post-processing step. By doing that, we saw an 

increase of nearly 6.6% in the EDL F score. 

 

On this version of A2KD, we ran KB Resolver, and 

got a small improvement of 0.3% in F-score. Note 

that none of the experiments reported until this point 

had KB Resolver run on the final KB. From this point 

onwards, all improvements were done as post-

processing steps augmenting the KB produced by KB 

Resolver. 

 

Similar to adding poster names from DF documents, 

we also added text from AUTHOR elements of 

newswire documents as mentions. This 

implementation had a small bug, however, which 

extracted the text from author elements as is, even 

when it had author names followed by their 

affiliation (organization names). We fixed this bug 

before our final submissions, but not for this 

experiment, which got us a small increase in F-score 

of 0.2%. 

 

We then realized that our A2KD output also included 

plural nominal mentions, which the TAC reference 

files did not expect. Dropping plural nominals 

brought the F-score to 0.630. 

 

Features/Improvements P R F 

Baseline (with BBN_EAL 

mention heads) 

0.406 0.449

     

0.420 

BBN_EAL types + better 

chunk 

alignment+headline+grou

p-word fix 

0.456 

   

0.583

    

0.512 

Using DF poster names 0.499 0.687

    

0.578 

Above improvements with 

KB Resolver 

0.505 0.683 0.581 

Using newswire author 

names 

NA NA 0.583 

Dropping plural nominals 0.583 0.686 0.630 

Dropping long mentions NA NA 0.651 

Changing type of  

“government” from NAM 

to NOM 

NA NA 0.674 

Table 3 Summary of English EDL Experiments 

We found that some of the mentions were too long. 

These were mostly bogus mentions that started with a 

URL. We also found that filtering out nominal 

mentions with more than a certain number of tokens 

helped improve the scores. We experimented with 

dropping nominal mentions that were longer than 2 

tokens or 1 token, and found that we got the best 

scores by dropping nominal mentions longer than a 

single token. By dropping bogus mentions and 

nominal mentions longer than one token, we could 

improve the F-score to 0.651. 

 

As a final post-processing step, after finding that 

numerous instances of the mention “government” 

were tagged with type NAM instead of NOM, we 

made a specific fix for these cases to change the 

mention type to NOM. This gave us an improvement 

of 2.3% in F-score. 

 

After the above improvements to the EDL system, we 

shifted our focus toward improving the SF scores. 

 

English SF experiments 

 

For our SF experiments, we report only the 0-hop 

micro P, R and F scores. A summary of the iterative 

improvements can be found in Table 4 (rounded to 3 

significant digits). 

  

Our baseline F-score was 0.1026. We found that we 

were losing a good number of relations from 

StanfordSF because many of its entities were not 

getting aligned with Illinois-Coref entities. This was 

resulting in dropping of any relations that had these 

unaligned entities as arguments. On analyzing this 

issue, we found that the failure of alignment was due 

to some very long mention-spans coming out of 

Illinois-Coref which were failing alignment with 

shorter yet reasonable StanfordSF mention spans 

given our existing set of chunk alignment rules. This 

made us add the useRelaxedAlignmentRule rule for 

chunk alignment (as described in section 4). After 

adding this rule, our SF F-score moved up by a little 

over 1% to 0.1143. 

 

Features/Improveme

nts 

P R F 

Baseline 0.356  0.060  0.103 

Relaxed chunk 

alignment 

0.313  0.070  0.114 

Using naïve NIL-

clustering 

0.335  0.071  0.117 

Fixes in A2KD and 

StanfordSF 

0.379  0.090  0.145 

Using UIUC NIL-

clustering 

0.373  0.090  0.145 

Table 4 Summary of English SF Experiments 

The other main reason for low F-score was found to 

be absence of corpus-level NIL-clustering. Since 



UIUC’s NIL-clustering was still not a part of A2KD, 

we used BBN’s naïve NIL-clustering implementation 

instead. With naïve NIL-clustering, the scores 

improved a tiny bit to 0.1174. We subsequently fixed 

a few bugs in A2KD and updated StanfordSF with a 

version that produced provenances for relation 

arguments. Additionally, we made a fix in A2KD to 

reassign entity-types for entities that filled an SF slot 

based on the expected type for that slot. For example, 

if an LOC entity appeared in the “Victim” slot of a 

Life.Die relation, A2KD would reassign the type of 

that entity to PER. These changes brought the score 

to 0.1453. Finally, we ran an experiment with all the 

above fixes but using UIUC NIL-clustering instead of 

BBN’s naïve NIL-clustering and the final best F-

score that we obtained was 0.1449. 

 

8. Description of Systems Submitted for 

Evaluation 

 

We submitted output KBs from 10 different variants 

of A2KD system for evaluations: 4 for Chinese, 4 for 

English and 2 for cross-lingual evaluation. 

 

The variants of Chinese systems differed in the NIL-

clustering algorithm employed (UIUC or BBN), and 

whether the BBN SF algorithm was optimized for a 

higher precision or a higher recall. These systems 

were as follows: 

 

A2KD_Adept_KB_CMN_1 (CMN_1): This system 

used UIUC’s NIL-clustering and BBN SF component 

optimized for higher precision. 

 

A2KD_Adept_KB_CMN_2 (CMN_2): This system 

used UIUC’s NIL-clustering and BBN SF component 

optimized for higher recall. 

 

A2KD_Adept_KB_CMN_3 (CMN_3): This system 

used BBN’s naïve NIL-clustering and BBN SF 

component optimized for higher precision.  

 

A2KD_Adept_KB_CMN_4 (CMN_4): This system 

used BBN’s naïve NIL-clustering and BBN SF 

component optimized for higher recall. 

 

Similar to Chinese variants, the variants of English 

systems also differed in the NIL-clustering algorithm 

employed. In addition, these variants differed in 

whether a fix for per:title relations (“pertitle fix”) was 

added on top of the output of the Stanford SF 

algorithm. This fix would look for per:title relations 

where the same title was attributed to more than one 

person entities in the same sentence, and would 

resolve the attribution in favor of the person entity 

whose textual span is closer to the span of the 

extracted title. The English variants were as follows: 

 

A2KD_Adept_KB_ENG_1 (ENG_1): This system 

used UIUC’s NIL-clustering and had the pertitle fix. 

 

A2KD_Adept_KB_ENG_2 (ENG_2): This system 

used UIUC’s NIL-clustering and did not have the 

pertitle fix. 

 

A2KD_Adept_KB_ENG_3 (ENG_3): This system 

used naïve NIL-clustering and had the pertitle fix. 

 

A2KD_Adept_KB_ENG_4 (ENG_4): This system 

used naïve NIL-clustering and did not have the 

pertitle fix. 

 

For the cross-lingual variants, the only NIL-

clustering algorithm used was BBN’s naïve NIL-

clustering, since UIUC’s NIL-clustering does not 

support NIL-clustering across different languages. 

These systems, therefore, differed only based on 

whether the BBN Chinse SF algorithm used was 

optimized for higher recall or higher precision. 

 

A2KD_Adept_KB_XLING_1 (XLING_1): This 

system used the BBN SF component optimized for 

higher precision. 

 

A2KD_Adept_KB_XLING_2 (XLING_2): This 

system used the BBN SF component optimized for 

higher recall. 

 

9. Results 

 

In this section, we present the scores of our systems.  

  

Since none of our submissions included Spanish, we 

are not presenting the scores of any cross-lingual 

evaluations, since those would be artificially low. 

 

Our scores for monolingual EDL evaluations for 

English and Chinese are listed in Table 5 (to avoid 

repetition, we do not report scores from systems that 

only differ in SF algorithm). We are only reporting 

the scores for strong_typed_mention_match (stmm), 

strong_typed_all_match (stam), 

strong_typed_link_match (stlm), and 

strong_typed_nil_match (stnm) metrics. 

 

For monolingual SF evaluations, we report K3 0-hop 

Average Precision (AP) scores for SF-ALL-Macro 

(sfam-0) and K3 ALL-hop AP scores for LDC-

MEAN-ALL-Macro (lmam-ALL) metrics. We report 

these scores for only our best-performing systems 

(based on SF-ALL-Macro scores). For the ALL-slots, 



EVENT-slots-only and SF-slots-only evaluations, the 

scores for both English and Chinese are listed in 

Table 6. For both English and Chinese, our systems 

with BBN’s naïve NIL-clustering (ENG_3, CMN_4) 

did better than other systems. For the reported 

metrics, ENG_4 did as good as ENG_3. The recall-

optimized algorithm for Chinese (CMN_3) also 

seems to have helped in outperforming other variants. 

 

 

Language System 

Name 

stmm 

F 

stam 

F 

stlm 

F 

stnm 

F 

English ENG_1 0.689 0.493 0.518 0.461 

ENG_3 0.688 0.489 0.513 0.459 

XLI_1 0.570 0.431 0.500 0.342 

Chinese CMN_1 0.608 0.408 0.440 0.332 

CMN_3 0.606 0.408 0.439 0.335 

XLI_1 0.611 0.410 0.443 0.332 

Table 5 System-wise EDL scores 

 

Language Slot-type System 

Name 

sfam-0 

AP 

lmam-

ALL 

AP 

English ALL ENG_3 0.0954 0.0963 

EVENTS ENG_3 0.1490 0.1644 

SF ENG_3 0.0907 0.0807 

Chinese ALL CMN_4 0.0918 0.0899 

EVENTS CMN_4     0.1099 0.1082 

SF CMN_4     0.1141 0.1102 

Table 6 Best scores for K3 SF queries 

10. Conclusion 

 

In this paper, we have described our submissions to 

the TAC CSKB track. Our system, A2KD, is a recipe 

for combining the multitude of information extracted 

by various open source information extraction 

algorithms in order to populate a Knowledge Base. 

We discussed the mechanism employed by A2KD to 

ensure that the document-level information extracted 

by the contributing algorithms is coherently 

integrated at the corpus-level. The techniques used to 

that end included 1) chunk alignment and document-

level integration, and 2) corpus-level co-referencing. 

The KB Resolution stage then uses information 

available at the corpus-level to further refine the 

quality of the assertions stored in the KB. 

 

We also discussed the experiments we did to improve 

the accuracy of our final A2KD output, and our 

results from this year’s TAC evaluation. 
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