Description of the BOUN System for the Trilingual Entity Detection
and Linking Tasks at TAC KBP 2017

Arda Celebi and Arzucan Ozgiir

Department of Computer Engineering
Bogazici University
Bebek, 34342 Istanbul, Turkey
{ arda.celebi, arzucan.ozgur } @boun.edu.tr

Abstract
This paper describes the BOUN system’s participation in the Trilingual Entity Detection and Linking (EDL)
track in 2017 TAC Knowledge Base Population (KBP) challenge. EDL is important aspect of text analysis and
various tasks like sentiment analysis and opinion mining can benefit from discovering which named entities are
mentioned in the context. For this challenge, we built a simple candidate generator and applied a Maximum
Entropy-based approach for named entity linking. Our system has achieved an F1 score of 52.5% in the “strong
typed all match” metric on the 2017 evaluation set.

1. Introduction

In this paper, we describe the BOUN system, which was designed to compete in the 2017 TAC KBP Trilin-
gual Entity Discovery and Linking (EDL) task (Ji and Nothman, 2016) organized by NIST. Various natural
language processing tasks like sentiment analysis and opinion mining can benefit from discovering which
named entities are mentioned in the context. Hence, being able to achieve EDL with high accuracy affects
the target performance of the dependent tasks.

In this challenge, participants are given a document collection in three languages (English, Chinese and
Spanish) and it is required to automatically identify, classify, cluster and link entity mentions in those docu-
ments to the English Knowledge Base (KB). TAC-KBP-EDL challenge uses the BaseKB! as the reference
KB, which is derived from the Freebase. However, we are not only expected to find known mentions from
the reference KB, but also to be able to detect entity mentions that are not recorded in the KB, which are
called NIL mentions. Moreover, the system should assign the same identification number to the different
occurrences of the same unknown entity throughout the given documents. This is called NIL clustering.
A system is required to identify and classify the following pre-defined entity types in a given text: Per-
son (PER), Geo-political Entity (GPE), Organization (ORG), Location (LOC), and Facility (FAC). Entity
mentions include both name mentions (NAM) and nominal mentions (NOM) for all entity types in all three
languages. Nominal mentions are limited to specific and individual mentions. At the end, the system should
output the starting and ending offset of each detected mention in a given document, its link to reference KB
entry (or NIL link), its entity type, and mention type (NAM or NOM).

In the following sections, we first explain our method of generating candidates and selecting the best candi-
date. We describe our model and its features. Then we introduce the datasets and discuss our results of the
submission and after improvements. Finally, we conclude with the future work.

2. Method

Our method is broken down to two major steps: candidate generation and selection of the correct candidate
as the predicted mention, which is also called named entity disambiguation (NED). Before getting into the

"http://basekb.com

description of those two steps, the following section describes the overall design and the main components
of the system.

2.1. System Design

In order to be able to develop our system fast, we break the system into multiple components. For speed- and
memory-critical jobs, we implemented the corresponding components in C. Those are, candidate generator,
disambiguator and memory server. The rest of the components were implemented in Python. In order to
reduce the load time, we load embedding vectors via our memory server component into the shared mem-
ory, so that candidate generator and disambiguator can directly access and use them from shared memory,
that is, without having to load them. This was especially useful as we frequently update and restart those
components during the research period. Figure 1 depicts the flow of the system.

= @D@@@ = =

Raw Tokenizer+Tagger Tagged Candidate Candidate Disambiguator Predicted
Document (CoreNLP) Document Generator Entities List Annotations

Figure 1: BOUN System Design.

As a preprocessing step, our system uses Stanford Tokenizer and POS Tagger (Toutanova and Manning,
2000). Then, candidate generator produces a list of possible candidate spans and entities in them. As
described in the next section, POS tagged input helps the candidate generator detect the unknown named
entities with a basic rule-based approach. As the disambiguator gets the candidates, it uses the Maximum
Entropy (MaxEnt) model (Berger et al., 1996) to pick the best candidate and outputs the predicted annota-
tions.

In addition to these components, we also developed two web-based user interfaces to maintain our title
database and to examine the output of the disambiguator by running it on a given input text. We believe
these interfaces help us explore our system and its output much faster, reducing development time.

2.2. Candidate Generation

Given input text, our candidate generator detects spans (sequence of words) in given text which possibly
mentions a named entity. For each such span, it outputs all possible known named entities which that spans
corresponds to. Not only known ones, but it also looks for unknown named entities which will be explained
in detail in the Discovering NIL cases section below. Moreover, in order to be able to detect known entities
with typos, we use the off-the-shelf library called “simstring”? (Okazaki and Tsujii, 2010) to index titles so
that we can search them with partial match. As we get the search results, we compare the title of actual
entities with searched span and look at whether the edit distance between them is lower than a threshold. We
use variable threshold depending on the length of the title.

In addition to candidates, our candidate generator also extracts additional information and adds them into its
output so that they can be used by the disambiguator at the next step. For example, the number of times two
entities co-occur in Wikipedia articles is used as additional information.

Building Title Database

As the annotations are done with BaseKB entities, we consider the Freebase (FB) (Bollacker et al., 2008)
as our main source of entities. We filter out entities that are not type of organization, person and location?.

2 Available at http://www.chokkan.org/software/simstring/
3Certain entries (eg. m.07k4cgl which is named “Eurogroup”) are seen in annotated data but their type information
in FB is no specific than “common.topic”. We believe this is due to the fact that we do not have the final version of FB.

Then we use the mapping of FB entity IDs to entity IDs on the DBPedia (Auer et al., 2007) and Wikipedia
knowledge bases in order to be able to make use of information from DBPedia and Wikipedia. We mainly use
this connection to gather as many titles as possible for each entity. Even though we did not use Wikipedia
redirections in this process, DBPedia provides rich but noisy set of titles for each title, along with their
DBPedia Frequencies. For example, “president” is one of the titles for the entity named “Barack Obama.”
If used, whenever we see the word president, our system should mark that word as a candidate mention of
this particular entity. However, that leads to a lot of candidates which are most likely false. Hence, first we
filter out the ones with the frequency of 1. Then, we extend the filtering with a semantic-based approach. By
using word2vec (Mikolov et al., 2013), we learn title embedding of each title from Wikipedia by detecting
the occurrence of each title in Wikipedia text (not anchors) and converting it into a single word. Then we
calculate the cosine distance of each title against the Wikipedia title (converted from ID), which we assume
as the main title of the entity. If the similarity is low, this means that the compared title occurred in different
contexts and thus conveys not the same meaning as the main title. We filtered out the ones with similarity
less than 0.6. We name this similarity measure as title probability, which will be used as a feature during
modelling the disambiguation task.

Assigning Roles to Titles to Help Rule-based Candidate Detection

Named entities can be referred in numerous ways. Sometimes these refering text can be specific or unique
(i.e. main title) to the entity or generic, like her first name, or nominal like “president.” In most of the
cases, these generic cases can be automatically generated from the main title. And in order to identify them
better, we can also assign roles to them. Starting with firstname and surname lists, we look at person type
named entities and check if the main title of the entity can be broken into firstname and surname parts. If so,
we add the firstname and surname as individual titles for that entry and label them with FIRSTNAME and
SURNAME roles. We also create a new title in “surname, firstname” format and label it as MAIN_TITLE.
Moreover, if we detect a title that is also in the nominals list (extracted from 2015 training set), we also
mark them with NOMINAL role. During candidate search, we do not use these titles because many entities
may share these titles. Hence, we search them in the context after we detect the entity through its more
complete title(s), like its main title. Note also that what we do is also a way of populating the title database
automatically. However, due to limited amount of time, we did not apply this approach on entity types other
than person.

Discovering NIL Cases

While it is easy to detect occurrences of titles in given text, we should also be able to detect occurrences
of unknown named entities, which do not have a record in the knowledge base. Such cases are called NIL
mentions. To achieve this, we first use the Stanford Part-of-Speech (POS) Tagger to tag the given text and
then detect the sequences of words that are marked with NNP tag.

In addition to this POS-based method, we also use two rule-based approaches. First, we manually crafted a
short set of rules to catch simple cases like “University of @”, “Mount @” etc. where @ is a slot to match
with NNP-tagged word or phrase. With this approach, we not only detect such occurrences, but also assign
appropriate entity type for each particular case (e.g. LOC for “University of @”). As a second rule-based
approach, we curated a list of first names and surnames. Whenever we detect a first name and a surname
following each other, we mark that span as a candidate NIL case with PER entity type unless there is already
a known person name detected over that span. To make it more robust, we also allow OOV words to match
with first name or surname slots of the rule.

Discovering Nominal Cases

We extracted the set of all nominals seen in the 2015 training set. We detect their occurrences in a given
text and mark them as candidate nominal NIL cases. Since our model is simple, we did not connect those
nominals to other occurring named entities in the context. Instead, we let the system to decide whether a
detected nominal NIL candidate is valid or not. Nevertheless, if there is a nominal associated with a known
named entity in our Title Database (eg. “president” for the entity “Barack_Obama”), in that case, after
detecting that named entity in the context we specifically look for its associated nominal(s) in the context

and we connect them if exists.

2.3. Named Entity Disambiguation

We consider the disambiguation task as a classification task, where each candidate entity is considered
whether it is an actual mentioned entity or not. In other words, we convert the disambiguation task to set
of binary classification tasks and then pick the best scored candidate. We use Maximum Entropy (MaxEnt)
model for the binary classification task. The selection mechanism also considers the case where none of the
candidates has to be chosen by applying a threshold value. In official submission, we discard any candidate
span if none of its candidate entities inside has higher than 0.5 score given by the MaxEnt model. After the
challenge, we improved our decision mechanism by employing a conditional threshold: when the title of the
highest scored named entity is the same as a Wikipedia title and its frequency is higher than 100 in DBPedia
Frequency Dataset, or its frequency is just higher than 1000, then we drop the threshold to 0.1.

MaxEnt Model and Engineered Features

MaxEnt classifier models each case by its feature instances and class label. Basically, the case is converted
and represented in terms of feature instances which can be used by the MaxEnt model to learn which feature
instances are more likely to be seen in a certain class. Feature instances are extracted from the case based
on pre-defined feature templates. In the context of our task, each case corresponds to one candidate named
entity (CNE) in a given span. These feature templates can access various information regarding the case and
generate the feature instances. We use off-the-shelf MaxEnt tool* in our experiments. Each annotation in
the training data set is considered as a positive example during the training process. As we are also capable
of producing candidates, we consider all candidate entities that are not the same as the annotated entity in a
given span as negative examples.

In our experiments, we design two sets of feature templates, one for known named entities and other for
unknown, namely NIL cases. As described below, we generate feature instances for each candidate. The
MaxEnt model considers each feature instance as an identifier clue to model the associated class. To be
precise, feature instances are no different than a string of characters. As given in the second column of
the Tables 1 and 2, we generate instances in the “key=value” format, where “key” is the short name of the
feature and “value” is the value of that feature for the particular case. The ’=’ in between is to make it easy
to read.

FEATURE EXAMPLE FEATURE INSTANCE
ContextScore(CNE) cs=0.87
MaximumEntityContextScore(CNE) mecs=0.70
TitleProbability(TITLE) tp=0.3
TitleOccurrenceProbability(TITLE) top=0.3
NumOfCooccurredEntitiesInContext(CNE) cooc-count=10
NormalizedNumOfCooccurredEntitiesInContext(CNE) | norm-cooc-count=0.05
CooccurrenceDifferencelnSpan(NE) cooc-diff=-10
LogFreq(TITLE) + spanSize(SPAN) If-ss=13+1
MaxCoocOverSpan(SPAN) max-cooc-over=10
NumOfSeenTitlesWRoleInText(CNE) roled-title-count=2
EditDistancePath(TITLE) edp=.....4+++....

Table 1: Description of the Features to Model Known Named Entities.

Table 1 lists the features to model known named entities. ContextScore(-) measure strength of the semantic
relation between the named entity and its surrounding context window of words. We use the BridgeGap
toolkit> (Cao et al., 2017) and trained® it on Wikipedia in order to get the word embeddings and context

* Available at http://homepages.inf.ed.ac.uk/lzhang10/maxent.html
3 Available athttps://github.com/TaoMiner/bridgeGap
®We use following settings: window=10, vector dimension=100, ns=100

vectors of entities. When text is given, we combine the word embeddings around the entity and compare
it with the context vector of that entity, which gives the context score. MaximumEntityContextScore(-)
(MECS) is a similar measure but between co-occurring named entities in a given context. We generate
a context vector for each Freebase (FB) entity by taking the mean of other entity vectors co-occurring in
the Wikipedia documents. This may be interpreted as keeping the co-occurring statistics in the form of a
vector rather than count, which is expected to be more robust. We use Google’s Freebase entity vectors
which have the dimension of 1000. After obtaining the context vector, we calculate cosine distance between
that vector and the vector of all other entities in a given context. This feature calculates the highest score.
TitleProbability(-) (TP) measures the word embedding-based similarity of entity’s title in given input with
respect to its main title. TitleOccurrenceProbability(-) (TOP) is pre-calculated probability of seeing the title
based on the frequency counts provided by DBPedia. Similar to MECS, NumOfCooccurredEntitiesInContext
(COOC-COUNT) calculates how many named entities in the context are seen together with the target entity
in the same document in Wikipedia. Both MECS and COOC-COUNT values represent the strength of
the connection between the target entity and the context from different aspects. The higher they are, the
more likely that the target entity is the valid mention. While these values consider the candidate entity
within its span alone, we also consider a feature that compares that candidate entity with respect to other
candidates under the same span. While COOC-COUNT value increases proportionally to the length of the
context, we also include its normalized version by dividing that value with the number of candidate spans
seen in given text, which is taken into account with NormalizedNumOfCooccurredEntitiesInContext feature.
Another feature CooccurrenceDifferencelnSpan (COOC-DIFF) calculates the difference between COOC-
COUNT value of the candidate and the highest COOC-COUNT value seen in the same span. The more
negative the value is, the less likely that it is not a valid mention as the other candidate with the higher
COOC-COUNT value has better context connections. In order for our system to better model the frequent
entities, we designed a feature (LF-SS) that looks at log frequency of the target entity’s title and number
of candidate entities in the span. The higher the first number is and the lower the second number is, the
more likely that that target entity is valid mention. In order the model to consider the cases where one
span is overlapping with another, MaxCoocOverSpan(-) checks the overlapping spans and find the highest
COOC-COUNT and uses it. Another feature to model known named entity candidate considers how many
times we see its occurrence in given text with the title that has assigned role in our Title Database. The last
feature in the table considers the case when we detect a title with a typo. In that case, we generate the edit
distance traversal path, which represents where the characters are the same (marked with °.”), added (’+’),
removed (’-’), or replaced ("*’). This is especially useful in cases like where we detect an extra middle name
in between the firstname and surname of a known person.

FEATURE EXAMPLE FEATURE INSTANCE
TitleEncoding(TITLE) title-enc=3:2_3:1
OrthographicShape(TITLE) ortho=CcccCccc
SurroundingOrthographicShape(TEXT) surr-ortho=ccc-ccc
NILPersonPOSTagSequence(TAGGED_TITLE) per-tag-seq=NNP_NNP
NILPersonSurroundingPOSTagSequence(TAGGED_TEXT) per-surr-tag-seq=IN_,
NILNonPersonPOSTagSequence(TAGGED _TITLE) nil-tag-seqg=NNP_NNP
NILNonPersonSurroundingPOSTagSequence(TAGGED_TEXT) | nil-surr-tag-seq=IN_,

NILPatternltself () pattern=Univesity_of_@
Nominalltself () nominal=uncle

Table 2: Description of the Features to model NIL Cases.

While all described features are specific to known named entity candidates, we also designed features for
NIL cases as listed in Table 2. TitleEncoding(-) represents each word of the title with its length and log fre-
quency. Frequencies are calculated over the Wikipedia. Words having the same length and similar frequency
can be seen as clustered together in this representation. The model is expected to use this information to
figure out which words make the NIL candidate less likely the valid one. OrthographicShape(-) converts
the title to its orthographic shape by replacing upper cased letters with *C’, lower cased ones with ’c’, digits
with ’d’ and keep the other characters as they are. At the end, we also clip character repetitions to three
characters, if they are longer. We also take into account the orthographic shapes of the previous and next
words of the span with SurroundingOrthographicShape(-) feature. Among these features, we also divided

some features into two groups; the ones for unknown/NIL person and non-person ones. For the first case,
NILPersonPOSTagSequence(-) considers concatenation of POS tags of words in the title and NILPersonSur-
roundingPOSTagSequence(-) combines POS tags of previous and next words of the span. We also have the
same two features for non-person NIL cases, named NILNonPersonPOSTagSequence(-) and NILNonPerson-
SurroundingPOSTagSequence(-), respectively. We expect the model to use this in order to differentiate the
POS tag sequence of person and non-person cases. Another feature NILPatternitself () takes into account the
pattern itself we use to detect NIL cases. Finally, to better model nominals, Nominalltself () feature uses the
nominal itself.

NIL Clustering

During our submission period, we only performed NIL clustering within a document, but not between doc-
uments. However, we later applied a basic string-based approach to cluster NIL entries with the same title.
In our experiments, we run this approach after performing the disambiguation step.

3. Experiments

In these experiments, we consider running our system on English-only documents due to short amount of
research time and lack of expertise in non-English content. Hence the following discussion and results are
only for English.

3.1. Dataset

For training and evaluation, we use datasets provided at the TAC-KBP-EDL challenge. Organizers made
available annotated documents from 2015 and 2016 challenges. We have access to training set from 2015
(2015t), evaluation set from 2016 (2016e) and 2017 (2017e). During the development period, we used the
annotated documents from 2015e for training and 2016e for evaluation purposes. The number of documents
and annotated mention statistics are given in Table 3. Each dataset contains documents from two genres:
newswire (NW) articles and discussion form (DF) text. While NWs exhibit well-written and less noisy
language usage, DFs may contain more casual usage of the language, not to mention quoted text segments
which were supposed to be discarded by our system. In the table, Linkable Name and Linkable Nominal
refers to known entities that are mentioned with their actual name and nominal, respectively. NIL Name and
NIL Nominal are the same cases for unknown entities.

2015t 2016e 2017e
Type NW | DF NW | DF NW | DF
Linkable Name 4,123 | 4,833 || 3,329 | 2,289 || 2,280 | 1,465
Linkable Nominal | 520 | 297 || 1,051 | 538 619 | 270

NIL Name 688 2531 372 1,019 388 1,118
NIL Nominal 369 180 458 175 479 358
ALL 5,700 | 7,841 || 5,210 | 4,021 || 3,704 | 3,211

Table 3: Mention statistics for English documents in 2015, 2016 and 2017 data sets.

Table 3 reveals the fact that number of NIL Name cases are quite high in case of DFs. Specifically the ratio of
them to Linkable Name is getting higher for the newer datasets. Since most of such cases are name mentions
that are very easy to detect with a rule-based approach, such aspect of the dataset makes the final results look
higher.

In addition to these annotated documents, organizers also share a large set of raw documents for further
training purposes. However, we did not make use of these documents in our experiments.

3.2. Evaluation

Evaluation of the system is performed based on three different aspects: mention evaluation, linking eval-
uation and clustering evaluation. The evaluation metric called “strong_typed_mention_match” (NERC)
(Hachey et al., 2014) evaluates mention detection and classification, by considering how accurately it detects
spans and their type. The linking evaluation metric called “strong_typed_all_match” (NERLC) adds linking
performance on top of NERC by measuring how accurate each detected known entity is linked to the right
entry at the reference KB. To evaluate the clustering, Mention CEAF (Luo, 2005) method is used, which
finds the optimal alignment between system and gold standard clusters and evaluates the precision and recall
micro-averaged over mentions. In our experiments, special form of this method called “typed_mention_ceaf”
(CEAFmC) is used, which further constrain clustering evaluation to require correct mention type classifica-
tion. In our experiments, we use the scorer script’ provided by the organizers.

3.3. Results

Our best submission scores are shown in Table 4. Without using any off-the-shelf Named Entity Recognizer
(NER), we achieved F7-score of 52.9 on all English-only documents based on NERC evaluation metric.
When counting the accuracy of the linking capability on top of NERC, which is NERLC, our score drops to
49.4. As we also include the accuracy of clustering, our results drop further to 44.4. Note that we obtained
these results by training out system on only NWs from 2015t and 2016e data sets. Adding DFs on top of
NWs did not change the results much. We believe this is due to the fact that DFs are more noisy data and
most of the annotated cases are NILs. As we explore the results in Table 4, it is easy to notice the high NERC
and NERLC scores in DF documents compared to NW, but comparatively low CEAFmC score in DF due to
high number of NIL cases in DF. In all cases, our recall is much lower than precision.

Newswire Discussion Forms Overall
Metric Pre | Rec I Pre | Rec P Pre | Rec I
NERC 622 | 348 | 44.7 || 755 | 52.3 | 61.8 || 69.1 | 429 | 529

NERLC | 553 | 309 | 39.7 || 729 | 50.5 | 59.7 || 64.4 | 40.0 | 494

CEAFmC | 56.9 | 31.9 | 409 || 59.0 | 40.9 | 48.3 || 58.0 | 36.0 | 444

Table 4: Our submission scores in TAC-KBP-EDL Challenge on English-only documents in 2017e.

There are number of factors to explain the low scores. While not using an off-the-shelf NER but instead
using simple candidate generator might be the main reason, we also detected certain discrepancies after
submission. First, our FB dataset is not up-to-date as there are 164 (out of 6,915; i.e. 2.3%) occurrences
of 58 named entities in 2017e that do not exist in our version of FB. Secondly, we did not model FAC type
named entities so we automatically missed to identify 399 (i.e. 5.7% of all) such occurrences in 2017e test
set. Thirdly, our model is not tuned to detect nominals, especially Linkable Nominals (270 such occurrences
in 2017e; i.e. 3.9% of all). As we add them up, our system already misses up to 12% of the annotations in
the 2017e from the get-go.

After our submissions, we continued to explore new features and improve our system. The final results on
the 2017 test set are given in Table 5. We improved our results 3-4 points in all metrics. This improvement
can be attributed to a number of updates. First, we switched from fix threshold for selecting the best scored
candidate entity to conditional threshold as described in Section 2.3. Secondly, we re-run BridgeGap on
Wikipedia with higher negative sampling value which helped make the context score (CS) feature values
more discriminative. Thirdly, we add new features like LS-SS, NORM-COOC-COUNT, and EDP. Also, we
cleaned our firstname and surname lists. Finally, we implemented simple string based clustering for NIL
cases, which affects only the results in CEAFmC metric.

Table 6 breaks down the results based on entity types in terms of the NERLC evaluation metric. Other than
not handled FAC-type entities, the results indicate that our system is not good at identifying and linking
organization and specifically location type entities.

7 Available at https://github.com/wikilinks/neleval.

Newswire Discussion Forms Overall
Metric Pre Rec i Pre Rec 2l Pre Rec F
NERC 63.8 | 38.5 | 48.1 || 789 | 56.5 | 65.8 || 71.5 | 46.9 | 56.6

NERLC | 56.1 | 339 | 422 || 76.1 | 544 | 63.5 || 662 | 434 | 525

CEAFmC | 57.6 | 34.8 | 434 || 67.7 | 485 | 56.5 || 62.5 | 41.0 | 495

Table 5: Our current best results on TAC-KBP-EDL Challenge on English-only documents in 2017e.

Entity Type | Pre | Rec Fi
PER 70.1 | 60.9 | 65.2
ORG 70.1 | 289 | 409
LOC 12.1 | 17.8 | 144
GPE 76.7 | 442 | 56.1
FAC 00.0 | 00.0 | 00.0

Table 6: Breakdown of the 2017e set results in entity types based on the NERLC metric.

4. Conclusion

In this study, we developed a system that is capable of generating candidate named entities from a given
text and then picking the best possible candidate by using a maximum entropy model. We defined the
disambiguation task as a set of binary classification tasks where we score each candidate based on whether
it can be the right one and then choose the one with the highest score. While such a simple ranking approach
ignores comparing candidates within the same span with each other, we designed a couple of features that
take into account that in-span comparison. As we investigate our submission results, we observed that there
are a number of factors that contribute to their low nature. Our system misses up to 12% of annotations from
the get-go. Our further experiments did not address those issues but explored new features. We increase our
results up to 3-4%.

5. Future Work

We will explore the boundaries of the MaxEnt-based model. First, we will address the factors that play major
role in the results. We will update our FB version to remedy the case of missing named entities. We will
model FAC-type named entities and design better model to handle nominal cases. Secondly, we will replace
our candidate generator with an off-the-shelf NER tool. This way, we will be able to assess the performance
of the MaxEnt-based model better.

6. Acknowledgements

This research is supported by Bogazici University Research Fund Grant Number 11170. Arda Celebi is also
supported by ASELSAN Graduate Scholarship for Turkish Academicians.

7. References

Auer, Soren, Bizer, Christian, Kobilarov, Georgi, Lehmann, Jens, Cyganiak, Richard, and Ives, Zachary.
(2007). Dbpedia: A nucleus for a web of open data. In Proceedings of the 6th International Semantic
Web Conference.

Berger, Adam L., Pietra, Stephen A. Della, and Pietra, Vincent J. Della. (1996). A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):3971.

Bollacker, Kurt, Evans, Colin, Paritosh, Praveen, Sturge, Tim, and Taylor, Jamie. (2008). Freebase: A col-
laboratively created graph database for structuring human knowledge. In proceedings of ACM SIGMOD
International Conference on Management of Data.

Cao, Yixin, Huang, Lifu, Ji, Heng, Chen, Xu, and Li, Juanzi. (2017). Bridging text and knowledge by
learning multi-prototype entity mention embedding. In proceedings of ACL.

Hachey, Ben, Nothman, Joel, and Radford, Will. (2014). Cheap and easy entity evaluation. In Proc. of the
52nd Annual Meeting of the Association for Computational Linguistics (Vol. 2).

Ji, Heng and Nothman, Joel. (2016). Overview of tac-kbp2016 tri-lingual edl and its impact on end-to-end
kbp. Proc. Text Analysis Conference (TAC2016).

Luo, Xiaogiang. (2005). On coreference resolution performance metrics. Proc. HLT/EMNLP.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg, and Dean, Jeffrey. (2013). Distributed repre-
sentations of words and phrases and their compositionality. Proceedings of Neural Information Process-
ing Systems (NIPS).

Okazaki, Naoaki and Tsujii, Jun’ichi. (2010). Simple and efficient algorithm for approximate dictionary
matching. In Proceedings of the 23rd International Conference on Computational Linguistics (Coling
2010), pages 851-859, Beijing, China, August.

Toutanova, Kristina and Manning, Christopher D. (2000). Enriching the knowledge sources used in a maxi-
mum entropy part-of-speech tagger. In Proceedings of the Joint SIGDAT Conference on Empirical Meth-
ods in Natural Language Processing and Very Large Corpora (EMNLP/VLC-2000).

