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Abstract

This report summarizes the system submit-
ted by The Children’s Hospital of Philadelphia
(CHOP) to the TAC 2017 Adverse Drug Reac-
tion Extraction from Drug Labels track. Our
system combines a rule-based table extraction
module and a recurrent neural network in a
pipelined process to extract adverse drug reac-
tions from drug label text. Identified reactions
are then normalized against the MedDRA R©

preferred terms list based on word embedding
similarity. Our system identified reactions in
the test set with 47.99 macro-F1 (Task 3), and
correctly normalized terms with 57.27 macro-
F1 (Task 4).

1 Introduction

Adverse Drug Reactions (ADRs) are undesired
drug effects that can have significant clinical and
economic costs. Pharmacovigilance, or post-
market drug safety surveillance, identifies ad-
verse drug reactions that occur after a drug’s re-
lease. Most pharmacovigilance currently relies
on passive spontaneous reporting system (SRS)
databases such as the Food and Drug Admin-
istration (FDA) Adverse Event Reporting Sys-
tem (FAERS). Such passive reporting can be
limited by delayed reports and under-reporting
(Hakkarainen et al., 2012; Sultana et al., 2013; Ah-
mad, 2003; Li et al., 2014). For this reason, the
FDA has considerable interest in automatically ex-
tracting mentions of adverse reactions from drug
labels. The National Institute of Standards and
Technology (NIST) established Adverse Drug Re-
action (ADR) Extraction from Drug Labels as a
track in its 2017 Text Analytics Conference (TAC)
to address the issue. The Children’s Hospital of
Philadelphia submitted a system to address Task 3
(ADR extraction) and Task 4 (Normalization).

NIST provides TAC participants with labeled
and unlabeled drug labels in XML format for

training and evaluation. The labels consist of both
free text and tabular data. A quick glance at three
randomly-selected drug labels from the training
data indicates that all three contain tables, and 4
of the 4 total tables contain adverse drug reactions
in one of the columns. For this reason, the CHOP
team decided to treat tabular and non-tabular data
separately in its system.

The CHOP system combines rule-based ta-
ble extraction with a bi-directional long short-
term memory (BLSTM) recurrent neural net-
work (RNN) (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997; Mesnil et al., 2013)
to identify positive ADR mentions in drug labels.
The system then normalizes the extracted reac-
tion strings against the MedDRA R©1 (Brown et al.,
1999) dictionary using a simple word embedding-
based approach.

In this workshop notebook paper, we describe
the CHOP systems for ADR extraction and nor-
malization, and present initial results.

2 Data Description

The dataset used for the tasks of ADR extraction
and normalization consists of 101 annotated drug
labels for training, and 2208 unlabeled labels of
which 99 were used for testing. The 101 training
labels contain a total of 7038 true ADR mentions,
and the 99 test labels contain a total of 6343 true
ADR mentions. The number of true ADR men-
tions is the sum of unique ADR mentions per la-
bel, summed over labels. The test set contains a to-
tal of 5185 ADR normalizations, again counted in
terms of unique normalizations per label, summed

1MedDRA R© the Medical Dictionary for Regulatory Ac-
tivities terminology is the international medical terminology
developed under the auspices of the International Conference
on Harmonisation of Technical Requirements for Registra-
tion of Pharmaceuticals for Human Use (ICH). MedDRA R©

trademark is owned by IFPMA on behalf of ICH.



over labels.
All labels are in XML format, and contain a

<Text> element with one or more <Section>
elements consisting of free drug label text.

3 Reaction Extraction Method

The Adverse Reaction extraction task (Task 3) of
the TAC shared task requires systems to identify
all positive adverse reaction mentions in the drug
label text. The CHOP system can be summarized
as a two-stage pipeline:

• First, a rule-based table extraction module
identifies adverse reactions that are listed in
table format, and removes the lines contain-
ing them from further consideration.

• Second, a bi-directional recurrent neural
network labels tokens from the remaining
lines as part-of or not-part-of a span of text
containing a reaction mention.

In this section we describe the development of
both pipeline stages.

3.1 Rule-based Extraction from Tables

Due to the prevalence of reactions embedded
within tables in the drug labels, we employ a sim-
ple rule-based system to identify lines of drug la-
bel text that are likely to comprise tables, and to
extract reactions from a single column of each
identified table. An example table from the
AMPYRA drug label is in Figure 1.

In our pipelined system, all lines identified as
containing a reaction by the table extraction mod-
ule are removed from further consideration, and
the remainder passed to the second stage in the
pipeline for consideration by the RNN. Our rule-
based method assumes that all adverse reactions
contained in tables are positive.

The table extraction module takes in a sequence
of lines containing text from a drug label, and ex-
tracts reactions from likely tables based on the fol-
lowing rules:

1. Collect all subsets of contiguous lines that
(a) begin with one or more whitespace char-
acters, (b) contain a span of at least three
whitespace characters (indicating column di-
visions), and (c) do not contain the words Ad-
verse or Reaction. Call each subset a likely
table.

Metric Train Test

Micro-Precision 97.72 98.20
Micro-Recall 20.12 23.19
Micro-F1 33.37 37.52
Macro-Precision 85.78 92.37
Macro-Recall 21.91 22.39
Macro-F1 32.64 34.75

Table 1: Performance of the table extraction module
when used in isolation over the training set of 101 an-
notated drug labels, and test set of 99 drug labels. The
module identified 1416 of 7038 true ADR mentions in
the training set, and 1471 of 6343 true ADR mentions
in the test set.

2. Within each likely table, identify column off-
sets in terms of number of spaces from the
start of each line.

3. For each column, count the number of strings
within the column that match a lower-level or
preferred term from MedDRA (Brown et al.,
1999). The column with the most matches is
predicted to contain adverse reactions.

4. Extract all strings within the chosen column
as Adverse Reactions, unless (a) the string
has more punctuation characters than letters,
(b) starts with a punctuation character, or (c)
the string contains two or more contiguous
whitespace characters.

The table extraction module returns the set of
identified reactions and their line numbers as out-
put. We store the identified reactions to be re-
ported by the system, and strip the lines contain-
ing them from the drug label text. The lines which
were not predicted to contain reactions are passed
to the next stage in the pipeline.

We evaluated the table extraction module’s per-
formance when used in isolation over the provided
set of annotated drug labels (train), and the test
set (test). The module correctly identified 1416 of
the 7038 true ADRs in the train set with only 33
false positives. It also correctly identified 1471 of
the 6343 true ADRs in the test set with 27 false
positives. As expected for this type of rule-based
model, the table extraction module achieves very
high precision, but low recall due to ignoring all
text outside of predicted tables. Its full scores are
given in Table 1.



 Table 1: Adverse reactions with an incidence &gt;=2% of AMPYRA treated MS patients, and 
more frequent with AMPYRA compared to placebo in controlled clinical trials 
 Adverse Reaction                 Placebo(N=238)          AMPYRA10 mg twice daily(N=400)        
  
 Urinary tract infection                8%                             12%                      
 Insomnia                               4%                              9%                      
 Dizziness                              4%                              7%                      
 Headache                               4%                              7%                      
 Nausea                                 3%                              7%                      
 Asthenia                               4%                              7%                      
 Back pain                              2%                              5%                      
 Balance disorder                       1%                              5%                      
 Multiple sclerosis relapse             3%                              4%                      
 Paresthesia                            3%                              4%                      
 Nasopharyngitis                        2%                              4%                      
 Constipation                           2%                              3%                      
 Dyspepsia                              1%                              2%                      
 Pharyngolaryngeal pain                 1%                              2% 

Figure 1: An example of a table contained within free text in the AMPYRA drug label. Lines containing tables are
typically indented, and contain columns delineated by multiple whitespace characters. Our table extraction module
extracts all strings in the first column (except the ”Adverse Reaction” header) as identified ADRs.

3.2 Bidirectional LSTM for Extraction from
Text

The second part of our pipelined system for ADR
extraction is a bi-directional long short-term mem-
ory recurrent neural network (BLSTM) (Hochre-
iter and Schmidhuber, 1997; Schuster and Pali-
wal, 1997; Mesnil et al., 2013). The BLSTM
takes a line of tokenized text as input, and makes
a binary prediction for each token as to whether
it is likely to comprise (part of) an ADR men-
tion. Our BLSTM uses the same architecture as
one previously developed for the task of extracting
ADR mentions from social media text, Cocos et al.
(2016). We make only one slight modification to
adapt it for the drug label dataset, using word em-
bedding features trained over medical text rather
than social media text.

3.2.1 Model Architecture
A BLSTM is a recurrent neural network that op-
erates over a sequence of tokens in both directions
(left-to-right and right-to-left), ultimately predict-
ing a label for each token in the sequence. Specifi-
cally, our BLSTM combines two RNNs: a forward
RNN proceses the sequence from left to right, and
a reverse RNN processes the sequence from right
to left. The outputs of both RNN are averaged for
each token to compute the model’s final label pre-
diction. The predicted ADRs for each sequence
are precisely each contiguous span of positively-
predicted tokens.

The RNNs each consist of a single layer of 256
LSTM hidden units. We implement the model us-

ing the Keras Python library (Chollet et al., 2015)
over a Theano backend (Bergstra et al., 2010;
Bastien et al., 2012), optimizing for cross-entropy
loss. The code for our model is publicly avail-
able.2

The BLSTM represents each token as a fixed-
length real-valued word embedding. The word
embeddings, which we hold fixed (do not allow
the model to update) through training, are 100-
dimensional FastText (Bojanowski et al., 2016)
embeddings trained over the MEDLINE R© ab-
stracts corpus (roughly 3B tokens).

3.2.2 Data normalization and labeling
Lines passed to the BLSTM from the table extrac-
tion module must be pre-processed prior to input.
We do minimal pre-processing of the text from
the XML drug labels, simply tokenizing (using
the NLTK word tokenize module (Bird et al.,
2009)) and converting all letters to lowercase.

For training, we assign each token a binary la-
bel indicating whether it falls within (I) or outside
(O) an annotated ADR mention. When labeling
the training data, we take care to label as I only to-
kens belonging to positive ADR mentions (i.e. not
negated, and not related by a Hypothetical relation
to a DrugClass or Animal entity).

3.2.3 Model Training
To train the BLSTM, we used all lines from all an-
notated drug labels that were not flagged by the ta-

2https://github.com/chop-dbhi/
twitter-adr-blstm



Training Loss 
Valida&on	
  Loss	
  

We use model  
from Epoch 7 

Epoch 

Lo
ss

 V
al

ue
 

Figure 2: Training curve for our BLSTM model. For
prediction we use the model saved after epoch 7.

Metric Approx. Match Exact Match

Micro-Precision 80.02 63.84
Micro-Recall 81.64 65.14
Micro-F1 80.82 64.48

Table 2: Performance of the BLSTM in terms of ap-
proximate and exact matches of ADR spans in the val-
idation set.

ble extraction module as comprising a table (8438
lines in total). We tokenized and normalized the
lines, and randomly split them into 90% training
and 10% validation subsets. We then trained the
BLSTM online (one line at a time) for 22 epochs.
We ultimately used the model that was saved when
the training and validation losses began to diverge,
after 7 epochs. Figure 2 shows the model training
curve.

In order to gauge the performance of the
BLSTM part of the pipeline during development,
we evaluated the precision, recall, and F-score
of predicted ADR tokens in the validation set.
We examined two metrics: approximate match-
ing, which considers a predicted ADR span to be
correct if it overlaps with any ground-truth span,
and exact matching (used in the TAC evaluation)
which considers a predicted ADR span to be cor-
rect only if it exactly matches a ground-truth span.
Our model’s scores over the validation set are
given in Table 2.

3.3 Evaluation and Results

The macro- and micro- precision, recall, and F-
score achieved by our entire pipelined model over
the test set are given in Table 3.

Metric Test

Micro-Precision 64.29
Micro-Recall 39.57
Micro-F1 48.99
Macro-Precision 62.97
Macro-Recall 39.95
Macro-F1 47.99

Table 3: Full Task 3 ADR extraction results over the
test set. Our system correctly identified 2510 of the
6343 true ADRs, with 1394 false positives and 3833
false negatives.

Metric Test

Micro-Precision 71.78
Micro-Recall 50.14
Micro-F1 59.04
Macro-Precision 70.12
Macro-Recall 49.84
Macro-F1 57.27

Table 4: Full Task 4 normalization results over the test
set. Our system correctly identified 2600 of the 5185
normalizations in the test set, with 1022 false positives.

4 Normalization Method

After identifying predicted ADRs within the drug
label text, the CHOP team implemented a simple
normalization system to map each ADR to its most
applicable MedDRA R© preferred term (PT) and
lower-level term (LLT). We performed the map-
ping using a very simple method based on word
embedding similarity.

In order to map a predicted ADR to its most-
applicable LLT, we simply select the LLT whose
word embedding is closest to that of the pre-
dicted ADR based on cosine similarity. We then
mapped the LLT to its associated PT based on
the MedDRA taxonomy. For this task we use
the same MEDLINE-trained FastText word em-
beddings that were used for the BLSTM.

The macro- and micro- precision, recall, and F-
Score achieved by our normalization system are
given in Table 4.

5 Conclusion

In this paper we have summarized the systems
submitted by the CHOP team for the ADR extrac-
tion (Task 3) and normalization (Task 4) tasks for
the 2017 NIST Text Analytics Conference, ADR



track.
Our system for ADR extraction consists of a

two-stage pipeline, with a rule-based table extrac-
tion module followed by a binary recurrent neural
network used to identify likely ADR mentions.

Our system for normalization relied on simple
word embedding cosine similarity, using word em-
beddings trained over the MEDLINE Abstracts
corpus.
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