CRIM’s Systems for the Tri-lingual Entity Detection and Linking Task

Gabriel Bernier-Colborne, Caroline Barriere, Pierre André Ménard
Computer Research Institute of Montréal
405, Ogilvy Avenue, suite 101
Montréal (Québec), Canada, H3N 1M3

g.b.colborne@gmail.com,

caroline barriere@yahoo.ca,

menardpal@crim.ca

Abstract

This report describes the system devel-
oped by the CRIM team for the tri-lingual
entity detection and linking (TEDL) task
in the knowledge base population (KBP)
track at TAC 2017. The entity mention ex-
traction module exploits a deep neural net-
work to extract features from texts, and ei-
ther a CRF tagger or n-gram classifier to
detect entity mentions. Transfer learning
is used to exploit training data in which the
set of classes is different than those in this
year’s evaluation data. The linking mod-
ule uses a variety of linguistic and statisti-
cal methods to link mentions to the refer-
ence knowledge base. For our first partic-
ipation in the TEDL task, we focused on
a single language, English, and submitted
four runs in order to compare the two clas-
sifiers and assess the impact of the transfer
learning technique.

1 Introduction

The goal of the tri-lingual entity detection and
linking (TEDL) task is to automatically detect
both named (NAM) and nominal (NOM) men-
tions of five types of entities in a collection of
texts: people (PER), organizations (ORG), geopo-
litical entities (GPE), locations (LOC), and facil-
ities (FAC). The mentions must then be linked to
a reference knowledge base (KB). Mentions refer-
ring to entities that are not encoded in the KB must
be marked as NIL, and NIL mentions referring to
the same entity must be clustered together across
documents.

The task is basically the same as last year’s edi-
tion of the TEDL task, therefore last year’s eval-
uation data is a valuable source of training data.
Data from previous editions of the task could also

be used for this purpose, but it is important to note
that the set of mention types and entity types has
changed as the task evolved. For instance, in the
2015 training and evaluation data, NOM mentions
were only annotated for PER entities. In this work,
we experimented with transfer learning in order to
use these datasets to train the entity mention ex-
traction module, as explained in the following sec-
tion.

For our first participation in the TEDL task, we
decided to focus on English, and to explore both
deep learning methods and more ad hoc methods
based on corpus statistics and linguistic heuristics.
Our objective was not only to build an efficient and
accurate system, but also to challenge and explore
various ideas, regardless of their trendiness.

2 System description

The system we developed has two main com-
ponents: an entity mention extraction (EME)
module, and a coreference resolution and linking
(CRL) module. These two components are de-
scribed in the following subsections.

2.1 Entity mention extraction

Our approach to detecting entity mentions ex-
ploits machine learning almost exclusively, aside
from minimal preprocessing, as well as one post-
processing step used to extract discussion fo-
rum post authors, using simple regular expression
matching.

All other entity mentions are extracted using
a deep neural network trained on the labeled
datasets used in past editions of the TEDL task
(LDC2017E03). For 2 of our submissions, we
train the model on the 2016 evaluation dataset
only. For the 2 others, we train the model on both
the 2015 and 2016 datasets. Since the set of labels
changed from one year to the next, we opted for a
transfer learning approach, whereby a first model

is trained on the 2015 data, then a second model
is trained on the 2016 data using the feature ex-
tractor which was previously trained on the 2015
data. The 2016 model is trained in two stages: first
we train only the classifier (output layers), then we
fine-tune the whole model.

The feature extractor employs two recurrent
neural networks (specifically, LSTMs): one at
character level (to represent the morphology or
spelling of words, as well as case information) and
one at word level (to represent words and their
context). For each word, the final hidden state
of the character-level LSTM is concatenated to
a pre-trained word embedding and fed to a sec-
ond LSTM which outputs a feature vector for each
word. These features represent the spelling, mean-
ing and context of each word. In the output lay-
ers of the model, a classifier or tagger takes the
features representing the words in a sentence and
predicts the span and type of the entity mentions
in the sentence.

To predict the entity mentions based on the fea-
tures obtained for each word, we tested 2 types
of classifiers: a CRF tagger and a combination
of n-gram classifiers. These are described below.
In both cases, the model uses only the sentence
as context. The hidden state of the (word-level)
LSTM is re-initialized for each input sentence,
thus it does not take into account past sentences.

2.1.1 CRF

The first classifier we tested is a conditional ran-
dom field (CRF), which tags words sequentially,
based on the features representing those words and
their context. CRF taggers have long been used for
named entity recognition, traditionally using a va-
riety of manually defined features (cf. Sil et al.
(2016)) rather than the output of a neural feature
extractor. The linear-chain CRF we use consid-
ers not only a word’s features when predicting its
tag, but also the previous tag. We use IOB tags,
and concatenate the mention type and entity type
of each mention to the B tag corresponding to the
first word in the mention (e.g. B+PER+NOM),
which gives us a total of 12 possible tags. The
loss function we use for training is the difference,
for a given sentence, between the score of the gold
tags and the score of the predicted tags. This score
is computed by summing the log-probabilities of
each tag given the features and the previous tag.
The forward algorithm is used to compute the par-
tition function, and the Viterbi algorithm is used

for decoding.

2.1.2 N-gram classifiers

To allow for nested mentions (e.g. [[Yorkshire]
Ripper]), we also tested a combination of n-gram
classifiers trained jointly on the labeled sentences.
This approach to classification is somewhat simi-
lar to that of the YorkNRM team at last year’s edi-
tion of the TEDL task (Xu et al., 2016), in that
we locally classify fragments of different lengths,
though our approach to feature extraction is com-
pletely different.

Given a sentence, for each value of n from 1 to
some threshold ¢, the classifier for that value of n
is used to classify all n-grams, using the cartesian
product of the mention types and entity types as
classes, as well as the negative class, for a total
of 11 classes. Each classifier is a simple softmax
classifier. The loss used for training is the average,
for each value of n, of the average cross-entropy
of all the n-grams in a sentence for that value of n.
We set the threshold ¢ = 5, as very few mentions
in the 2016 gold standard were longer than this
(about 0.5% by our count, using the simple tok-
enizer used in the EME module). Unlike Xu et al.
(2016), we did not sub-sample negative examples
or use heuristics to avoid overlapping mentions.

2.1.3 Training details

We used PyTorch! to train the neural networks.
For feature extraction, we used one bi-directional
LSTM layer (with 50 units) at character level, and
two bi-directional LSTM layers (with 200 units
each) at word level, with dropout between the two
layers (with dropout probability 0.25). The Adam
optimizer (Kingma and Ba, 2014) with 81 = 83 =
0.9 was used for parameter optimization. We kept
a small validation set to do early stopping (after
10 checkpoints with no improvement on the vali-
dation set, with one checkpoint after every batch
of 25 training documents and a maximum of 10
epochs over the training set). Gradient clipping
was also used for regularization.

We used pre-trained, 200-dimensional GloVe
word embeddings? trained on Wikipedia and Gi-
gaword. We added a random embedding for un-
known words. The embedding lookup function
looked up the lower-case form of the word if it

"http://pytorch.org
https://nlp.stanford.edu/projects/
glove/

http://pytorch.org
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

was not found as is. The word embeddings were
not fine-tuned during training.

Pre-processing was limited to character normal-
ization®, sentence splitting* and tokenization®.

2.2 Coreference resolution and linking

In this section, we describe the second module of
our system, which we call the coreference resolu-
tion and linking (CRL) module as the construction
of coreference chains (CCs) is central to the link-
ing strategy.

For a given document, the CRL module receives
a set of mentions (also called queries) from the
EME module described in the previous section.
These queries have already been assigned an en-
tity type (i.e. PER, LOC, GPE, FAC or ORG) as
well as a mention type, which is either NAM (for
named entities) or NOM (for nominal mentions).
The goal of the CRL module is to discover the set
of entities referred to in the text, and link the vari-
ous mentions to these entities.

Before we explain in detail the various compo-
nents of the CRL module, let us describe the un-
derlying principles that guided its development.

A first assumption is that most entities will be
explicitly referred to by one or more NAM men-
tions in the text, which can have coreferring NOM
mentions. For example, in a text about events hap-
pening in Egypt, a NAM mention “Morsi” would
likely be used to provide an explicit reference to
Egypt’s president [Mohammed Morsi]®, and any
number of NOM mentions (e.g. “man”, “presi-
dent”) could also refer to this entity.

Only in rare cases will an entity not be referred
to by a NAM mention and instead be implicit (un-
derstood from context), in which case a set of
coreferring NOM mentions would point to this en-
tity. For example, in one news article, the text
would implicitly talk about [Grand Ethiopian Re-
naissance Dam] using a series of NOM mentions
(e.g. “dam”), but no NAM mentions.

A second, related assumption is the so-called
“one-sense-per-discourse” hypothesis. We assume

3We map all characters to ASCII using the Unicode-
data library for Python (https://docs.python.org/
2/library/unicodedata.html).

“We used the Punkt sentence splitter implemented in
NLTK (http://www.nltk.org/).

SWe first extract XML tags, then tokenize the text between
tags using whitespace and punctuation as token boundaries.

To differentiate surface forms from entities, we will use
square brackets to mark entities in this section. This will be
easier to read then referring to the entity by its BaseKB iden-
tifier.

that identical mentions (e.g. “Obama”) in the text
are all linked to a single entity (e.g. [Barack
Obama]) regardless of where they occur in the
text. This creates an obvious limitation as our sys-
tem will not be able to link ambiguous mentions
to different entities within the same text. This lim-
itation might become problematic if the texts were
longer, but is perhaps an acceptable simplification
when dealing with short texts.

A third assumption is that each text to be ana-
lyzed (news article or discussion forum) will have
some topical coherence, that is we assume a news
article will carry a coherent message about a par-
ticular event or topic, and likewise a discussion fo-
rum will be focused on one topic. We do not as-
sume that all entities in a given text will form a
single, coherent set, but we do assume that texts
will contain coherent subsets of entities.

A fourth assumption is that the documents to be
analyzed are real documents, written by people,
and may therefore contain typographical errors.

A fifth assumption is that we can use Wikipedia
as a proxy for BaseKB, given the fact that a
large number of nodes in BaseKB have a cor-
responding Wikipedia page. We will therefore
perform candidate generation using pre-compiled
statistics on Wikipedia. However, in cases where
Wikipedia does not provide any candidates, we
turn to BaseKB for candidate generation.

A sixth assumption, to be revised in future
work, is that the information provided by the EME
module is reliable. Therefore the CRL module
does not attempt to adjust mention boundaries, en-
tity types or mention types. It assumes the en-
tity types and mention types are correct and uses
them as constraints on the linking and coreference
searches.

2.2.1 Generating candidate entities for NAM
mentions

Even though the reference knowledge base is
BaseKB, we opted to link first to Wikipedia,
whenever possible, as Wikipedia provides access
to two additional sources of information: the ac-
tual content of the Wikipedia pages, which we can
use for contextual disambiguation, and its inter-
nal hyperlinks, which provide training data to es-
timate the probability P(page|surfaceForm) of a
page given the surface form of an anchor (i.e. the
text used in a page to refer to another Wikipedia

https://docs.python.org/2/library/unicodedata.html
https://docs.python.org/2/library/unicodedata.html
http://www.nltk.org/

page). Using a recent Wikipedia dump’, we pre-
computed these prior probabilities for all anchor
surface forms, which can then be used to gener-
ate likely candidate entities (i.e. pages) for a given
mention.

The surface form we use to look up the precom-
puted P(page|surfaceForm) is very important, as
small variations in the surface form can result in
very different probabilities. To deal with these
variations, when retrieving the prior probabilities
computed using Wikipedia, we try different vari-
ations of the word (e.g. case variations). Also, to
account for the fact that the words surrounding a
mention can help in the search for candidates (e.g.
president Obama), we build a compound around
the mention (when possible) to have a more spe-
cific surface form with which to query Wikipedia.
Rather than use a dependency parser to build this
compound, we simply look for specific parts-of-
speech (NN, NNS, JJ, NNP, NNPS) occurring one
or more times before a given NAM mention.

As we gather candidate pages for different vari-
ations of the mention (e.g. uppercase, lowercase,
first letter capitalized, within larger compound),
we must combine the lists of candidates and their
scores (prior probabilities). We do this by taking
the maximum score of each page that appears in
any of the lists.

If all queries fail using Wikipedia, we query
BaseKB directly using a bag-of-words (BOW)
search. For example, for “Department of Foreign
Affairs”, we would create the BOW {Department,
of, Foreign, Affairs} and perform a search using
a Lucene index of BaseKB to retrieve candidate
nodes. These nodes do not have a prior probabil-
ity like that of the Wikipedia pages. Therefore, to
score the candidates, we measure the surface form
similarity between a given node’s labels and the
mention, and we use the maximum label similarity
to estimate that candidate node’s prior probability.
The string similarity measure is bigram overlap.
We normalize the similarity measures according
to the length of the mention. As long mentions
tend to be less ambiguous, if we query the KB for
a long mention and find a node with a very simi-
lar label (in terms of bigram overlap), we can be
confident that we have found the correct node, but
if the mention is quite short (5-6 characters), we
should not be so confident.

"We used enwiki-20170720-pages-articles.xml, found at
https://dumps.wikimedia.org/.

2.2.2 Coreference resolution of NAM
mentions

Our next step is to build coreference chains (CCs)
of NAM mentions, by assigning mentions that
have similar surface forms to the same chain.

We look for four different types of surface form
similarity:

1. Acronym expansion, e.g. “DFA” and “De-
partment of Foreign Affairs”. We simply
look for mentions whose initials correspond
to the acronym.

2. Abbreviation, e.g. “Gov.”” and “Govern-
ment”. We only consider single word abbre-
viations at the moment, but we should extend
this to multi-words, e.g. “Dept. of Foreign
Affairs”.

3. Acronym variations, e.g. “D.FA.” and
“DFA”. We simply look for use of periods.

4. Matching head nouns, e.g. “Muslim Broth-
erhood” and “Brotherhood”. We check if the
head of one mention is the same as another
mention.

As we create CCs containing multiple surface
forms, e.g. “Muslim Brotherhood” and “Broth-
erhood”, we must decide on the candidate pages
that will be associated with each CC. Empirically,
we see that multi-word queries will tend to be
more specific than single-word queries. In our
example, the candidate pages for “Muslim Broth-
erhood” should be trusted more than those for
“Brotherhood”. Likewise, the prior probabilities
P(page|“Barack Obama”) should be trusted more
than P(page|“Obama”). To combine these scores,
we use the same maximum score strategy as de-
scribed earlier to merge the candidates of differ-
ent variations of a mention, but use an ad hoc
weighting scheme to boost the scores of multi-
word queries.

At this point, we’ve created a set of CCs (con-
taining NAMs only), each associated with a set of
candidate pages which were found by looking up
various surface form variations of the mentions.

2.2.3 Type-based filtering

The candidate pages (or nodes) found in the pre-
vious steps can correspond to various types of en-
tities: movies, electronic devices, songs, health is-
sues, etc., most of which are not relevant to this

https://dumps.wikimedia.org/

task. As we consider the various candidates for a
given CC, we wish to keep candidates which are
of the same entity type as the one predicted by the
EME module (PER, LOC, GPE, FAC or ORG).
However, Wikipedia and BaseKB do not explicitly
contain information about the five specific entity
types which are relevant for the TEDL task.

Our strategy was to obtain statistics about the
types which are used in BaseKB (based on the
predicate r_type) to describe each of the 5 entity
types targeted for this task. For each of these 5
entity types, we went through all the linked men-
tions of that type found in the 2016 EDL evalu-
ation dataset (whether NOM or NAM), and gath-
ered the set of r_fype predicates (r_types for short)
of their corresponding BaseKB nodes.

For example, the r_types for PER would
include f_people.person, f_government.politician,
f_book.author, and f_award.award_winner.
And the r.types for LOC would include
f_location.location, f_location.statistical_region,
f_base.athletics.topic, f_business.employer,
f_periodicals.newspaper _circulation_area, and
f_meteorology.cyclone_affected_area. The r_types
common to all nodes in the 2016 gold standard
were excluded.

To filter candidates, we simply check whether
any r_type of a candidate node is contained within
the set of r_types associated with the predicted en-
tity type of the mention. If so, we keep the candi-
date node, otherwise we discard it.

2.2.4 Local context-based candidate
reranking

The previous steps of candidate generation and
filtering provide an initial ranking based on the
“commonness” of the candidate Wikipedia pages.
At this point, we have a non-contextualized rank-
ing of candidate pages for each CC. We now wish
to rerank the candidates based on the similarity
between the context of the mentions and the defi-
nitions of the candidate entities, as found in their
Wikipedia page.

In accordance with the ‘“one-sense-per-
discourse” assumption, we take the full text to
serve as context. A CC’s context will be repre-
sented in two ways. First we generate a BOW b;
from the words found within the set of CCs built
so far, and a second BOW b, is generated from
the words found within any of the document’s
mentions (including the NOM mentions, which
have not been added to the CCs yet).

To represent the definitions, we also generate
two different BOWSs, one from the words in the
first paragraph of the Wikipedia page and one from
the words in the entire page.

As we have 2 possible representations for the
context and 2 for the definition, we have 4 possi-
ble combinations, so we compute the 4 pairwise
vector similarities (using cosine similarity) and
take the maximum similarity score. We then ad-
just each candidate’s score by weighting its orig-
inal commonness score using the maximum con-
text similarity: each candidate score S is replaced
by S = 5 x (1 + max(sim(context, page))).

At this point, for each CC (containing NAMs
only), we have a ranked list of candidate pages
whose scores have been weighted based on con-
text.

2.2.5 Adding NOMs to the coreference chains

So far, in accordance with the first assumption
stated at the beginning of this section, we have fo-
cused on the NAM mentions, as these are explicit
surface forms for specific entities. The current step
aims at including the NOM mentions in the CCs.

Coreference between NAM and NOM mentions
is resolved using three heuristics, based respec-
tively on apposition, definitional markers and hy-
pernyms.

1. First, we search for appositions (e.g. “Morsi,
a man who ...”) in the text. As we do not use
a dependency parser, we use part-of-speech
(POS) patterns to find appositions: we look
for nouns appearing near the mention, allow-
ing only specific POS to appear between the
two, excluding POS such as verbs and con-
junctions. For example, given ‘“Mandela, a
beacon for his people...”, we would detect
“beacon” as an apposition, and add it to the
CC containing “Mandela”, but “Mandela and
a man who ...” would not establish corefer-
ence between “Mandela” and “man”.

2. Second, we look for explicit definitional pat-
terns, such as “Egypt is a country in which...”,
which should lead to “country” being added
to the CC of “Egypt”. In the current ver-
sion of the system, we are barely exploring
this idea as we’ve defined a single defini-
tional pattern, “is a”, but this idea could be
extended. Furthermore, we require that core-
ferring mentions have matching entity types.
This is useful for handling complex nouns.

For example, in “The president of Ukraine is
aman who ...” we would want the definitional
pattern to link “president” and “man” and not
“Ukraine” and “man”.

3. Third, we try to find a hypernymy link be-
tween a given NOM and any NAM in the
text. For a NOM mention z (e.g. “coun-
try”), we look up the r_types of the surround-
ing NAM mentions to see if they contain z
(e.g. a NAM such as “Egypt” having the
r_type “country”). If so, we add x to the
CC containing that NAM. This strategy is not
as easy as it seems and it does produce its
share of noise. The example above is actually
oversimplified, as “country” would not actu-
ally occur, as is, as an r_type. Actual r_types
have forms such as f_location.country. This
r_type contains the word “country”, so
we can use this string inclusion to es-
tablish coreference. But the same strat-
egy would link a NOM mention “organiza-
tion” to a NAM mention having a r_type
such as f_organization.organization_member
which would be erroneous.

The first two rules attempt to connect two con-
secutive mentions, but the last one could consider
any NAM in the text, in theory. We chose to
use a concentric expansion search, whereby we
first consider the closest NAM backward, then for-
ward, then backward again, then forward again,
and so on. We set a threshold on the number of
steps to limit the search, as it becomes less and less
likely that we will find a coreferring NAM as we
move further away from the NOM mention. This
limit was empirically set at 10 mentions before and
after.

At this point, we have the same number of CCs
as at the end of the previous step, but the CCs
can now contain NOM mentions, not only NAMs.
Yet there might remain some NOM mentions for
which we found no coreferring NAMs. We look at
those next.

2.2.6 Generating candidates for isolated
NOMs

If any NOM query has not been added to a CC at
this point, we try to figure out if it could indepen-
dently be linked to its own entity. But generating
candidates based on commonness as we did ear-
lier for NAM queries would be useless. For exam-
ple, if we search for “president”, we will obtain a

large number of candidates, all with small proba-
bilities, except perhaps for the few presidents most
frequently mentioned in Wikipedia (the US presi-
dent for example). We need the queries to be con-
textualized before we search.

The strategy we use to attempt this contextu-
alization is to construct noun phrases which con-
tain the NOM mention and any surrounding NAM
mention. Using one of a few prepositions (in,
of) or the possessive marker (’s), we create alter-
nate surface forms for the NOM mention which
is thereby contextualized by the nearby NAM.
For example, given the NOM “president” and the
NAM “Egypt”, we search for the query “president
of Egypt”.

As we do not know ahead of time which NAM
we should use to construct these noun phrases, we
try with all the NAM mentions within a certain
distance of the NOM. Over-generating new forms
will not harm the results, as it will simply not
generate any new candidate pages. For example,
if we have two nearby NAM mentions “Egypt”
and “Cairo”, we would search for “Egypt’s presi-
dent”, “president in Egypt”, “president of Egypt”,
“Cairo’s president”, “president in Cairo”, “presi-
dent of Cairo”. Most of these constructed queries
will not generate any candidate Wikipedia pages.

At this point, some NOM queries have gener-
ated their own candidates, and we proceed to the
next step, in which we try to find coherence among
the entities. No new candidates will be generated
beyond this point.

2.2.7 Coherence-based reranking

We now try to establish a set of entities which have
some degree of coherence between them. Both
Wikipedia and BaseKB are used to measure co-
herence.

We first select a core set of KB nodes, based
on the current scores of the candidate nodes (or
pages). A node is promoted to the core nodes if it
is the top-ranked candidate of one of the CCs and
its score is greater than some threshold, which we
tuned empirically.

From there, the overall strategy is to boost the
score of candidate nodes which have some degree
of coherence with the set of core nodes. This will
influence the ranking of candidates for a given CC
and possibly the top-ranked candidate.

Two measures of coherence are used, one based
on the predicates in the KB, and the other on the
text similarity of candidate Wikipedia pages:

1. KB coherence: If a candidate node has some
predicates linking it to the core nodes, we
consider that node to be more “connected”
and therefore more coherent with the core
nodes representing the entities in the text. A
good strategy could be to boost a node’s score
based on its degree of connection. For now,
a simpler winner-take-all approach is used
and only the most connected candidate gets
boosted.

2. Wikipedia similarity: Using Wikipedia, the
degree of coherence is estimated based on
text similarity. The more similar a given can-
didate’s Wikipedia page is to the Wikipedia
pages of the core nodes, the more its score
gets boosted. We use cosine similarity, based
on BOW representations of the full content
of a given pair of Wikipedia pages. All can-
didate scores are weighted by their average
similarity to the core nodes.

Once the candidate scores have been adjusted to
account for coherence with the core set of nodes,
we make one last attempt at merging CCs based
on their candidates. If two CCs share a candidate,
we merge them. For example, say a CC contain-
ing the query “president of Egypt” generated many
candidate Wikipedia pages representing different
presidents of Egypt at various points in history. If
one of them also happens to be a candidate for an-
other CC in the same text, that candidate would be
favoured and the CCs would be merged.

2.2.8 Detecting and clustering NIL mentions

To detect NIL mentions, we use a threshold on
the score of the top-ranked candidate of each
CC, which we tuned on the 2016 EDL evaluation
dataset.

To cluster NIL mentions, we first cluster NIL
NAM mentions across documents based on string
match and intra-document coreference, then we
assign all the mentions in each NIL CC to the clus-
ter of the NAM mentions they contain, if any. NIL
NOM mentions which haven’t been assigned to
a cluster are then clustered across documents by
string match. Discussion forum post authors are
clustered separately, by string match within docu-
ments, but not across documents.

2.2.9 Parameter tuning

The CRL module includes multiple parameters
that needed to be tuned. Given the time required to

execute a single run (about 45 minutes to run the
CRL module on the 2016 data), an extensive grid
search was not feasible. Therefore ad hoc tuning
was performed by varying one parameter at a time
to assess its impact. This might not have lead to
the optimal settings, and future work should focus
on learning the various parameters. These param-
eters could include:

1. Entity type filtering: instead of enforcing a
strict entity type matching requirement, we
could penalize candidates that don’t have a
matching type using a parameterized weight-
ing function.

2. Local context: the context size (sentence,
paragraph, fixed number of words) to use
when comparing a mention’s context to
a Wikipedia page influences the similarity
score.

3. Maximum number of Wikipedia candidates:
Since CPU power is not limitless, the num-
ber of candidates evaluated must be limited.
Either a threshold on the prior probability
P(page|surfaceForm) or a fixed number of
candidates can be used.

4. NIL threshold: Under what threshold should
we decide that the top-ranked candidate is
not certain enough and that NIL is a better
choice.

5. Core threshold: As we establish a set of core
nodes as a basis for coherence measurements,
what should be the minimum score of a node
for it to be part of the core.

6. Contextualizing page probabilities: During
local context-based reranking, we boost a
candidate page’s score using the function
S" = S % (1 + max(sim(context, page))),
but the parameters of the reranking function
could be learned. Also, the pairwise similari-
ties of different representations of the context
and the Wikipedia page are currently com-
bined by taking the maximum similarity, but
other functions could be used (or learned).

7. Polysemy-based weighting: When we merge
the candidates and scores of coreferring men-
tions, multi-word queries are currently given
twice the weight of single-word queries. For
example, the candidates for “Barack Obama”

would receive twice the weight of the can-
didates for just “Obama”, as the first query is
less polysemous. This weighting factor could
be another learned parameter.

8. Search type: The type of search used to find
coreferring NAMs for NOM mentions is cur-
rently an expanding concentric search. We
also tried looking backward only, and em-
pirically the bulls-eye seemed better, but this
could be parameterized and learned. We lim-
ited the search to 10 mentions backward and
forward, but this was set arbitrarily.

3 Dry runs

Before submitting, we evaluated our system on
the 2016 EDL evaluation dataset, filtering the re-
sults to take into account English data only. Since
the EME model is trained on the 2016 data (and,
for 2 of the runs, the 2015 data), its predictions
were produced using 3-fold cross-validation on the
2016 data. This was meant to produce a less biased
estimate of the system’s accuracy, but we assumed
that the scores obtained would be somewhat opti-
mistic nonetheless.

Run NERC NERLC CEAFmC
1 0.820 0.655 0.696
2 0.821 0.651 0.695
3 0.807 0.648 0.689
4 0.801 0.645 0.686

Table 1: F-scores on the 2016 evaluation dataset
(English only)

A summary of the results is presented in Ta-
ble 1. The runs are ordered as follows:

1. N-gram classifier with transfer learning

2. CRF with transfer learning

3. N-gram classifier without transfer learning
4. CRF without transfer learning

Our best scores were obtained using the transfer
learning approach, with both classifiers producing
similar scores.

4 Results

For our first participation in the TEDL task, we
submitted results for English only. A summary of
the results of the 4 runs we submitted is shown

in Table 2. These results were filtered to take
into account English documents only. The table
shows not only the results of the 4 runs we sub-
mitted, but also the result of an ensemble method
we tested after the evaluation period: we took all
the mentions that were predicted in at least 2 of the
4 runs (taking a vote in cases where different en-
tity or mention types were predicted by different
models), then applied our linking module to this
set of mentions. This increased our entity men-
tion extraction score (NERC f-score) by almost
two points, but had little effect on the scores that
take into account the linking or clustering accu-

racy (NERLC and CEAFmC).
Run NERC NERLC CEAFmC
1 0.764 0.610 0.668
2 0.742 0.580 0.642
3 0.747 0.587 0.646
4 0.740 0.582 0.638
ensemble 0.782 0.610 0.671

Table 2: F-scores on the 2017 evaluation dataset
(English only)

If we focus on the results of our 4 submitted
runs, they show that our dry run results were in-
deed somewhat optimistic. The overall accuracy
(i.e. NERC f-score) of our entity mention extrac-
tion module was several points lower on the 2017
data, mainly due to lower recall. This in turn low-
ered the evaluation measures that take into account
linking (NERLC) and clustering (CEAFmC).

As expected based on our dry runs, the best
results were obtained using the n-gram classifier.
Transfer learning seems to have increased the ac-
curacy of this model somewhat (compare runs 1
and 3), but does not seem to have helped the model
which exploits a CRF (runs 2 and 4).

The difference between the 4 runs is limited to
about 3 points, which suggests that the type of
classifier (n-gram classifier vs. CRF) and the use
of transfer learning did not have a huge impact on
the results.

4.1 Breakdown

A detailed breakdown of the results of our best run
(run 1) is shown in Table 3.

These results illustrate a few trends which were
common to all of our submitted runs:

e The detection (NERC) scores are some-
what higher on discussion forums (DF) than

Filter NERC NERLC CEAFmC
DF 0.771 0.682 0.706
NW 0.758 0.548 0.640
NAM 0.819 0.702 0.778
NOM 0597 0.332 0.429
FAC 0418 0.291 0.331
GPE 0.832 0.748 0.776
LOC 0483 0.294 0.357
ORG 0.673 0.459 0.563
PER 0.836 0.672 0.725

Table 3: F-scores of our best run, filtered by text
type, mention type, and entity type (English only)

newswire (NW) texts, but the scores that take
into account linking (NERLC) and cluster-
ing (CEAFmC) are quite a bit higher, which
suggests that these sub-tasks are harder on
newswire texts. This might be due to the
fact that a large portion of the gold mentions
in the DF texts are post authors, which are
easy to detect. Our simple regex matched 960
mentions in the 2017 data. Assuming this
is close to the exact number of post author
mentions, this represents about 30% of all
the gold mentions in the DF texts in English.
There is also a greater number of unique en-
tities (KB nodes) mentioned in the NW texts
(550 vs. 380), so perhaps there are more ob-
scure or emerging entities in NW texts.

e Results are much better on named (NAM)
mentions that on nominal (NOM) mentions,
and the difference is particularly important
as regards linking and clustering accuracy
(NERLC and CEAFmC). That being said,
even though our results seem to be good on
NAMs and bad on NOMs, if we compare
the results of our best run on NOMs (run
3) to those of the other systems that were
evaluated on the English EDL data, our re-
sults are very good (relative to other partici-
pants), being ranked 2nd in terms of NERLC
and CEAFmC. Therefore, our results are rel-
atively good on NOMs, which are harder to
detect, cluster, and link, but there is room for
improvement on NAMs.

e The entity types that our system handles best
are PER and GPE, followed by ORG. Accu-
racy on LOC and FAC entities is much lower.

Although run 1 produced the best results glob-

ally, other runs sometimes produced better results
on specific subsets of test cases. Run 1 was best
on both NW and DF texts, and on NAM mentions,
however:

e Run 3 was best on NOM mentions.

e Run 3 produced a slightly higher NERC f-
score on LOC mentions.

e Run 4 was best on FAC mentions.

e Run 2 produced higher NERC and CEAFmC
f-scores on both ORG and PER mentions.

This suggests that we might obtain better results
by using different models to handle different types
of mentions or entities, perhaps using multi-task
learning.

The difference in accuracy on different types of
mentions and entities may be explained, at least
in part, by the class frequency distribution of the
training data. For instance, in the 2016 dataset,
over 75% of the gold mentions in English docu-
ments are NAM mentions, which might explain to
some degree why accuracy is lower on NOM men-
tions. Moreover, the entity types that our system
handles best (PER and GPE) are the 2 most fre-
quent types in the 2016 data, representing 36% and
29% of the mentions respectively, whereas LOC
and FAC mentions represent only 6% and 4% of
the gold mentions respectively.

4.2 Nested mentions

As we explained in Section 2.1.2, the reason we
experimented with the n-gram classifier was to al-
low for nested mentions. The fact that the results
obtained using this classifier were not much bet-
ter than those produced by the CRF tagger is ex-
plained by the low number of nested mentions in
the gold standard. By our count, the gold stan-
dard contains 182 mentions which are nested in
a larger mention (in English documents), such as
[[Yorkshire] Ripper] or [[Asia]-[Pacific]], which
contains 2 nested mentions. This represents only
2.6% of the gold mentions in English, which is
close to the gain in accuracy we achieved by using
the n-gram classifier rather than a CRF.

The n-gram classifier is indeed capable of pre-
dicting nested mentions, with run 1 producing 122
nested mentions, and run 3 producing 197. How-
ever, given that there are few nested mentions in
the gold data, this did not have a huge impact on

our scores. Also, recall that we set the maximum
n-gram size to 5, so longer mentions were not de-
tected, but these appear to be very rare.

Furthermore, the n-gram classifier sometimes
predicts mentions that are not completely con-
tained in, but partially overlap another mention,
such as “United Nations” overlapping with “Na-
tions Higher Council”. These cases are extremely
rare, with only 2 appearing in the output of run 1
and 8 for run 3. We found no such cases in the
gold standard.

4.3 Error analysis

By analyzing the errors made by our system (in
run 1), we were able to identify a few common
types of errors regarding NERC and entity linking,
which we will outline in the following sections.

4.3.1 Named entity recognition and
classification

If we consider only the spans of the predicted and
gold mentions, we see that we have 1739 false
negatives and 776 false positives. If we look at the
predicted mention type and entity type of the men-
tions that the system detected correctly (in terms
of span), we see that we have 260 misclassifica-
tions.

False negatives The 2 strings that we fail to de-
tect most often are “here” and “there”, which were
often annotated (37 and 30 times respectively)
in the gold standard as nominal mentions. We
should note that these are adverbs and not nouns,
and no occurrences of these words were anno-
tated as mentions in the 2016 data, which we used
for training. The next 3 are “one”, “world”, and
“school”, nominal mentions which our system de-
tects in some contexts, but not all. It seems our
model was not able to learn in a satisfactory way
in which contexts these words refer to a specific
entity. This may be due to the fact that the model
only takes the sentence as context.

False positives The 6 strings that we detect er-
roneously most often are “National” (14 errors),
“company” (12), “court” (12), “committee” (11),
“state” (11), and “country” (11). The first is
an interesting case: in our training data, it was
often annotated as a nominal mention (referring
to a specific country) nested in larger mentions,
such as “National Assembly” or “National Secu-
rity Agency”, but in the 2017 evaluation data, we

find no annotated occurrences of “National”, al-
though we do find mentions such as “National As-
sembly” and “National Rifle Association”. This
suggests either inconsistent annotations or an ex-
plicit change in annotation policy. As for the other
five words, these are sometimes annotated as nom-
inal mentions in the gold standard, but our sys-
tem sometimes detects them erroneously, i.e. in
contexts where they do not refer to specific en-
tities. If we look specifically at the word “com-
pany”, our system detected it 84 times (which is
approximately every time that word occurs), and
was wrong in 12 cases. As it happens, 11 of these
errors were in discussion forums, in contexts such
as “I could see him taking on a new company”. It
seems plausible that such hypothetical entities are
more frequently mentioned in discussion forums
than in news articles, but we have not investigated
this extensively.

Misclassifications Finally, if we look at the mis-
classifications, we also find a case that suggests
inconsistencies between the 2016 and 2017 anno-
tated data. The most frequently misclassified men-
tion is “West”, with 9 errors. This mention was
systematically annotated as a LOC in the 2016
data, which we used for training. Therefore, our
model predicts this class, but in the 2017 gold data,
this mention is systematically annotated as a GPE.
The second most frequently misclassified mention
is “Asiana”, which our model classifies as a GPE,
although it is an ORG (specifically, an airline).
We suspect our model thinks it is a GPE because
of the word’s morphology: our model never saw
this word in the training data, but often saw sim-
ilar words such as “Asia” and “Asian”, and pos-
sibly used this information (as well as case and
context features) to detect the mention “Asiana”,
even though it had never seen it before. However,
it guessed the wrong entity type.

4.3.2 Entity linking

Analyzing the errors made by the linking module
leads us to conclude that several of the heuristics
implemented in this module produced errors at one
point or another. Below are some examples of er-
rors to illustrate what the algorithm misses or con-
fuses.

Coreference resolution errors A number of er-
rors were due to NOM mentions for which no co-
referring NAM mentions were found, which were
thereby classified as NIL, including mentions such

LR T

as “mall”, “country”, “government”’, “leader” or
“group”. Improving coreference resolution would
help link these mentions which were incorrectly
labeled NIL. There were also a few errors due to
incorrect (rather than missing) coreference links.
Examples include “company” (6 occurrences) be-
ing linked to [Apple Inc.] instead of [Foxconn],
“region” (4) being linked to [Pacific Ocean] in-
stead of [Asia-Pacific], and “government” (3) be-
ing linked to [Communist Party of China] instead
of [Government of China].

Surface form variations Although we used a
few heuristics to capture surface form variations of
names, one that we seem to have missed is the use
of first names to refer to people previously men-
tioned in text. For example, we missed “Steve” (17
occurrences) referring to [Steve Jobs] and “Tom”
(7) referring to [Tom Merrit].

Typing heuristic To filter the candidate KB
nodes, we used a heuristic which consisted in
making sure that at least one r_type of a candi-
date node was included in the r_types associated
with the entity type predicted by the EME module
(see Section 2.2.3). This filter let through some
noise, as the linking module sometimes selected
nodes that do not actually belong to any of the
5 target entity types. For example, the mention
“Sheng” (4 occurrences) was linked to [Sheng (in-
strument)] instead of [Sheng Guangzu], and the
mention “Marty” (2) was linked to [Marty (film)]
instead of [Marty Walsh].

Geographical ambiguity Some errors were due
to confusion between cities and states. For exam-
ple, the mention “New York”, detected 18 times
as a geopolitical entity (GPE), was linked to [New
York] rather than [New York City], and the men-
tion “Washington” (5 occurrences) was linked to
[Washington state] instead of [Washington D.C.].

Close match In many cases, the predicted node
is actually quite close to the correct node even
though it is considered incorrect. For example, the
mention “Samsung” (9 occurrences) was linked to
[Samsung Group] rather than [Samsung Electron-
ics], the mention “BlackBerry” (3) was linked to
[BlackBerry] (the brand) rather than [BlackBerry
Ltd] (the company), the mention “White House”
(9) was linked to [White House] instead of the
[Executive Office of the President of the United
States], and the mention “administration” (2) was

linked to [Presidency of Barack Obama] instead
of [Executive Office of the President of the United
States]. Errors such as these may be explained,
at least in part, by the similarity of the candidates’
Wikipedia pages. In this close match category, one
mention was a very frequent source of errors: the
mention “Xinhua”, detected 55 times as an orga-
nization (ORG), was linked to [Xinhua Holding]
instead of [Xinhua News Agency].

5 Discussion

It is interesting to note that the best linking and
clustering scores achieved by the various partici-
pants on the English EDL data this year have not
increased much compared to last year, whereas the
entity mention extraction scores have increased by
several points. This is likely due to the fact that
training data were available for all classes (entity
types and mention types), whereas last year, train-
ing data for the NOM mentions were only avail-
able for PER entities. The fact that linking and
clustering scores have not improved may indicate
that the entity mentions which are more accurately
detected now are hard to link and cluster. As it
happens, our system achieves strong results, rel-
ative to other teams, on the detection, clustering,
and linking of NOM mentions.

It is important to remember that our approach to
entity mention extraction exploits machine learn-
ing almost exclusively, therefore any comparison
to systems that exploit gazetteers or other lan-
guage or knowledge resources should take this
into consideration. Furthermore, we only ex-
ploited training data from the 2015 and 2016 edi-
tions of the TEDL task, and only submitted runs
produced by single models, no ensembles.

Improvements to the entity mention extraction
system could include the incorporation of feed-
back from the linking module, which would al-
low us to exploit information from the KB. We
could also consider allowing the n-gram classifier
to handle arbitrarily long mentions, rather than set-
ting a fixed maximum size for the n-grams that are
classified. It would also be interesting to take into
account a wider context, this being limited to the
sentence for the moment.

As for the coreference resolution and link-
ing module, we believe improvements could be
achieved by integrating all the different strate-
gies and heuristics within a reinforcement learn-
ing framework. We emphasized earlier that quite

a few parameters need to be tuned within the CRL
module, and in the future we should try learning
these parameters.

6 Concluding remarks

To tackle the task of entity detection and linking,
we explored both deep learning methods and more
ad hoc methods based on corpus statistics and lin-
guistic heuristics. The n-gram classifier we de-
veloped to detect entity mentions was effective at
handling nested mentions, and transfer learning al-
lowed us to improve our system’s performance by
exploiting more training data. As for the task of
linking entity mentions to the knowledge base, fo-
cusing on coreference resolution proved to be an
effective strategy. By analyzing the mistakes made
by our system, we were able to identify a few com-
mon errors, including some due to inconsistencies
between the training and testing data. Overall, our
system performed well, especially on nominal en-
tity mentions, which are harder to detect, cluster,
and link than named mentions.

Acknowledgments

This research was carried out as part of the
PACTE project (Ménard and Barriere, 2017), and
was supported by CANARIE and the ministere
de ’Economie, de la Science et de I’Innovation
(MESI) of the Government of Québec.

References
Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR

abs/1412.6980. http://arxiv.org/abs/1412.6980.

Pierre André Ménard and Caroline Barriere. 2017.
PACTE: A collaborative platform for textual an-
notation. In Proceedings of the 13th Joint ISO-
ACL Workshop on Interoperable Semantic Annota-
tion (ISA-13). pages 95-99.

Avirup Sil, Georgiana Dinu, and Radu Florian. 2016.
The IBM systems for trilingual entity discovery and
linking at TAC 2016. In Proceedings of the Ninth
Text Analysis Conference (TAC 2016).

Mingbin Xu, Feng Wei, Sedtawut Watcharawittayakul,
Yuchen Kang, and Hui Jiang. 2016. The YorkNRM
systems for trilingual EDL tasks at TAC KBP 2016.
In Proceedings of the Ninth Text Analysis Confer-
ence (TAC 2016).

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

