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Abstract 

This paper presents the Open Knowledge 
System (OKS) developed for the Cold Start KB 
task in TAC KBP 2017. In order to complete this 
task, we developed seven modules, namely, the 
English entity discovery module, the relation 
extraction module, the event nugget detection 
module, the entity linking and clustering module, 
the standalone BeSt module, inference module and 
post processing module. Particularly, the relation 
extraction module combines three existing 
methods: RNN-based relation extraction, OpenIE 
and Implicit Relation Extraction.  

1 Introduction 

The goal of TAC KBP 2017 is to develop and 
evaluate technologies for building and populating 
knowledge bases (KBs) from unstructured text. It 
contains several tracks, and we participated in the 
Cold Start Track (KB variant, English) this year, 
which contains five components: Entity Discovery 
and Linking (EDL), Slot Filling (SL), Event 
Nugget Detection and Coreference (EN), Event 
Argument Extraction and Linking (EAL), and 
Sentiment. 

The Cold Start KBP track builds a knowledge 
base from scratch using a given document 
collection and a predefined schema for the entities 
and relations that will compose the KB. The KB 
schema for Cold Start 2017 consists of: 

• Entities: entities and entity mentions as 
defined in the main task of the EDL track; 

• SF Relations: entity attributes ("slots") as 
defined in the SF track; 

• Events: events (hoppers) and event nuggets 
as defined in the EN track; 

• Event Arguments: event arguments as 
defined in the EAL track; 

• Sentiment: Sentiment from a source entity 
toward a target entity as defined in the 
Belief and Sentiment (Best) track. 

For this purpose, we proposed a system 
consisting of seven modules to finish this task. 

The paper is organized as follows. Section 2 
describes the architecture of the developed system. 
Document-processing and entity discovery are 
explained in Section 3, including Pre-processing, 
entity discovery and intra-document coreference 
resolution. Section 4 describes the details of event 
nugget extractor. Section 5 presents the three 
methods and the strategy for combining them 
together. The sentiment module is introduced in 
Section 6, the entity linking and clustering module 
are explained in Section 7 as well as the inference 
step are explained in Section 8 and the post-
processing module in Section 9. Finally, we 
conclude the paper in Section 10 and present 
related references. 

2 The System Architecture 

Our proposed system starts with the entity 
discovery module which extracts all named 



mentions and nominal mentions from the corpus 
and saves their types and offsets, as well as carries 
out intra-document coreference resolution. Then 
the CNN-based event nugget detection module is 
used to discover event nuggets, and the relations 
between entities are extracted from the corpus (i.e. 
slot filling) in three ways: OpenIE-based method, 
RNN-based relation extraction and implicit 
relation extraction. After this step, the sentiment 
from a source to a target entity is extracted using 
an SGD classifier. Next, the sentiment module is 
employed to extract sentiments. After that, the task 
gets into the entity linking and clustering module. 
It is implemented by linking entities to Wikipedia 
and nil clustering. Finally, we utilized the post-
processing component to remove wrong results and 
format final results. In the following sections, each 
step will be described in detail.  

 
Figure 1 The system architecture. 

3 The Entity Discovery Module 

Entity discovery module consists of the pre-
process of the corpus, entity discovery and intra-
document coreference resolution as following.  

3.1 Pre-processing 

The documents are pre-processed in three 
aspects: 
1) It should be noted that according to the Entity 

Linking Query Development Guidelines, when 
we detect discussion forum threads or web 
documents, the entity mentions occurring 
between <quote></quote> tags are ignored. As 
a result, we simply replaced these pieces of 
content by whitespaces to avoid the errors of 
offsets. 

2) As the publish dates of documents are helpful 
to infer the slots concerning date (in most 
cases is death date, see details in section 2.4), 
we extracted the date information of each 
document. For newswires, the date is article's 
publish date; For forums, the date is post's date. 

3) The length of each document is validated 
according to the given doc-length file. 

3.2 Entity Discovery 

We applied our precious work (Manling Li et 
al., 2016) to the entity discovery module. There are 
three steps to detect all entity mentions from the 
target document. First, we used Stanford NER  
(Finkel et al.,2005) to extract person (PER), 
organization (ORG), geo-political entity (GEP), 
facility (FAC) and location (LOC). Second, we 
used data provided by the reference KB 
(LDC2014T16 and LDC2015E42) to supplement 
the results of NER. Finally, we used the regular 
expression to extract post authors as persons. We 
combined these results as the final entity mentions. 
To detect nominal entity mentions, we trained a 
model by the Stanford NER tool as well, and the 
data were same as those used to train the named 
entity recognizer, but only extracting the NOM 
mentions which have <head> information.  
 

3.3 Intra-document co-reference resolution 
ery 

There are five steps in our intra-document co-
reference resolution: a) the mentions whose name 
are the same are linked together; b) a co-reference 



chain is generated by Stanford CoreNLP (Manning 
et al., 2014); c) we combined the two chains as the 
final co-reference chain; d) the entity types of 
mentions in one chain should be unified into the 
entity type same as the majority; e) the canonical 
mention is selected by following standards:  
1) the canonical mention should appear in the 

main body of the document, i.e. in the content 
between <text> tags, to prevent from lack of 
contextual information.  

2) the start offset of the canonical mention should 
be as small as possible.  

4 The Event Nugget Detection and Co-
reference Module 

The event nugget detection and coreference 
module includes three parts, i.e., Event Detection 
and Classification, Realis Classification and Event 
Coreference Resolution. All models below are 
trained on the LDC2015 DEFT Rich ERE English 
Training Annotation_R2_V2 dataset. 

4.1 Event Detection and Classification 

Our event extractor employed rich features 
based on lexical and semantic resources. The 
features we used are list below. 
1) word embedding in the context of trigger 

mention. 
2) lemmas of the words in the context of trigger 

mention. 
3) whether the word is a number in the context of 

trigger mention. 
4) whether the word is upper or lower in the 

context of trigger mention. 
We developed a CNN-based classification to judge 
whether a word is a trigger or not. We used P-O-S 
tag for the word we predicted. As for the type of 
event, we developed a logistic regression 
classification.  

4.2 Realis Classification 

We reused the CNN-base classification in 
section4.1 to predict the Realis value for the event 
nuggets (ACTUAL,GENERIC,OTHER). Except 
for the features above, we added some features 
such as the tense of the word in the context of the 
word.  

4.3 Event Coreference Resolution 

We employed a simple heuristic method for 
event coreference resolution. We just merged the 
event nuggets with the same trigger mention in a 
document.  
 

5 The Relation Extraction Module 

The relation extraction step consists of three 
methods, namely, the RNN-based relation 
extraction, the OpenIE-based relation extraction 
and Implicit Relation Extraction. 

5.1 RNN-based Relation Extraction 

Our neural network based extractor is a 
Bidirectional GRU model with both word level and 
sentence level attention. The model takes the 
original sentence as input, and generates word 
embedding vectors for each word. Afterwards the 
embedding vector sequence are fed into a bi-GRU 
module. We used tanh as the nonlinearity function. 
Then output representations from the bi-GRU 
component are fed into word-level attention layer 
and sentence-level attention layer to generate the 
final sentence representation, which is then passed 
into the softmax layer for the final prediction. 

5.2 OpenIE-based Relation Extraction 

This year we still use the Open IE relation 
extraction tool (we used in the last year of Open IE 
V4), the relation extraction tool proved to be 
effective in extracting relations quite completely. 
Further more, we processed the extracted results 
according to the initial output to get the relation 
tuples needed. 

Open Information Extraction (Open IE) 
system is from the University of Washington 
(UW). An Open IE system runs over sentences and 
creates extractions that represent relations in text, 
and it produces tuples of the form (arg1, relation, 
arg2) for the given sentence. Because Open IE is 
the successor to Ollie. Whereas Ollie used 
bootstrapped dependency parse paths to extract 
relation. If we can deal with the relations returned 
successfully to obtain tuples we need, then we can 
get a good recall. We have to deal with them 
because there are conflicts between the direct 
results and the TAC demands. First let’s see an 
example, if we consider this sentence: “The U.S. 
president Barack Obama gave his speech on 



Tuesday to thousands of people.” we may get 
several tuples: (Barack Obama, is the president of, 
the U.S.) and (Barack Obama, gave, his speech) 
and (Barack Obama, gave his speech, on Tuesday) 
and (Barack Obama, gave his speech, to thousands 
of people). This is not the result listed by the TAC, 
so we need to handle this. The output is expressed 
as a triple (A, B, C) where A and B are arguments, 
C is the relation between those arguments, and 
Open IE is not aligned with an ontology, the 
relation is a phrase of text. Next, we will accept it 
only if A and C are extracted in our  Entity 
Discovery module. If it is demonstrative pro-noun, 
we also need to find the real argument and judge. 
Beside, we need to assign text B to the 41 exact 
relation if any relation be assigned to, then we will 
accept this result, otherwise abandon.  
   This year, we initially got 1230864 extraction 
results. After a series of screening, we retained 
16792 results. Despite this low proportion, we still 
felt that Open IE is an effective tool. 

5.3 Implicit Relation Extraction 

Another relation information extractor we 
adopted is Implicit Relation Information Extractor, 
which had been proved in last year. The 
corresponding tool we adopted is IMPLIE 
(Soderland et al, 2015), rom which, we get the 
relation not expressed as text, but noun phrases or 
adjective phrases.  

Compared with Open IE, we could not get all 
the possible tuples from the sentence, actually, just 
get limit relations. Next these phrases in the tuples 
will be aligned to the 41 relations by rules. For 
example, "jobTitle" will be transformed into 
"per:title", and it’s accuracy is pretty high.  

Eventually, we only obtain a part of the 41 
relations we need, but the accuracy of some 
relation is much higher than Open IE. Another 
advantage is that some tuples related to location 
can’t be extracted effectively by Open IE while 
IMPLIE could. Therefore, we think IMPLIE is a 
good supplement.  

5.4 The Combination Strategy 

The results of four methods are combined by 
simply taking the union. If these systems had 
different outputs for a functional relation, we 
calculated the confidence score by a linear-
weighted method.  

To be more precise, each method has different 
weight designed by the performance conducted on 
evaluation data of previous years, and the method 
with better performance has higher weight. For 
each triple (i.e. entity1, slot, entity2) we extracted, 
the confidence score is the normalization result 
based on the sum of the weights of the methods 
related to the triple.  

For slots that admit only a single value (e.g., 
country_of_birth), we selected the triple with 
highest confidence. For slots that can have more 
than one value (e.g, per:parents), we selected the 
top 10 triples as the best set of values for the slot to 
avoid noises. 

6 The Sentiment Module 

We use a SGD classifier and the model input 
is word embeddings. First, we generate word 
embeddings with the help of the supervised IMDB 
data. This dataset consists of both positive and 
negative comments. Then we put the embeddings 
of each sentence into a SGD classifier for the final 
prediction. Specially, we make an assumption that 
source entities are the authors of comments in the 
Forums dataset and target entities are those 
appearing in comments. For the Newswire dataset, 
our method is same as that for relation extraction. 
Also we tried Logistic Regression classifier and 
SVC to get the final prediction. 

7 The Entity Linking and Clustering 
Module 

To address the tagging of entities, the system 
employs two steps to cluster the cross-document 
entities across target documents. Firstly, it employs 
entity linker to link entities to Wikipedia. Then it 
employs the single pass clustering method to 
cluster the entities in terms of the similarity   
between entity mentions.  

7.1 Query Expansion 

In the first step, we use acronym expansion 
matching in the document text. The rules we use 
for the query expansion are list as following: 
1) Search the context of the entity. Add the 

mention into query list if the mention contains 
the whole name of the entity.  

2) Search the Wikipedia to obtain alias name or 
acronym of an entity. Add it to the query list of 
the entity list.	



3) Search the Wikipedia to obtain alias name or 
acronym of a entity. Add it to the query list of 
the entity list.	

4) Calculate the string similarity between the entity 
and the entities in its context. Add the entities to 
the query list if the similarity exceed the 
threshold value.	

7.2 Candidate Entity Generation 

In order to reduce the time complexity of the 
linking process, a small set of candidate entities 
that may link to an entity mention detected from 
target documents should be generated in an 
appropriate manner. Namely, we regard every 
string in query list which is generated in Section 
7.1 as a query to obtain the candidate set from the 
reference KB (i.e., Wikipedia). 

7.3 Entity Linking 

It takes two steps to generate the linking 
results. Firstly, coreference resolution is used to 
cluster the entity mentions that are referred as the 
same entity. Secondly, based on the cluster results, 
the system employs seven features to measure the 
similarity between the reference entity and an 
entity mention. All of the similarities are projected 
into dense vectors. These features are listed as 
follows: 
1) Embedding similarity. The similarity between 

a mention embedding and a candidate mention 
embedding. Use the average of all word in a 
mention if the mention is a compound.  

2) Name similarity. Namely, the string similarity 
between the entity mention in the document 
text and the candidate entity in the reference 
KB. 

3) Context similarity. We select K words 
window surrounding an entity mention as its 
context, and compute the similarity between 
the entity mention and the candidate entity in 
the reference KB using TFIDF similarity. 

4) Wikipedia redirect page with identical titles. 
Entity mention in the document matches the 
candidate entity with page referred by 
Wikipedia redirect page with identical titles. 

5) Acronym matching, which indicates whether 
the entity mention is an acronym of the 
candidate entity and whether the candidate 
entity appears in the document text. 

6) Candidate popularity. A popularity of the 
entity is represented by the number of links 
the entity has in wiki. 

7) Type. The type of the entity mention and the 
type of the entity. 
For each pair of entity mention and candidate. 

We calculate the features above, which are fed into 
a feed forward neural network with one hidden 
layer, the output of the network measures the 
similarity of the pair. The model is trained using 
the EDL2016 training data.  

7.4 NIL Entity Clustering 

For the NIL entities, three steps are used to 
cluster the NIL entities across target documents. 
Firstly, the similarities between entities are 
measured in terms of embedding similarity, 
context similarity, name similarity and type 
indicator between entity mentions, where the 
embedding similarity, the context similarity and 
type indicator are defined in the same way as 
above.  

All nil entities are clustered using the single 
pass method. The method starts with a entity in a 
cluster by itself. Then compares the similarity of 
the next entity to centroids. A pre-specified 
similarity threshold is needed to judge whether add 
an entity to a cluster or create a new cluster by 
itself.  

For the aim of avoiding too many compares 
and high time complexity, we improved the cluster 
method using elastic search. For a given entity, we 
first generate a candidate set using elastic search. 
Instead of comparing query with each cluster，we 
simplify the cluster by using the intersection of the   
candidate set and the original entity set of the 
cluster.  

8 The Inference Module 

The inference module is aimed to infer more 
triples based on the generated ones in Section 4, 
and it is conducted by mainly following these rules: 
1) Rules for place-related slots. For example, for 

an entity that has value about slot “city”, we 
can infer corresponding "stateorprovince" and 
"country" by Gazetteer. Similarly, "country" 
can be inferred from "stateorprovince".	

2) Rules for date-related slots. For example, for 
per:date_of_birth, per:date_of_death, per:age, 
given two of these three slots, the third one can 



be inferred (except birth && age -> death, 
because someone who has birthdate and age 
may not die yet). For example, if A died in 
2010 at age 78, so we can infer that A was born 
in 1932.	

3) Rules for family relationships, which is 
illustrated in Table 2. 
	
Table 2 Rules for inferring family relationships 

A --- B B --- C A --- C 
children siblings children 
children spouse other_family 
children children other_family 
spouse children children 
spouse parents other_family 
spouse siblings other_family 
parents parents other_family 
parents siblings other_family 
parents spouse parents 

4) Rules for implicit-date results. For results for 
the slots describing date which doesn’t express 
year/month/day explicitly, such as “died in 
Tuesday”, we transforme it into standard date 
format according to the calendar.	

5) Rules for employee-related slot. For example, 
for a person entity whose title is CEO, 
president, vice-president, or other titles which 
represent top employees, and this person entity 
has slot “per:employee_or_member_of”, we 
can infer slot “org:top_members_employees”.	

6) Rules for inverse slot. For every slot which has 
inverse slot, we add the inverse relation of this 
slot according to the Slot Description 

Guideline.	

9 The Post-processing Module 

To correct the errors in the slots extracted by 
the Filler component, we introduce the post-
processing step. Specifically, we mainly use some 
rules, which are listed as below. 
1) The values of some slots must be of certain 

particular type. For example, when slots 
describe relations between people (e.g. spouse, 
children), the type of the results must be 
person (PER). This can be examined by means 
of the Stanford NER tool (Finkel et al., 2005).	

2) Standardization of dates. Convert all answers 
which represent dates to standard date format 
“XXXX-XX-XX”.	

3) Delete unreasonable answers. For example, the 
results for the slots describing age should be a 
number usually larger than 0 and smaller than 
130 respectively.	

10 Result Evaluation 

This year, each cold start KB undergoes a 
composite KB evaluation and a set of component 
KB evaluations. The results of component KB 
evaluations for our system are presented in Tables 
2, 3, 4 and 5. 

For the Cold Start KB Task, we submitted 
four runs, in which the third run performs best in 
Entity discovery and linking and the first run 
performs best in Event Nugget Detection. 

Tables 2 and 3 are the results of Entity 
Discovery and Slot Filling dimension respectively.  

Table 1 Entity discovery results (English) 
 strong_mention_match strong_typed_metion_match Type_mention_ceaf 
 P R F1 P R F1 P R F1 

1 0.909 0.622 0.738 0.817 0.559 0.664 0.567 0.388 0.461 
2 0.913 0.619 0.738 0.848 0.575 0.685 0.565 0.383 0.457 
3 0.908 0.625 0.741 0.833 0.573 0.679 0.644 0.444 0.525 
4 0.913 0.619 0.738 0.848 0.575 0.685 0.565 0.383 0.457 

Table 2 Slot filling results (LDC-MAX, English，K3) 
 hop0_P hop0_R hop0_F hop1_P hop1_R hop1_F All_P All_R All_F 

1 0.3231  0.1066  0.1603 0.0000  0.0000 0.0000  0.2675 0.0761 0.1185 
2 0.4184 0.1041 0.1667 0.0000  0.0000 0.0000  0.3306  0.0743  0.1213  
3 0.4111 0.0939 0.1529 0.0909 0.0063 0.0118 0.3762 0.0688 0.1164 
4 0.2727 0.0228 0.0422 0.0000  0.0000 0.0000  0.2647 0.0163 0.0307 



Table 3 Event nugget detection results (Micro Average, English) 
 plain mention_type realis_status 
 P R F1 P R F1 P R F1 

1 50.56 13.87 21.76 32.83 9.01 14.13 35.51 9.74 15.29 
2 50.56 13.87 21.76 32.83 9.01 14.13 35.51 9.74 15.29 
3 64.32 11.31 19.23 42.05 7.39 12.57 45.36 7.97 13.56 

Table 4 Sentiment extraction results (LDC-MAX, English, K3) 
 hop0_P hop0_R hop0_F hop1_P hop1_R hop1_F All_P All_R All_F 

1 0.0545  0.0380   0.0448 0.0000  0.0000 0.0000  0.0040  0.0275   0.0070  
3 0.0755 0.0506 0.0606 0.0000  0.0000 0.0000  0.0606  0.0367  0.0114  

Conclusion 

In this paper, we presented the OKS system 
developed for the Cold Start KB Track of the KBP 
2017. The proposed system contains five modules 
corresponding to the five tasks, namely, the Entity 
discovery and linking task, the English slot filling 
task, the Event Nugget Detection and Coreference 
task and the sentiment task. The official evaluation 
results are also provided.  
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