
The Open Knowledge System for TAC KBP 2017

Zixuan Li, Yunqi Qiu, Fan Yang, Xiaolong Jin, Yuanzhuo Wang, Yantao Jia,
Haoran Yan, Kailin Zhao, and Jialin Su

CAS Key Laboratory of Network Data Science and Technology,

Institute of Computing Technology,
Chinese Academy of Science

School of Computer and Control Engineering,
University of Chinese Academy of Sciences
lizixuan@software.ict.ac.cn

Abstract

This paper presents the Open Knowledge
System (OKS) developed for the Cold Start KB
task in TAC KBP 2017. In order to complete this
task, we developed seven modules, namely, the
English entity discovery module, the relation
extraction module, the event nugget detection
module, the entity linking and clustering module,
the standalone BeSt module, inference module and
post processing module. Particularly, the relation
extraction module combines three existing
methods: RNN-based relation extraction, OpenIE
and Implicit Relation Extraction.

1 Introduction

The goal of TAC KBP 2017 is to develop and
evaluate technologies for building and populating
knowledge bases (KBs) from unstructured text. It
contains several tracks, and we participated in the
Cold Start Track (KB variant, English) this year,
which contains five components: Entity Discovery
and Linking (EDL), Slot Filling (SL), Event
Nugget Detection and Coreference (EN), Event
Argument Extraction and Linking (EAL), and
Sentiment.

The Cold Start KBP track builds a knowledge
base from scratch using a given document
collection and a predefined schema for the entities
and relations that will compose the KB. The KB
schema for Cold Start 2017 consists of:

• Entities: entities and entity mentions as
defined in the main task of the EDL track;

• SF Relations: entity attributes ("slots") as
defined in the SF track;

• Events: events (hoppers) and event nuggets
as defined in the EN track;

• Event Arguments: event arguments as
defined in the EAL track;

• Sentiment: Sentiment from a source entity
toward a target entity as defined in the
Belief and Sentiment (Best) track.

For this purpose, we proposed a system
consisting of seven modules to finish this task.

The paper is organized as follows. Section 2
describes the architecture of the developed system.
Document-processing and entity discovery are
explained in Section 3, including Pre-processing,
entity discovery and intra-document coreference
resolution. Section 4 describes the details of event
nugget extractor. Section 5 presents the three
methods and the strategy for combining them
together. The sentiment module is introduced in
Section 6, the entity linking and clustering module
are explained in Section 7 as well as the inference
step are explained in Section 8 and the post-
processing module in Section 9. Finally, we
conclude the paper in Section 10 and present
related references.

2 The System Architecture

Our proposed system starts with the entity
discovery module which extracts all named

mentions and nominal mentions from the corpus
and saves their types and offsets, as well as carries
out intra-document coreference resolution. Then
the CNN-based event nugget detection module is
used to discover event nuggets, and the relations
between entities are extracted from the corpus (i.e.
slot filling) in three ways: OpenIE-based method,
RNN-based relation extraction and implicit
relation extraction. After this step, the sentiment
from a source to a target entity is extracted using
an SGD classifier. Next, the sentiment module is
employed to extract sentiments. After that, the task
gets into the entity linking and clustering module.
It is implemented by linking entities to Wikipedia
and nil clustering. Finally, we utilized the post-
processing component to remove wrong results and
format final results. In the following sections, each
step will be described in detail.

Figure 1 The system architecture.

3 The Entity Discovery Module

Entity discovery module consists of the pre-
process of the corpus, entity discovery and intra-
document coreference resolution as following.

3.1 Pre-processing

The documents are pre-processed in three
aspects:
1) It should be noted that according to the Entity

Linking Query Development Guidelines, when
we detect discussion forum threads or web
documents, the entity mentions occurring
between <quote></quote> tags are ignored. As
a result, we simply replaced these pieces of
content by whitespaces to avoid the errors of
offsets.

2) As the publish dates of documents are helpful
to infer the slots concerning date (in most
cases is death date, see details in section 2.4),
we extracted the date information of each
document. For newswires, the date is article's
publish date; For forums, the date is post's date.

3) The length of each document is validated
according to the given doc-length file.

3.2 Entity Discovery

We applied our precious work (Manling Li et
al., 2016) to the entity discovery module. There are
three steps to detect all entity mentions from the
target document. First, we used Stanford NER
(Finkel et al.,2005) to extract person (PER),
organization (ORG), geo-political entity (GEP),
facility (FAC) and location (LOC). Second, we
used data provided by the reference KB
(LDC2014T16 and LDC2015E42) to supplement
the results of NER. Finally, we used the regular
expression to extract post authors as persons. We
combined these results as the final entity mentions.
To detect nominal entity mentions, we trained a
model by the Stanford NER tool as well, and the
data were same as those used to train the named
entity recognizer, but only extracting the NOM
mentions which have <head> information.

3.3 Intra-document co-reference resolution
ery

There are five steps in our intra-document co-
reference resolution: a) the mentions whose name
are the same are linked together; b) a co-reference

chain is generated by Stanford CoreNLP (Manning
et al., 2014); c) we combined the two chains as the
final co-reference chain; d) the entity types of
mentions in one chain should be unified into the
entity type same as the majority; e) the canonical
mention is selected by following standards:
1) the canonical mention should appear in the

main body of the document, i.e. in the content
between <text> tags, to prevent from lack of
contextual information.

2) the start offset of the canonical mention should
be as small as possible.

4 The Event Nugget Detection and Co-
reference Module

The event nugget detection and coreference
module includes three parts, i.e., Event Detection
and Classification, Realis Classification and Event
Coreference Resolution. All models below are
trained on the LDC2015 DEFT Rich ERE English
Training Annotation_R2_V2 dataset.

4.1 Event Detection and Classification

Our event extractor employed rich features
based on lexical and semantic resources. The
features we used are list below.
1) word embedding in the context of trigger

mention.
2) lemmas of the words in the context of trigger

mention.
3) whether the word is a number in the context of

trigger mention.
4) whether the word is upper or lower in the

context of trigger mention.
We developed a CNN-based classification to judge
whether a word is a trigger or not. We used P-O-S
tag for the word we predicted. As for the type of
event, we developed a logistic regression
classification.

4.2 Realis Classification

We reused the CNN-base classification in
section4.1 to predict the Realis value for the event
nuggets (ACTUAL,GENERIC,OTHER). Except
for the features above, we added some features
such as the tense of the word in the context of the
word.

4.3 Event Coreference Resolution

We employed a simple heuristic method for
event coreference resolution. We just merged the
event nuggets with the same trigger mention in a
document.

5 The Relation Extraction Module

The relation extraction step consists of three
methods, namely, the RNN-based relation
extraction, the OpenIE-based relation extraction
and Implicit Relation Extraction.

5.1 RNN-based Relation Extraction

Our neural network based extractor is a
Bidirectional GRU model with both word level and
sentence level attention. The model takes the
original sentence as input, and generates word
embedding vectors for each word. Afterwards the
embedding vector sequence are fed into a bi-GRU
module. We used tanh as the nonlinearity function.
Then output representations from the bi-GRU
component are fed into word-level attention layer
and sentence-level attention layer to generate the
final sentence representation, which is then passed
into the softmax layer for the final prediction.

5.2 OpenIE-based Relation Extraction

This year we still use the Open IE relation
extraction tool (we used in the last year of Open IE
V4), the relation extraction tool proved to be
effective in extracting relations quite completely.
Further more, we processed the extracted results
according to the initial output to get the relation
tuples needed.

Open Information Extraction (Open IE)
system is from the University of Washington
(UW). An Open IE system runs over sentences and
creates extractions that represent relations in text,
and it produces tuples of the form (arg1, relation,
arg2) for the given sentence. Because Open IE is
the successor to Ollie. Whereas Ollie used
bootstrapped dependency parse paths to extract
relation. If we can deal with the relations returned
successfully to obtain tuples we need, then we can
get a good recall. We have to deal with them
because there are conflicts between the direct
results and the TAC demands. First let’s see an
example, if we consider this sentence: “The U.S.
president Barack Obama gave his speech on

Tuesday to thousands of people.” we may get
several tuples: (Barack Obama, is the president of,
the U.S.) and (Barack Obama, gave, his speech)
and (Barack Obama, gave his speech, on Tuesday)
and (Barack Obama, gave his speech, to thousands
of people). This is not the result listed by the TAC,
so we need to handle this. The output is expressed
as a triple (A, B, C) where A and B are arguments,
C is the relation between those arguments, and
Open IE is not aligned with an ontology, the
relation is a phrase of text. Next, we will accept it
only if A and C are extracted in our Entity
Discovery module. If it is demonstrative pro-noun,
we also need to find the real argument and judge.
Beside, we need to assign text B to the 41 exact
relation if any relation be assigned to, then we will
accept this result, otherwise abandon.
 This year, we initially got 1230864 extraction
results. After a series of screening, we retained
16792 results. Despite this low proportion, we still
felt that Open IE is an effective tool.

5.3 Implicit Relation Extraction

Another relation information extractor we
adopted is Implicit Relation Information Extractor,
which had been proved in last year. The
corresponding tool we adopted is IMPLIE
(Soderland et al, 2015), rom which, we get the
relation not expressed as text, but noun phrases or
adjective phrases.

Compared with Open IE, we could not get all
the possible tuples from the sentence, actually, just
get limit relations. Next these phrases in the tuples
will be aligned to the 41 relations by rules. For
example, "jobTitle" will be transformed into
"per:title", and it’s accuracy is pretty high.

Eventually, we only obtain a part of the 41
relations we need, but the accuracy of some
relation is much higher than Open IE. Another
advantage is that some tuples related to location
can’t be extracted effectively by Open IE while
IMPLIE could. Therefore, we think IMPLIE is a
good supplement.

5.4 The Combination Strategy

The results of four methods are combined by
simply taking the union. If these systems had
different outputs for a functional relation, we
calculated the confidence score by a linear-
weighted method.

To be more precise, each method has different
weight designed by the performance conducted on
evaluation data of previous years, and the method
with better performance has higher weight. For
each triple (i.e. entity1, slot, entity2) we extracted,
the confidence score is the normalization result
based on the sum of the weights of the methods
related to the triple.

For slots that admit only a single value (e.g.,
country_of_birth), we selected the triple with
highest confidence. For slots that can have more
than one value (e.g, per:parents), we selected the
top 10 triples as the best set of values for the slot to
avoid noises.

6 The Sentiment Module

We use a SGD classifier and the model input
is word embeddings. First, we generate word
embeddings with the help of the supervised IMDB
data. This dataset consists of both positive and
negative comments. Then we put the embeddings
of each sentence into a SGD classifier for the final
prediction. Specially, we make an assumption that
source entities are the authors of comments in the
Forums dataset and target entities are those
appearing in comments. For the Newswire dataset,
our method is same as that for relation extraction.
Also we tried Logistic Regression classifier and
SVC to get the final prediction.

7 The Entity Linking and Clustering
Module

To address the tagging of entities, the system
employs two steps to cluster the cross-document
entities across target documents. Firstly, it employs
entity linker to link entities to Wikipedia. Then it
employs the single pass clustering method to
cluster the entities in terms of the similarity
between entity mentions.

7.1 Query Expansion

In the first step, we use acronym expansion
matching in the document text. The rules we use
for the query expansion are list as following:
1) Search the context of the entity. Add the

mention into query list if the mention contains
the whole name of the entity.

2) Search the Wikipedia to obtain alias name or
acronym of an entity. Add it to the query list of
the entity list.	

3) Search the Wikipedia to obtain alias name or
acronym of a entity. Add it to the query list of
the entity list.	

4) Calculate the string similarity between the entity
and the entities in its context. Add the entities to
the query list if the similarity exceed the
threshold value.	

7.2 Candidate Entity Generation

In order to reduce the time complexity of the
linking process, a small set of candidate entities
that may link to an entity mention detected from
target documents should be generated in an
appropriate manner. Namely, we regard every
string in query list which is generated in Section
7.1 as a query to obtain the candidate set from the
reference KB (i.e., Wikipedia).

7.3 Entity Linking

It takes two steps to generate the linking
results. Firstly, coreference resolution is used to
cluster the entity mentions that are referred as the
same entity. Secondly, based on the cluster results,
the system employs seven features to measure the
similarity between the reference entity and an
entity mention. All of the similarities are projected
into dense vectors. These features are listed as
follows:
1) Embedding similarity. The similarity between

a mention embedding and a candidate mention
embedding. Use the average of all word in a
mention if the mention is a compound.

2) Name similarity. Namely, the string similarity
between the entity mention in the document
text and the candidate entity in the reference
KB.

3) Context similarity. We select K words
window surrounding an entity mention as its
context, and compute the similarity between
the entity mention and the candidate entity in
the reference KB using TFIDF similarity.

4) Wikipedia redirect page with identical titles.
Entity mention in the document matches the
candidate entity with page referred by
Wikipedia redirect page with identical titles.

5) Acronym matching, which indicates whether
the entity mention is an acronym of the
candidate entity and whether the candidate
entity appears in the document text.

6) Candidate popularity. A popularity of the
entity is represented by the number of links
the entity has in wiki.

7) Type. The type of the entity mention and the
type of the entity.
For each pair of entity mention and candidate.

We calculate the features above, which are fed into
a feed forward neural network with one hidden
layer, the output of the network measures the
similarity of the pair. The model is trained using
the EDL2016 training data.

7.4 NIL Entity Clustering

For the NIL entities, three steps are used to
cluster the NIL entities across target documents.
Firstly, the similarities between entities are
measured in terms of embedding similarity,
context similarity, name similarity and type
indicator between entity mentions, where the
embedding similarity, the context similarity and
type indicator are defined in the same way as
above.

All nil entities are clustered using the single
pass method. The method starts with a entity in a
cluster by itself. Then compares the similarity of
the next entity to centroids. A pre-specified
similarity threshold is needed to judge whether add
an entity to a cluster or create a new cluster by
itself.

For the aim of avoiding too many compares
and high time complexity, we improved the cluster
method using elastic search. For a given entity, we
first generate a candidate set using elastic search.
Instead of comparing query with each cluster，we
simplify the cluster by using the intersection of the
candidate set and the original entity set of the
cluster.

8 The Inference Module

The inference module is aimed to infer more
triples based on the generated ones in Section 4,
and it is conducted by mainly following these rules:
1) Rules for place-related slots. For example, for

an entity that has value about slot “city”, we
can infer corresponding "stateorprovince" and
"country" by Gazetteer. Similarly, "country"
can be inferred from "stateorprovince".	

2) Rules for date-related slots. For example, for
per:date_of_birth, per:date_of_death, per:age,
given two of these three slots, the third one can

be inferred (except birth && age -> death,
because someone who has birthdate and age
may not die yet). For example, if A died in
2010 at age 78, so we can infer that A was born
in 1932.	

3) Rules for family relationships, which is
illustrated in Table 2.
	
Table 2 Rules for inferring family relationships

A --- B B --- C A --- C
children siblings children
children spouse other_family
children children other_family
spouse children children
spouse parents other_family
spouse siblings other_family
parents parents other_family
parents siblings other_family
parents spouse parents

4) Rules for implicit-date results. For results for
the slots describing date which doesn’t express
year/month/day explicitly, such as “died in
Tuesday”, we transforme it into standard date
format according to the calendar.	

5) Rules for employee-related slot. For example,
for a person entity whose title is CEO,
president, vice-president, or other titles which
represent top employees, and this person entity
has slot “per:employee_or_member_of”, we
can infer slot “org:top_members_employees”.	

6) Rules for inverse slot. For every slot which has
inverse slot, we add the inverse relation of this
slot according to the Slot Description

Guideline.	

9 The Post-processing Module

To correct the errors in the slots extracted by
the Filler component, we introduce the post-
processing step. Specifically, we mainly use some
rules, which are listed as below.
1) The values of some slots must be of certain

particular type. For example, when slots
describe relations between people (e.g. spouse,
children), the type of the results must be
person (PER). This can be examined by means
of the Stanford NER tool (Finkel et al., 2005).	

2) Standardization of dates. Convert all answers
which represent dates to standard date format
“XXXX-XX-XX”.	

3) Delete unreasonable answers. For example, the
results for the slots describing age should be a
number usually larger than 0 and smaller than
130 respectively.	

10 Result Evaluation

This year, each cold start KB undergoes a
composite KB evaluation and a set of component
KB evaluations. The results of component KB
evaluations for our system are presented in Tables
2, 3, 4 and 5.

For the Cold Start KB Task, we submitted
four runs, in which the third run performs best in
Entity discovery and linking and the first run
performs best in Event Nugget Detection.

Tables 2 and 3 are the results of Entity
Discovery and Slot Filling dimension respectively.

Table 1 Entity discovery results (English)
 strong_mention_match strong_typed_metion_match Type_mention_ceaf
 P R F1 P R F1 P R F1

1 0.909 0.622 0.738 0.817 0.559 0.664 0.567 0.388 0.461
2 0.913 0.619 0.738 0.848 0.575 0.685 0.565 0.383 0.457
3 0.908 0.625 0.741 0.833 0.573 0.679 0.644 0.444 0.525
4 0.913 0.619 0.738 0.848 0.575 0.685 0.565 0.383 0.457

Table 2 Slot filling results (LDC-MAX, English，K3)
 hop0_P hop0_R hop0_F hop1_P hop1_R hop1_F All_P All_R All_F

1 0.3231 0.1066 0.1603 0.0000 0.0000 0.0000 0.2675 0.0761 0.1185
2 0.4184 0.1041 0.1667 0.0000 0.0000 0.0000 0.3306 0.0743 0.1213
3 0.4111 0.0939 0.1529 0.0909 0.0063 0.0118 0.3762 0.0688 0.1164
4 0.2727 0.0228 0.0422 0.0000 0.0000 0.0000 0.2647 0.0163 0.0307

Table 3 Event nugget detection results (Micro Average, English)
 plain mention_type realis_status
 P R F1 P R F1 P R F1

1 50.56 13.87 21.76 32.83 9.01 14.13 35.51 9.74 15.29
2 50.56 13.87 21.76 32.83 9.01 14.13 35.51 9.74 15.29
3 64.32 11.31 19.23 42.05 7.39 12.57 45.36 7.97 13.56

Table 4 Sentiment extraction results (LDC-MAX, English, K3)
 hop0_P hop0_R hop0_F hop1_P hop1_R hop1_F All_P All_R All_F

1 0.0545 0.0380 0.0448 0.0000 0.0000 0.0000 0.0040 0.0275 0.0070
3 0.0755 0.0506 0.0606 0.0000 0.0000 0.0000 0.0606 0.0367 0.0114

Conclusion

In this paper, we presented the OKS system
developed for the Cold Start KB Track of the KBP
2017. The proposed system contains five modules
corresponding to the five tasks, namely, the Entity
discovery and linking task, the English slot filling
task, the Event Nugget Detection and Coreference
task and the sentiment task. The official evaluation
results are also provided.

Acknowledgements

This work is supported by National Key Research
and Development Program of China under grant
2016YFB1000902, National Grand Fundamental
Research 973 Program of China under grant
2014CB340406, and National Natural Science
Foundation of China under grants 61772501,
61572473, 61572469, 91646120, and 61402022.

References
Li M, Chen X, et.al. OpenKN at TAC KBP 2016. In

Proceedings of TAC-KBP 2016.

Finkel J. Rose, Grenager T. and Manning C. 2005.
Incorporating non-local information into information
extraction systems by gibbs sampling, Proceedings of
the 43rd Annual Meeting on Association for
Computational Linguistics, 363-370.

Mausam, Schmitz M., Bart R., Soderland S., and
Etzioni O. 2012. Open language learning for
information extraction. In Proceedings of EMNLP.

Soderland S., Gilmer J., Robert Bart, Oren Et- zioni,
and Daniel S. Weld. 2013. Open information
extraction to KBP relations in 3 hours. In
Proceedings of TAC-KBP 2013.

Weston J, Bordes A, Yakhnenko O, et al. Connecting
Language and Knowledge Bases with Embedding
Models for Relation Extraction[J]. 2013.

Lin H, Zhao Z, Jia Y, et.al. OpenKN at TAC KBP 2014.
In Proceedings of TAC-KBP 2014.

Chen X, Jia Y, Wang Y, eet al., OpenKN at TAC KBP
2015. In Proceedings of TAC-KBP 2015.

Toutanova K., Klein D., Manning C., and Singer Y.
2003. Feature-rich Part-of-Speech Tagging with a
cyclic dependency network. Proceedings of HLT-
NAACL 2003, 252-259.

Soderland S., Hawkins N., Kim G. L., and Weld D. S.
2015. University of Washington System for 2015
KBP Cold Start Slot Filling. In Proceedings of TAC-
KBP 2015.

Marneffe M. D. and Manning C. 2008. Stanford
Dependencies manual.

Wu F. and Weld D. 2007. Autonomously semantifying
Wikipedia. Proceedings of the sixteenth ACM
conference on information and knowledge
management, 41-50.

Manning, Christopher D., Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David
McClosky. 2014. The Stanford CoreNLP Natural
Language Processing Toolkit In Proceedings of the
52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pp. 55-6

