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1. Introduction 
 

Product labels are an authoritative source of information about the risks, benefits, and 
pharmacological properties of drugs. As such, extracting the information stored in product labels, 
and making it available in the form of computationally accessible knowledge bases would benefit 
several applications in the area of drug safety surveillance and assessment1-4. For example, during 
post-marketing safety assessments is important to determine whether an investigated adverse drug 
reaction (ADR) is already labeled.  
 
In the US electronic versions of product labels are called Structured Product Labels (SPLs). The 
primary challenge involved in utilizing SPLs for drug safety (and other) applications is that most of 
their content is captured as free-text. Consequently, unlocking their value necessitates the 
development of NLP techniques tailored to the application of SPL processing.  
 
In parallel to existing initiatives and ongoing methodological development5-8, the 2017 TAC ADR 
track was created to assess the utility of NLP techniques for extracting ADRs from product labels.  
 
The 2017 TAC ADR track is defined by four different tasks9. Task 1 involves named entity recognition 
of Adverse Reaction mentions and five related entities. Task 2 involves the extraction of three types 
of relations (Negated, Hypothetical, and Effect) between Adverse Reaction named entities and the 
other entities. Task 3 involves the verbatim identification of all positive mentions of adverse reactions 
within a product label. A positive Adverse Reaction is defined as an adverse reaction that is not 
negated and is not related by a Hypothetical relation to a Drug Class or Animal. Finally, Task 4 involves 
MedDRA coding of the positive adverse reactions mentions identified in Task 3.  
 
TAC ADR participants were provided with over 2,300 product labels as text documents in XML 
format. Of these, 101 drug labels formed the formal training set, and contained the gold standard 
annotations for each of the four tasks. Participants were then required to run their developed 
systems on the remaining 2,200 thousand labels, and were evaluated on a test/held-out set of 99 
labels, which was not known in advance.  
 
TAC ADR participants were permitted to work on any of the four task. We chose to address Task 3—
the identification of positive mentions of adverse reactions. 
 
Due to lack of annotated training data, the majority of previously developed NLP approaches to 
process product labels are rule-based. In light of the TAC ADR initiative, whereby carefully annotated 
training data has been made available, we sought to explore the use of machine learning (ML) 
approaches to accomplish Task 3.  
 
The system we developed can be generally described as a three step process. (1) an ensemble of 
Conditional Random Fields (CRFs) is used to perform named entity recognition (NER) of adverse 
reactions (AR). (2) a rule-based approach is used to identify disjoint (non-consecutive word tokens) 



AR mentions. (3) a rule-based approach is used to eliminate negated AR mentions identified in the 
previous two steps.  

 

2. Methods 
 
2.1 low-level text processing operations 
 
To prepare the data for the NER step we applied sentence segmentation, word tokenization, and part 
of speech tagging.  Using models developed for medical data to perform these three operations would 
have been preferable. However, because such models were not available to us we resorted to using 
Python’s NLTK (version 3.2.4) library, to which we applied slight modifications in order to 
accommodate certain traits of the product labels data. 
 
2.2 Feature extraction 
 
Our CRF models for the NER step employed a set of commonly applied features, and two sets of 
application-specific features. The former included:  lower-cased versions of the words being 
modeled, contextual features (e.g., words before and after the word being modeled), their POS, and 
word shape/orthographic features such as capitalization, suffix, and numeric patterns. 
 
The first set of application-specific features included an indicator variable that encodes the sentence 
type being processed (e.g., list, table, header, bullet). Lists were identified by the presence of certain 
trigger terms (e.g., ‘include ...’, ‘including …’, ‘commonly occurring adverse reactions …’) and 
punctuation (e.g., ‘:’, ‘,’), and the ratio of tokens to commas in a sentence. Tables were identified by 
analyzing the ratio of token to spaces-between-tokens in a sentence. Headers and bullets were 
identified based on the appearance of special charters (e.g. ‘*’) and numeric string patterns (e.g. ‘3.1’) 
at the beginning of a sentence.  
 
Our second set of applications-specific features included two indictor variables that encode domain 
knowledge. Specifically, these two indictor variables encode the presence or absence of an exact 
string match between words being modeled and two computationally generated vocabularies of 
medical disorders. 
 
The first vocabulary was created by applying MetaMap (Ver 2014)10 to the full set of 2,300 product 
labels in order to identify concepts associated with medical disorders. The second vocabulary was 
created by developing an independent annotator, similar to MetaMap, that scans through text to 
identify terms corresponding to medical disorders. In the following we refer to this annotator as the 
ADR annotator. The terminologies underlying this annotator were compiled from the UMLS (2016aa) 
metathesaurus11. 
 
To each of these two vocabularies we then added additional terms that were derived by three types 
of fuzzy string matching: standard, subset, and token order fuzzy matching. The matching was done 
between the original two vocabularies and all n-grams (n=1-5) appearing in the full set (2,300) of 
product labels. The matching method used the Levenshtein edit distance with cutoff ratios of 0.85 
and above, depending on the number of tokens matched and the matching type. 

 
 
 



2.3 Adverse reaction named entity recognition using conditional random fields 
 
We applied CRFs for only the identification of the Adverse Reaction named entity. The other named 
entities required to accomplish Task 3 were indirectly identified using rule-based approaches. The 
direct identification of these other named entities was not necessary to accomplish Task 3. 
 
Our CRF models were trained using the python sklearn-crfsuite (Ver. 0.3.6) library, which provides 
a API to the independent CRFsuite12 software. Prior to training, the data was transformed to the 
standard IOB representation. 
 
In addition to standard single model CRFs, we implemented and experimented with an ensemble of 
CRFs. The ensemble was created by iteratively training a base CRF model on resampled training data 
that focuses on prediction errors, similar to Boosting approaches. The results of the ensemble were 
combined by a voting scheme. To our knowledge this form of a CRF model ensemble has not been 
published.  
 
The ensemble provides two main advantages over single model. Like other ensemble approaches, it 
is supposed to reduce prediction variance thereby improving generalization performance. By 
strategically resampling the data to focus on certain prediction errors (misclassified sentences), and 
by combing the results in a specific manner the ensemble allowed us finer control over the tradeoff 
between precision and recall. The main reason we utilized this ensemble was to increase recall. This 
was because the recall of our base CRF model was relatively low, and because it is easier to address 
precision than recall via post-processing. 
 
The base CRF model was trained using a variant of L-BFGS optimization algorithm for fitting L1-
regularized models. The parameters that were varied for the base CRF model were the L1 and L2 
regularization parameters. The ensemble requires two additional parameters: 𝐾 - the number of 
models in the ensemble, and 𝑝𝑚𝑖𝑠𝑠 - the proportion of misclassified sentences to sample. The training 
of the ensemble is outlined using the pseudo code below  

 
Input: 𝑋 – training sentences, 𝑌 – training sentence labels 

Initialize: 𝐶+
  = 𝐶−

 
 = (𝑋, 𝑌), ensemble 𝑀∗= ∅ 

For k = 1 to 𝐾 

𝑋+ , 𝑌+  = sample with replacement (1 − 𝑝𝑚𝑖𝑠𝑠) × |𝑋| sentences and their labels from 𝐶+ 

𝑋− , 𝑌− = sample with replacement 𝑝𝑚𝑖𝑠𝑠 × |𝑋|  sentences and their labels from 𝐶− 

Mk = train base-CRF model on (𝑋+ ∪  𝑋−, 𝑌+ ∪  𝑌−) 

apply model 𝑀𝑘 to 𝑋 

𝑒𝑘 = error of 𝑀𝑘  applied to 𝑋 

𝑀∗= 𝑀∗ ∪ ( 𝑀𝑘  , 𝑒𝑘) 

𝐶+
 = set of sentences and their labels that have been misclassified by 𝑀𝑘when applied to 𝑋 

𝐶−= set of sentences and their labels that have been correctly classified by 𝑀𝑘 when applied to 𝑋 

Output:  𝑀∗ 
 

Given that CRFs operate at the sentence level, and because each token within a sentence needs to be 
classified (e.g., labeled with IOB), a misclassified sentence can be defined in multiple ways. For the 
same reason, combing the ensemble results can be implemented in multiple different ways.  
 
We experimented with three definitions of misclassification.  

 
A. a sentence is misclassified if any of its predicted token labels is a false positive 
B. a sentence is misclassified if any of its predicted token labels is a false negative 



C. a sentence is misclassified if either A or B are true 
 

Based on these definitions the training error ek of the k-th unit model in the ensemble is simply the 
proportion of misclassified sentences. Using these definitions, we were able to better control the 
precision-recall tradeoff. For example, using the second definition forces the ensemble model to 
assign more weight to false negatives, thereby potentially improving recall at the expense of some 
precision.  
 
Combining the ensemble results was done by aggregating I/O/B votes for each token in a given 
sentence. Figure 1 provides an illustration of this voting mechanism. The votes were aggregated by 
the classification weight of each unit model in the ensemble, with the weight defined as 
log(1 − 𝑒𝑘)/ 𝑒𝑘.  

 

 
 

Figure 1. Combining ensemble results. For this 10-token sentence, an I/O/B vote is cast by going through each token position 

(column) and summing the votes log(1 − 𝑒𝑘)/ 𝑒𝑘 for each possible I/O/B label, whereupon the label with the largest vote is 

selected. 

 
2.4 Identifying disjoint mentions of adverse reactions 
 
Disjoint AR mentions were identified by developing regular expressions (regex) that captured 
different patterns of disjoint mentions. One such example was the regex 

 
r'\bsuicidal\b[\s,]+(?:\w+[\s,]+){1,5}\bOTHER_WORD\b' 

 
used to identify two-word disjoint AR mentions associated with suicide, that are separated by 1-5 
words, start with the word ‘suicidal’, and end with one of a list of other words (e.g., 'behaviors', 
'ideation', 'attempt'). The sentence below provides an example of three disjoint AR mentions (Suicidal 
attempt, Suicidal behavior, Suicidal completion), which the regex above is able to identify. 
 

Psychiatric Disorders : Suicidal ideation , attempt , behavior , or completion 
 
The regular expressions were developed for only frequent disjoint mentions, which we defined as 
mentions that appeared at least five times in the training set. Each of these frequent disjoint mentions 
required a different regular expression, for a total of approximately 20 different expressions 
associated with approximately 250 different disjoint mentions.  
 
 
 
 

1 2 3 4 5 6 7 8 9 10

M1 O O B I I I I O O O e1

M2 O O B I O B I O O O e2

M3 O O O B O B I O B I e3

M4 O O B I O B I O O O e4

M5 O O O B I I I O B I e5

ensemble O O B I O B I O O O



2.5 Adverse reaction negation detection 
 
Negation detection was performed using the ConText algorithm13. The algorithm identifies negated 
entities by searching for modifiers (e.g., the term ‘no’) that appear within a pre-specified token 
distance from a named entity. Applying the algorithm requires as input a list of modifiers. The 
modifiers are typically complied on a per-application basis. Each modifier is also associated with 
positioning (e.g., appearance before or after the named entity), which must be defined in advance. 
 
The set of modifiers needed for our application was derived from the list of annotated Negated, 
Factor, Drug Class, and Animal named entities in the training set. Determining the positioning of these 
modifiers was done by analyzing examples. Similar to the detection of disjoint entities, we only used 
frequent modifiers, and modifiers that resulted in reasonable performance. 
 
2.6 Post-processing 
 
Partly due to method errors and partly due to textual artifact, a series of post-processing operations 
was needed to cleanse the candidate set of positive AR mentions produced by previous steps. These 
cleansing operations were identified by analyzing frequent error patterns and by developing rules to 
rectify these errors.  
 
The cleansing operations generally involved removing mentions that do not correspond to proper 
ARs, and editing mentions that appear to be ARs but not in their original identified form.  
 
Examples of the former include single-word mentions such as 'disease', 'syndrome', and ‘outcome’, 
which are not proper ARs. Examples of the latter include removing punctuation from mentions, 
stripping extra spaces as in ‘raynaud_'s phenomenon’, and stripping random charters that appear at 
the end of proper ARs as in 'anxiety d'.  

 
3. Results 
 
3.1 Data statistics 

 
The number of sentences parsed by our sentence segmentation algorithm was 15,030 and 14,871 for 
the training and test sets respectively. Of these sentences roughly 43% contained AR mentions.  
 
Tables 1 provides mention statistics relevant to Task 3. The training and test sets contain a total of 
12,792 and 11,611 non-disjoint AR mentions respectively. The unique number of non-disjoint AR 
mentions are 3,104 and 2,937 respectively. The test set contains 1,254 unique mentions that are not 
part of the training set. Additionally, 51% of the unique positive ARs (the goal of Task 3) in the test 
set were not included in the training set. The absence of such a large proportion of AR terms from the 
training set may have impacted generalization performance of our system.  
 
Of the total 13,795 AR mentions for the training set, 7.3% represent disjoint mentions. For the test 
set the proportion of disjoint mentions is 8.5%. These proportions grow substantially when 
examining the number of unique mentions (22% and 24% respectively). Together, these two 
statistics suggest that the detection of disjoint AR entities represents a relatively large proportion of 
the overall problem, and that the test set contains more of them. 88% of the disjoint mentions in the 
test set were not part of the training set, which impacted our ability to develop regexes for these 
disjoint mentions.  



 
Tables 2-3 provide negation statistics. The total number of negated relations for the training set is 
761. Despite containing fewer labels, the test set contains more negated relations (866). For the 
training and test sets each negated term covered 1.2 and 1.8 AR mentions respectively. The majority 
of negated relations were related to drug class (67% and 46% respectively), highlighting the 
importance of this class of negations in the task. As with the AR mentions, 70% of the unique negation 
terms in the test set were not included in the training set, which impacted our ability to identify 
generalizable negation modifiers for the ConText algorithm.  

  
Table 1. mention statistics 

 training test training + test test - training 
  mentions unique mentions unique mentions unique unique 

non-disjoint AR mentions 12792 2540 11611 2341 24403 3794 1254 
disjoint AR mentions 1003 685 1082 714 2085 1312 627 
negations 420 136 460 136 880 230 94 

positive ARs 7038 2927 6343 2715 13381 4532 1605 

 
Table 2. negated relation statistics 

  training test 

negation 163 288 
animal 84 178 
drug class 514 400 

total 761 866 

 
Table 3. negation by type statistics 

 training test training + test test - training 
  mentions unique mentions unique mentions unique unique 

Negation 98 20 173 24 271 37 17 
Factor 29 11 37 13 66 23 12 
Animal 44 7 86 16 130 17 10 
Drug Class 249 98 164 83 413 153 55 

 
3.2 Feature selection 
 
Table 4 summarizes the performance of each of the features (and combinations thereof) examined 
for the NER step. The performance statistics are provided for the classification of AR B/I labels, and 
are based on training five-fold-cross validation. Differences between feature selections is 
summarized by the F1 proportion of error reduction (F1-PER), which is the proportion of additional 
distance covered towards a perfect F1 score of 100%. PER is relative to a baseline CRF model that 
includes only the word being modeled as a feature.  
 
The table shows that the sentence type and the lexical features used (vocabulary matching) add the 
most (8%) to performance. Of the lexical features (D-H), the vocabularies that include derived fuzzy-
matched medical terms (G-H) are better than their counterparts (E-F), which do not include the 
derived terms.  
 
Adding contextual features (words pre/post the word being modeled) provided a significant boost 
in performance (26%-31%). This led us to select the three word pre/post feature set as our final 
contextual feature set, to which we added certain combinations of features A-H. With the exclusion 
of the sentence type feature (C), each of features A-H added to the performance of the three word 
pre/post feature set. Our final feature set was the one marked with a ‘*’ in Table 4. 
 
 



Table 4. Feature selection for NER 

   precision recall F1 F1-PER 

 Baseline 77.4% 67.2% 71.9%  
A POS 77.1% 68.5% 72.6% 2% 
B Shape 75.9% 67.6% 71.5% -1% 
C Sentence type 79.9% 69.1% 74.1% 8% 
D MetaMap 77.0% 69.7% 73.2% 4% 
E ADR annotator 76.9% 70.0% 73.3% 5% 
F MetaMap + derived terms 77.3% 70.7% 73.9% 7% 
G ADR annotator + derived terms 76.8% 70.4% 73.5% 6% 
H Metamap + ADR + derived terms 77.8% 70.8% 74.1% 8% 

 One word pre/post 85.1% 74.0% 79.1% 26% 
 Two words pre/post 86.0% 75.7% 80.5% 31% 
 Three words pre/post 86.7% 75.6% 80.8% 31% 

 Three words pre/post + A 86.7% 77.0% 81.6% 3% 
 Three words pre/post + B 85.5% 77.0% 81.0% 1% 
 Three words pre/post + C 86.6% 75.9% 80.9% 0% 
 Three words pre/post + D 86.4% 79.0% 82.6% 6% 
 Three words pre/post + E 86.3% 79.1% 82.6% 6% 
 Three words pre/post + F 86.7% 79.8% 83.1% 8% 
 Three words pre/post + G 86.0% 79.8% 82.8% 7% 
 Three words pre/post + H 86.2% 80.9% 83.5% 10% 
 Three words pre/post + D + E 86.4% 80.1% 83.1% 8% 
 Three words pre/post + F + G 86.6% 80.5% 83.4% 9% 
 Three words pre/post + D + E + H 86.5% 80.8% 83.5% 10% 

 * Three words pre/post + A + B + C + F + G 86.8% 81.4% 84.0% 11% 

 
 
3.3 Adverse reactions named entity recognition 

 
Tables 5-6 display a performance comparison of our CRF models for the identification of AR named 
entities. The performance statistics are provided for the classification of AR B/I labels. The 
comparison is made between a single CRF model and two CRF ensemble models. The first aims to 
improve recall (‘CRF ensemble - R’), and is based on error definition B in Section 2.3. The second aims 
to improve both precision and recall (‘CRF ensemble - PR’), and is based on error definition C in 
Section 2.3. The feature set used in our models is the one labeled with ‘*’ in Table 4, i.e., the best 
performing feature set identified throughout our feature selection analysis. The CRF L1 and L2 
regularization parameters, were set to 0.3 and 0.1 respectively, which were slightly larger than the 
cross-validated optimal parameters. The number of models in the ensemble (K) was set to 20, and 
the sampling misclassification proportion 𝑝𝑚𝑖𝑠𝑠 was set to 0.4. The former was determined by 
identifying the point at which the ensemble starts to converge, and the latter by examining a series 
of values in the range 0.3-0.7. 

 
Table 5 displays five-fold-cross-validation training performance statistics, whereas Table 6 displays 
the results of applying the trained models to the test (evaluation/hold-out) set. Cross validation was 
done at the label level and not at the sentence level. The tables demonstrate relatively high 
performance of our NER models across both the training and test sets. Moving from the training to 
the test set lowered the F1 score by 1%-2%. This may indicate a minimal amount of overfitting, but 
is more likely due to the large difference in AR mentions appearing in both sets (as discussed in 
Section 3.1). The tables also show that the ensemble models always improve, though by a modest 
amount (F1-PER of 1%-5%), upon the single CRF model when cross-validating the training set. 
However, when applying the trained models to the test set, there was virtually no improvement. The 
recall ensemble (‘CRF ensemble - R’) provided the improvement it was designed to provide adding 
2%-3% to recall at the expense of about 1.6% in precision. The ensemble that aimed to improve both 



recall and precision (‘CRF ensemble - RP’), appears to improve only precision. The tables also suggest 
that the recall ensemble provides slightly better performance than the other ensemble. 

 
Table 5. training five-fold-cross-validation performance statistics 

  precision recall F1 TP pred system F1-PER 

single CRF model 86.8% 81.4% 83.98% 17239 19870 21184  
CRF ensemble - R 85.2% 84.4% 84.80% 17883 20991 21184 5% 
CRF ensemble - PR 87.3% 81.1% 84.08% 17173 19667 21184 1% 

 
Table 6. test set performance statistics 

  precision recall F1 TP pred system F1-PER 

single CRF model 83.3% 82.0% 82.7% 15981 19175 19489  
CRF ensemble - R 81.6% 83.9% 82.7% 16357 20055 19489 0.3% 
CRF ensemble - PR 84.1% 81.0% 82.5% 15785 18765 19489 -0.8% 

 
3.4 Identifying adverse reaction disjoint entities 
 
On the training set, the regexes we developed could identify at most only 22% of the disjoint 
mentions. This was by design since we developed regexes to detect only frequent disjoint mention 
patterns. The precision, recall, and F1 of our method was 68%, 87%, and 76% respectively. Relative 
to the goal of task 3, applying our method provided a F1-PER (relative improvement) of 13%, thus 
its effect was overall positive. For the test set our regexes were able to identify at most only 11% of 
the mentions, but applying them to the test set resulted in a slight negative affect, due to a precision 
< 50%. 
 
3.5 Negation detection 

 
Applied to the training set, the precision, recall, and F1 of our method was 82%, 72%, and 77% 
respectively. Relative to the goal of task 3, applying our method provided a F1-PER (relative 
improvement) of 39%.  Applied to the test set our method resulted in a precision, recall, and F1 of 
79.8%, 67.9%, and 73.4% respectively. Relative to the goal of task 3, applying our method improved 
the F1 score by 32%. Hence, the performance of our method had a slightly lower overall effect on the 
test set. 
 
3.6 Overall System performance 
 
Table 7 displays overall system performance, i.e., the application of our AR NER method followed by 
our methods for identifying AR disjoint mentions, negation detection, and post processing. The 
performance statistics are also provided at the macro level (averaged across product labels), and 
each row in the table represents one of our three submissions for the task. The submissions varied 
by the approach taken for the NER step. The table shows that both ensemble approaches provided a 
slight improvement over a single CRF model, and the best result was obtained for the ensemble that 
focuses on recall. According to our evaluation the three steps following the NER step contributed 1%-
1.5% to the overall F1 score. 
 

Table 7. final system results 

 Micro Macro      

  precision recall F1 precision recall F1 TP FP FN pred system 

single CRF model 81.28 79.32 80.28 81.10 78.81 79.20 5031 1159 1312 6190 6343 
CRF ensemble - R 81.18 79.69 80.43 81.47 79.28 79.67 5055 1172 1288 6227 6343 
CRF ensemble - PR 82.71 78.05 80.31 82.64 77.73 79.42 4951 1035 1392 5986 6343 



4. Discussion 
 

To our knowledge annotated product labels data has not been available prior to its release for TAC 
ADR track. For the first time, this enabled the investigation of machine learning approaches for 
extracting adverse reactions from product labels. Based on our results, it appears that extracting 
positive mentions of adverse reactions from product labels can be done with reasonable accuracy 
using machine learning-centric approaches.  
 
According to our estimates 93% of the overall problem is associated with the NER step. It appears 
that the quality and size of annotated training data made available for the task was sufficient to 
develop and train a machine learning approach for the NER step. However, the performance of our 
NER approach may have been hindered by the large proportion of AR terms that were part of the test 
set but missing from the training set. This discrepancy between the two sets also suggests that a 
larger and more inclusive training set would benefit future development. 
 
The CRF ensemble approach we developed for the NER step is currently in an experimental state and 
requires additional research. We did not derive theoretical guaranties (error bounds) for the 
ensemble, and its construction should currently be viewed as heuristic. The ensemble did improve 
performance, and also allowed us better control of the precision-recall tradeoff. However, the 
improvement it provided was modest. This is expected given the relatively high performance 
provided by the base CRF on which the ensemble was built.  
 
The lexical features we employed had a large positive effect on the performance of our NER method 
(added 2%-3% to the F1 score) and highlight the importance of incorporating domain knowledge 
into the system. They do however require a considerable effort to develop and refine. We conjecture 
that refining them further than we did would have provided an even greater benefit.  
 
We found it impracticable to develop a machine learning approach for the identification of disjoint 
entities and for negation detection. This was due to the limited number of training examples and the 
relatively large diversity of terms involved. The performance of our rule-based methods for these 
two sub-problems was mediocre and did not generalize well to the test set. This is somewhat 
expected given that they were manually developed for a training set that was substantially different 
than the test set with respect to the disjoint entities and negated terms appearing in both. Despite 
their relatively lower importance in the overall solution, improving methods to solve these two sub-
problems should not be overlooked. 
 
In conclusion, extraction of positive mentions of ARs can be done with reasonable accuracy using 
approaches whose core rests on machine learning. Similar to other NLP problems, it appears that 
additional training data will benefit development and system performance. The extent in which the 
current training set needs to be augmented is currently unknown, but would be an interesting project 
to pursue.  
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