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Abstract

In this paper, we have studied a novel deep
learning method for both mention detec-
tion and Entity Linking. Our methods
rely on the recent fixed-size ordinally for-
getting encoding (FOFE) method to fully
encode each sentence fragment and its
left/right contexts into a fixed-size rep-
resentation. Afterwards, a simple feed-
forward neural network is used to reject
or predict entity label for each individ-
ual fragment for mention detection and to
compute similarity scores with Freebase
nodes in the candidate list for entity link-
ing. Experimental results in the 2017 KBP
trilingual EDL track have shown that these
methods have achieved strong results in
both mention detection and entity linking.

1 Introduction

In this paper, we describe the main techniques
used to build our entity discovery and linking sys-
tems for the KBP2017 trilingual entity discovery
and linking (EDL) track. The EDL task requires to
detect named entities of five different types (PER,
LOC, ORG, GPE, FAC) and their nominal men-
tions in the raw text of three languages (English,
Chinese and Spanish) and further link each de-
tected mention to the corresponding node in an ex-
isting knowledge base, namely Freebase. For NIL
mentions that do not exist in the knowledge base,
the EDL system needs to cluster all NIL mentions
and assign a unique ID to each NIL mention clus-
ter.

In this paper, we have studied a novel deep
learning model for both mention detection (MD)
and Entity Linking. Our methods rely on the
recent fixed-size ordinally forgetting encoding
(FOFE) method to fully encode any variable-

length text into a fixed-size representation with-
out losing information. Experimental results in the
2017 KBP trilingual EDL track have shown that
these methods have achieved the strong results in
both mention detection and entity linking.

2 Preliminary: Fixed-size Ordinally
Forgetting Encoding (FOFE)

In this section, we will first briefly review the
FOFE technique used in our Entity Discovery and
Linking (EDL) system.

A feed-forward neural network (FFNN) is a fast
and powerful computation model. However, it re-
quires to use fixed-size inputs and lacks the abil-
ity to capture long-term dependency in sequences.
Because most NLP problems involve variable-
length sequences of words, RNNs/LSTMs are
more popular than regular feedforward NNs in
dealing with these problems. The simple encod-
ing method, called Fixed-size Ordinally Forgetting
Encoding (FOFE), originally proposed in (Zhang
et al.,, 2015b), nicely overcomes the limitations
of deep FNNs because it can uniquely encode a
variable-length sequence of words into a fixed-size
representation without losing information.

Given a vocabulary V' consisting of |V/| distinct
words, each word can be represented by a one-
hot vector. FOFE mimics bag-of-words (BOW)
but incorporates a forgetting factor to capture posi-
tional information. It encodes any variable-length
sequence composed of words in V. Let § =
w1, Wy, Ws, ..., wr denote a sequence of T° words
from V', and e; be the one-hot vector of the ¢-th
word in S, where 1 < ¢t < T'. The FOFE of each
partial sequence z; from the first word to the ¢-th
word is recursively defined as:
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Figure 1: Illustration of the local detection approach for NER using FOFE codes as input and a feedfor-
ward neural network as model. The window currently examines the fragment of Toronto Maple Leafs.
The window will scan and scrutinize all fragments up to K words.

where the constant « is called the forgetting fac-
tor, and it is chosen between 0 and 1 exclusively.
Evidently, the size of z; is |V, and it is irrele-
vant to the length of the original sequence, 7". Ac-
cording to (Zhang et al., 2015b), FOFE is capa-
ble of uniquely encoding any sequence of arbi-
trary length, serving as a fixed-size but theoreti-
cally lossless representation for any sequence.

3 Entity Discovery and Mention
Detection

In this work, we have used a new FOFE-based
local detection approach to build our systems for
entity discovery and mention detection, and then
we have studied on how to use multi-task learning
and model ensemble to further improve the perfor-
mance.

3.1 FOFE-based Models for Named Entity
Recognition and Mention Detection

Our systems, called FOFE-NER hereafter, are
motivated by the way how a human actually infers
whether a word segment in text is an entity or men-
tion. To a large extent, the meaning and spelling
of the underlying fragment are both informative
to distinguish named entities from the rest of the
text. Context plays a very important role in NER
or mention detection when it involves multi-sense

words/phrases or out-of-vocabulary (OOV) words.
As shown in Figure 1, our proposed FOFE-NER
method examines all possible fragments in text (up
to a certain length) one by one. For each fragment,
it uses the FOFE method to fully encode the under-
lying fragment itself, its left context and right con-
text into fixed-size representations, which are in
turn fed to a multi-layer feedforward neural net-
work to predict whether the current fragment is
a valid entity mention (displaying NONE in the
case it is not), as well as its correct entity type.
This method is appealing because the FOFE codes
serve as a theoretically lossless representation of
the hypothesis. Since it is full contexts, the multi-
layer neural networks are used as a universal ap-
proximator to map from text to the entity labels.

In this work, we use FOFE to explore both
word-level and character-level features for each
fragment and its contexts. FOFE-NER generates
several word-level features for each fragment hy-
pothesis and its left and right contexts: i) Bag-of-
word vector of the fragment; ii) FOFE code for
left context including the fragment; iii) FOFE code
for left context excluding the fragment; iv) FOFE
code for right context including the fragment; v)
FOFE code for right context excluding the frag-
ment. On top of the above word-level features,
we also augment character-level features for the



underlying segment hypothesis to further model
its morphological structure: i) Left-to-right FOFE
code of the character sequence of the underlying
fragment; ii) Right-to-left FOFE code of the char-
acter sequence of the underlying fragment.

Evidently, the above FOFE-NER model
will take each sentence of words, S =
[wy, wa, w3, ..., wy], as input, and examine all
continuous sub-sequences [w;, Wi1, W2, ..., Wj]
up to n words in S for possible entity types. All
sub-sequences longer than n words are considered
as non-entity in this work.

When we train the model, based on the en-
tity labels of all sentences in the training set,
we generate many sentence fragments up to K
words. These fragments fall into three categories:
1) Exact-match with an entity label, e.g., the frag-
ment “Toronto Maple Leafs” in the previous ex-
ample; ii) Partial-overlap with an entity label, e.g.,
“for the Toronto”; iii) Disjoint from all entity la-
bels, e.g. “from space for”. For all exact-matched
fragments, we generate the corresponding outputs
based on the types of the matched entities in the
training set. For both partial-overlap and dis-
joint fragments, we introduce a new output label,
NONE, to indicate that these fragments are not a
valid entity. Therefore, the output nodes in the
neural networks contains all entity types plus a re-
jection option denoted as NONE.

3.2 Multi-Task Learning

Recently, Multi-task Learning (MTL) has been the
centre of a lot of attention. The main idea of
MTL lies in concurrently learning a task along-
side related (auxiliary) tasks by using a shared
representation. Much of the work done in MTL
was initiated by (Caruana, 1997). His definition
of a related task is one that gives the main task
a higher performance when trained together as
opposed to training it on its own. He also pro-
poses to share features and hidden modules for
better performance. Such techniques have been
used and confirmed in many studies (Maurer et al.,
2016; Ando and Zhang, 2005). The wide spec-
trum of approaches in the MTL literature have
yielded promising results that grant further inves-
tigation. To explore this, we develop a multi-task
feedforward neural network model which relies on
the recent fixed-size ordinally forgetting encoding
(FOFE) to conduct entity discovery and mention
detection.

The character and word features used for this
model are FOFE-based, similarly to the single-
task model mentioned in the previous section. The
multi-task model consists of a feedforward neural
network with hidden Rectified linear unit (ReLU)
(Nair and Hinton, 2010) activation layers. The
model makes use of multiple datasets with differ-
ent named entity annotations, where each dataset
is treated as a separate task. Assuming that we
have access to N such tasks, a single task is ran-
domly chosen out of the N tasks at the begin-
ning of each epoch in order to train the neural
network. The character and word features of the
chosen task are fed into the shared module con-
sisting of hidden layers, where the internal repre-
sentations that arise in the hidden layers for one
task may be used by other subsequent tasks. A
fixed amount of training examples (mini-batch)
from the chosen dataset are selected at each train-
ing step. As shown in Figure 2, the shared module
then branches out to N private modules in order
to also customize the learning of each individual
task. Each private module contains an output layer
that uses softmax activation, classifying the frag-
ment by selecting the label with the highest value
from the softmax output. Finally, we feed the loss
of the current task backwards. Therefore, through-
out the epochs, the inputs of each task get fed al-
ternatively into the neural network. The layers are
randomly initialized using a uniform distribution.
Our model defines one of the tasks to be the main
task (Task N in Figure 2); the task of which we
want to improve the performance. Thus, the pri-
vate module of the main task will contain a hidden
layer in addition to an output layer, whereas the
auxiliary private modules will simply consist of
an output layer. After having chosen a task at the
beginning of an epoch, the model will take each
sequence of words as input from the data, and ex-
amine all subsequences in a sentence to up to n
words for possible entity types. As mentioned in
the previous section, all subsequences longer than
n words are considered as non-entities.

3.3 Model Ensemble

In this work, we adopt two word embedding ap-
proaches, i.e. word2vec (Mikolov et al., 2013) and
fofe-embedding. Unlike (Sanu et al., 2017), 3 sets
of fofe-embedding for each language are trained
as a byproduct of FOFE-LM (Zhang et al., 2015b;
Zhang et al., 2015a) bidirectionally on English Gi-
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Figure 2: An illustration of the multi-task feedforward neural network approach for NER using FOFE
codes as input. The window currently examines the fragment of North Atlantic.

gaword (Parker et al., 2011), Chinese Gigaword
(Graff and Chen, 2005) and Spanish Gigaword
(Mendonca et al., 2009) respectively. We fol-
low the hyper-parameters in (Zhang et al., 2015b;
Zhang et al., 2015a) but speed it up by NCE (Gut-
mann and Hyvérinen, 2010). Word embeddings
are extracted from the projection layer of FOFE-
LM, where Lo norm is applied.

4 Entity Linking and NIL Clustering

In the entity linking task, each detected mention
needs to be linked to a known entity in an existing
knowledge base, namely Freebase in this task. For
all mentions that do not match any existing node in
Freebase, we need to cluster these NIL mentions.

4.1 Entity Linking Baselines

Similar to (Liu et al., 2016), our first entity link-
ing baseline system consists of two key modules:
a candidate generation module and a neural net-
work ranking model. The candidate generation
module is a complicated rule based system, which
outputs a list of candidates for each detected men-
tion. A simple multilayer feedforward neural net-
work model is trained to assign posterior proba-
bilities to the candidates in the list based on some
hand-crafted features (Liu et al., 2016). The can-

didate with the highest probability is chosen as the
final linking result.

Our second linking system simply relies on the
detected mentions from a document only. For
each detected mention in a document, the multiple
queries are sent to two online knowledge sources
! using each underlying detected mention as well
as some combinations with its neighbouring enti-
ties. The top 5 search results are recorded if they
match an mid in Freebase. The final linking ID is
determined based on a weighted voting from the
all matched results.

4.2 FOFE Model for Entity Linking

Here, we also investigate to use a novel approach
for entity linking, which makes use of feedforward
NNs and FOFE features (Zhang et al., 2015b)
to fully encode the sentence fragment and its
left/right contexts into a fixed-size representation,
as in (Xu et al., 2017). Comparing with our base-
line system in (Liu et al., 2016), this method does
not use any feature engineering and completely re-
lies on the FOFE features that are automatically
extracted from text.

We recognize that the final linking perfor-
mance relies heavily on the generated candidate

Yww . google.comand www.wikipedia.org
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Figure 3: Our Entity Linking system use FOFE features as input and a feed-forward neural network as

model.

list. In this work, we utilize a rule-based sys-
tem, similar to (Liu et al., 2016), as our candi-
date generation module to generate candidates for
each detected mention. Candidates are generated
based on knowledge bases, including Freebase and
Wikipedia. The output of this module is a can-
didate list, consisting of a list of Freebase nodes
possibly matching this mention.

The candidate list for each detected mention
contains the Freebase node IDs that match with
the mention in the candidate generation process.
In this work, we propose to use a feedforward fully
connected NN ranking model to assign probabili-
ties to all candidates in the list. The candidate with
the highest probability is chosen as the final link-
ing result. Each time, our FOFE ranking model
takes the mention and a candidate from the list to
compute a score, as shown in Figure 3. For each
pair of the detected mention and a candidate Free-
base node, we use FOFE and bag-of-words to gen-
erate fixed-size features.

4.3 Nil Entity Clustering

For all mentions identified as NIL by the above
NN ranking models, we perform a very simple
rule-based algorithm to cluster them: Different
named NIL mentions are grouped into one cluster
only if their mention strings are the same (case-
insensitive).

S Experimental Results

The trilingual EDL task is extended to detect nom-
inal mentions of all 5 entity types for all three

languages. In our experiments, for simplicity, we
simply treat nominal mention types as some ex-
tra entity types and detect them along with named
entities together with a single model. In the fol-
lowing, we will report our performance on the
KBP2017 trilingual EDL track.

5.1 Training Data

We make use of the following datasets as our train-
ing data to learn the NER and mention detection
models.

e Training and evaluation data in KBP2015:
In the KBP 2015 competition, 335 English
documents, 313 Chinese documents and 296
Spanish documents were annotated for train-
ing and evaluation, totalling 944 documents.
In this data set, all five named mention types
(PER, ORG, GPE, LOC, FAC) and only one
nominal mention type (PER) are labelled.

e Evaluation data in KBP2016: In this data
set, all five named mention types (PER, ORG,
GPE, LOC, FAC) and their nominal mention
type (PER) are labelled.

¢ iIFLYTEK’s in-house dataset: The iFLY-
TEK Research has generously shared with us
about 10,000 in-house English and Chinese
labeled documents (Liu et al., 2016). These
documents are internally labelled by iFLY-
TEK using some annotation rules similar to
the KBP 2016 guidelines.



5.2 Multi-task Learning Results

In our experiments, we treat the KBP EDL task
as the main task for all three languages. The
KBP2015 and KBP2016 datasets are used as train-
ing data for the KBP EDL task. For each language,
we set up three multi-task models that are trained
and evaluated independently.

For the English model, we make use of the
CoNLL-2003 and OntoNotes 5.0 datasets as aux-
iliary tasks. The CoNLL-2003 dataset (Tjong
Kim Sang and De Meulder, 2003) consists of
newswire data originated from the Reuters RCV1
corpus. It is tagged with four entity types: person
(PER), location (LOC), organization (ORG) and
miscellaneous (MISC). The OntoNotes 5.0 dataset
consists of text from sources such as broadcast
conversation and news, newswire, telephone con-
versation, magazine and web text. This dataset
was assembled by (Pradhan et al., 2013) for the
CoNLL-2012 shared task, who specifies a stan-
dard train, validation, and test split followed in our
evaluation. It is tagged with eighteen entity types,
some of which are: person, facility, organization,
product, data, time, money, quantity and so forth.
The model has two hidden layers in the shared
module and one hidden layer in the main tasks pri-
vate module. The hidden layers each contain 512
units and are trained with the Stochastic Gradient
Descent optimizer using mini-batch of size 256 for
128 epochs. The only form of regularization used
is dropout (Srivastava et al., 2014) with a proba-
bility of 0.5. A learning rate is set to 0.128 with a
decay factor of 1/16 if the validation performance
drops. The loss function used is categorical cross
entropy. We set the forgetting factor to av = 0.5.
We use three sets of word embeddings of 256 di-
mensions from the English, Spanish and Chinese
gigawords for the three models. The Spanish and
Chinese models only utilize the DAFT Light ERE
dataset as the auxiliary task. The DEFT Light ERE
dataset consists of discussion forum and newswire
documents tagged with five types of named enti-
ties: person, title, organization, geopolitical enti-
ties and location. The setup for both languages
is similar to the English model, except the learn-
ing rate used is 0.064, with mini-batch of size 128.
Also, the Spanish model contains a single hidden
layer in the shared module. We combine our in-
house dataset to KBP2017 training data for the En-
glish and Chinese models.

We have evaluated the above multi-task learn-

ing (MTL) method for KBP2016 evaluation data
set and significant gains are observed for all three
languages. The final (MTL) performance in the
KBP2017 official evaluation is shown in Table 1.

5.3 Model Ensemble Results

We have trained 4 sets of FOFE-NER models (Xu
et al., 2017; Xu and Jiang, 2016; Xu et al., 2016).
They differ in terms of initial word embedding and
training data, as listed in Table 2. Each set consists
of 5 models that are cross-validated, which totals
20 models. For each model set, data is divided into
5 disjoint partitions. Each model within the same
set holds out one different partition and is trained
with the rest.

The final result is produced by hard voting
where 6 models agree (Breiman, 1996). More
precisely, we treat the labels as 4-element tu-
ples of (filename, offsets, entity-type, named-or-
nominal). Occurrences of each label are accumu-
lated while each occurrence contributes to one vot-
ing score. If a label receives more than 6 votes out
of 20, it is included in the final submission. As
shown in Table 3, the model ensemble has signifi-
cantly improved the entity discovery (ED) perfor-
mance for all three languages, about 1.5% gain in
F3 scores.

5.4 Entity Linking Results

We have compared the FOFE-based entity linker
with our two baseline systems described above.
The performance comparison is shown in Table
4. The proposed FOFE-based entity linker has
achieved similar performance as our two baseline
systems, one using handcrafted features and the
other using online search engines.

6 Conclusions

In this paper, we have described the techniques
used for KBP2017 evaluation of Trilingual EDL
Track. We have investigated a new FOFE-based
local detection based approach for both entity dis-
covery and linking. This method has relied on
the recent fixed-size ordinally forgetting encod-
ing (FOFE) method to fully encode each fragment
and its left/right contexts into a fixed-size repre-
sentation, and a simple feedforward neural net-
work to reject or predict entity labels for each indi-
vidual fragment. Using this method, our systems
have achieved a strong performance in the official
KBP2017 trilingual EDL evaluations.



LANG

Training data ‘

Auxiliary tasks

| A

ENG
CMN
SPA

KBP2015 (English) + in-house
KBP2015 (Chinese) + in-house

KB

P2015 (Spanish)

CoNLL2003, OntoNotes 5.0 | 0.780
DEFT Light ERE Chinese | 0.685
DEFT Light ERE Spanish | 0.767

Table 1: Summary of the training data and auxiliary tasks used for the entity discovery performance in

KBP2017 EDL evaluation.

Embedding Training Data

setl
set2
set3
set4

fofe-embedding | KBP2015, KBP2016, in-house
fofe-embedding | KBP2016, in-house
word2vec KBP2015, KBP2016, in-house
word2vec KBP2016, in-house

Table 2: Four different sets of ED models are trained for ensemble.

Table 3: Entity Discovery (ED) performance of model ensemble in the KBP 2017 trilingual EDL evalu-

ation.

LANG single model model ensemble
P R P P R Fy
ENG | 0.801 | 0.745 | 0.772 | 0.797 | 0.783 | 0.790
CMN | 0.775 | 0.660 | 0.713 | 0.817 | 0.705 | 0.757
SPA | 0.856 | 0.715 | 0.779 | 0.839 | 0.773 | 0.805
ALL - - - 0.817 | 0.747 | 0.781

LANG baselinel baseline2 FOFE-EL
NERLC | CEAFmC | NERLC | CEAFmC | NERLC | CEAFmC
ENG 0.648 0.631 0.572 0.615 0.647 0.631
CMN 0.641 0.674 0.579 0.615 0.592 0.643
SPA 0.577 0.576 0.538 0.547 0.538 0.571
ALL 0.624 0.620 0.565 0.586 0.592 0.609

Table 4: Performance on the KBP2017 EDL evaluation of our three entity linking systems. (NERLC
denotes for strong_typed_all_match and CEAFmC for typed_mention_ceaf)
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