
OpenIE for Slot Filling at TAC KBP 2017 - System Description

Samuel Broscheit Kiril Gashteovski Martin Achenbach
Data and Web Science Group at the University of Mannheim

{ k.gashteovski, broscheit } @uni-mannheim.de
machenbach@mail.uni-mannheim.de

Abstract

Open Information Extraction (OIE) extracts
triples, i.e. subjects, relations and objects,
from natural language text (Banko et al.,
2007). Our goal was to explore the usefullness
of OIE for slot filling, for which we used the
OIE system MinIE (Gashteovski et al., 2017).

In our approach, we learn embeddings for
triples using 400 million OIE triples ex-
tracted from two large corpora, i.e. the
New York Times corpus (Sandhaus, 2008) and
Wikipedia. We also use the OIE system on the
slot filling data, i.e. the TAC KBP corpus, to
create candidates triples. For a given query, the
candidate triples are then scored by a classifier
that receives the query subject and predicate as
well as the candidate triple represented by the
embeddings.

1 Introduction

Slot filling is the task of, given a query that consists of
a query entity and a relation, to find possible answers
that complement the query. E.g. for query entity “Bill
Gates” and the relation “holds shares in” we want to
find all the companies that complement this query. In
the TAC KBP slot filling task the challenge is to extract
the answers from a given corpus for a predefined set of
relations.

The challenge that comes with this task is that even
very simple relations like “is born in” can come in a
huge variety of formulations in natural text. This makes
it difficult for rule-based approaches as well as for su-
pervised methods to gain ground in this task. This is
why an obvious approach is a to use combination of
both and bootstrap more training data. Open Informa-
tion Extraction (OIE) is the task of extracting schema-
free relations and their arguments in the form of triples
or n-ary tuples from natural language text in unsuper-
vised manner. We exploit the fact that we can learn
embeddings for triples from an Open Information Ex-
traction system, which provides us feature representa-
tions for the elements of triples, and also, by using sim-
ilarity operations for vectors, also a means to represent
the similarity between triples. Therefore the task is re-
duced to learning to align the OIE embeddings to the
predefined set of relations.

2 MinIE
Consider the sentence “AT&T, which is based in Dal-
las, is a telecommunication company”, an OIE system
aims to extract triples such as:

• (“AT&T”; “is based in”; “Dallas”)

• (“AT&T”; “is”; “telecommunication company”)

A common problem with OIE systems is that both
the relations and the arguments can be overly specific.
The assumption is that the underlined words in the fol-
lowing example can be dropped without damaging the
basic information carried in the triple.

• (“The great Paul Dirac”; “worked jointly with”;
“Boris Podolsky”)

• → (“Paul Dirac”; “worked with”; “Boris Podol-
sky”)

MinIE is an OIE system that tackles this challenge,
by (1) identifying semantic information and preserv-
ing it as semantic annotations; (2) removing words that
are considered overly-specific, but preserving them as
meta data of the triple (Gashteovski et al., 2017). This
process is called minimization.

2.1 Semantic annotations
In MinIE, the following semantic annotations are
attributed to each triple:

Polarity: determines whether a triple is positive (+)
or negative (–) and rewrites it:

(“Bill Gates”; “is not CEO of”; “Microsoft”)⇒
(“Bill Gates”; “is CEO of”; “Microsoft”) (–)

Modality: determines whether a triple is certainty
(CT) or a possibility (PS):

(“Aliens”; “may have landed in”; “Area 51”)⇒
(“Aliens”; “have landed in”; “Area 51”) (PS)

Attribution: annotates the source (and its polar-
ity/modality value) providing the information carried
in the triple:

(“Orly Taitz”; “said that”; “Barack Obama may
have been born in Kenya”)⇒

(“Barack Obama”; “have been born in”; “Kenya”)
Factuality: (+, PS)
Attribution: (Orly Taitz, +, CT)

Quantities: phrases expressing some sort of quanti-
ties. For example, the phrases “9 cats”, “all cats”,



“almost about 100 cats” are all rewritten as “QUANT
cats”.

2.2 Minimizing modes

After the triples have been semantically annotated,
MinIE employs different levels to minimize relations.
Here we used the MinIE-D (Dictionary mode) which
drops those words, that modify noun phrases (adjec-
tives, adverbs, etc.) but keeps patterns that are found
in a dictionary of multi-word expressions. It also fil-
ters out extractions containing subordinate clauses and
drops words which are considered “safe to drop” (e.g.
determiners, adverbs modifying the relation) (Gash-
teovski et al., 2017).

2.3 Preprocessing

MinIE uses ClausIE (Del Corro and Gemulla, 2013)
as an underlying system, which produces high preci-
sion/recall extractions. MinIE’s preprocessing pipeline
annotates POS tags, NER tags, dependency parse using
CoreNLP (Manning et al., 2014).

3 Slot Filling Model

3.1 Triple Embeddings

In our approach, we learned embeddings for triples us-
ing 400 million OIE triples. For training the embed-
dings, each OIE relation was represented as a concate-
nation of its lemmas, e.g. is member of was trans-
formed into the token rel:be member of. The argu-
ments, i.e. subjects and objects, were represented with
the prefixes “subj” and “obj” respectively. Their words
are not concatenated, unless they form a named en-
tity. The triple embeddings were trained with CBOW
(Mikolov et al., 2013) using a maximal context window
over the whole triple, and no distance discount and fea-
ture size 200. We prune very long relations and tokens
with a count lower than 3, which leaves us with a vo-
cabulary size of approximately 13 million entries.

Our goal was to use the embeddings as a means
to align OIE relations to TAC-SF relations in an un-
supervised manner. For each relation from the TAC
queries we manually selected a representative OIE
relation. For example, for per:charges we chose
rel:be charge with. As can be seen in Table 1 the em-
beddings indeed capture different lexical variations of
the per:top member employee of relation, which we
mapped to rel:be president of.

Because of cases in which we only found
the inverse of the TAC-SF relation, e.g.
for gpe:employees or members we chose
rel:be member of, but then use a binary indicator
that signals an inversed mapping.

To map a subject, relation or object string to our em-
bedding vocabulary, we use a search index over the vo-
cabulary. This is mostly useful for relations, because
in this way we can find embeddings that might have
slight lexical variations. For example, for the string

rel:be president of
rel:be chairman of
rel:be vice president of
rel:be former president of
rel:be founder of
rel:be director of
rel:be head of
rel:be executive vice president of
rel:be former chairman of
rel:be chief executive of
rel:be vice-president of

Table 1: Nearest neighbours for the relation embedding
rel:be president of

“sell minority stake in company to” we find the em-
bedding rel:sell minority stake to

3.2 Training data

We used the assessments of the TAC 2016 slot filling
data as training data. First we process the source data
with MinIE. Then apply a simple entity disambiguation
where we use the anchors from links within Wikipedia
to disambiguate strings to an entity.

After processing the source data with MinIE we
aligned the triples from MinIE with the training data.
For this, we aligned the filler provenance from the as-
sessed answers with the object from a triple using the
text offsets. The query subject, on the other hand, had
to string match with the triple subject in either its raw
surface form or the disambiguated form. To get more
coverage we align answers with triples not only when
they exactly match with their boundaries but also if
they only overlap.

3.3 Model

For a given query q = (sq, rq), with query subject
sq and query relation rq , and a candidate triple c =
(sc, rc, oc), with subject sc, relation rc and object oc,
we want to decide if the candidate triple provides a slot
filler.

Because we wanted to exploit the negative exam-
ples in the training data we did not cast this as a multi
class classification over the candidate triples. Also, be-
cause of the small size of the training data, we did
not attempt to learn a compatibility of the query and
the candidate triple. Therefore we reduce this to a
binary prediction, that, given some compatibility be-
tween the query and the candidate triple computed by
a function φ(q, c), if this triple provides a slot filler, or
not. However, the TAC-SF relations actually share a
fine grained set of slot filler types, e.g. T+ = {city,
country, state or province, gpe, org, per, noun,
date, number, website} which had a very uneven dis-
tribution in our training data. We found that casting the
prediction as a multi class prediction over the slot filler
types improved the classifier performance, most likely
because it is easier to capture the statistics of the slot



filler types in our training data. Therefore, we used the
set T+ as target labels and extended it with a negative
class T− = {−}, i.e. T = T+ ∪ T−. Therefore our
classification could be formalized as

argmax
t∈T

p(y = t|φ((sq, rq), (sc, rc, oc)))

Let emb(s) be the function that returns the embed-
ding xs for a string s from either one of sq, rq, sc, rc, or
oc. Let a◦b be the element wise product of two vectors
a and b, and let sim(a, b) = a · b/(‖a‖ ∗ ‖b‖) be the
cosine similarity.

The inputs for the classifier are:

• Features for the compatibility between query and
triple, that we manually selected through ablation

– sim(emb(sq), emb(sc))

– sim(emb(sq), emb(oc))

– sim(emb(rq), emb(rc))

– sim(emb(rq), emb(oc))

– emb(sq) ◦ emb(rq)
– emb(rq) ◦ emb(rc)
– emb(rq) ◦ emb(oc)

• A one-hot encoding of the query relation

• A one-hot encoding of the query slot filler types

For the relations that have a number, website or date
as slot filler type, the object vector is a binary vector of
the same size as the embeddings, which is 1, when a
heuristic classifies it as date, number or website, else 0.

We trained a multilayer perceptron with rectifier lin-
ear units as activations and a final softmax non-linearity
after the last layer. We did a grid search over the num-
ber of hidden layers, hidden layer size (64, 128, 196,
256), activations (sigmoid, tanh, rectifier linear units).
We found that 3 layers with hidden layer size 128 and
rectifier linear units as activations to be optimal. The
weights were initialized with Xavier normal initializa-
tion (Glorot and Bengio, 2010). We used Adadelta
(Zeiler, 2012) to reduce the negative log-likelihood loss
and dropout with p=0.3 as regularization. To increase
precision and to exploit the whole training data we used
ensembling with models that were trained on different
splits of the data with 4-fold cross validation.

During training and prediction, the classifier is pre-
sented with the triple in its natural occurrence (subject,
relation, object) and also the inverse (object, relation,
subject). During training, depending on the direction of
the representative triple we assign the wrongly flipped
triple the negative class. During prediction for the sub-
mission we map the predicted classes to: GPE, PER,
ORG and STRING and discard predictions with low
confidence.

On the validation data the classifiers achieved 67.9%
accuracy (+/-2.9% std) after training.

4 Error analysis
There were many factors contributing to our low
results for this challenge. We have identified several
types of errors that we found in the results:

4.1 OIE
Quantities: for training the embeddings, we have used
MinIE-D as-is, without replacing the quantities with
their original phrases.
Coreference resolution: many of the errors that we
observed were caused by coreference. MinIE does not
have coreference resolution in its pipeline. We will in-
vestigate if running coreference resolution upfront on
the whole documents will improve the results.
Dependency parse errors: MinIE uses dependency
parse in its pipeline. An error in the dependency parse
propagates to an error in the extractions. Long or un-
usual sentences pose a problem and especially the dis-
cussion forums contain many difficult sentences.
NER errors: MinIE used NER for some of the extrac-
tion it makes. This means that if the NEs are missed,
these extractions are either not produced at all, or the
NE spans are wrong.
Some patterns not covered by MinIE: we have ob-
served several syntactic patterns that would have pro-
duced nice results for some queries. These were pat-
terns that MinIE currently doesn’t cover. If they are es-
tablished to be generic enough, they can be used on top
of any OIE system for producing more high-precision
extractions.

4.2 Model
Training data: We definitely had too few training
data. We could observe that we had an acceptable
performance on classes for which we had the most
data. We could tackle this by improving our method
to align the training data with the MinIE triples. In
general we have to consider also other means to create
more training examples. Also, as we did not tune the
preprocessing pipeline for coverage and did not use
entity linking, due to time constraints, our coverage
estimated on the 2016 slot filling data was very low:
17.39% on hop0 queries and 21.36% on hop1 queries
with a lenient boundary match.
Training method: Explore different models, so we
train over all of the candidate triples.

4.3 General
Entity linking: within our pipeline we haven’t im-
plemented entity linking, which should improve the
results.
Inferred information: some answers that our current
setup does not cover, are answers for which the relation
between the query entity and the answer has to be
assumed.
Metadata as answers: we have observed that in some



Team AP

Stanford 21.86
UNIST SAIL 14.71
Zhejiang University 10.68
ours 2.89

Table 2: Results for Slot Filling; reported in average
precision

of the queries, the answers are in the meta-data.
Easy cases: By examining the errors our system
made we found many easier cases, e.g. the relation
org:alternate names that can be easily handled without
a model. Also, due to a preprocessing error we did not
train our final system on numbers and date slot filler
types.

5 Conclusion
There could be huge amounts of relation types in nat-
ural language text. The biggest advantage of the OIE
extractions is that they are not bound to relational
schemes, nor to certain argument types, which can pro-
vide very diverse training data. These can be boosted
by supervised methods for a specific task or specific
relation types of interest.

This was our first entry to the slot filling task of TAC
KBP. Our system suffered from the initial loss of cov-
erage so our rank is very low, see Table 2. We hy-
pothesize that by addressing the issues from the error
analysis, we can significantly improve the results.

References
Michele Banko, Michael J. Cafarella, Stephen

Soderland, Matt Broadhead, and Oren Et-
zioni. 2007. Open information extraction from
the web. In Proceedings of the 20th Interna-
tional Joint Conference on Artifical Intelligence.
Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, IJCAI’07, pages 2670–2676.
http://dl.acm.org/citation.cfm?id=1625275.1625705.

Luciano Del Corro and Rainer Gemulla. 2013. Clausie:
clause-based open information extraction. In Pro-
ceedings of the 22nd international conference on
World Wide Web. ACM, pages 355–366.

Kiril Gashteovski, Rainer Gemulla, and Luciano
Del Corro. 2017. Minie: Minimizing facts in open
information extraction. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing. pages 2620–2630.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International
Conference on Artificial Intelligence and Statistics
(AISTATS’10). Society for Artificial Intelligence and
Statistics.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. 2014. The Stanford
CoreNLP natural language processing toolkit.
In Association for Computational Linguistics
(ACL) System Demonstrations. pages 55–60.
http://www.aclweb.org/anthology/P/P14/P14-5010.

Tomas Mikolov, Kai Chen, G.s Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space 2013.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia
6(12):e26752.

Matthew D. Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. CoRR abs/1212.5701.

http://dl.acm.org/citation.cfm?id=1625275.1625705
http://dl.acm.org/citation.cfm?id=1625275.1625705
http://dl.acm.org/citation.cfm?id=1625275.1625705
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

