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Abstract 

The SRCB team participated in Entity Discovery and 

Linking task and Event Nugget Detection task in 

TAC Knowledge Base Population (KBP) 2017. The 

EDL system includes English and Chinese entity 

discovery, candidate generation, entity linking and 

NIL cluster. The Event Nugget Detection system 

identifies event nugget mentions and puts them into 

co-reference chains. We develop event nugget 

system based in English and Chinese. 

1 Introduction 

In this paper, we describe the SRCB team’s 

participation in TAC KBP 2017 event nugget track 

and entity discovery and linking task.  

We participate in event nugget detection and 

coreference for both English and Chinese task. For 

English task, we combines bidirectional LSTM 

models and Conditional Random Filed Models to 

detect event type. Feature based svm model was used 

to classify event realis. And we employ maximum 

entropy based classifier and sieve approach to detect 

event coreference. For Chinese task, svm model was 

employ to detect event type and realis. 

We also participate in entity discovery and linking 

task in both English and Chinese. We use a Bi-

directional LSTM model for entity discovery. And 

we use a retrieve-based method to realize the 

candidate generation. The entity linking problem is 

treated as a binary classification problem. Finally, we 

use a rule-based method to go the clustering. 

The paper is organized as follows: Section 2 

describes our method in event nugget task. Section 3 

describes the entity discovery and linking system. 

Section 4 concludes the paper. 

2 Event Detection and Coreference 

The SRCB team participates in the event nugget 

task of TAC-KBP 2017. The task we participate 

consists of two subtasks: event nugget detection and 

event nugget coreference. The event nugget 

detection task aims to identify the selected event 

types and subtypes taken from Rich ERE annotation 

guidelines. Besides, the task is also required to 

identify three REALIS values for event mentions. 

The event coreference task aims to identify the 

coreference links between event mention instances 

within a document. The event nugget task consists 

of three languages (English, Chinese and Spanish). 

The SRCB team submitted systems for both English 

and Chinese. 

For English tasks, we experiment with combination 

of two genre of models for nugget extractions: a 

neural network based event extraction system and a 

traditional Conditional Random Field (CRF) based 

event extraction system. For event coreference 

systems, we experiment with two approaches: 

maximum entropy based classifier and sieve 

approach. In addition, we train a SVM classifier for 



realis detection. The systems run in a pipelined 

version of the three stages. 

For Chinese tasks, we extract features and train 

SVM model to measure the confidence of an 

instance to trigger an event. Realis of candidate 

triggers are also classified by SVM model. Event 

coreference is solved by rule based method. 

2.1 Event Detection and Coreference 

for English 

2.1.1 Event Type Detection Model 

We trained an ensemble model that combine with 

neural network model and Conditional Random 

Field (CRF) model. In our initial experiments, we 

found that neural network model can result in more 

trigger candidates than CRF model, while CRF can 

detect trigger candidates with higher precision than 

neural network model. Thus, an ensemble model 

combined with neural network model and CRF 

model is supposed to yield better results than each 

individual model. 

2.1.1.1 Neural Network Model 

Recurrent neural networks (RNN) can capture 

historical contextual information based on memory 

cells, and thus they are often used to processing 

sequential data. To solve the long-term dependency 

problem, Long Short-Term Memory (LSTM) 

(Hochreiter and Schmidhuber, 1997) structure is 

proposed. The LSTM maintain input gate, forget 

gate, update gate and output gate to maintain 

historical information and current information. The 

memory cell is elaborately designed to delivery 

message between memories. Previous researches 

(Chiu and Nichols, 2015; Zeng et al., 2016) have 

successfully employed RNN network to solve 

sequence labelling problem. In this paper, we 

followed the previous work (Graves et al., 2013) 

and adopted bidirectional LSTM (BiLSTM) 

networks. The BiLSTM summaries both past and 

future contexts for a given time, and thus more 

sentence-level information can be used for better 

prediction. Based on BiLSTM, we employed the 

following architecture for trigger identification and 

classification. Figure 1 list our architecture. 
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Figure 1. The main architecture of our BiLSTM model 

As can be from Figure 1, our model read input 

sentence word by word. Words are converted to 

vectors by word embedding. Then, one 

bidirectional LSTM layer is constructed. A forward 

LSTM network computes the hidden state ℎ𝑡
⃗⃗  ⃗ of 

the past context of the sentence at word 𝑤𝑡 , while 



a backward LSTM network reads the same sentence 

in reverse and outputs ℎ𝑡
⃐⃗ ⃗⃗  given the future context. 

In our implementation, we concatenate these two 

vectors to form the hidden state of a BiLSTM 

network, i.e. ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗, ℎ𝑡

⃐⃗ ⃗⃗ ]. Then ℎ𝑡  is fed into a 

softmax layer to produce the log probabilities of 

each label for 𝑤𝑡. We treat trigger labelling task as 

a sequence labelling problem. If a word is an event 

trigger with type type, the label is type. Continuous 

words with the same type label are regarded as the 

same event with the specified type value. If a word 

is not an event trigger, the label is O. In this way, 

our labeling scheme can deal with multi-word 

triggers. 

As there are 8 types and 18 subtypes defined for 

evaluation in 2017, and subtypes are unique to each 

other, thus once subtype is determined for one 

trigger, its type is also determined. In our labeling 

scheme, event types are set to predefined 18 

subtypes. Since the number of each subtype in 

training data vary significantly, it is often hard for 

model to label subtypes which are with few 

instances in training data. As such, we adopt over-

sampling technique to increase the numbers of 

subtypes with few instances.  

2.1.1.2 Conditional Random Field Models 

A linear chain CRF is employed to extract event 

mention span and type. The reason is that CRFs has 

strong reasoning ability, and be able to use 

complicated and overlapping and non-independent 

features for training and reasoning, to make full use 

of context information as features, can also add any 

other external features, so that the model can be 

obtained the information is very rich. 

CRF, unlike LSTM and other models, can 

consider the long-term context information, it 

considers more the whole sentence of the local 

characteristics of the linear weighted combination 

(scanning the whole sentence through the feature 

template). The key point is that the CRF model is p 
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(y | x, w), note that y and x are all sequences, it is 

somewhat like list wise, the optimization is a 

sequence of y = (y1, y2, ..., yn)，rather than the y_t 

of a certain moment, that is, find the highest 

probability sequence y = (y1, y2, …, yn) makes 

p(y1, y2, …, yn| x, w) is the highest, it calculates a 

joint probability, the optimization is the whole 

sequence (final goal), not the optimal splicing of 

each moment, at this point, CRF is better than 

LSTM. The accuracy of the result is higher than that 

of LSTM. 

CRF Features include token, lemma, stemming, 

POS tag, dependency type, grammar, NER nearby, 

token position in sentence, sentence position in 

document, trigger word dictionary, and WordNet1 

index. Text processing employs Stanford CoreNLP2 

tookit. 

2.1.1.3 Ensemble Model 

Based on the above described neural network model 

and CRF model, we combine the outputs of those 

models to produce more reliable results. 

First, we train an ensemble neural network 

model consisting of 10 BiLSTM models. The 

training data is split into 10 parts. For each BiLSTM 

model, 9 of 10 parts data are used as training data, 

and the remaining part data is used as validation 

data. Then, voting strategy is adopted to combine 

outputs of the 10 BiLSTM models. The final 

ensemble model is represented as en_BiLSTM. 

Then, we combine outputs of en_BiLSTM and 

CRF models as final outputs. We employ the 

following strategy to combine outputs. 

1) If an event trigger with type Type1 identified 

by en_BiLSTM is not in the outputs of CRF, 

add the event trigger to the final outputs;  

2) If there is an event trigger with type Type1 

identified by en_BiLSTM, and there is also the 

same event trigger with type Type2 identified 

by CRF, drop the event trigger with type Type1 

and add the event trigger with type Type2 to the 

2 https://stanfordnlp.github.io/CoreNLP/ 



final outputs, regardless whether Type2 is the 

same with Type1 or not. 

3) For the event triggers that are identified by 

CRF while are not identified by en_BiLSTM, 

add all these ones to the final outputs. 

2.1.1.4 Realis Model 

We build svm model to classify realis value for 

event trigger. The features includes: 

1) Trigger: It indicates which trigger words it is.  

2) Ner: NER tags for the current word and 

nearby words. 

3) Pos: POS tags for the current word and 

nearby words. 

4) Tense: Whether the word is ended with “ed” 

or not. 

5) Synset: WordNet synsets for the current word. 

The trained svm model assign a REALIS value 

for each identified trigger. The REALIS value 

include ACTUAL, OTHER and GENERIC. 

2.1.2 Event Nugget Coreference 

2.1.2.1 Sieve based method 

We employ a 2-pass sieve method to cluster event 

nuggets into hoppers. The method was proved 

significantly efficient by UTD team @KBP2016 

(Lu and Ng, 2016). Each pair of event nuggets 

which have the same subtype goes through the 

sieves to be classified whether to be coreferent or 

not. In each sieve, a 1-NN classifier is employed.  

In the 1st sieve, given a test pair, training pairs 

that meet the following conditions are considered as 

neighbors: training pair’s subtype is the same as test 

pair’s; training pair’s lemmatized nuggets are the 

same as test pair’s; the sentence distance between 

two nuggets of training pair is in the range that of 

test pair plus or minus m, wherein m is a parameter. 

Jaccard distance of lemmatized sentences is used to 

measure the similarity between a training pair and a 

test pair.  

Those test pairs which are determined not 

coreferent by the 1st sieve go to the 2nd sieve. In the 
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2nd sieve, which is not that strict as the 1st sieve, 

nuggets of test pair have the same lemma; nuggets 

of neighbor training pair have the same lemma, but 

not necessarily identical with test pair’s; training 

pair’s subtype is the same as test pair’s. The same 

measure with the 1st sieve is utilized to calculate 

distance between test pair and training pair. 

Test pairs of the same subtype which are 

coreferent with each other form a graph, in which 

vertices are nuggets and edges are coreferent 

relationship. Then each connected sub-graph is a 

hopper. 

2.1.2.2 ME based method 

The Maximum Entropy (ME) model is employed to 

extract event coreference. The methods used are as 

follows, each two mention span is divided into a 

pair, and classify each pair. Finally, the same class 

will be linked together. Features for ME models 

include lemma, stemming, sentence position in 

document, POS tag, dependency type, grammar, 

NER, NER nearby and the same WordNet. 

2.1.3 Experiments 

2.1.3.1 Setup 

For development, we use LDC2017E02 (2014 and 

2015), LDC2015E29, and LDC2015E68 as training 

data, and LDC2017E02 (2016) as testing data. For 

evaluation on 2017 data, we further include 

LDC2016E31 and LDC2017E02 (2016) as training 

data. 

To properly deal with English words, 50,000 

most frequent words are considered respectively. 

The English tokens and Arabic numerals in 

sentences are ignored since there is only a small 

fraction of these tokens. We insert starting and 

ending tokens for every sentence. All the words that 

are not in the vocabulary are labeled by a special 

token “UNK”. 

In our experiments, word embeddings are pre-

trained using Wikipedia English3 data. And during 

the process of model training, word embeddings are 



allowed to be tuned by the neural models. Word 

embeddings and recurrent layers are set to 512 

dimensions. We used SGD to optimize all 

parameters and mini batch size is set to 256. The 

initial learning rate is 0.5, moving average decay 0.9 

once the current loss is highest in the last 5 updates. 

Most parameters are initialized by randomly 

sampling from a uniform distribution between -0.1 

and 0.1. All our models were trained on a NVIDIA 

GeForce GTX 1080 GPU. The training stage of 

each model took about 1.5 hours. 

2.1.3.2 Results and Analysis 

SRCB submitted three runs to the EN evaluation 

this year (called srcb1, srcb2 and srcb3). We used 

the ensemble model in all three runs for event 

nugget detection. We tried different combination of 

parameters for neural network. 

The best performance of the three runs on the 

2017 official evaluation data for English are listed 

in Table 1. All the scores are computed using the 

official scorer this year. In the results, we found that 

the sieve based approach showed improvement over 

ME based method. 

Table 1: Our best performance on the 2017 official evaluation data for English 

 Micro Average Macro Average 

Attributes Prec Rec F1 Prec Rec F1 

plain 68.04 66.53 67.27 68.07 68.04 68.06 

mention_type 56.83 55.57 56.19 57.02 56.82 56.92 

realis_status 47.95 46.89 47.42 48.77 48.73 48.75 

mention_type+realis_status 39.69 38.81 39.24 40.47 40.17 40.32 

Overall Average CoNLL score 35.33 

2.2 Event Detection and Coreference 

for Chinese 

We extract triggers from training data and expand 

candidate trigger words by HIT synonym dictionary 

and custom news corpus, and filter candidate 

triggers by a TF-IDF like method. After finding all 

the instances of candidate triggers in data, we 

extract features and train a 2-categories SVM model 

to determine the confidence of a candidate trigger 

to trigger an event. Realis of candidate triggers are 

classified by SVM while coreference between 

triggers are evaluated by rule methods. 

2.2.1 Event Nugget Detection Model 

2.2.1.1 Event Triggers and Trigger Expand 

Events are expressed as trigger words in text data. 

A type of event has its unique set of trigger words, 

and trigger words can define the type of an event as 

its descriptor. We can extract and keep a 

correspondence table between trigger words and 

event types by locating trigger words in training 

data. 

Event triggers and their corresponding event 

types are annotated in training data of ACE 2005 

and TAC KBP 2016. We can extract a 

correspondence table of event type and its triggers: 

<TriggerWord,EventType> 

In practice, there exists three main problems for 

extracting correspondence table: (1) 

Correspondence table can’t express bisection 

relations between trigger words and event types due 

to the polysemy phenomenon. For example, “离

开”(which means leave in English) can trigger both 

Movement-TransportPerson events and Personnel-

EndPosition events. Polysemy is more common in 

single character words in Chinese. (2) Trigger 

words in training data is too few to cover all the 

words that can trigger events in Chinese, causing a 

low recall rate. (3) Presence of a trigger word in data 

may probably not trigger its corresponding event, 

causing a low precision rate. 



For the first problem, we designed a TF-IDF like 

method to determine the confidence of a “trigger-

event type” relation, filter “trigger-event type” 

relations with lower confidence value, and keep the 

bisection between triggers and event types: 

EIDFETFConfidence *  

freq(E)

freq(E-w)
ETF 

 


















EDF

N
EIDF 2log

 

For the second problem, we believe words with 

the same semantics can trigger the same type of 

event. If one word is trigger word for a type of event, 

its synonyms can also trigger the same kind of event. 

After filtering the corresponding table by TF-IDF 

like method, we introduce semantic network 

resources to expand the corresponding table. With 

additional synonym of trigger words, the “trigger-

event type” corresponding table can cover most 

trigger words in Chinese, leading to the solution to 

the second problem. 

 “Synonym dictionary of Harbin Institute of 

technology” offers a dictionary with 5 levels of 

coding of major category, middle category, minor 

category, word group and atomic word group. For 

example: 

Hc27A01= 就职 到职 到任 上任 走马上任 

下车 下车伊始 就任 赴任 走马赴任 新任 

On basis of the synonym dictionary, we can 

expand new trigger words with a unique event type 

according to trigger words in training data. In 

practice, we iterate the top-4 bits of tags (Hc27 for 

Hc27A01) in synonym dictionary, if two or more 

words under a tag can trigger the same type of event 

in training data, then we add all the words under that 

tag to the correspondence table, as trigger words of 

the event type. For example, if both “就职” and “到

任” are trigger words of event type “Personnel-

EndPosition” in training data, we add all the words 

with tag “Hc27” to the correspondence table. 

A large scale of trigger words will cause the third 

problem: presence of a trigger word in data may 

probably not trigger its corresponding event. To 

solve this problem, we build a two-categories SVM 

to determine the confidence of a candidate trigger 

word to trigger an event. We name each presence of 

words in correspondence table in training data a 

candidate trigger. We extract context features of 

candidate features to determine whether it triggers 

an event. 

2.2.1.2 SVM Features 

SVM model is trained for determine whether a 

candidate trigger is a real one, it needs features of 

candidate triggers. In the event nugget detection 

task, we focus on sentences with candidate triggers 

and extract POS, semantics, named entities, syntax, 

dependency and statistic features of candidate 

triggers on its corresponding context. 

Candidate triggers and their corresponding event 

types may have hidden relationship in the same 

sentence. Triggers of the same event type may 

present repeatedly in the same sentence, and some 

event types have special relationships. For example, 

triggers of event type “Conflict-Attack” and event 

type “Life-Die” are more likely to co-present in the 

same sentence due to the fact that they have a cause 

and effect relationship. Therefore, besides POS, 

semantics, named entities, syntax, dependency and 

statistic features, we extract event types triggered 

by other candidate triggers in the same sentence 

with a candidate trigger as its context trigger 

features. The following table shows our features. 

 

 

 



Table 2: Features for svm model 

Feature  Description 

pos0 POS of the candidate trigger 

pos-5.....pos5 POS of words in candidate trigger’s context 

ner-5……ner5 Named entities in candidate trigger’s context 

index_article, 

index_sentence 

Index of candidate trigger in article and sentence 

 

length Candidate trigger’s characters 

sem1...sem5 5-level codes of candidate trigger in “Synonym dictionary 

of Harbin Institute of technology” 

conA0,conB0 Corresponding event type of candidate trigger 

conA-3,conB-

3......conA3,conB3 
Context trigger type and subtype features

 

dep-2,dep-1,dep1,dep2 Dependency features between candidate features and other 

words in sentence. 

 

2.2.1.3 REALIS detection 

Similar to event nugget detection, we build a SVM 

model to perform the REALIS classification, where 

the features we use are listed in Table. 

2.2.2 Event Coreference Model 

Similar to the event coreference model in English 

event coreference task, except we lower the 

confidence of single character words in Chinese. 

2.2.3 Experiments 

We trained our SVM model on Chinese data of ACE 

2005 and TAC 2016 in event nugget detection and 

REALIS detection. Since there exists 38 event types 

in ACE 2005 rather than 18 event types in TAC 

2017, we re-annotated the event type tags in ACE 

2005. 

The approach and training datasets described 

above are valid for all three runs that we have 

submitted. Below we describe the run specific 

settings for each submission and report the official 

submission scores. 

Submission 1. Training data includes modified 

ACE 2005 and TAC 2017, c=1.0, SVM model for 

REALIS detection. 

Submission 2. Training data includes modified 

ACE 2005 and TAC 2017, c=4.0, SVM model for 

REALIS detection. Submission 2 is our best official 

submission. 

Table 3: Results of Submission 2 

 Micro Average Macro Average 

Attributes Prec Rec F1 Prec Rec F1 

plain 47.48 46.76 47.12 47.05 47.86 47.45 

mention_type 42.47 41.82 42.14 42.28 42.99 42.63 

realis_status 33.80 33.29 33.54 33.07 33.70 33.38 

mention_type+realis_status 30.66 30.19 30.42 30.08 30.74 30.40 

Overall Average CoNLL score 24.15 



Submission 3. Training data includes modified 

ACE 2005 and TAC 2017, c=4.0, rule-based model 

for REALIS detection. 

3 Tri-lingual Entity Discovery and 

Linking 

3.1 System Architecture 

3.1.1 Preprocessing 

In the conventional approaches, entity discovery is 

the first step of the EDL system. Entity discovery is 

a supervised sequence labeling problem, and the 

preprocessing should satisfy specific tasks. In our 

system, the xml tags, text content between 

“<quote>” tags, page URL and several non-text 

symbols in the raw data are considered as noisy.  

On Chinese data set, because the raw data are 

mainly written by simplified Chinese, all of the 

traditional Chinese characters need to normalize to 

simplified Chinese characters. In addition, there are 

many full-shaped alphabetic characters, numbers 

and symbols carried the same information as half-

shaped ones, the normal way is convert them to 

half-shaped.  

3.1.2 Mention Recognition 

In this competition, besides the 5-class category 

(PER, LOC, ORG, GPE, FAC), a 2-class 

classification (NOM, NAM) was also required. It 

was straight forward to training two models 

separately, however, we hired only one Bi-

directional LSTM to model all these information. 

The 5-class category and 2-class category shared 

the same weights within the Bi-directional LSTM, 

and they had separate Softmax layer to perform 

classification of different types.  

The Mention Recognition was treated as sequence 

labeling problem (Collobert et al., 2011; Lample et 

al., 2016). The target was to narrow the gap between 

the predicted sequence and the labeled sequence. 

Cross-Entropy was used to measure the difference, 

and the Adam algorithm was applied for optimizing.  

Additional to the methods above, we also used pre-

trained word-embedding, character-level features 

(Chiu and Nichols, 2015; Santos and Guimaraes, 

2015), capital features, CRF-Layer (Huang et al, 

2015) to boost the basic model. 

3.1.2.1 Pre-trained word-embedding 

The Word-Embedding was initialized randomly or 

pre-trained using Gensim (Rehurek and Sojka, 

2010). Comparisons were made between these two 

initialization methods. Unsurprisingly, the pre-

trained Word-Embedding was far better. The dataset 

for training the Word Embedding came from Wiki. 

Redundant marks, short sentences and low 

frequency words were removed for cleaning. 

Stemming were performed.  As the result, we got 

Word-Embedding of different dimensions for 

nearly 600,000 words. 

3.1.2.2 Character-level feature 

The Word-Embedding was aimed to capture 

semantic and syntax information while the 

character-level feature was targeting the 

morphological information of words (Chiu and 

Nichols, 2015; Santos and Guimaraes, 2015). Prefix 

and suffix were the two spot where the 

morphological information lies. Feature extracting 

windows were set for prefix and suffix separately. 

The size of these windows were fixed, so it possible 

to project the original information using a matrix 

into the feature space. The projection matrix was 

initialized randomly. 

3.1.2.3 Capital feature 

Capital features (Collobert et al., 2011) refer to 

three features: 1) If the letters within the current 

word were all capital letters; 2) If the letters within 

the current word were all lowercase; 3) If the first 

letter of the current word was uppercase, while the 

other letters were lowercase; These features were 

thought to be beneficial for entity names containing 

abbreviation. However, in our experiments, capital 

features could only make marginally improvement. 

A guess was that similar information had already 

discovered by the character-level feature detector. 



3.1.2.4 CRF-Layer 

BIO (Collobert et al., 2011) marking strategy was 

applied for labeling the entities. The beginning 

word within an entity name were marked as B 

(begin). Other words within an entity name were 

marked as I (inside). Word not within an entity 

name were marked as O (outside). The CRF-Layer 

were set to honor the BIO constraints where mark I 

could only appear after mark B, which could 

upgrade the accuracy of the system, but in our 

experiments, CRF-Layer could only benefit 

marginally.  The reason for this phenomenon was 

that the Bi-directional LSTM was almost good 

enough to model the rules between B, I, O marks. It 

is very likely that no benefit will gain by adding a 

CRF-Layer to a full trained Bi-directional LSTM 

model. 

3.1.3 Candidate Generation 

In this paper, a retrieve-based system is proposed as 

the candidate generation module to generate 

candidates for each detected mention.   

The input to this candidate generation step is a 

detected mention, the output from this step is a 

candidate list, which consists of a list of related 

Wikipedia entities possibly matching this mention. 

Firstly, each mention is first expanded into a list of 

different queries based on some pre-defined rules. 

These queries are assumed to represent different 

ways to rename the same entities. For example, 

given a detected mention “Steve”, we need to 

expand it to generate a list of different queries, 

which may include Steve Jobs, Steve Nash, etc. 

Original query is expanded following the query 

expansion steps below: 

 The original detected mention is added to the 

query list. 

 If any longer mention in the same source 

document contains the original mention, all of 

these longer mentions are added to the query 

list. For a mention like “Steve”, if another 

mention “Steve Nash” is found from the same 

document, then “Steve Nash” is added to the 

query list of mention “Steve”. 

 If a detected mention is NOM, the nearest 

NAM mention is added to the query list. For 

example. If the detected mention is “president” 

and the nearest NAM mention is “Barack 

Obama”, then “Barack Obama” is added to the 

query list. 

After the query list is ready, the candidate entity list 

is generated from the retrieve results in the name of 

Wikipedia entities. To improve the recall of the 

results, fuzzy search and partial matching is 

imported in this retrieve step. Finally, the top N 

records from fuzzy query retrieve and match query 

retrieve is combined as the list of candidate entities. 

If the candidate entity is a disambiguation page in 

Wikipedia, add the outlink of the page is added to 

the candidate entity list. 

3.1.4 Entity Linking 

3.1.4.1 Feature 

In this paper, some well-established features are 

used in the entity linking. 

1. Mention String Comparison: The mention 

string comparison between the entity mention and 

the candidate entity name is the most direct feature 

in entity linking. 

 Whether the entity mention exactly matches 

the candidate entity name. 

 Whether the candidate entity name starts with 

or ends with the entity mention. 

 Whether the candidate entity name is the 

prefix of or postfix of the entity mention. 

 Whether the entity mention is wholly 

contained in the candidate entity name, or 

vice-versa. 

 Whether all of the letters of the entity mention 

are found in the same order in the candidate 

entity name. 

 The ratio of same words to the shorter between 

the entity mention and the candidate entity 

name. 



 The ratio of the recursively longest common 

subsequence to the shorter among the entity 

mention and the candidate entity name. 

2. Entity Popularity: The popularity of the 

candidate entity on the mention is another very 

useful feature in entity linking. However, this prior 

probability is hard to calculate due to the lack of 

training data in target languages. A compromised 

entity popularity is used here. The entity popularity 

is defined as the normalized inlink number of 

candidate entity in the entity list. 

3. Entity Type: This feature is to indicate whether 

the type of the entity mention (i.e., people, location, 

and organization) in text is consistent with the 

category of the candidate entity in the knowledge 

base. The entity type feature for each candidate 

entity is defined as the sum of the conditional 

probability of the category of the candidate entity in 

Wikipedia on its detected mention type. 

4. Word Vector Feature: given the mention string 

w and the candidate entity e, this returns the 

similarity of the two corresponding word vectors. 

Similarity is calculated as cosine of the angle 

between two vectors. If the mention string contains 

multiple words, we sum their word vectors on each 

dimension. 

5. Topic Model Feature: similar with word vector 

feature, given the mention string w and the 

candidate entity e, this returns the cosine similarity 

of the two corresponding topic distributions.  

3.1.4.2 Linking as Regression 

The correctness of candidate entities can be 

considered as labels for an entity-mention pair. For 

each pair, if the entity is the correct one, the label is 

1. Otherwise, the label is 0. Then, this label can be 

predicted by a classification model, which can be 

learned with supervised model. In the entity linking 

step, the model need to select the “unique” correct 

candidate entity for each mention. So, we use a 

regression model to predict the label, and choose the 

candidate entity with the highest prediction result. 

To predict the final result, these features, explained 

in Section 3.3 are fed into a regular feedforward 

neural network, to compute a matching score. 

For the NIL mention, we employ a NIL threshold to 

predict the unlinkable entity mention. If the score of 

the top candidate entity is smaller than the NIL 

threshold, then return NIL for the entity mention, 

predict the mention m as unlinkable. The NIL 

threshold is also learned from the training data. 

3.1.4.3 NIL Clustering 

We use simple rule based method to do the 

clustering, from the participating team in 2016, 

USTC NELSLIP, (Liu et al., 2016), to conduct NIL 

clustering. The method contains two rules: them: 

 Different named NIL mentions are grouped 

into one cluster only if their mention strings 

are the same (case insensitive); 

 The nominal NIL mention is always grouped 

to its nearest named mention with the same 

mention type. 

3.2 Experiments 

Data in LDC2017E03 were chosen as the 

developing dataset. To be specific, data of 2014 and 

2015 were the training dataset, while data of 2016 

were the validation dataset. Also, Wiki data were 

included for the word embedding and LDA training.  

Evaluation score in validation dataset is shown as 

below: 

Table 4: score on EDL 2016 dataset 

 P R F 

Mention evaluation 0.85 0.625 0.721 

Linking evaluation 0.674 0.569 0.617 

Clustering evaluation 0.702 0.694 0.645 

4 Conclusions 

In this paper, we describe the submissions of SRCB 

in event nugget task and entity discovery and 

linking task.  

In event nugget task, we built event trigger 

detection systems for both Chinese and English 

tasks, and evaluated the performance using TAC 



2017 corpus. For English tasks, the ensemble model 

of BiLSTM and CRF achieves significantly better 

results than other models for event detection and 

event type classification. We also found that the 

sieve based approach perform better than ME based 

method for event coreference. For Chinese tasks, 

we primly used svm based method and achieved 

competitive results. 

In entity discovery and linking task, our system 

mainly contains a mention recognition model based 

on BiLSTM, a retrieve-based candidate generation 

method, a binary classification entity linking, and a 

rule-based NIL clustering. 
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