
SRCB Entity Discovery and Linking (EDL) and Event

Nugget Systems for TAC 2017
Shanshan Jiang, Yihan Li, Tianyi Qin, Qian Meng, Bin Dong

Ricoh Software Research Center (Beijing) Co.,Ltd.

Room 2801, 28th Floor, Tengda Plaza, No.168, Xiwai Street, Haidian District, Beijing, China

{shanshan.jiang, yihan.li, tianyi.qin, qian.meng, bin.dong}@srcb.ricoh.com

Abstract

The SRCB team participated in Entity Discovery and

Linking task and Event Nugget Detection task in

TAC Knowledge Base Population (KBP) 2017. The

EDL system includes English and Chinese entity

discovery, candidate generation, entity linking and

NIL cluster. The Event Nugget Detection system

identifies event nugget mentions and puts them into

co-reference chains. We develop event nugget

system based in English and Chinese.

1 Introduction

In this paper, we describe the SRCB team’s

participation in TAC KBP 2017 event nugget track

and entity discovery and linking task.

We participate in event nugget detection and

coreference for both English and Chinese task. For

English task, we combines bidirectional LSTM

models and Conditional Random Filed Models to

detect event type. Feature based svm model was used

to classify event realis. And we employ maximum

entropy based classifier and sieve approach to detect

event coreference. For Chinese task, svm model was

employ to detect event type and realis.

We also participate in entity discovery and linking

task in both English and Chinese. We use a Bi-

directional LSTM model for entity discovery. And

we use a retrieve-based method to realize the

candidate generation. The entity linking problem is

treated as a binary classification problem. Finally, we

use a rule-based method to go the clustering.

The paper is organized as follows: Section 2

describes our method in event nugget task. Section 3

describes the entity discovery and linking system.

Section 4 concludes the paper.

2 Event Detection and Coreference

The SRCB team participates in the event nugget

task of TAC-KBP 2017. The task we participate

consists of two subtasks: event nugget detection and

event nugget coreference. The event nugget

detection task aims to identify the selected event

types and subtypes taken from Rich ERE annotation

guidelines. Besides, the task is also required to

identify three REALIS values for event mentions.

The event coreference task aims to identify the

coreference links between event mention instances

within a document. The event nugget task consists

of three languages (English, Chinese and Spanish).

The SRCB team submitted systems for both English

and Chinese.

For English tasks, we experiment with combination

of two genre of models for nugget extractions: a

neural network based event extraction system and a

traditional Conditional Random Field (CRF) based

event extraction system. For event coreference

systems, we experiment with two approaches:

maximum entropy based classifier and sieve

approach. In addition, we train a SVM classifier for

realis detection. The systems run in a pipelined

version of the three stages.

For Chinese tasks, we extract features and train

SVM model to measure the confidence of an

instance to trigger an event. Realis of candidate

triggers are also classified by SVM model. Event

coreference is solved by rule based method.

2.1 Event Detection and Coreference

for English

2.1.1 Event Type Detection Model

We trained an ensemble model that combine with

neural network model and Conditional Random

Field (CRF) model. In our initial experiments, we

found that neural network model can result in more

trigger candidates than CRF model, while CRF can

detect trigger candidates with higher precision than

neural network model. Thus, an ensemble model

combined with neural network model and CRF

model is supposed to yield better results than each

individual model.

2.1.1.1 Neural Network Model

Recurrent neural networks (RNN) can capture

historical contextual information based on memory

cells, and thus they are often used to processing

sequential data. To solve the long-term dependency

problem, Long Short-Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997) structure is

proposed. The LSTM maintain input gate, forget

gate, update gate and output gate to maintain

historical information and current information. The

memory cell is elaborately designed to delivery

message between memories. Previous researches

(Chiu and Nichols, 2015; Zeng et al., 2016) have

successfully employed RNN network to solve

sequence labelling problem. In this paper, we

followed the previous work (Graves et al., 2013)

and adopted bidirectional LSTM (BiLSTM)

networks. The BiLSTM summaries both past and

future contexts for a given time, and thus more

sentence-level information can be used for better

prediction. Based on BiLSTM, we employed the

following architecture for trigger identification and

classification. Figure 1 list our architecture.

LSTM

LSTM

Out

Police

O

Word

Embedding

Forword

LSTM

Backword

LSTM

Output

Layers

Softmax

Tag sequence

LSTM

LSTM

Out

investigated

O

LSTM

LSTM

Out

the

O

LSTM

LSTM

Out

murder

Conflict_

Attack

LSTM

LSTM

Out

incident

Conflict_

Attack

Figure 1. The main architecture of our BiLSTM model

As can be from Figure 1, our model read input

sentence word by word. Words are converted to

vectors by word embedding. Then, one

bidirectional LSTM layer is constructed. A forward

LSTM network computes the hidden state ℎ𝑡
⃗⃗ ⃗ of

the past context of the sentence at word 𝑤𝑡 , while

a backward LSTM network reads the same sentence

in reverse and outputs ℎ𝑡
⃐⃗ ⃗⃗ given the future context.

In our implementation, we concatenate these two

vectors to form the hidden state of a BiLSTM

network, i.e. ℎ𝑡 = [ℎ𝑡
⃗⃗ ⃗, ℎ𝑡

⃐⃗ ⃗⃗]. Then ℎ𝑡 is fed into a

softmax layer to produce the log probabilities of

each label for 𝑤𝑡. We treat trigger labelling task as

a sequence labelling problem. If a word is an event

trigger with type type, the label is type. Continuous

words with the same type label are regarded as the

same event with the specified type value. If a word

is not an event trigger, the label is O. In this way,

our labeling scheme can deal with multi-word

triggers.

As there are 8 types and 18 subtypes defined for

evaluation in 2017, and subtypes are unique to each

other, thus once subtype is determined for one

trigger, its type is also determined. In our labeling

scheme, event types are set to predefined 18

subtypes. Since the number of each subtype in

training data vary significantly, it is often hard for

model to label subtypes which are with few

instances in training data. As such, we adopt over-

sampling technique to increase the numbers of

subtypes with few instances.

2.1.1.2 Conditional Random Field Models

A linear chain CRF is employed to extract event

mention span and type. The reason is that CRFs has

strong reasoning ability, and be able to use

complicated and overlapping and non-independent

features for training and reasoning, to make full use

of context information as features, can also add any

other external features, so that the model can be

obtained the information is very rich.

CRF, unlike LSTM and other models, can

consider the long-term context information, it

considers more the whole sentence of the local

characteristics of the linear weighted combination

(scanning the whole sentence through the feature

template). The key point is that the CRF model is p

1 http://wordnet.princeton.edu/

(y | x, w), note that y and x are all sequences, it is

somewhat like list wise, the optimization is a

sequence of y = (y1, y2, ..., yn)，rather than the y_t

of a certain moment, that is, find the highest

probability sequence y = (y1, y2, …, yn) makes

p(y1, y2, …, yn| x, w) is the highest, it calculates a

joint probability, the optimization is the whole

sequence (final goal), not the optimal splicing of

each moment, at this point, CRF is better than

LSTM. The accuracy of the result is higher than that

of LSTM.

CRF Features include token, lemma, stemming,

POS tag, dependency type, grammar, NER nearby,

token position in sentence, sentence position in

document, trigger word dictionary, and WordNet1

index. Text processing employs Stanford CoreNLP2

tookit.

2.1.1.3 Ensemble Model

Based on the above described neural network model

and CRF model, we combine the outputs of those

models to produce more reliable results.

First, we train an ensemble neural network

model consisting of 10 BiLSTM models. The

training data is split into 10 parts. For each BiLSTM

model, 9 of 10 parts data are used as training data,

and the remaining part data is used as validation

data. Then, voting strategy is adopted to combine

outputs of the 10 BiLSTM models. The final

ensemble model is represented as en_BiLSTM.

Then, we combine outputs of en_BiLSTM and

CRF models as final outputs. We employ the

following strategy to combine outputs.

1) If an event trigger with type Type1 identified

by en_BiLSTM is not in the outputs of CRF,

add the event trigger to the final outputs;

2) If there is an event trigger with type Type1

identified by en_BiLSTM, and there is also the

same event trigger with type Type2 identified

by CRF, drop the event trigger with type Type1

and add the event trigger with type Type2 to the

2 https://stanfordnlp.github.io/CoreNLP/

final outputs, regardless whether Type2 is the

same with Type1 or not.

3) For the event triggers that are identified by

CRF while are not identified by en_BiLSTM,

add all these ones to the final outputs.

2.1.1.4 Realis Model

We build svm model to classify realis value for

event trigger. The features includes:

1) Trigger: It indicates which trigger words it is.

2) Ner: NER tags for the current word and

nearby words.

3) Pos: POS tags for the current word and

nearby words.

4) Tense: Whether the word is ended with “ed”

or not.

5) Synset: WordNet synsets for the current word.

The trained svm model assign a REALIS value

for each identified trigger. The REALIS value

include ACTUAL, OTHER and GENERIC.

2.1.2 Event Nugget Coreference

2.1.2.1 Sieve based method

We employ a 2-pass sieve method to cluster event

nuggets into hoppers. The method was proved

significantly efficient by UTD team @KBP2016

(Lu and Ng, 2016). Each pair of event nuggets

which have the same subtype goes through the

sieves to be classified whether to be coreferent or

not. In each sieve, a 1-NN classifier is employed.

In the 1st sieve, given a test pair, training pairs

that meet the following conditions are considered as

neighbors: training pair’s subtype is the same as test

pair’s; training pair’s lemmatized nuggets are the

same as test pair’s; the sentence distance between

two nuggets of training pair is in the range that of

test pair plus or minus m, wherein m is a parameter.

Jaccard distance of lemmatized sentences is used to

measure the similarity between a training pair and a

test pair.

Those test pairs which are determined not

coreferent by the 1st sieve go to the 2nd sieve. In the

3 https://en.wikipedia.org/wiki/Main_Page

2nd sieve, which is not that strict as the 1st sieve,

nuggets of test pair have the same lemma; nuggets

of neighbor training pair have the same lemma, but

not necessarily identical with test pair’s; training

pair’s subtype is the same as test pair’s. The same

measure with the 1st sieve is utilized to calculate

distance between test pair and training pair.

Test pairs of the same subtype which are

coreferent with each other form a graph, in which

vertices are nuggets and edges are coreferent

relationship. Then each connected sub-graph is a

hopper.

2.1.2.2 ME based method

The Maximum Entropy (ME) model is employed to

extract event coreference. The methods used are as

follows, each two mention span is divided into a

pair, and classify each pair. Finally, the same class

will be linked together. Features for ME models

include lemma, stemming, sentence position in

document, POS tag, dependency type, grammar,

NER, NER nearby and the same WordNet.

2.1.3 Experiments

2.1.3.1 Setup

For development, we use LDC2017E02 (2014 and

2015), LDC2015E29, and LDC2015E68 as training

data, and LDC2017E02 (2016) as testing data. For

evaluation on 2017 data, we further include

LDC2016E31 and LDC2017E02 (2016) as training

data.

To properly deal with English words, 50,000

most frequent words are considered respectively.

The English tokens and Arabic numerals in

sentences are ignored since there is only a small

fraction of these tokens. We insert starting and

ending tokens for every sentence. All the words that

are not in the vocabulary are labeled by a special

token “UNK”.

In our experiments, word embeddings are pre-

trained using Wikipedia English3 data. And during

the process of model training, word embeddings are

allowed to be tuned by the neural models. Word

embeddings and recurrent layers are set to 512

dimensions. We used SGD to optimize all

parameters and mini batch size is set to 256. The

initial learning rate is 0.5, moving average decay 0.9

once the current loss is highest in the last 5 updates.

Most parameters are initialized by randomly

sampling from a uniform distribution between -0.1

and 0.1. All our models were trained on a NVIDIA

GeForce GTX 1080 GPU. The training stage of

each model took about 1.5 hours.

2.1.3.2 Results and Analysis

SRCB submitted three runs to the EN evaluation

this year (called srcb1, srcb2 and srcb3). We used

the ensemble model in all three runs for event

nugget detection. We tried different combination of

parameters for neural network.

The best performance of the three runs on the

2017 official evaluation data for English are listed

in Table 1. All the scores are computed using the

official scorer this year. In the results, we found that

the sieve based approach showed improvement over

ME based method.

Table 1: Our best performance on the 2017 official evaluation data for English

 Micro Average Macro Average

Attributes Prec Rec F1 Prec Rec F1

plain 68.04 66.53 67.27 68.07 68.04 68.06

mention_type 56.83 55.57 56.19 57.02 56.82 56.92

realis_status 47.95 46.89 47.42 48.77 48.73 48.75

mention_type+realis_status 39.69 38.81 39.24 40.47 40.17 40.32

Overall Average CoNLL score 35.33

2.2 Event Detection and Coreference

for Chinese

We extract triggers from training data and expand

candidate trigger words by HIT synonym dictionary

and custom news corpus, and filter candidate

triggers by a TF-IDF like method. After finding all

the instances of candidate triggers in data, we

extract features and train a 2-categories SVM model

to determine the confidence of a candidate trigger

to trigger an event. Realis of candidate triggers are

classified by SVM while coreference between

triggers are evaluated by rule methods.

2.2.1 Event Nugget Detection Model

2.2.1.1 Event Triggers and Trigger Expand

Events are expressed as trigger words in text data.

A type of event has its unique set of trigger words,

and trigger words can define the type of an event as

its descriptor. We can extract and keep a

correspondence table between trigger words and

event types by locating trigger words in training

data.

Event triggers and their corresponding event

types are annotated in training data of ACE 2005

and TAC KBP 2016. We can extract a

correspondence table of event type and its triggers:

<TriggerWord,EventType>

In practice, there exists three main problems for

extracting correspondence table: (1)

Correspondence table can’t express bisection

relations between trigger words and event types due

to the polysemy phenomenon. For example, “离

开”(which means leave in English) can trigger both

Movement-TransportPerson events and Personnel-

EndPosition events. Polysemy is more common in

single character words in Chinese. (2) Trigger

words in training data is too few to cover all the

words that can trigger events in Chinese, causing a

low recall rate. (3) Presence of a trigger word in data

may probably not trigger its corresponding event,

causing a low precision rate.

For the first problem, we designed a TF-IDF like

method to determine the confidence of a “trigger-

event type” relation, filter “trigger-event type”

relations with lower confidence value, and keep the

bisection between triggers and event types:

EIDFETFConfidence *

freq(E)

freq(E-w)
ETF 


















EDF

N
EIDF 2log

For the second problem, we believe words with

the same semantics can trigger the same type of

event. If one word is trigger word for a type of event,

its synonyms can also trigger the same kind of event.

After filtering the corresponding table by TF-IDF

like method, we introduce semantic network

resources to expand the corresponding table. With

additional synonym of trigger words, the “trigger-

event type” corresponding table can cover most

trigger words in Chinese, leading to the solution to

the second problem.

 “Synonym dictionary of Harbin Institute of

technology” offers a dictionary with 5 levels of

coding of major category, middle category, minor

category, word group and atomic word group. For

example:

Hc27A01= 就职 到职 到任 上任 走马上任

下车 下车伊始 就任 赴任 走马赴任 新任

On basis of the synonym dictionary, we can

expand new trigger words with a unique event type

according to trigger words in training data. In

practice, we iterate the top-4 bits of tags (Hc27 for

Hc27A01) in synonym dictionary, if two or more

words under a tag can trigger the same type of event

in training data, then we add all the words under that

tag to the correspondence table, as trigger words of

the event type. For example, if both “就职” and “到

任” are trigger words of event type “Personnel-

EndPosition” in training data, we add all the words

with tag “Hc27” to the correspondence table.

A large scale of trigger words will cause the third

problem: presence of a trigger word in data may

probably not trigger its corresponding event. To

solve this problem, we build a two-categories SVM

to determine the confidence of a candidate trigger

word to trigger an event. We name each presence of

words in correspondence table in training data a

candidate trigger. We extract context features of

candidate features to determine whether it triggers

an event.

2.2.1.2 SVM Features

SVM model is trained for determine whether a

candidate trigger is a real one, it needs features of

candidate triggers. In the event nugget detection

task, we focus on sentences with candidate triggers

and extract POS, semantics, named entities, syntax,

dependency and statistic features of candidate

triggers on its corresponding context.

Candidate triggers and their corresponding event

types may have hidden relationship in the same

sentence. Triggers of the same event type may

present repeatedly in the same sentence, and some

event types have special relationships. For example,

triggers of event type “Conflict-Attack” and event

type “Life-Die” are more likely to co-present in the

same sentence due to the fact that they have a cause

and effect relationship. Therefore, besides POS,

semantics, named entities, syntax, dependency and

statistic features, we extract event types triggered

by other candidate triggers in the same sentence

with a candidate trigger as its context trigger

features. The following table shows our features.

Table 2: Features for svm model

Feature Description

pos0 POS of the candidate trigger

pos-5.....pos5 POS of words in candidate trigger’s context

ner-5……ner5 Named entities in candidate trigger’s context

index_article,

index_sentence

Index of candidate trigger in article and sentence

length Candidate trigger’s characters

sem1...sem5 5-level codes of candidate trigger in “Synonym dictionary

of Harbin Institute of technology”

conA0,conB0 Corresponding event type of candidate trigger

conA-3,conB-

3......conA3,conB3
Context trigger type and subtype features

dep-2,dep-1,dep1,dep2 Dependency features between candidate features and other

words in sentence.

2.2.1.3 REALIS detection

Similar to event nugget detection, we build a SVM

model to perform the REALIS classification, where

the features we use are listed in Table.

2.2.2 Event Coreference Model

Similar to the event coreference model in English

event coreference task, except we lower the

confidence of single character words in Chinese.

2.2.3 Experiments

We trained our SVM model on Chinese data of ACE

2005 and TAC 2016 in event nugget detection and

REALIS detection. Since there exists 38 event types

in ACE 2005 rather than 18 event types in TAC

2017, we re-annotated the event type tags in ACE

2005.

The approach and training datasets described

above are valid for all three runs that we have

submitted. Below we describe the run specific

settings for each submission and report the official

submission scores.

Submission 1. Training data includes modified

ACE 2005 and TAC 2017, c=1.0, SVM model for

REALIS detection.

Submission 2. Training data includes modified

ACE 2005 and TAC 2017, c=4.0, SVM model for

REALIS detection. Submission 2 is our best official

submission.

Table 3: Results of Submission 2

 Micro Average Macro Average

Attributes Prec Rec F1 Prec Rec F1

plain 47.48 46.76 47.12 47.05 47.86 47.45

mention_type 42.47 41.82 42.14 42.28 42.99 42.63

realis_status 33.80 33.29 33.54 33.07 33.70 33.38

mention_type+realis_status 30.66 30.19 30.42 30.08 30.74 30.40

Overall Average CoNLL score 24.15

Submission 3. Training data includes modified

ACE 2005 and TAC 2017, c=4.0, rule-based model

for REALIS detection.

3 Tri-lingual Entity Discovery and

Linking

3.1 System Architecture

3.1.1 Preprocessing

In the conventional approaches, entity discovery is

the first step of the EDL system. Entity discovery is

a supervised sequence labeling problem, and the

preprocessing should satisfy specific tasks. In our

system, the xml tags, text content between

“<quote>” tags, page URL and several non-text

symbols in the raw data are considered as noisy.

On Chinese data set, because the raw data are

mainly written by simplified Chinese, all of the

traditional Chinese characters need to normalize to

simplified Chinese characters. In addition, there are

many full-shaped alphabetic characters, numbers

and symbols carried the same information as half-

shaped ones, the normal way is convert them to

half-shaped.

3.1.2 Mention Recognition

In this competition, besides the 5-class category

(PER, LOC, ORG, GPE, FAC), a 2-class

classification (NOM, NAM) was also required. It

was straight forward to training two models

separately, however, we hired only one Bi-

directional LSTM to model all these information.

The 5-class category and 2-class category shared

the same weights within the Bi-directional LSTM,

and they had separate Softmax layer to perform

classification of different types.

The Mention Recognition was treated as sequence

labeling problem (Collobert et al., 2011; Lample et

al., 2016). The target was to narrow the gap between

the predicted sequence and the labeled sequence.

Cross-Entropy was used to measure the difference,

and the Adam algorithm was applied for optimizing.

Additional to the methods above, we also used pre-

trained word-embedding, character-level features

(Chiu and Nichols, 2015; Santos and Guimaraes,

2015), capital features, CRF-Layer (Huang et al,

2015) to boost the basic model.

3.1.2.1 Pre-trained word-embedding

The Word-Embedding was initialized randomly or

pre-trained using Gensim (Rehurek and Sojka,

2010). Comparisons were made between these two

initialization methods. Unsurprisingly, the pre-

trained Word-Embedding was far better. The dataset

for training the Word Embedding came from Wiki.

Redundant marks, short sentences and low

frequency words were removed for cleaning.

Stemming were performed. As the result, we got

Word-Embedding of different dimensions for

nearly 600,000 words.

3.1.2.2 Character-level feature

The Word-Embedding was aimed to capture

semantic and syntax information while the

character-level feature was targeting the

morphological information of words (Chiu and

Nichols, 2015; Santos and Guimaraes, 2015). Prefix

and suffix were the two spot where the

morphological information lies. Feature extracting

windows were set for prefix and suffix separately.

The size of these windows were fixed, so it possible

to project the original information using a matrix

into the feature space. The projection matrix was

initialized randomly.

3.1.2.3 Capital feature

Capital features (Collobert et al., 2011) refer to

three features: 1) If the letters within the current

word were all capital letters; 2) If the letters within

the current word were all lowercase; 3) If the first

letter of the current word was uppercase, while the

other letters were lowercase; These features were

thought to be beneficial for entity names containing

abbreviation. However, in our experiments, capital

features could only make marginally improvement.

A guess was that similar information had already

discovered by the character-level feature detector.

3.1.2.4 CRF-Layer

BIO (Collobert et al., 2011) marking strategy was

applied for labeling the entities. The beginning

word within an entity name were marked as B

(begin). Other words within an entity name were

marked as I (inside). Word not within an entity

name were marked as O (outside). The CRF-Layer

were set to honor the BIO constraints where mark I

could only appear after mark B, which could

upgrade the accuracy of the system, but in our

experiments, CRF-Layer could only benefit

marginally. The reason for this phenomenon was

that the Bi-directional LSTM was almost good

enough to model the rules between B, I, O marks. It

is very likely that no benefit will gain by adding a

CRF-Layer to a full trained Bi-directional LSTM

model.

3.1.3 Candidate Generation

In this paper, a retrieve-based system is proposed as

the candidate generation module to generate

candidates for each detected mention.

The input to this candidate generation step is a

detected mention, the output from this step is a

candidate list, which consists of a list of related

Wikipedia entities possibly matching this mention.

Firstly, each mention is first expanded into a list of

different queries based on some pre-defined rules.

These queries are assumed to represent different

ways to rename the same entities. For example,

given a detected mention “Steve”, we need to

expand it to generate a list of different queries,

which may include Steve Jobs, Steve Nash, etc.

Original query is expanded following the query

expansion steps below:

 The original detected mention is added to the

query list.

 If any longer mention in the same source

document contains the original mention, all of

these longer mentions are added to the query

list. For a mention like “Steve”, if another

mention “Steve Nash” is found from the same

document, then “Steve Nash” is added to the

query list of mention “Steve”.

 If a detected mention is NOM, the nearest

NAM mention is added to the query list. For

example. If the detected mention is “president”

and the nearest NAM mention is “Barack

Obama”, then “Barack Obama” is added to the

query list.

After the query list is ready, the candidate entity list

is generated from the retrieve results in the name of

Wikipedia entities. To improve the recall of the

results, fuzzy search and partial matching is

imported in this retrieve step. Finally, the top N

records from fuzzy query retrieve and match query

retrieve is combined as the list of candidate entities.

If the candidate entity is a disambiguation page in

Wikipedia, add the outlink of the page is added to

the candidate entity list.

3.1.4 Entity Linking

3.1.4.1 Feature

In this paper, some well-established features are

used in the entity linking.

1. Mention String Comparison: The mention

string comparison between the entity mention and

the candidate entity name is the most direct feature

in entity linking.

 Whether the entity mention exactly matches

the candidate entity name.

 Whether the candidate entity name starts with

or ends with the entity mention.

 Whether the candidate entity name is the

prefix of or postfix of the entity mention.

 Whether the entity mention is wholly

contained in the candidate entity name, or

vice-versa.

 Whether all of the letters of the entity mention

are found in the same order in the candidate

entity name.

 The ratio of same words to the shorter between

the entity mention and the candidate entity

name.

 The ratio of the recursively longest common

subsequence to the shorter among the entity

mention and the candidate entity name.

2. Entity Popularity: The popularity of the

candidate entity on the mention is another very

useful feature in entity linking. However, this prior

probability is hard to calculate due to the lack of

training data in target languages. A compromised

entity popularity is used here. The entity popularity

is defined as the normalized inlink number of

candidate entity in the entity list.

3. Entity Type: This feature is to indicate whether

the type of the entity mention (i.e., people, location,

and organization) in text is consistent with the

category of the candidate entity in the knowledge

base. The entity type feature for each candidate

entity is defined as the sum of the conditional

probability of the category of the candidate entity in

Wikipedia on its detected mention type.

4. Word Vector Feature: given the mention string

w and the candidate entity e, this returns the

similarity of the two corresponding word vectors.

Similarity is calculated as cosine of the angle

between two vectors. If the mention string contains

multiple words, we sum their word vectors on each

dimension.

5. Topic Model Feature: similar with word vector

feature, given the mention string w and the

candidate entity e, this returns the cosine similarity

of the two corresponding topic distributions.

3.1.4.2 Linking as Regression

The correctness of candidate entities can be

considered as labels for an entity-mention pair. For

each pair, if the entity is the correct one, the label is

1. Otherwise, the label is 0. Then, this label can be

predicted by a classification model, which can be

learned with supervised model. In the entity linking

step, the model need to select the “unique” correct

candidate entity for each mention. So, we use a

regression model to predict the label, and choose the

candidate entity with the highest prediction result.

To predict the final result, these features, explained

in Section 3.3 are fed into a regular feedforward

neural network, to compute a matching score.

For the NIL mention, we employ a NIL threshold to

predict the unlinkable entity mention. If the score of

the top candidate entity is smaller than the NIL

threshold, then return NIL for the entity mention,

predict the mention m as unlinkable. The NIL

threshold is also learned from the training data.

3.1.4.3 NIL Clustering

We use simple rule based method to do the

clustering, from the participating team in 2016,

USTC NELSLIP, (Liu et al., 2016), to conduct NIL

clustering. The method contains two rules: them:

 Different named NIL mentions are grouped

into one cluster only if their mention strings

are the same (case insensitive);

 The nominal NIL mention is always grouped

to its nearest named mention with the same

mention type.

3.2 Experiments

Data in LDC2017E03 were chosen as the

developing dataset. To be specific, data of 2014 and

2015 were the training dataset, while data of 2016

were the validation dataset. Also, Wiki data were

included for the word embedding and LDA training.

Evaluation score in validation dataset is shown as

below:

Table 4: score on EDL 2016 dataset

 P R F

Mention evaluation 0.85 0.625 0.721

Linking evaluation 0.674 0.569 0.617

Clustering evaluation 0.702 0.694 0.645

4 Conclusions

In this paper, we describe the submissions of SRCB

in event nugget task and entity discovery and

linking task.

In event nugget task, we built event trigger

detection systems for both Chinese and English

tasks, and evaluated the performance using TAC

2017 corpus. For English tasks, the ensemble model

of BiLSTM and CRF achieves significantly better

results than other models for event detection and

event type classification. We also found that the

sieve based approach perform better than ME based

method for event coreference. For Chinese tasks,

we primly used svm based method and achieved

competitive results.

In entity discovery and linking task, our system

mainly contains a mention recognition model based

on BiLSTM, a retrieve-based candidate generation

method, a binary classification entity linking, and a

rule-based NIL clustering.

5 References

Jing Lu and Vincent Ng. 2016. UTD’s Event

Nugget Detection and Coreference System at

KBP 2016.

Chiu, J. P., & Nichols, E. 2015. Named entity

recognition with bidirectional LSTM-CNNs.

arXiv preprint arXiv:1511.08308.

Zeng, Y., Luo, B., Feng, Y., & Zhao, D. 2016. WIP

Event Detection System at TAC KBP 2016 Event

Nugget Track.

Hochreiter, S., and Schmidhuber, J. 1997. Long

short-term memory. Neural computation

9(8):1735–1780.

Alan Graves, Abdel-rahman Mohamed, and

Geoffrey Hinton. 2013. Speech recognition with

deep recurrent neural networks. In Proceedings

of the 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing, pages

6645–6649.

Collobert R, Weston J, Bottou L, et al. Natural

language processing (almost) from scratch[J].

Journal of Machine Learning Research, 2011,

12(Aug): 2493-2537.

Lample G, Ballesteros M, Subramanian S, et al.

2016. Neural architectures for named entity

recognition[J]. arXiv preprint arXiv:1603.01360.

Santos C N, Guimaraes V. 2015. Boosting named

entity recognition with neural character

embeddings[J]. arXiv preprint arXiv:1505.05008.

Huang Z, Xu W, Yu K. 2015. Bidirectional LSTM-

CRF models for sequence tagging[J]. arXiv

preprint arXiv:1508.01991.

Rehurek R, Sojka P. 2010. Software framework for

topic modelling with large corpora[C]//In

Proceedings of the LREC 2010 Workshop on

New Challenges for NLP Frameworks.

