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Introduction

HyperThesis is a system built in response to the needs of DARPA's Active Interpretation of Disparate Alternatives
(AIDA) program for the ingest and digest of massive multi-source corpora, and management of hypotheses against
them. HyperThesis specifically aims at TA2 tasks for knowledgebase population, and TA3 for hypothesis formation
and reasoning. Our approach is based on 1) knowledge representations rooted in hypergraph reasoning; 2) a
topological representation of hypotheses for generation and management. This paper reports on progress from
January 2018 through the September/October trial evaluation period.

System Overview

HyperThesis is a hybrid system built for the DARPA AIDA program’s TA-2 (knowledge base population (KBP)) and
TA-3 (hypothesis management) technical areas. Our planned system architecture is shown in Figure 1, .
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from consistency
measures of shared, typed entities and relations cast as topological sheaves;

e HyperQA, a hypothesis generation and ranking module using graph embedding; and

e Semantic Infrastructure to supporting the transfer, ingestion, and manipulation of semantic data within
the AIDA Interchange Format (AIF) and Seedling ontologies. TA2 queries were completed with SPARQL
and exported to AIF.

1 National Security Directorate, Pacific Northwest National Laboratory, Seattle, WA

2 Mathematics and Statistics Department, American University, Washington, DC

3 Georgetown University, Washington, DC

4 Physical Sciences and Computation Directorate, Pacific Northwest National Laboratory, Richland, WA
5 Mathematics Department, University of Utah, Salt Lake City, UT



M9 Evaluation Deployment

For the Month 9 AIDA evaluation, the future deployed capability of HAT was provided by reification of hypergraphs
in semantic graph database tools interpreting received data and rules, which we called the "Semantic Bus"; and
the future deployed capability of PySheaf was supported by custom Sheafbox (SBX) module for sheaf-based

combinatorial optimization.
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Hyperthesis approaches AIDA needs from the perspective
of mathematical modeling and consistent mathematical
representations. Figure 2 shows examples of the event
structure drawn from the AIDA evaluation ontology, specifically around the two event types Conflict/Attack (CA)
and Move/Transport Artifact (MTA). Our representational approach is grounded on two planks, which work in
conjunction and will be illustrated below:

Figure 2 Examples of AIDA event architecture

e Hypergraph Representations of n-ary Edges:
Since AIDA events can have n slots (and relations
can have two), we represent them as whole n-ary
hyperedges as part of a hypergraph
knowledgebase, rather than as reified graphs
linking to n arguments. The left side of Figure 3
shows an instance of an MTA event as a 3-
hyperedge. While preferable for internal
representation, hyperedges correspond to

Figure 3 Reified graph representation of MTA1 event

unique reified graphs as shown on the right.

HyperThesis uses reification strategies to communicate its hypergraph KB to other AIDA components.
e Semantic Role Mappings: Note that the slots of each event type are characterized by information of

different kinds:

e Argument Roles: The semantic role played by a particular slot in an event;

e  Entity Types: The types syntactically legal to fill a slot; and finally

e Entity Instances and Fillers: The actual value of an entity instance or filler participating in a slot.

We recognize these three forms of information existing in mutual many-many relations: each argument
role can have many entity types, and many instances; and vice versa.

Conflict-Attack events Movement- Transport- Artifact events

Figure 4 (Left) Example event instances (Center) Event gluing on roles (Right) Glued events instances with slot counts.

The left side of Figure 4 shows example instances of these two event types, now using the illustrative style of
topological "n-simplices", or n-dimensional hypertetrahedrons. Note that most of these events are partially filled,
except the CA in the lower left. The center shows the event types now with vertices adorned with their roles, and a
role gluing mapping. The right side shows the results of the gluing over all the instances, representing the
combined information about these two event types. Note the counts of all the slot instances, for example two




(consistent) claims that MH17 is the instrument of the MTA event, and five total inconsistent claims about the CA
Attacker, equivalent to the MTA Agent, being either Ukraine (2 counts), Pro-Russian Separatists (2 counts), or
Russia (1 count).

AvesTerra and HyperAT

There was substantial advancement of the
AvesTerra knowledgebase component in support of
the M9 evaluation. We ingested 877,170 TA1
knowledge elements into AvesTerra from BBN's TA
output, including 555,725 entities, 291,264 events,
and 30,181 relations. The knowledge elements are
represented as hypergraph edges instead of
semantic triples. For example, the MTA event shown
in Figure 3 is represented in AvesTerra as a single AvesTerra (hyperedge) event entity, shown in Figure 5.
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Figure 5 AvesTerra representation of MTA1 event

As a first step toward the HyperAT extension of AvesTerra for Hyperthesis, we implemented a query API for
AvesTerra. The query API includes functionality to find node neighbors and edge neighbors. Node n; is a node
neighbor of some node n; if and only if there is some hyperedge including n; and n,. And hyperedge e, is an edge
neighbor of hyperedge e; if and only if there is some node n included in both e; and e; (Figure 6).
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Figure 6 Edee neighbors and node neighbors

get_node_neighbors() is invoked on the node Buk-332, the three nodes Pro-Russian separatists, Russia, and MH-
17 are found. Pro-Russian separatists is a node neighbor of Buk-332 because the two nodes are connected via the
Conflict/Attack hyperedge VM796203.000539. Russia and MH-17 are node neighbors of Buk-332 because all three
are connected via the Movement/Transport-Artifact hyperedge VM796203.000234.

When get_edge_neighbors() is invoked on the hyperedge VM796203.000539, the two hyperedges

VM796203.000220 and VM796203.000234 are found. VM796203.000220 is an edge neighbor of hyperedge
VM796203.000539 because both connect node Pro-Russian separatists. VM796203.000234 is an edge neighbor of
hyperedge VM796203.000539 because both connect node Buk-332.

Semantic Bus Infrastructure

The AIDA program requires use of the Semantic Web technology software stack to natively manipulate RDF, be
cognizant of clear text constructs and blank nodes, query in memory and triple store RDF graphs, interpret and
generate SPARQL, and do so at the scale of an annotation graph containing at least 85 million triples. Many
existing projects and toolsets have been deprecated as community interests diverge, but there are several active
and well-maintained projects. To address AIDA technical requirements, we selected the tools detailed below.




Several of these tools support community guidelines sufficient for completing projects with AIDA’s unique
infrastructure. While commercial enterprise products like StarDog, AllegroGraph and Top Braid built for scale and
high-speed processing of billions of triples, there are financial and logistical barriers to their use in research.

Two core ontologies, and a small bridge vocabulary of mappings between the two, encode the result graphs shared
across Topic Areas. The first ontology named the AIDA Integration Framework (AIF) serves as a semantic wrapper
encoding triples, annotation metadata, and hypotheses for distribution across teams. The triples encoded by AlIF
contain the second ontology known as the LDC Seedling, and this ontology is this knowledge framework that
defines entities, events, and relationships observed in the core article dataset.

The LDC Seedling Ontology (v7) was composed as a Semantic Graph and populated with annotations provided by
NIST. The current annotation import graph contains 130,090 triples, including 23,553 entities, and provides
formatted data structures to TA2/TA3 performers for data disambiguation (TA2) and hypotheses generation (TA3).
To access this information an inference engine, or corresponding algorithm, must first “unwrap” the LDC Seedling
information from corresponding AIF S-P-O encoding, and then treat this new graph as a unique knowledge base for
querying the document annotation / clustering graph.

Result graphs from TA2/TA3 contain new clustering and hypotheses nodes which must be “re-wrapped” into AIF
and associated to the corresponding AIF node containing the LDC Seedling entities, relationships, or events. This
continuous process of creating new knowledge graphs and updating existing annotation with clustering and
hypothesis data is accomplished through the Semantic Bus, a global wrapper containing specific RDF graph
manipulation endpoints depending on Topic Area team specifications. Because teams and algorithms often like to
communicate and process graph data in native formats the Semantic Bus creates a bridge between the Semantic
Technology stack, RDF graph manipulation, and Topic Area data requests via a push/pull data retrieval model.

e Apache Jena: Apache Jena (Jena) is a free and open source Java framework for building Semantic Web
and Linked Data applications. The framework is composed of different APIs interacting together to
process RDF data, and Jena is the most common framework for interacting with RDF encoded data and
graphs programmatically (https://jena.apache.org/).

e Redland RDF: Free software C libraries that provide support for the Resource Description Framework
(RDF). These libraries include object-based functionality and APIs for manipulating the RDF graph, triples,
URIs and Literals. Storage for graphs is supported in memory and persistently with Oracle Berkeley DB,
MySQL 3-5, and querying with SPARQL and RDQL is supported (http://librdf.org/).

e OpenlLink Virtuoso: Virtuoso Server is a middleware and Triple Store engine hybrid that supports disk-
based graph storage and SPARQL querying of RDF graphs. Virtuoso contains a SPARQL 1.1 compliant
internal inference engine and supports a small subset of OWL 2 DL reasoning capabilities
(https://virtuoso.openlinksw.com).

e StarDog: Enterprise Triple Store that supports disk-based graph storage and SPARQL querying of RDF
graphs. APl libraries are available in several languages, and support is provided for Apache Jena
integration for direct communication with the Triple Store. StarDog contains a SPARQL 1.1 compliant
internal inference engine and supports a large subset of OWL 2 DL reasoning capabilities
(https://www.stardog.com/).

e Apache Jena TDB2: Light-weight Triple Store that supports disk-base d graph storage and SPARQL
querying of RDF graphs. While TDB is SPARQL 1.1 compliant, optimization of query statement execution is
top down creating vastly different runtimes depending on query construction. Inference engines must be
provided as sub-packages or separate product installations (https://jena.apache.org/documentation/tdb).




e Stanford Protégé: Integrated

Development Environment (IDE)
specialized for creating and
maintaining ontologies.
Capabilities include loading and
parsing RDF in a range of
provided formats, visualization of
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AWS-EC2
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semantic graphs, plug-in Redland RDF

inference engine capabilities,

graph validation depending on Testing Triple Store
selected inference library, and

exporting the final ontology and Evaluation Triple Store

entities. A web version of the

. Table 1:
software exists for team

Version Description
mb5.xlarge 16G Ram
2.10.0 Java 1.8

2.0.15 LIBRDF / Raptor

Virtuoso / StarDog

3.5.0 TDB / TDB2

collaboration, but functionality

and stability are significantly worse than the single user desktop application (https://protege.stanford.edu/)

TA2 Knowledge Base (KB) Completion

We are developing a hypergraph-based extension of NOUS® (Choudhury, 2016) to provide algorithms for entity and

event coreference resolution in HyperThesis.

Entity Disambiguation

We extended the collective entity disambiguation method developed by Han et al. (Han, 11) for hypergraphs. The
input to the algorithm is a set of associated entity mentions in document or event context, and a background KB.
The algorithm maps the entity mentions in each event slot to an entity in the background KB. For entity mentions
that are not associated with any event, all such mentions in the same document are collectively disambiguated.
When disambiguation is successful, the mention’s "disambiguated entity id" is set to the id of the appropriate

node in the background KB. When a successful

match was not available it remains NIL. Text Mentions :
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Figure 5 Referent graph for Collective Entity Disambiguation
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Finally, we perform belief propagation on the referent graph and select the combination of candidate nodes
leading to a maximally weighted graph.

Event Coreference Resolution

Entity and event coreference are performed by two different algorithms following same design principles. The key
idea is to cluster events (or entities) in the disambiguated graph (Hevent ) as a pre-processing phase. Next, each pair
of elements of a cluster (which can be either an entity or an event) are examined and merged. The merging is
performed using a combination of rules in the current implementation, which considers entities
"diambiguated_node_id", entity type and entity role in the event.

As with any clustering algorithm, clustering entities or events begins with computing a similarity matrix. For both
entity and event clustering, we compute Jaccard similarity measure between the hypergraph neighborhood of any
entity or event. We provide an efficient implementation of the similarity matrix by avoiding any all-pair
computation. Any hypergraph can be represented by an equivalent bipartite graph. In this case, we construct a
bipartite representation of Hevent Where two partite sets represent events and entities. We build the similarity
matrix by only iterating over entity (or event) pairs that share a common event (or entity).

We use the Label Propagation Algorithm (Cordasco12) for clustering. Our preference for LPA stems from its speed
over competing methods. It detects clusters (or communities) in a graph based on the network structure and does
not require any pre-defined objective function. The intuition behind the algorithm is that a single label can quickly
become dominant in a densely connected group of nodes, but will have trouble crossing a sparsely connected
region. Labels will get trapped inside a densely connected group of nodes, and those nodes that end up with the
same label when the algorithms finish can be considered part of the same community.

TA3: Hypothesis Generation

Hyperthesis is fielding two distinct TA3 hypothesis generation methods, one based on mathematical sheaves, and
HyperQA, a hypothesis generation and ranking module using graph embedding.

Sheaf-Based Hypothesis Generation

SheafBox (SBX) is a custom module based on the HyperNetX(HNX)” and PySheaf® Python libraries and created
initially specifically for AIDA's M9 TA3 task evaluation. SBX models a collection of AlF-defined events and relations
as a hypergraph, and then observations ("assighments") to the facets of these objects as "sections" in a
mathematical object called a "sheaf of sets". Mathematically, a sheaf is a data bundle attached to a topological
space. In our context the sheaf attaches a set of all possible assignments to each of the roles and facets described
in the hypergraph, and as constrained by the AIF ontology types. A "section" of a sheaf is a single consistent
assignment to a subset of the roles contained within a collection of events and relations. Each event drawn from
the TA2 graph is represented as a section. Two sections may be combined into a single section if they satisfy
certain consistency requirements. SBX computes the "maximal consistent sections" of the sheaf using an algorithm
suggested in (Praggastis, 2016) and optimized for AIDA. The returned sections represent the maximal consistent
hypotheses extracted from the original semantic graph. Hypotheses are scored and ranked using coherence
measures developed by our team, and described below.

To minimize query latency, SBX first extracts a subgraph of the TA2 graph by restricting to justifications sourced in
one of the documents referenced in the entry points specified by the information request. Using this subgraph,
SBX queries for each entry point, filtering on offsets and roles. A query result represents a single solution to one of
the entry point queries and has an id referencing the event or relation mention to which it belongs. We enrich the
results by querying for all facets associated with each referencing id. This is necessary to assemble complete
solutions consistent with all parts of the events and relations.

7 https://github.com/pnnl/HyperNetX
8 https://github.com/kb1dds/pysheaf
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are the AIF
defined facets Figure 6 Hypergraph for “AIDA_MO09 _TA3_P103_Q002Q004Q005 F3” mapping facets to node names
(roles)

associated to each of these types. Constrained facets assigned to the same variable by frame edges are identified.’

Figure 6 shows an example for the frame “AIDA_MO09_TA3_P103_Q002Q004Q005_F3”, defining H to be the
hypergraph with hyperedges given by the types in {Transaction.TransferOwnership(TTO), Conflict.Attack(CA),
Transaction.TransferControl(TTC)} and nodes corresponding to their facets. Facets assigned to the same frame
variables by a frame edge are identified as shown in the mapping below.*

The hyperedges form a cover of the set of facets. The corresponding nerve of the cover generates a combinatorial
object called an abstract simplicial complex (ASC) X. (Hatcher, 2001) To construct the nerve, let S be the set of
hyperedges, then a cell in X is a subset of S such that the intersection of all of the hyperedges in the subset is
nonempty. Associate to each cell in X the set of facets (nodes) in the intersection of the hyperedges in the cell.

Continuing our example, let H be as above, then it
contains three hyperedges, { TTO, CA, and TTC }. The
ASC X then contains five cells: X =
{{CAL{TTO},{TTC},{CA,TTO}, {TTO,TTC}}. The
correspondence between cells in X and nodes in H is
then shown to the right.

{TTO}: {?giver, ?E0632, ?transferedThing, ?E0626, TTO-Beneficiary}
{CA}: {?E0627, ?attackTarget, Attacker, Instrument}

{TTC}: {?E0627, ?E0626, ?giver, ?recipient, TTC-Beneficiary}
{CA,TTC}: {?E0627}

The collection of all possible consistent assignments of values to the facets in the hypergraph is modeled as a sheaf
of sets over the associated ASC.*' The sheaf maps a set of assignments to each open set in the topology of the
ASC. A section in the sheaf is one of these assignments and is defined on a specific open set. Each distinct entity

and relation id found in the records defines a section.

All consistent hypotheses for the information need are

uniquely described as a section in the sheaf over the ASC.

Still continuing our example, let X be as before. We define a topology T for X as follows. For each a,b € X, and open
setU eT,ifa e Uand a cbthen b € U. For example, any open set in T containing {CA} € X must also contain
{CA,TTC} since {CA} — {CA,TTC}. Similarly any open set in T containing {TTC} must also contain {CA,TTC} and
{TTC,TTO}.2? Let E1 be an event assigning values to the facets in CA given by: E1= {?E0627: Donetsk,
?attackTarget: Russian Ministry of Foreign Affairs, Attacker: Russia, Instrument: null}. Let s1 be the
corresponding section in the sheaf defined on the open set U1 = {{CA},{CA,TTC}}. Let E2 be an event assigning

° Additional facet correspondence may be developed for future evaluations.

10 SBX drops the Time facet from all types due to its inconsistent appearance in the TA2 graph.
11 For a complete explanation of sheaf theory for sensor integration see (Robinson, 2016).

12 For a discussion of finite topologies see (Barmak, 2011). In this example the topology is:
T={{{CATTC}}, {TTC,TTO}}, {{CAH{CA,TTC}}, {{TTO}{TTC,TTO}}, {{TTC}{TTC,TTO},{CA,TTC}},
{{CAL{TTC}{TTC,TTO},{CA,TTC}}, {{TTO}{TTC},{TTC,TTO}{CA,TTC}}, X, D }.



values to the facets in TTC and let s2 be its corresponding section defining an assignment on U2 =
{TTC}{,CA,TTC}{TTC,TTO}}. We would like to extend s1 and s2 to a single assignment on U1 U U2 =
{{CA}L{TTC},{,CA,TTC},{TTC,TTO}}. To do this s1 and s2 must agree on U1 n U2 = {{CA,TTC}}.3 For this exercise we
define agreement to mean TA2 has assigned them the same role_id. Since the only facet contained in {CA,TTC}
corresponds to the label ?E0627, this simply means the assignment defined in E2 for ?E0627 was deemed
equivalent to Donetsk by TA2. If not, the corresponding events do not belong to the same hypotheses. In general
agreement could be more complicated, depending on the datatype of the facet values being compared. 1

We define a Boolean consistency function on all pairs of sections defined by the event and relation ids, which
indicates if the pair agrees on their overlap. We split the set of sections into finer and finer partitions so that no
pair of inconsistent sections exists in the same subset of the partition. This process converges to a unique partition
in which each subset is a collection of consistent sections. These are then glued into a single section producing a
hypothesis both internally consistent and maximal within the set of retrieved records.'®> We score the hypotheses
using two coherence measures for the sections. Measure 1 counts the number of times each facet is assigned a
value in the hypothesis. High scores will occur when individual facets are mentioned in a large number of events or
relations. Measure 2 takes each pairwise intersection of the events and relations in a hypothesis and counts the
number of non-null roles described by both and summing over all. High scores will occur when several events
agree non-trivially on a large number of facets. To rank the hypotheses the two measures are summed.

HyperQA Hypothesis Generation

HyperQA is an in-memory, hypergraph based inference engine for event-structured data. It provides APIs for
performing hypergraph walks, interfaces for selection and join queries, and an initial implementation of multi-
relational embedding learning and scoring of subgraphs in a hypergraph using vector space methods.

HyperQA follows a three-step methodology for hypothesis generation. The first step transforms a SPARQL query
into an equivalent hypergraph query, the second step executes a subgraph isomorphism on the hypergraph
representation of TA-2 graph, finding all structural matches to the query. This is followed by ranking of returned
subgraphs based on coherence measures in the third step. In future, we foresee step 2 and 3 being merged
together, yielding greater efficiency by pushing a novel ranking measure into the search process itself.

Figure 6 shows an example how a SPARQL query involving a crash event and a transport-artifact event is converted
into a hypergraph query. Each hypergraph query is decomposed as a left-deep binary tree where node represents
a primitive operation on the hypergraph. Each leaf corresponds to a “constrained hyperedge query”, and each
internal node represents a “hyperedge/hypergraph join” operation across subgraphs composed of hyperedges.
Thus, the subgraph isomorphism operation on the hypergraph is reduced to executing the operations on the
binary tree starting from the left-deep-most child node.

Our “constrained hyperedge selection” is designed to be a SELECT query for hypergraphs, where we select all
hyperedges in the event graph whose satisfy a user specified constraint. Its equivalent SPARQL query is a star-
shaped graph as shown in Figure 6. A “hypergraph join” is defined to be an operation to merge two different
hypergraphs that contains same entities in event-roles specified as JOIN predicate.

The number of subgraphs returned by isomorphism can be numerous. To generate semantically meaningful
hypothesis, we seek to partition the matching subgraphs into groups, where each group represents a “set of
alternate interpretations”. We further sample top ranking subgraphs from each group.

13 This is the ‘gluing’ property of sheaves.

14 See (Robinson, 2018) for a detailed discussion of consistency radius to see how this is done.

15 Note that most of the sections generated by the TA2 generated data assign null to many of the facets. To
accommodate for this theoretically, we think of the original hypergraph as actually having many more hyperedges,
corresponding to the possible subsets of each event and relation type. Practically, it means multiple sections could
be deemed consistent simply because their corresponding open sets do not overlap on non null facets, in which
case they are scored very low.



Given a query graph and a designated set of “nodes of interest” (such as conflict-attack.Attacker in Figure 6), we
developed a simple and effective methodology to produce these sets of alternate interpretations. We iterate over
all subgraphs returned by the isomorphism query and project each subgraph based on the “nodes of interest”. For
each projected node set, we substitute each node by their cluster Ids, and compute a string representation of the

?crash_attackerl ?crash_instru
?crash_attacker1
Conflict. Attack | Attack.
‘Ferash_instrument
?crasi place i =
i A e Gonflict.Attack tnstrument
rdfs:type
GPE
e e s ?crasi® event
?crash_place ?crash_target
ConflictAttatk_Dest MHT (GPE) (VEH::"MH17
Ferash_target_destination
. TransportArtifact_Destination relfs:idbol
Ptransport_a&ttifact_event i & Veh
sk :':,:c;;;,,_mg“ ?crash_target_destination
Figure 6 Transformation of a SPARQL query into a hypergraph query.

set using a canonical ordering. Finally, we simply group all answer subgraphs based on this computed key.

Finally, we rank each answer hypergraph using a vector embedding driven approach. We learn a vector
representation for each node in the graph using an extension of the node2vec method. We export a bipartite
graph from the Hypergraph connecting events to their arguments, and learn vector space representation of events
and entities considering multi-relational properties of the bipartite graph. Given an answer hypergraph, we
convert it to a walk or sequence of entities and compute a vector space divergence measure for these entities.
This measure captures set (hyperedge)-level tightness of the elements, and not just emphasize on pairwise
proximity in vector space.

Results
TA2

The TA-2 knowledge graph was generated from BBN’s TA-1 output and the background knowledge base provided
by AIDA's BBN team. The incoming TA-1 input consisted of 36,942 event mentions, 536,587 entity mentions and
58,414 relation mentions. 231K entity mentions participated in events and had a valid label, and these were used
for further processing during construction of TA-2 graph. Relations were treated as events for all subsequent
analysis. The entity mentions where distributed as 24.6K images, 482.1K text, and 29.9K video.

The entity disambiguation algorithm was run on a PNNL institution computing center, using 64 nodes and running
for 12 hours , processing all of the entity mentions. Out of the 231K entity mentions, 48.5K entity mentions were
matched to one of the entities in base KB using the (Han, 2011) disambiguation algorithm that had a high
confidence match in base KB. The entity clustering further lead to creation of 51K cluster nodes for the remaining
entities. This reduced the total number of entities to 23% (54K) of the 231K original mentions. Figure 7Error!
Reference source not found. shows the distribution of disambiguated entity mentions and node types in the TA2-
KB.

The disambiguated graph was further processed for event clustering and created 20K unique event clusters. TA2
clustering created a reified graph of ~85M triples, 27K clusters, and 90K members of clusters. The background TAC-
KB provided 48.5K disambiguated matches to cluster member elements from 3447 unique KB nodes. Figure 8
shows the distribution of different entity and event types in reified TA-2 KB.
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compared for consistency and assigned to one
or more hypotheses. SBX produced hypotheses
for all seven frames found in the information request. Most of these were disconnected graphs due to the number
of null facets in the events and relations retrieved causing the overlaps to be empty. This was expected as not all of
the entry points could be queried. We will reduce the number of empty slots in the next evaluation by improving
the TA2 querying pipeline and by using an optimization approach from PySheaf to fill in missing slots.

For this evaluation disconnected and fragmented hypotheses received low scores due to the lack of overlapping
events. A summary of one run of SBX against the TA2 graph is given below. Scoring was done by taking the sum of
two measures on each hypothesis.

Info Request # Events/ Highest Mean .
Frame Relations #Hyp Score Score Top Hypothesis
Q002_F1 1 1 0 0 {'Transaction.TransferOwnership_Giver': ['Russian’, 'Russia']}

{'Conflict.Attack_Place': ['KRAMATORSK', 'Kramatorsk'],
Q002004_F1 38 61 12 (3) 6.8 'Conflict.Attack_Target': ['Krutov', 'Vasyl Krutov'],
'Transaction.TransferOwnership_Giver': ['Russian’, 'Russia']}

{'Conflict.Attack_Attacker': ['Ukrainian’, 'Ukraine'],
Q002004005_F1 25 67 5(2) 2 'Conflict.Attack_Place': ['Russian’, 'Donetsk’, 'Russia’],
'Conflict.Attack_Target': ['Mariupol']}

{'Conflict.Attack_Target'": ['Mariupol'],

Q002004005_F3 10 7 2(2) 0.6 'Transaction.TransferControl_Giver': ['Kramatorsk']}

{'Conflict.Attack_Place': ['Kramatorsk'], 'Conflict.Attack_Target'":

004_F1 19 40 16 3.7
Q004 ['Krutov', 'Vasyl Krutov']}




{'Conflict.Attack_Attacker': ['Moscow', 'Russias’, 'Russian GRU',
'Russian’, 'Russia’, 'russian'], 'Conflict.Attack_Place':
['Kramatorsk'], 'Conflict.Attack_Target': ['Ukrainian',

'Ukraine\nDonetsk', 'Kyiv', 'Ukraine']}

QO005_F1 72 1212 43 (2) 73

{'Transaction.TransferControl_Giver': ['Kramatorsk'],

Qo05_F3 1 8 2(2) 0.5 'Transaction.TransferControl_Recipient': ['Ukrainian’', 'Ukraine']}

The data represented here is not a perfect reflection of the subgraph we generated. We believe this is due to an
inconsistent use of the identifiers to distinguish mentions and clusters. We can draw some conclusions from the
data, however. Hypotheses are combinations of events and relations. The number of hypotheses is a factor of the
number of distinct events and relations available and their overlaps. If a pair of events overlap but are inconsistent
in even one place they generate distinct hypotheses. If they don’t overlap at all they may be combined into a single
hypothesis. This explains the huge number of hypotheses generated from the 72 events and relations for Q005_F1.
Ideally we would like a tighter fit of events and fewer hypotheses. For the next phase we plan to implement
metrics to permit a non-zero tolerance for combining overlapping events that are ‘close’ if not exact. Note that
Q002004 _F1 has quite a few more events than Q002004005_F1 but they have a comparable number of
hypotheses. This is explained by the Mean Score. The higher score implies more consistent overlaps and hence
fewer hypotheses generated by a set of events. Our scoring technique is appropriate for rating the hypotheses,
and we will improve it in M18 by factoring in confidence values for the events and entities making up a hypothesis.

HyperQA

The 5 information need queries provided by the AIDA program were run on the reified TA-2 KB for hypothesis
generation. Each query consisted of an information need frame describing the basic structure of the query and
multiple specification of entry points , which served as a filer on a particular kind of event or entity mention. The
number of entry points per query is shown below:

e P103_Q002.xml : 104
P103_Q004.xml : 39
P103_Q005.xml : 103
P103_Q002Q004.xml : 143

e P103_Q002Q004Q005.xml : 63
We created final queries using a combination of information need frame and entry point. However, we observed
the entry points provided in queries severely limited the number of events/entities matched in the graph, where
most of the entry points seem to be randomly created and did not match any entity and event properties in the
final TA-2 reified graph. The table below shows the number of hypothesis generated per infoneed query and entry
point. The maximum matches for the query Q005 with frame need specifying a conflict attack. The hypothesis
generated contained following attack place as candidate matches, where support indicates the number of events
in the graph supporting the hypothesis.

e  Kramatorsk : Support 15
e  Kramatorsk Airport : Support 2
e Lugansk Airport : Support 1

Infoneed Frame Id Number of Hypothesis

Q004 5/39
Q005 5/103

Table 1: Number of hypothesis for infoneed queries

Conclusions and Future Work

This paper reports on our experiences leading up to the M9 evaluation for AIDA. The severe time pressures of the
AIDA resulting in this preliminary report, and our team is honing its understanding of results. Future work includes:



e TA2/NOUS Enhancements: Our M18 plans are primarily focused on verification and validation. We plan
to develop an inference query benchmark to evaluate the quality of any given KB (TA2) and hypothesis
queries on the KB (TA3). The benchmark would be a collection of inference chains collected from LDC
annotation datasets by graph walk from specific entities of interest. Currently, the AIDA program only has
annotated datasets, and without any notion of "absolute correctness" measured in terms of presence of
specific entity/events or their cardinality, we cannot evaluate our algorithms in a principled
fashion. Articulating the problem space in terms of query metrics, and the ability to reason about where
we do well and why (or where we do not fare well and why) will be valuable. Given the complexity and
noisiness of the data, we hope that a commonly agreed upon query benchmark will help the AIDA
community to precisely enumerate program objectives and measure progress.

e SBX/PySheaf Enhancements: The initial version of SBX provided a first attempt at hypotheses generation
from a subgraph of focused semantic data, and was limited by subgraph generation and the metrics used
to compare events for consistency, which reduced the number of entities and events drawn from the TA2
graph. With only a discrete metric we were forced to generate more hypotheses than needed from a
small set of events. These events were mostly incomplete, so our hypotheses provided incomplete
descriptions of events and were often disconnected. We will utilize optimization capabilities from PySheaf
to enrich the queried events with additional events by filling empty slots in the TA2 generated events with
likely solutions. We will identify appropriate metrics for the datatypes in order to cluster hypotheses with
close meaning. Finally we will use role alignment to better interpret the hypotheses generated.

e HyperQA Enhancements: We will make algorithmic enhancements for M18:

0 Query expansion: Seed hypothesis queries beyond specified information need entry points to
include additional mentions that are closely related to mentions in those entry points.

0 Inference: Generate new event structures from the collection of TA2-graph events returned by
M9 query. We will compress answer set by inferring new events with filled slots as opposed to
many events with partially filled slots.

0 Ranking via Coherence: Rank events generated by the inference phase via different coherence
/subgraph divergence measures.

0 Generate hypothesis groups: group hypotheses into multiple groups based on entities
participating in pivotal roles in query, where each group represents an alternate explanation.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The
views, opinions and/or findings expressed are those of the author and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S. Government. All data were supplied by the
DARPA AIDA program. Any hypotheses algorithmically derived from this data were not judged for their
correctness. Our claims of coherence are also derived algorithmically rather than by which are actually correct or
incorrect. PNNL-SA-140712. Distribution Statement "A": (Approved for Public Release, Distribution Unlimited).
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