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Abstract 

We describe the BBN submission to the 

TAC 2019 Streaming Multimedia 

Knowledge Base Population (SM-KBP) 

track. In a pipeline similar to that of our 

2018 submission with enhancements to 

usability and several analytic modules, we 

processed multimedia data to create 

coherent knowledge elements (entities, 

relations, and events) in NIST-restricted 

AIDA Interchange Format. 

1 Introduction 

The Linguistic Data Consortium (LDC) 

provided two thousand documents with 

information regarding relationships of parent 

and child documents, the file type of child 

documents, and additional metadata. Our goal 

was to provide, for each parent document, a set 

of entities, relations, and events (knowledge 

elements, or KEs) aligned with the AIDA 

ontology, such that a single real world instance 

corresponded to a single KE for the parent 

document, with justifications reaching back 

into all child documents. For example, in a 

parent document that includes text, an image, 

and a video, we produce a single Entity for 

Person A, and supply TextJustifications 

resulting from information extraction over the 

text, ImageJustifications resulting from a 

FaceID application run over the image, and 

KeyFrameVideoJustifications for KEs found 

in the transcribed speech and extracted frames 

of the video. Each parent document is then 

associated with a mini-knowledge base 

representing all KEs extracted from all media 

types found in the child documents.  

Figure 1: Panorama Pipeline Components and Workflows. LID: Language ID; SAD: Speech 

Activity Detection; ASR: Automatic Speech Recognition; NER: Named Entity Recognition; LDC: 

Linguistic Data Consortium; KE: Knowledge Element 
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2 Panorama Pipeline 

Figure 1 depicts the Panorama pipeline, 

including all individual components and 

possible workflows. As compared to last year, 

we have removed the OCR component, due to 

lack of useful outcomes. Also different from 

last year is an overall improvement in running 

the pipeline. With a single command, our 

pipeline runs all processes and analytics, in 

order, over the correct files, with no manual 

message-passing to locate intermediate 

outcomes. Parallel processing within and 

across analytics is handled by a wrapper 

around Sun Grid Engine processes which 

handles job execution graphs and load 

balancing. Message passing is handled by 

access to a sqlite database that stores the paths 

to all raw data paths, all intermediate outcomes 

(e.g. speech transcription and machine 

translated text), and all final outcomes.  

3  Speech-to-Text 

Our Speech-To-Text component runs three 

separate steps: speech activity detection 

(SAD), language identification (LID), and 

automatic speech recognition (ASR). 

The audio tracks extracted from video may 

contain long segments of music or other non-

speech audio signal. In order to reduce false 

positives that may result from running ASR 

over non-speech data, we first run speech 

activity detection to extract pairs of 

timestamps where human speech is found. For 

this task we apply an existing, standardized 

SAD model. 

We train a LID model specifically for the 

languages English, Russian, and Ukrainian, 

using data from the AIDA background corpus. 

For English and Russian, we train LID using 

only audio segments that are aligned to 

transcripts. For Ukrainian, we were not able to 

use the transcripts, and used all of the raw 

audio. As a result, as shown in Table 1, the 

LID accuracy on Ukrainian is lower than that 

of Russian and English.  

Table 1: LID Accuracy on held-out AIDA audio data 

Language LID Accuracy 

English 1.0 

Russian 0.914 

Ukrainian 0.346 

At both training and test time, we made the 

assumption that each audio file contained a 

single language, and transcribed all segments 

with the language model for the highest-

scoring language resulting from LID. 

As for speech transcription, we have 

independent models for English, Russian, and 

Ukrainian. In the last case, we have updated 

our model from the previous evaluation by 

training a new acoustic model using the 

additional Ukrainian broadcast news data 

released in 2019, and adding additional data to 

the language model from the AIDA 

background corpus. In Table 2Table 3, we 

report the overall word error rate as well as 

Mean Average Precision (MAP) for in-

vocabulary (iv), out-of-vocabulary (oov), and 

infrequent (rare) terms for each language. We 

also measure the MAP for target words (targ) 

that are scenario-relevant in Russian and 

Ukrainian. 

Table 2: Word Error Rate (WER) and Mean 

Average Precision (MAP) on held-out AIDA audio 

data 

Lng WER 

(%) 

MAP 

(iv) 

MAP 

(oov) 

MAP 

(rare) 

MAP 

(targ) 

Eng 35.96 0.846 0.621 0.866  

Rus. 62.34 0.614 0.325 0.638 0.412 

Ukr. 56.43 0.702 0.631 0.715 0.404 

At test time, we derive audio files from the 

provided videos. The videos are in .mp4 

format, and we extract the audio track in .wav 

format using the free, open source tool 
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FFmpeg1. We convert the resulting .wav files 

to 16 KHz, 16-bit, NIST sphere format, the 

preferred format for BBN's speech recognizer. 

For each audio file, we produce a transcript in 

which each word is annotated with its start 

time and duration. This represents our one-best 

output. We produce a consensus net containing 

many possible transcription outcomes, but 

store and pass only the one-best path for now.  

4 Machine Translation 

The BBN Neural Machine Translation (NMT) 

system employs a standard 6-layer 

Transformer model [1] jointly trained over 

Russian, Ukrainian, and English data. We used 

the tensor2tensor toolkit for the transformer 

implementation. We perform sub-word 

tokenization with the sentence-piece toolkit, an 

unsupervised text tokenizer that enables us to 

train an MT model without running language-

specific tokenizers for Russian or Ukrainian. 

The sub-word vocabulary is shared between 

Russian, Ukrainian, and English and has a 

vocabulary size of 13,000. The primary data 

source is from the LORELEI program, 

augmented with a variety of web data such as 

CommonCrawl2 and the open parallel corpus3. 

In addition, we add parallel sentences 

extracted from the headlines in the scenario 

document to the MT training data. 

In total, we use 100 million Russian words and 

9 million Ukrainian words in training. To 

correct the language imbalance, we duplicate 

the Ukrainian data so that the transformer 

model is exposed to an equal amount of 

Russian and Ukrainian data during training. 

This has been shown to be effective when 

building multi-lingual NMT models [2]. 

We built two variants of the MT system. We 

use a typical MT model as described above to 

process regular text data, and an ASR-variant 

to process textual data from ASR output. The 

                                                           
1 https://ffmpeg.org/ 
2 http://commoncrawl.org 

BBN Speech-to-Text module produces output 

with no casing information, and minimal 

punctuation. To account for this, we trained a 

second MT model for which the input data was 

uppercased, and punctuation marks removed. 

We succeeded in producing case-variant and 

properly punctuated outcomes with this model; 

for this reason, we process Ukrainian, Russian, 

and English ASR output through our MT 

module. Language ID happens implicitly in 

the single, multi-lingual MT model. 

MT training for each MT variant takes 8 hours 

on two Tesla V100 GPUs. BLEU scores on the 

LORELEI test sets are shown in Table 3. 

Table 3: BLEU scores for BBN NMT 

Language BLEU 

Ukrainian 20.4 

Russian 33.1 

We retain only sentence-based alignments of 

translated to original text. In the case of text 

transcribed from audio, we are able to 

correlate the translated sentence to its original 

time stamps (and thus video key frames). We 

were not able to implement word-based 

alignment over the results of NMT in time for 

the 2019 AIDA evaluation; for this reason, 

entity, relation, and event extractions from 

foreign-language and transcribed texts use the 

offsets of the sentence boundaries, rather than 

the specific word boundaries. 

5 Text-Based Extraction 

We use a variety of supervised models to 

extract named entities, relations, and events 

from English-language text (transcribed and/or 

translated from speech or foreign language, as 

appropriate). 

For named entity recognition, we use SERIF, 

which applies a discriminative Viterbi-style 

perceptron model to find and extract names of 

3 http://opus.nlpl.eu 
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persons, places, and organizations [3]. 

Mentions are grouped into entities using a 

sieve-based approach [4]. 

SERIF also extracts a set of relations with a 

maximum entropy model combined with 

heuristics. We supplement this with a second 

relation finding system that applies syntactic 

patterns expressed using the Brandy pattern 

language over pairs of entities as detected by 

SERIF. We authored a set of patterns specific 

to the AIDA scenario using examples from 

practice corpora. These cover a total of 30 

different types in the AIDA ontology, 

including subtypes and sub-sub-types. Using 

the LearnIt tool, all pairs of entities from 

sentences inside the English documents were 

identified and used as potential examples for 

patterns. The LearnIt tool allows the user to 

query for text trigger words that identify 

potential relations. 

We extract events using SERIF’s logistic 

regression models as well as ACCENT, which 

identifies additional events and their matching 

arguments according to the CAMEO event 

ontology [5]. ACCENT finds events using 

structured patterns applied to augmented text 

graphs (normalized proposition trees that have 

been augmented with synonymy and 

coreference). The classes of events, relations, 

and entities extracted by SERIF and ACCENT 

are associated with the AIDA ontology via a 

manually-produced mapping between the ACE 

and CAMEO ontologies and the AIDA 

ontology. 

A third approach to extracting events, a system 

we call NLPLingo, also leverages SERIF’s 

named entity extractions, but uses a pair of 

convolutional neural networks (CNNs) to 

extract trigger words and associate likely 

arguments with those triggers to form events. 

Potential event trigger words in the text are 

selected according to their part of speech tags.  

The first CNN identifies any event types that 

can be associated with each trigger and assigns 

a confidence to each. The second CNN ingests 

these events and SERIF’s entities and 

identifies the subset of nearby entities that fill 

particular role slots for each event.  

For features, both networks use the word 

embeddings of a given chunk of the text, as 

well as those of the local context around 

candidate tokens for triggers and slot fillers. 

The trigger model uses the IOB-style entity 

type tags of each token in the sentence as a 

feature. The argument model also uses the 

predicted event type of the event trigger under 

inspection. 

Event models are trained on all annotated data 

made available by LDC for the AIDA 

program, as well as LDC’s Automatic Content 

Extraction (ACE) 2005 dataset. We used 90% 

of the available data for training, and reserved 

10% for testing, resulting in respectable event 

extraction accuracy, as shown in Table 4. The 

gold-standard annotations have at most 1 type 

per trigger. For the AIDA program, we are 

interested in multiple hypotheses, and we turn 

to metrics from information retrieval to 

support this effort. In this case, Mean Average 

Precision up to k (MAP@k) is a measure of 

where the true type is located in the list of k 

type predictions ordered by decreasing 

confidence, averaged across triggers. MAP@1 

is a measure of how often the predicted type 

with the highest confidence is correct, while 

MAP@T is a measure of how often the correct 

type is found among all predictions for a 

trigger. Average R-precision (ARP) is the 

proportion of the actual triggers for a given 

type which were assigned a higher confidence 

than all other triggers, averaged across types.  

Table 4: Event extraction scores, held-out English 

AIDA data 

Model Micro 

F-1 

MAP

@1 

MAP

@T 

ARP 

Event 

type 

0.67 0.679 0.694 0.448 

Argu-

ments 

0.54 0.588 0.613 0.404 
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6 Image-Based Extraction 

6.1 Facial Recognition 

We apply the same facial recognition (Face 

ID) algorithm used in the previous AIDA 

evaluation. For the 2019 application, we 

expanded our gallery of known faces from 27 

to 295, with help from a human annotator. 

Starting with names of people in the scenario 

document and practice annotation, we found 

all other names in a 1- or 2-hop relationship to 

the original names in DBpedia. Names 

collected from DBpedia were then restricted to 

ones that have a relation to Russia, Ukraine, 

Belarus, Donbass, or Luhansk. We also 

manually added some contemporary world 

leaders. 

We use Face ID to detect persons of interest in 

images (png, jpg, bmp, gif) and videos (mp4). 

We adapt an open source implementation of 

FaceNet for this work [6]. 

Training occurs independently for the 3 stages 

of the FaceID pipeline. The three stages are: 

face detection, face image vector embedding, 

and face identification. The Multitask 

Cascaded Convolutional Network (MTCNN) 

face detection approach [7] was trained on the 

CelebA [8] and WIDER FACE [9] datasets. 

The learned model parameters for the MTCNN 

were obtained from the open source FaceNet 

implementation website4. Model parameters 

for the Inception Resnet v1 deep convolutional 

neural network architecture were trained on 

the VGGFace2 dataset [10]. 

The k-nearest neighbors within a Euclidean 

distance threshold are retrieved from the 

gallery using the FLANN library [11]. In Task 

1a, majority voting based on these retrieved 

vectors from the gallery determine the identity 

of the query face vector.  

A confidence score is computed between the 

query face vector and each one of its nearest 

                                                           
4 https://github.com/davidsandberg/facenet 
5 https://storage.googleapis.com/openimages/web/index.html 

neighbors. This confidence score is the result 

of applying a radial basis function kernel to the 

query vector and a vector in the gallery. The 

greatest sum of these confidence scores among 

the different gallery identities is used to select 

the identity of the query vector. The average of 

these confidence scores, per the selected 

identity, is used to report the confidence in the 

justification. If the average confidence is 

below a certain threshold, the system did not 

add a justification for that identity. 

We are able to incorporate information from 

downstream hypotheses in Task 1b to alter the 

outcome of the Face ID analytic. For any 

person entity found in the hypotheses with a 

known KB link, if they are also found in our 

gallery of faces, we boost by a constant the 

probability of that name as an outcome across 

all detections. This results in a few more 

detections of those names than were seen 

before the hypothesis-based boosting. 

6.2 Concept Detection 

We train a set of video concept detection 

models from open source data. Video concepts 

may refer to contexts, objects, or situations. 

These are mapped to the AIDA ontology 

(manually) as events, relations, or entities. 

We train multiple concept detectors using deep 

convolutional network models that have been 

fine-tuned to detect scenario-relevant 

concepts. For training, we use a subset of the 

OpenImages5 dataset that includes 111 

concepts relevant to the AIDA scenario.  

We train a multi-label convolutional network 

(MLCN) for scenario-relevant concepts using 

the CAFFE toolbox6. The MLCN has a similar 

network structure as in the fully convolutional 

VGG16 network in [12] and includes two 

includes two parts: a CNN and a Multi-label 

Classifier. The CNN includes 15 convolution 

layers and 5 max-pooling layers, while the 

6 http://caffe.berkeleyvision.org/ 
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Multi-label Classifier is modeled as a 

convolution layer with K kernels of size 1x1 

and a sigmoid layer. We also add the multiple 

instance learning (MIL) layer provided by [13] 

to the MLCN. The MIL layer pools together 

the CNN features computed on the image 

regions spatially.  We trained the MLCN for 

111 concepts with 27,198 images, where the 

MLCN is initialized by ImageNet pre-trained 

weights. We evaluate the model on a 

validation set which includes 4,296 images, 

with a result of 62.6% mean average precision. 

In addition to our robust MLCN model, we use 

a pre-trained object detection model of Atomic 

Visual Actions (80 actions) and a second pre-

trained object detection model trained on a 

subset of OpenImages classes utilizing the 

Tensorflow toolbox. We map the concept 

detections to entities and other ontology 

elements, with bounding box and associated 

key-frame information. Our system currently 

maps detections from these model outputs to 

the AIDA ontology using predefined 

mappings.  

We have investigated deep learning models 

that jointly detect objects using image-caption 

pairs. Using a pre-trained semantic embedding 

network that uses a CNN for image embedding 

and a RNN for embedding a sentence/text 

snippet, we learn a common embedding for 

image-caption pairs and use the embedding to 

classify the objects in images. This has 

resulted in multiclass classification 

improvements over image-only models in a 

small annotated dataset from AIDA seedling 

corpora; for instance, the Micro Average 

improves by 0.0643 absolute F1 score. 

However, the overall scores remain low, due 

to a mismatch between the training set and the 

small AIDA test set. We expect that further 

curation of the data sets will result in better 

overall classification, as well as continued 

improvements from including the text 

embedding. 

In addition, we are in the process of adapting 

landmark detection models to create a 

Landmark ID module for identifying well-

known landmarks which will allow us to 

extract location information from image and 

videos. 

7 Cross-modality merging 

The extractions provided by each of the text-

based and image-based analytics described 

above are converted to the required AIDA 

Interchange Format (AIF) to include name 

strings and appropriate justifications. We 

perform cross-modal co-reference for each 

parent document by matching name strings of 

entities and event types. We also perform 

entity linking to the AIDA knowledge base, 

providing a consistent ID string for any entity 

found in that resource. The combined 

information for an entity or an event is called a 

Knowledge Element (KE) and includes 

justifications from images, videos, and text 

(including transcribed text). We choose an 

informative mention for each knowledge 

element by preferring canonical mentions 

produced by SERIF for any text justifications 

present for the KE. If no such justification 

exists, then we choose the mention with 

highest confidence across all remaining 

analytics.  

8 Conclusion 

For the SM-KBP track of TAC 2019, BBN 

produced a set of knowledge graphs consisting 

of elements drawn from text, video, and audio 

sources using a variety of analytic components 

trained on open-source and curated scenario-

relevant resources. We combine neural and 

knowledge-rich approaches for event and 

entity extraction. A push-button process, 

which also includes AIF validation and 

production of a simple HTML display of 

results for each parent document, has been 

implemented.  
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