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Abstract

In this paper we describe our submission to the
TAC KBP: Entity Linking and Discovery 2019
task. The task aims at extracting fine-grained
mentions of 190 types from text where no
training data is available for these types. Our
submissions are based on a two pass approach:
first detect nine basic NER types, followed by
a second pass of refining these types into the
destination fine-grained types.

1 Introduction

Named entity recognition (NER) is an important
task in information extraction and natural lan-
guage processing. Its main goal is to identify, in
unstructured text, contiguous typed references to
real-world entities, such as persons, organizations,
facilities, and locations. It is very useful as a pre-
cursor to identifying semantic relations between
entities (to fill relational databases), and events
(where the entities are the events arguments).

Traditional NER work has focused on coarse-
grained entity types, e.g., 4 entity types in
CoNLL’02 data (Tjong Kim Sang, 2002) and 7 en-
tity types in ACE’05 data (Walker et al., 2000).
However, many real-world applications (e.g., dis-
aster relief, technical support, cybersecurity) re-
quire a wider variety of fine-grained entity types.
Building fine-grained NER models with no or a
limited amount of annotated data is the focus of
this paper.

2 Prior Work

Named entity recognition (NER) is a subfield of
NLP with a long, established history and a vast lit-
erature. For a good overview of the problem and
the main corpora involved from a classical per-
spective, see Nadeau and Sekine (2007). Ham-
merton (2003) was one of the earliest attempts at
using a neural network (specifically, an LSTM) for

NER, though with performance marginally above
baseline. Collobert et al. (2011) and Lample et al.
(2016) were more successful and influential ap-
proaches to using neural networks for NER.

Pretrained word-embeddings called
word2vec (Mikolov et al., 2013) proved crit-
ical in helping neural architectures achieve
state-of-the-art results across a variety of tasks
in NLP including NER (Lample et al., 2016).
The development of contextual or context aware
pretrained word-embeddings such as ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2018)
pushed the SOTA frontier for virtually all NLP
tasks even further. For example, merely us-
ing BERT with a final feed-forward layer and
supervised fine-tuning achieved SOTA for a
short-period in English CoNLL NER.

There is a wide and disparate literature for in-
formation extraction when supervised data is ei-
ther restricted or unavailable and the type system
is either large, unbounded or unspecified. Banko
et al. introduces the idea of open information ex-
traction, where relation triples are discovered from
the general web without any labeled data. Cimi-
ano and Volker (2005) is related in spirit to this
study in that it attempts to classify named entities
according to a large ontology with no training ex-
amples. Theirs is a fully unsupervised approach
using a classical vector space model where they
assign a label from the ontology to a named en-
tity by measuring similarity between the label and
named entities through a context vector computed
from a large corpus. Evans and Street (2003) is a
thoughtful attempt at the even harder problem of
deriving a type system de novo from an unlabeled
corpus by using a set of heuristics. Brambilla et al.
(2017) attempts to detect emerging entities in so-
cial media.
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Figure 1: BERT Architecture
3 Large Space Mention Detection

In order to balance the large number of entity types
(190) with the need for sufficient training data to
perform sequential tagging for mention detection,
we have decided to solve the problem with the fol-
lowing two steps:

e First, perform coarse-grained mention detec-
tion in the usual fashion, by converting it
to an IOB sequential token prediction task
(Tjong Kim Sang and Veenstra, 1999) — the
type system we used here is composed of 9
entity types (CRM, FAC, GPE, LAW, LOC,
ORG, PER, VEH, WEA).

e Second, classify each mention obtained in the
previous step with a subtype.subsubtype la-
bel - an example-based classification task that
takes the full sentence of the mention into ac-
count.

‘We will describe the salient characteristics of these
two models.

3.1 Coarse-Grained Mention Detection

The coarse-grained mention detector is a BERT-
based mention detector, as described below.

We approach NER in a standard fashion: a se-
quence labelling task which assigns a tag to each
word based on its context. Given a sentence
{wy,wa, ... w,}, we feed it to the BERT model
to obtain contextual BERT embeddings for each
word as {vy, va, ...u, }, capturing each word’s con-
text via many attention heads in each of its layer.
These embeddings are then fed to a linear feed
forward layer to obtain labels {y1, y2, ...y, } corre-
sponding to each word piece. The network archi-
tecture is shown in Figure 1. The entire network
is trained with each epoch thereby fine-tuning the
BERT embeddings for the NER task. We are using
an IOB1 encoding of the entities (Tjong Kim Sang
and Veenstra, 1999), as it performed best in pre-
liminary results.

We use the HuggingFace PyTorch implementa-
tion of BERT (HuggingFace github, 2019) and the
BERT WordPiece Tokenizer. We follow the recipe
in (Devlin et al., 2018) for building named entity
taggers: to convert the NER tags from tokens to
word pieces, we assign the tag of the token to its
first piece, then assign the special tag "X’ to all
other pieces. No prediction is made for X’ to-
kens during training and testing. Figure 1 shows
both the architecture of the proposed model, and
the NER annotation style.

We have tried many BERT architectures, in-
cluding bert-base-uncased, bert-large-cased, bert-
large-cased-whole-word-masking. Given the lack
of actual training data provided specifically for
this evaluation, we have investigated the previ-
ously released datasets — specifically ACE’05 and
TAC’17. The TAC17 dataset was more recently
released, but had fewer types (as it does not in-
clude VEHICLE and WEAPON), while at the
same time matches more closely the annotation
guidelines. In the end, after initial experimenta-
tion, we have decided to use an ACE’05 trained
system to add silver mentions to the TACI17
dataset. In addition, we have also used an in-house
mention detection system to add two other types -
COM and LAW - by running the training and dev
set through the SIRE classifier (citation) and re-
taining only mentions of the two types that do not
overlap with any existing entities.

3.2 Fine-Grained Mention Detection

As not much gold data is available for the Fine-
Grained mention detection task, we decided to ap-
proach this as a classification task where given
a sentence and the mention boundary in the sen-
tence, the task is to classify the sentence and the
mention boundary with a fine-grained type. The
architecture is showin in Figure 2

To specialize each mention into sub-
type.subsubtype label, we use the standard
example based classification approach for the
specialization task, which assigns a tag to each
sentence based on its context, as described below:

Given a sentence in the form of
{wy,wa, ... wp}, with k  mentions at
{(wi, : wj,), (wiy : wgy), ..., (Wi, 2 wj,)}, where
mention span (w;, : wj, ) means mention begins
at token position i, and ends at j,, a fine-grained
(type.subtype.subsubtype) label y, for each of
these mentions and a coarse-grained label (type
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Figure 2: Fine-Grained Classifier Architecture

only) z, for each of the mentions. We create k
examples from the sentence with a special repre-
sentation W, for w;, : w;, for the x4, example,
thereby getting the below representations for the
example:

{wl, w2, .. Wiy —1, Wl, wj1+1...wn}

{wl, w2... Wiy—1, WQ, wj2+1...wn}

{wl, w2... Wi, —1, Wk, wjkﬂ...wn}

These examples are then fed to a transformer-
based model to obtain a contextual representation
for each sentence. This representation is fed to a
linear layer to get logits for each possible [ fine-
grained classes. At training time we compute a
standard cross-entropy loss over all these proba-
bilities. But at decoding time we do something
different to restrict the output space of the proba-
bilities as described below.

Let the {p;,, pi,....pi, } be the representation of
the probabilities produced by the classifier for ex-
ample ¢ where p;, is the probability for label k.
Then we produce y; as below:

yi = argmax(F({pig, pi,-.--pi } , %))

F() is a function that given [ probabilities and a
coarse label z; filters out some of the [ probabil-
ities and produces an array of probabilities with
size less than or equal to [ so that the possible out-
put space is reduced. We play with different func-

tions for F'() in our submissions. We also try dif-
ferent representations for W; in our experiments.
These variations are described below.

3.2.1 Mention Representations

Here we describe the representations we tried for
the mention text (V).

Masking the mention: We replace the mention to-
kens in the sentence with a tokenizer specific mask
token, and then add the mention token to the end
of the sentence after a tokenizer specific separa-
tor.E.g.

Alice was beginning to get very tired of sitting
by her sister on the bank .

<MASK> was beginning to get very tired of
sitting by her sister on the bank . <SEP> Alice

Embedding with Coarse-Grained Type: We sur-
round the mention tokens in the sentence with a
special token, the coarse-grained mention type of
the mention. To do this we add all the coarse
grained types to the tokenizer vocabulary, so they
are not split. E.g.

Alice was beginning to get very tired of sitting
by her sister on the bank .

PER Alice PER was beginning to get very tired
of sitting by her sister on the bank .

3.2.2 Filter Functions

To restrict the label space to the most likely,
while decoding, not while training, we use a va-
riety of filter functions to arrive at the best pos-
sible class. We describe the various filter func-
tion (F()) we tried here. The filter functions
mainly use the coarse-grained label and the proba-
bilities produced by the classifier to narrow down
the output space of the labels. As mentioned
earlier, for this task each class is represented
as type.subtype.subsubtype. Let the input to
this function be a set of probabilities p1, p2, ....p;
where p; is the probability of the 7y, class, and a
coarse-grained type t. The output is again a set of
probabilities {pz, py...p-} such that |output| <=
l.

Dummy Filter Function: This function returns
the same input it received with no filtering.

F({p1,..p},t) ={p1, ...}

Coarse-Grained Type based Filter Function This
function returns probabilities of only those classes
for which the type part of the class is same as
coarse-grained type. All other probabilities are fil-



tered out. E.g. if coarse-grain type for a mentions
is PER then the output of F() would be only classes
with PER type and no classes with other types line
GPE, FAC,etc. irrespective of their probabilities.

F({p1,..m},t) = {ps s.t. EType(x) == t}

Threshold based Filter Function This function is
similar to the above Coarse-Grained Type based
filter with a small difference. It still returns prob-
abilities of those classes for which the type part
of the class is same as coarse-grained type, but it
also returns probabilities of classes of other types,
if the probability of that class is greater than the
threshold.

F({p1,...pi} ,t, thresh) =
{pz s.t. EType(x) ==t or p, >= thres}

We use Huggingface pytorch Transformers for
the fine grained annotation task. We train the
model on the community annotated data shared by
RPI and we test on AIDA phase 1 Eval data. At
training time we train on gold coarse-grained la-
bels but at decode time we use the system coarse
grained labels produced by the NER model.

4 Experiments

4.1 Data and Experiments

We use Huggingface pytorch Transformers to
train both NER and Classification model (Wolf
et al., 2019). For NER we experimented
with various kinds of transformer architectures
like RoBERTa and BERT. We also experiment
with different models of these transformers like
bert-large-cased, bert-large-uncased,bert-large-
cased,whole-word-masking, RoBERTa-large.

For NER, we use the TAC data, with silver
ACE types (VEH[ICLE],WEA[PON]) and silver
in-house SIRE types (LAW,CRM). We train the
NER models for 20 epochs.

For Classifier model we use the community an-
notated data shared by RPI for training and we de-
velop on AIDA phase 1 Eval data. Later once, we
got the feedback, we used the feedback data as the
test. The RPI data contains labels for 122 classes,
and our model produces only those classes. We
train these models for 20 epochs with a variety of
learning rates, and observe learning rate of 3e-5
does well usually.

Though, while developing the models we used
a different test set, here for clarity we report num-
bers on the TAC KBP:EDL 2019 eval corpus that
comprises of 404 documents.

4.2 Results

Model P R F;
BERT large_uncased 77.1 |1 79.8 | 78.4
BERT large_cased_-wwm | 79.0 | 81.4 | 80.2

Table 1: Performance of various BERT models.

Type | Count P R F1
COM 51 0.00 | 0.00 | 0.00
FAC 322 | 53.63 | 52.80 | 53.21
GPE | 6004 | 79.39 | 88.56 | 83.73
LAW 33 | 19.61 | 30.30 | 23.81
LOC 703 | 56.70 | 49.36 | 52.78
ORG | 3256 | 64.78 | 66.55 | 65.66
PER | 4546 | 94.74 | 91.49 | 93.08
SID 58| 0.00 | 0.00 | 0.00
VAL 2] 0.00 | 0.00 | 0.00
VEH 19 | 16.67 | 526 | 8.00

Table 2: Performance break-down by types.

Coarse-grained NER results obtained by run-
ning two BERT models - bert_large_uncased
and bert_large_cased whole_word_masking
are shown in Tables 1 and 2 (for the
bert_large_cased_whole_word_masking  model).
As you can see, the cased, whole word model
BERT behaved better on the actual evaluation
data; however, during our development runs, the
large uncased model was more robust to different
types of input (such as all-case words, etc), and we
have decided to use that model for all evaluation
runs.

The results for fine-grained mention detection
are given in Table 3. These results are on
the gold EDL 2019 data for coarse and fine-
grained types. Though, the accuracy for bert-
large-uncased model is higher on the EDL2019
eval set, we selected RoBERTa based model for
our submission as it performed better on AIDA
eval sets. The results in Table 3 use the Coarse-
Grained-Type based filtering.

To see the benefits of the Threshold-based fil-
tering, we need to decode the fine-grained model
on system coarse grained mentions. These num-
bers are shown in Table 4. We show numbers
for robert-large model that our submissions were
based of 3 in this table. The table shows num-
bers on both coarse-grained models we had. At
threshold 1, the filter is behaving like the Coarse-
Grained filter, filtering out all probabilities that



Model Mention Representation | Acc-SST | Acc-ST | Acc-T
BERT large uncased | Masked Mention 68.40 78.96 99.76
BERT large cased Masked Mention 67.76 79.86 99.73
RoBERTa large Masked Mention 70.06 78.22 99.75
BERT large uncased | Coarse-Type Boundary | 71.09 80.37 99.85
BERT large cased Coarse-Type Boundary | 69.50 78.30 99.83
RoBERTa large* Coarse-Type Boundary | 69.58 78.90 99.84

Table 3: Performance of fine-grained models across different mention representations. Acc-SST is the accuracy at
the full type, e.g. per-professionalpoision-minister, Acc-ST is the accuracy whenever the model gets the type and
subtype right, e.g. per-professionalpoision. Acc-T is the accuracy whenever the model gets the type right. These
models use Coarse-Grained-Type based Filtering. *Model selected for submission.

Coarse-G System Filter Threshold | Acc-SST | Acc-ST | Acc-T
BERT large_uncased 1 64.93 73.05 88.31
BERT large_uncased 0.9 67.0 75.13 90.24
BERT large_uncased 0.8 67.01 75.14 90.21
BERT large_cased_ wwm | 1 64.40 72.72 88.26
BERT large_cased_-wwm | 0.9 66.35 74.72 90.12
BERT large_cased_-wwm | 0.8 66.38 74.76 90.12

Table 4: Performance of roberta-large model using different filter functions across different coarse-grained system

models. *Model selected for submission.

belong to labels of types other than the course-
grained type it is fed. It seen, when the Fine-
Grained model is really sure of a label, with prob-
ability of 0.9 or 0.8, the performance improved.
The improvement in the AIDA dev set between no
filtering and filtering at 0.9 was about 3 f1 points.

Run P R F,
Run2 | 59.1 | 61.5 | 60.3
Run3 | 60.2 | 62.7 | 61.4

Table 5: Performance of various BERT models.

Finally we show the eval results for our
three runs in Table 5. Both submissions used
the bert-large-uncased coarse-grained NER model
and roberta-large fine-grained classifier. Run 2
used coarse-grained-type filtering and run3 used
threshold-based filtering with threshold set at 0.9.
As the community annotated training data con-
tains examples for only 122 types, our model can
make predictions only for those types and always
misses the other types.

We also investigated building ensemble sys-
tems, but the performance improvements we ob-
tained with voting was minimal (less than .2F).
The voting scheme is a good approach for hedg-
ing against bad models (models that overtrain on
the development dataset), as the combined model

will tend to be more robust, but the large data size
(300,000 documents) that needed to be processed
during the evaluation was a concern, so we de-
cided to use the best performing model from the
development set, instead of an ensemble classifier
for the final evaluation.

5 Conclusion

We present in this paper a method of perform-
ing fine-grained named entity recognition in two
stages: first perform coarse-grained NER using
a BERT-based token classification model, fol-
lowed by an instance-level fine-grained classifica-
tion. The model is trained on English data reused
from previous evaluations (TAC’17), augmented
with labels from ACE’05 and an in-house dataset
(KLUE) to add four types - vehicle, weapon,
crime, and law. The coarse-grained model is
based on a BERT (large_uncased) model, while
the course-grained model is based on a ROBERTa
(large_cased) model. This setup allows the system
to pool data in the first step to predict the coarse-
type, and making one classification decision per
coarse mention in the second step.
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