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ABSTRACT
In this paper we propose a new voting protocol with de-
sirable security properties. The voting stage of the pro-
tocol can be performed by humans without computers; it
provides every voter with the means to verify that all the
votes were counted correctly (universal verifiability) while
preserving ballot secrecy. The protocol has “everlasting pri-
vacy”: even a computationally unbounded adversary gains
no information about specific votes from observing the pro-
tocol’s output. Unlike previous protocols with these proper-
ties, this protocol distributes trust between two authorities:
a single corrupt authority will not cause voter privacy to be
breached. Finally, the protocol is receipt-free: a voter cannot
prove how she voted even she wants to do so. We formally
prove the security of the protocol in the Universal Compos-
ability framework, based on number-theoretic assumptions.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; K.4.1 [Computers and
Society]: Public Policy Issues—Privacy ; E.3 [Data]: Data
Encryption—Public Key Cryptosystems

General Terms
Security, Theory, Human Factors

1. INTRODUCTION
Recent years have seen increased interest in voting sys-

tems, with a focus on improving their integrity and trustwor-
thiness. This focus has given an impetus to cryptographic
research into voting protocols. Embracing cryptography al-
lows us to achieve high levels of verifiability, and hence trust-
worthiness (every voter can check that her vote was counted
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correctly), without sacrificing the basic requirements of bal-
lot secrecy and resistance to coercion.

A “perfect” voting protocol must satisfy a long list of
requirements. Among the most important are:

Accuracy The final tally must reflect the voters’ wishes.

Privacy A voter’s vote must not be revealed to other par-
ties.

Receipt-Freeness A voter should not be able to prove how
she voted (this is important in order to prevent vote-buying
and coercion).

Universal Verifiability Voters should be able to verify
both that their own votes were “cast as intended” and that
all votes were “counted as cast”.

Surprisingly, using cryptographic tools we can construct pro-
tocols that satisfy all four of these properties simultane-
ously. Unfortunately, applying cryptographic techniques in-
troduces new problems. One of these is that cryptographic
protocols are often based on computational assumptions (e.g.,
the infeasibility of solving a particular problem). Some com-
putational assumptions, however, may have a built-in time
limit (e.g., Adi Shamir estimated that all existing public-key
systems, with key-lengths in use today, will remain secure
for less than thirty years [23]).

A voting protocol is said to provide information-theoretic
privacy if a computationally unbounded adversary does not
gain any information about individual votes (apart from the
final tally). If the privacy of the votes depends on computa-
tional assumptions, we say the protocol provides computa-
tional privacy. Note that to coerce a voter, it is enough that
the voter believe there is a good chance of her privacy being
violated, whether or not it is actually the case (so even if
Shamir’s estimate is unduly pessimistic, the fact that such
an estimate was made by an expert may be enough to allow
voter coercion). Therefore, protocols that provide computa-
tional privacy may not be proof against coercion: the voter
may fear that her vote will become public some time in the
future.

While integrity that depends on computational assump-
tions only requires the assumptions to hold during the elec-
tion, privacy that depends on computational assumptions
requires them to hold forever. To borrow a term from Au-
mann, Ding and Rabin [2], we can say that information-
theoretic privacy is everlasting privacy.

A second problem that cryptographic voting protocols
must consider is that most cryptographic techniques require
complex computations that unaided humans are unable to



perform. However, voters may not trust voting computers
to do these calculations for them. This mistrust is quite
reasonable, because there is no way for them to tell if a
computer is actually doing what it is supposed to be doing
(as a trivial example consider a voting program that lets a
voter choose a candidate, and then claims to cast a vote for
that candidate; it could just as easily be casting a vote for
a different candidate).

Finally, a problem that is applicable to all voting protocols
is the problem of concentrating trust. We would like to con-
struct protocols that don’t have a “single point of failure”
with respect to their security guarantees. Many protocols
involve a “voting authority”. In some protocols, this author-
ity is a single-point of failure with respect to privacy (or, in
extreme cases, integrity). Protocols that require the voter to
input their votes to a computer automatically have a single
point of failure: the computer is a single entity that “knows”
the vote. This is not an idle concern: many ways exist for
a corrupt computer to undetectably output information to
an outside party (in some cases, the protocol itself provides
such “subliminal channels”).

1.1 Our Contributions
In this paper we introduce the first universally-verifiable

voting protocol with everlasting privacy that can be per-
formed by unaided humans and distributes trust across more
than one voting authority. This protocol has reasonable
complexity (O(m) exponentiations per voter, where m is
the number of candidates) and is efficient enough to be used
in practice.

We formally prove our protocol is secure in the Universal
Composability (UC) framework, which provides very strong
notions of security. Surprisingly, we can attain this level of
security even though we base the voting protocol on com-
mitment and encryption schemes that are not, themselves,
universally composable (we propose using a modification of
the Pedersen commitment scheme together with Paillier en-
cryption; see Appendix A for details).

As part of the formal proof of security, we can specify pre-
cisely what assumptions we make when we claim the pro-
tocol is secure (this is not the case for most existing voting
protocols, that lack formal proofs completely).

In addition, we formally prove that our protocol is receipt-
free, using a simulation-based definition of receipt-freeness
previously introduced by the authors [16]. Helping to show
that rigorous proofs of correctness are not just “formalism
for the sake of formalism”, we demonstrate a subtle attack
against the receipt-freeness of the Punchscan voting system
[9] (see Section 2.4).

1.2 Related Work
Voting Protocols. Chaum proposed the first published

electronic voting scheme in 1981 [7]. Many additional pro-
tocols were suggested since Chaum’s. Among the more no-
table are [13, 10, 3, 11, 12, 14].

Only a small fraction of the proposed voting schemes sat-
isfy the property of receipt-freeness. Benaloh and Tuinstra
[3] were the first to define this concept, and to give a pro-
tocol that achieves it (it turned out that their full protocol
was not, in fact, receipt free, although their single-authority
version was [14]). To satisfy receipt-freeness, Benaloh and
Tuinstra also required a “voting booth”: physically untap-
pable channels between the voting authority and the voter.

Human Considerations. Almost all the existing protocols
require complex computation on the part of the voter (infea-
sible for an unaided human). Thus, they require the voter
to trust that the computer casting the ballot on her behalf
is accurately reflecting her intentions. Chaum [8], and later
Neff [18], proposed universally-verifiable receipt-free voting
schemes that overcome this problem. Recently, Reynolds
proposed another protocol similar to Neff’s [21].

All three schemes are based in the “traditional” setting,
in which voters cast their ballots in the privacy of a voting
booth. Instead of a ballot box the booth contains a “Direct
Recording Electronic” (DRE) voting machine. The voter
communicates her choice to the DRE (e.g., using a touch-
screen or keyboard). The DRE encrypts her vote and posts
the encrypted ballot on a public bulletin board. It then
proves to the voter, in the privacy of the voting booth, that
the encrypted ballot is a truly an encryption of her intended
vote.

Chaum’s original protocol used Visual Cryptography [17]
to enable the human voter to read a complete (two-part)
ballot that was later separated into two encrypted parts, and
so his scheme required special printers and transparencies.
Bryans and Ryan showed how to simplify this part of the
protocol to use a standard printer [4, 22]. A newer idea
of Chaum’s is the Punchscan voting system [9], which we
describe in more detail in Section 2.4.

Recently, the authors proposed a voting protocol, based
on statistically-hiding commitments, that combines everlast-
ing security and a human-centric interface [16]. This pro-
tocol requires a DRE, and inherently makes use of the fact
that there is a single authority (the DRE plays the part of
the voting authority).

Adida and Rivest [1] suggest the “Scratch&Vote” system,
which makes use of scratch-off cards to provide receipt-
freeness and “instant” verifiability (at the polling place)
Their scheme publishes encryptions of the votes, and is there-
fore only computationally private.

Our scheme follows the trend of basing protocols on physi-
cal assumptions in the traditional voting-booth setting. Un-
like most of the previous schemes we also provide a rigorous
proof that our scheme actually meets its security goals.

2. INFORMAL OVERVIEW OF THE
SPLIT-BALLOT PROTOCOL

Our voting scheme uses two independent voting author-
ities that are responsible for preparing the paper ballots,
counting the votes and proving that the announced tally is
correct.

If both authorities are honest, the election is guaranteed to
be accurate, information-theoretically private and receipt-
free. If at least one of the authorities is honest, the election
is guaranteed to be accurate and private (but now has only
computational privacy, and may no longer be receipt-free).
If both authorities are corrupt, the voting is still guaranteed
to be accurate, but privacy is no longer guaranteed.

An election consists of four phases:

1. Setup: In this stage the keys for the commitment and
encryption schemes are set up and ballots are pre-
pared.

2. Voting: Voters cast their ballots. This stage is de-
signed to be performed using pencil and paper, al-



Figure 2.1: Illustrated Sample Vote

though computers may be used to improve the user
experience.

A vote consists of four ballots, two from each vot-
ing authority. The voter selects one ballot from each
authority for verification (they will not be used for
voting). The remaining two ballots are used to vote.
The voter’s choices on both ballots, taken together,
uniquely define the vote. A partial copy of each ballot
is retained by the voter as a receipt (a more detailed
description appears in Section 2.2).

3. Tally: The two authorities publish all of the ballots.
Voters may verify that their receipts appear correctly
in the published tally. The two authorities then co-
operate to tally the votes. The final result is a public
proof that the tally is correct.

4. Universal Verification: In this phase any interested
party can download the contents of the public bulletin
board and verify that the authorities correctly tallied
the votes.

2.1 Shuffling Commitments
One of the main contributions of this paper is achiev-

ing “everlasting privacy” with more than one voting au-
thority. At first glance, this seems paradoxical: if a voting
authority publishes any information at all about the votes
(even encrypted), the scheme can no longer be information-
theoretically private. On the other hand, without publishing
information about the votes, how can two voting authorities
combine their information?

We overcome this apparent contradiction by introducing
the “oblivious commitment shuffle”: a way for indepen-
dent authorities to verifiably shuffle perfectly-hiding com-
mitments (which will give us information-theoretic privacy).

The problem of verifiably shuffling a vector of encrypted
values has been well studied. The most commonly used

scheme involves multiple authorities who successively shuffle
the encrypted vector using a secret permutation, and then
prove that the resulting vector of encrypted values is valid.
Finally, the authorities cooperate to decrypt the ultimate
output of the chain. If even one of the authorities is honest
(and keeps its permutation secret), the remaining authorities
gain no information beyond the final tally.

This type of scheme breaks down when we try to apply
it to perfectly-hiding commitments rather than encryptions.
The problem is that in a perfectly-hiding commitment, the
committed value cannot be determined from the commit-
ment itself. Thus, the standard method of opening the com-
mitments after shuffling cannot be used.

The way we bypass the problem is to allow the authorities
to communicate privately using a homomorphic encryption
scheme. This private communication is not perfectly hid-
ing (in fact, the encryptions are perfectly binding commit-
ments), but the voting scheme itself can remain information-
theoretically private because the encryptions are never pub-
lished. The trick is to encrypt separately both the message
and the randomness used in the commitments. We use a
homomorphic encryption scheme over the same group as
the corresponding commitment. When the first authority
shuffles the commitments, it simultaneously shuffles the en-
cryptions (which were generated by the other authority). By
opening the shuffled encryptions, the second authority learns
the contents and randomness of the shuffled commitments
(without learning anything about their original order). The
second authority can now perform a traditional commitment
shuffle.

2.2 Human Capability
The most questionable assumption we make with this pro-

tocol concerns human capability. It is essential to our pro-
tocol that the voter can do two things: randomly select a
value from a set of values, and perform modular addition.



The first is a fairly standard assumption. The second seems
highly suspect.

We propose an interface that borrows heavily from Punch-
scan’s in order to make the voting task more intuitive. The
basic idea is to form the ballot from two stacked papers. The
top paper contains explanations, as well as a random per-
mutation of letters. It also contains holes through which the
bottom paper can be seen. Next to each letter on the top
page, the bottom paper contains a scannable bubble that
can be marked with a pencil or pen; when the two papers
are stacked the bubbles are visible through holes in the top
paper.

The voter selects a letter by marking the corresponding
bubble. Each candidate on the ballot can be chosen by some
combinations of two letters. We construct the ballots in such
a way that when two ballots are stacked, one from each au-
thority, the letters and bubbles from both ballots are visible.
The voter then chooses one of the letter combinations for her
desired candidate, and marks the bubbles.

2.3 Vote Casting Example
To help clarify the voting process, we give a concrete ex-

ample, describing a typical voter’s view of an election (this
view is illustrated in Figure 2.1). The election is for the office
of president, and also includes a poll on “Proposition 123”.
The presidential candidates are George, John, Thomas and
James.

Sarah, the voter, enters the polling place and receives
four ballots in sealed envelopes: two “Left” ballots and two
“Right” ballots (we can think of the two voting authorities as
the “Left” authority and the “Right” authority). She takes
the ballots and enters the polling booth. She then randomly
chooses one of the Left ballots and one of the Right ballots
and opens their envelopes. She removes the ballots, each
of which consists of a red (top) and green (bottom) page.
She stacks all four pages together (the order doesn’t mat-
ter). Sarah wants to vote for Thomas and to vote Yes on
Proposition 123. She finds her candidate’s name on the top
paper, and sees that he is represented by the pairs (A,G),
(B,F), (C,E), and (D,H). She randomly picks (B,F) and
marks her ballot.1 She sees that to vote Yes on Proposition
123 she can choose either (A,E) or (B,F). She randomly
chooses (A,E) and fills the appropriate bubbles.

Sarah then separates the papers. She scans both bot-
tom pages. The scanner can give immediate output so she
can verify that she filled the bubbles correctly, and that the
scanner correctly identified her marks.2 At home Sarah will
make sure that the verification code printed on the pages,
together with the positions of the marked bubbles, are pub-
lished on the bulletin board by the voting authorities. Al-
ternatively, she can hand the receipts over to a helper orga-
nization that will perform the verification on her behalf.

The top pages she destroys, then demonstrates she has
done so to an election official (the official will not be allowed
to see the text on those pages, of course). Finally, the elec-
tion official verifies that the two unvoted ballot envelopes are

1One possible way to make sure the choice is truly random
would be to use a physical aid, such as a spinner, coins or
dice
2Note that Sarah doesn’t have to trust the scanner (or its
software) in any way: These pages will be kept by Sarah as
receipts which she can use to prove that her vote was not
correctly tabulated (if this does occur).

still sealed, then allows Sarah to open them. The complete
(unvoted) ballots will also be kept for verification, or given
to a helper organization. At home, Sarah will make sure the
complete ballots are published on the bulletin board.

2.4 The Importance of Rigorous Proofs of
Security for Voting Protocols

To demonstrate why formal proofs of security are impor-
tant, we describe a vote-buying attack against a previous
version of the Punchscan voting protocol. The purpose of
this section is not to disparage Punchscan; on the contrary,
we use Punchscan as an example because it is one of the sim-
plest protocols to understand and has been used in practice.
A closer look at other voting protocols may reveal similar
problems. Our aim is to encourage the use of formal security
analysis to detect (and prevent) such vulnerabilities.

We very briefly describe the voter’s view of the Punchscan
protocol, using as an example an election race between Alice
and Bob. The ballot consists of two pages, one on top of the
other. The top page contains the candidates’ names, and
assigns each a random letter (either A or B). There are two
holes in the top page through which the bottom page can be
seen. On the bottom page, the letters A and B appear in a
random order (so that one letter can be seen through each
hole in the top page). Thus, the voter is presented with one
of the four possible ballot configurations (shown in Figure
2.2).

Figure 2.2: Punchscan Ballot Configurations

To vote, the voter marks the letter corresponding to her
candidate using a wide marker: this marks both the top
and bottom pages simultaneously. The two pages are then
separated. The voter chooses one of the pages to scan (and
keep as a receipt), while the other is shredded (these steps
are shown in Figure 2.3).

Figure 2.3:
Punchscan Ballot

Figure 2.4: “Bad”
Receipts

Each pair of pages has a short id, which a voting authority
can use to determine what was printed on each of the pages
(this allows the authority to determine the voter’s vote even
though it only receives a single page). For someone who does
not know the contents of the shredded page, the receipt does
not give any information about the voter’s choice.



Giving each voter a receipt for her vote is extremely prob-
lematic in traditional voting systems, since the receipt can
be used to coerce voters or to buy votes. Punchscan at-
tempts to prevent vote-buying by making sure that the re-
ceipt does not contain any information about the voter’s
choice. At first glance, this idea seems to work: if an ad-
versary just asks a voter to vote for a particular candidate
(by following the Punchscan protocol honestly), there is no
way the adversary can tell, just by looking at the receipt,
whether the voter followed his instructions or not.

Below, we show that for a slightly more sophisticated ad-
versary, a vote-buying attack is possible against Punchscan.

2.4.1 A Vote Buying Attack. To demonstrate the
attack, we continue to use the Alice/Bob election example.
Suppose the coercer wants to bias the vote towards Alice.
In this case, he publishes that he will pay for any receipt
except those shown in Figure 2.4 (i.e., everything except a
“B,A” bottom page on which “A” was marked, and a “B,A”
top page on which the right hole was marked).

This attack will force one fourth of the voters to vote
for Alice in order to get paid. To see why, consider the
four possible ballot configurations (in Figure 2.2). Since the
coercer will accept any marking on an “A,B” top page or
an “A,B” bottom page, in three of the four configurations
the voter can vote as she wishes. However, if both the top
and the bottom pages are “B,A” pages (this occurs in one
fourth of the cases), the voter is forced to vote for Alice if
she wants to return an acceptable receipt.

Although three-fourths of the voters can vote for any can-
didate, this attack is still entirely practical. When a race is
close, only a small number of votes must be changed to tip
the result in one direction. Compared to the “worst possi-
ble” system in which an adversary can buy votes directly,
Punchscan requires the attacker to spend only four times as
much to buy the same number of votes. Since the receipts
are published, this attack can be performed remotely (e.g.,
over the internet), making it much worse than a “standard”
vote-buying attack (such as chain-voting) that must be per-
formed in person.

We must note that the current version of Punchscan (as
described in [19]) instructs the voter to commit to the layer
she will take before entering the voting booth. The original
purpose of this requirement was to prevent a different at-
tack, but it suffices to foil the attack described above. The
requirement does not appear in any other Punchscan litera-
ture, however, and demonstration elections using Punchscan
did not enforce it (possibly because coercion was not con-
sidered a serious threat in that setting).

3. UNDERLYING ASSUMPTIONS
One of the important advantages of formally analyzing

voting protocols is that we can state the specific assump-
tions under which our security guarantees hold. Our pro-
tocol uses a combination of physical and cryptographic as-
sumptions. Below, we define the assumptions and give a
brief justification for each.

3.1 Physical Assumptions
Undeniable Ballots. To allow voters to complain con-

vincingly about invalid ballots, they must be undeniable: a
voter should be able to prove that the ballot was created by
the voting authority. This type of requirement is standard
for many physical objects: money, lottery-tickets, etc.

Forced Private Erasure. In order to preserve the receipt-
freeness of the protocol, we require voters to physically erase
information from the ballots they used. The erasure assump-
tion is made by a number of existing voting schemes that
require the voter to choose some part of the ballot to securely
discard (e.g., Punchscan [9], Scratch&Vote [1]). In practice,
this can be done by shredding, by chemical solvent, etc.

At first glance, it might appear that simply spoiling a
ballot that was not correctly erased is sufficient. However,
this is not the case; the voter must be forced to erase the
designated content. Otherwise, a coercer can mount a vote-
buying attack similar to the one described in section 2.4,
where some voters are told to invalidate their ballots by
refusing to erase them (and showing the complete ballot to
the coercer).

Since only the voter should be able to see the contents of
the erased part of the ballot, finding a good mechanism to
enforce erasure may be difficult (e.g., handing it to an official
to shred won’t work). However, a large-scale attack that
relies on circumventing this assumption may be detected by
counting the number of spoiled ballots.

Tamper-Evident Seals. In order to preserve privacy, bal-
lots must be delivered to the voter sealed (so that no one
else can see their contents). In order to preserve receipt-
freeness, even the voter must not be able to see the contents
of a ballot before opening it. Moreover, the voting authori-
ties must be able to verify that the voter did not open the
unvoted ballots.

To achieve this, we can make use of tamper-evident en-
velopes, or opaque sealed bags (which a voter cannot open
undetected). A formal model for tamper-evident seals was
previously developed by the authors [15]. The “distinguishable-
envelope” model in [15] captures our requirements precisely.

Voting Booth. In order to preserve privacy and receipt-
freeness, the voter must be able to perform some actions pri-
vately. The actions the voter performs in the voting booth
are opening sealed ballots, reading their contents and eras-
ing part of the ballot.

Untappable Channels. In order to guarantee everlast-
ing privacy, communication between the voting authorities
is assumed to take place using untappable private channels.
This is a fairly reasonable assumption: the voting authori-
ties can be physically close and connected by direct physical
channels. Note that if this assumption is not satisfied, the
protocol is still computationally private (but is no longer
UC-secure or information-theoretically private).

Public Bulletin Board. The public bulletin board is a
common assumption in universally-verifiable voting proto-
cols. This is usually modeled as a broadcast channel, or as
append-only storage with read-access for all parties. A pos-
sible implementation is a web-site that is constantly moni-
tored by multiple verifiers to ensure that nothing is erased
or modified.

Random Beacon. The random beacon, originally in-
troduced by Rabin [20], is a source of independently dis-
tributed, uniformly random strings. The main assumption
about the beacon is that it is unpredictable. In practice, the
beacon can be implemented in many ways, such as by some
physical source believed to be unpredictable (e.g., cosmic
radiation, weather, etc.), or by a distributed computation
with multiple verifiers.

We use the beacon for choosing the public-key of our com-
mitment scheme, and to replace the verifier in zero knowl-



edge proofs. For the zero-knowledge proofs, we can replace
the beacon assumption by a random oracle (this is the Fiat-
Shamir heuristic): the entire protocol transcript so far is
taken as the index in the random oracle that is used as the
next bit to be sent by the beacon.

3.2 Cryptographic Assumptions
Our protocol is based on two cryptographic primitives:

perfectly-hiding homomorphic commitment and homomor-
phic encryption. The homomorphic commitment requires
some special properties.

Homomorphic Commitment. A homomorphic commit-
ment scheme consists of a tuple of algorithms: K, C, PK ,
and VK . K : {0, 1}` × {0, 1}` 7→ K accepts a public random
bit-string and a private auxiliary and generates a commit-
ment public key cpk ∈ K. C is the commitment function,
parametrized by the public key, mapping from a message
group (M,+) and a randomizer group (R,+) to the space
of commitments (C, ·). To reduce clutter, we omit the key
parameter when it is obvious from context (i.e., we write
C (m, r) instead of Ccpk (m, r)).
PK and VK are a “prover” and “verifier” for the key gen-

eration: these are both interactive machines. The prover
receives the same input as the key generator, while the ver-
ifier receives only the public random string and the public
key. To allow the verification to be performed publicly (us-
ing a random beacon), we require that all of the messages
sent by VK to PK are uniformly distributed random strings.

For any PPTs K∗, P ∗K (corresponding to an adversarial
key-generating algorithm and prover), when cpk ← K∗(rK),

rK ∈R {0, 1}` is chosen uniformly at random then, with all
but negligible probability (the probability is over the choice
of rK and the random coins of K∗, P ∗K and VK), either the
output of VK(rK , cpk) when interacting with P ∗K is 0 (i.e.,
the verification of the public-key fails) or the following prop-
erties must hold:

1. Perfectly Hiding: For any m1,m2 ∈ M, the random
variables C (m1, r) and C (m2, r) must be identically
distributed when r is taken uniformly at random from
R. (Note that we can replace this property with sta-
tistically hiding commitment, but for simplicity of the
proof we require the stronger notion).

2. Computationally Binding: For any PPT A (with ac-
cess to the private coins of K∗), the probability that
A (cpk) can output (m1, r1) 6= (m2, r2) ∈M×R such
that Ccpk (m1, r1) = Ccpk (m2, r2) must be negligible.

3. Homomorphic in both M and R: for all
(m1, r1) , (m2, r2) ∈ M × R, and all but a negligible
fraction of keys,
C (m1, r1) · C (m2, r2) = C (m1 +m2, r1 + r2).

Simulated Equivocability. For achieving UC security, we
require the commitment scheme to have two additional al-

gorithms K′ : {0, 1}`
′
7→ {0, 1}`, C′ : {0, 1}`

′
×C×M 7→ R,

such that the output of K′ is uniformly random, and for
every l ∈ {0, 1}` and m ∈M and c ∈ C,
CK(K′(l)) (m,C′ (l, c,m)) = c (i.e., it is possible to generate
a public-key that is identical to a normal public key, such
that it is possible to open every commitment to any value).

Homomorphic Public-Key Encryption. The second cryp-
tographic building block we use is a homomorphic public-
key encryption scheme. We actually need two encryption
schemes, one whose message space isM and the other whose

message space is R (where M and R are as defined for the
commitment scheme). The schemes are specified by the al-

gorithm triplets
“
KG(M), E(M), D(M)

”
and“

KG(R), E(R), D(R)
”

, where KG is the key-generation al-

gorithm, E(X ) : X × T 7→ E(X ) the encryption algorithm
and D(X ) : E(X ) 7→ X the decryption algorithm. We require
the encryption schemes to be semantically secure and ho-
momorphic in their message spaces: for every x1, x1 ∈ X
and any r1, r2 ∈ T , there must exist r′ ∈ T such that
E(X ) (x1, r1) · E(X ) (x2, r2) = E(X ) (x1 + x2, r

′).
We do not require the encryption scheme to be homo-

morphic in its randomness, but we do require, for every
x1, r1, x2, that r′ is uniformly distributed in T when r2 is
chosen uniformly.

To clarify the presentation, below we omit the randomness
and the superscript for the encryption schemes where it can
be understood from the context (e.g., we write E (m) to
describe an encryption of m).

Below, we use only the abstract properties of the encryp-
tion and commitment schemes. For an actual implementa-
tion, we propose using the Paillier encryption scheme (where
messages are in Zn for a composite n, together with a modi-
fied version of Pedersen Commitment (where both messages
and randomness are also in Zn). More details can be found
in Appendix A.

4. THREAT MODEL AND SECURITY
We define and prove the security properties of our protocol

using a simulation paradigm. The protocol’s functionality is
defined by describing how it would work in an “ideal world”,
in which there exists a completely trusted third party. Infor-
mally, our security claim is that any attack an adversary can
perform on the protocol in the real world can be transformed
into an attack on the functionality in the ideal world. This
approach has the advantage of allowing us to gain a better
intuitive understanding of the protocol’s security guaran-
tees, when compared to the game-based or property-based
approached for defining security.

The basic functionality is defined and proved in Canetti’s
Universal Composability framework [5]. This provides ex-
tremely strong guarantees of security, including security un-
der arbitrary composition with other protocols. The ideal
voting functionality, described below, explicitly specifies what
abilities the adversary gains by corrupting the different par-
ties involved.

We also guarantee receipt-freeness, a property that is not
captured by the standard UC definitions, using a similar
simulation-based definition.

4.1 Ideal Voting Functionality
The voting functionality defines a number of different par-

ties: n voters, two voting authorities A1 and A2, a verifier
and an adversary. The voting authorities’ only action is to
specify the end of the voting phase. Also, there are some
actions the adversary can perform only after corrupting one
(or both) of the voting authorities. The verifier is the only
party with output. If the protocol terminates successfully,
the verifier outputs the tally, otherwise it outputs ⊥ (this
corresponds to cheating being detected).

When one (or more) of the voting authorities is corrupt,
we allow the adversary to change the final tally, as long as



the total number of votes changed is less than the security
parameter k (we consider 2−k negligible).3 This is modeled
by giving the tally privately to the adversary, and letting the
adversary announce an arbitrary tally using the Announce
command (described below). If neither of the voting author-
ities is corrupt, the adversary cannot cause the functionality
to halt. The formal specification for the voting functionality,
Fvote, follows:

Vote v, xv On receiving this command from voter v, the
functionality stores the tuple (v, xv) in the database S and
outputs “v has voted” to the adversary. The functionality
then ignores further messages from voter v. The functional-
ity will also accept this message from the adversary if v was
previously corrupted (in this case an existing (v, xv) tuple
can be replaced.

Tally On receiving this command from a voting authority,
the functionality computes si = |{(v, xv) ∈ S | xv = i}| for
all i ∈ Zm. If neither of the voting authorities is corrupt,
the functionality sends the tally s0, . . . , sm−1 to the verifier
and halts (this is a successful termination). Otherwise, it
sends the tally, s0, . . . , sm−1, to the adversary.

Announce s′0, . . . , s
′
m−1 On receiving this command from

the adversary, the functionality verifies that the Tally com-
mand was previously received. It then computes
d =

Pm−1
i=0 |si − s

′
i|. If d < k (where k is the security pa-

rameter) it outputs the tally s′0, . . . , s
′
m−1 to the verifier

and halts (this is considered a successful termination).

Corrupt v On receiving this command from the adversary,
the functionality sends xv to the adversary (if there exists a
tuple (v, xv) ∈ S).

Corrupt Aa On receiving this command from the adver-
sary, the functionality marks the voting authority Aa as
corrupted.

RevealVotes On receiving this command from the adver-
sary, the functionality verifies that both A1 and A2 are cor-
rupt. If this is the case, it sends the vote database S to the
adversary.

Halt On receiving this command from the adversary, the
functionality verifies that at least one of the voting author-
ities is corrupt. If so, it outputs ⊥ to the verifier and halts.

We can now state our main theorem:

Theorem 4.1. The Split-Ballot Voting Protocol UC-realizes
functionality Fvote, for an adversary that is fully adaptive
up to the end of the voting phase, but then statically de-
cides which of the voting authorities to corrupt (it can still
adaptively corrupt voters).

The reason for the restriction on the adversary’s adaptive-
ness is that the homomorphic encryption scheme we use is
committing.

Note that this limitation on adaptiveness only holds with
respect to the privacy of the votes under composition, since
an adversary whose only goal is to change the final tally
can only gain by corrupting both voting authorities at the
beginning of the protocol.

3This is a fairly common assumption in cryptographic voting
protocols (appearing in [8, 4, 22, 9], among others).

Due to space constraints, we defer the proof of Theorem
4.1 to the full version of the paper.4

4.2 Receipt-Freeness
As previously discussed, in a voting protocol assuring pri-

vacy is not enough. In order to prevent vote-buying and
coercion, we must ensure receipt-freeness: a voter shouldn’t
be able to prove how she voted even if she wants to. We
use the definition of receipt-freeness from [16], an extension
of Canetti and Gennaro’s incoercible computation [6]. This
definition of receipt-freeness is also simulation based, in the
spirit of our other security definitions.

Parties all receive a fake input, in addition to their real
one. A coerced player will use the fake input to answer
the adversary’s queries about the past view (before it was
coerced). The adversary is not limited to passive queries,
however. Once a player is coerced, the adversary can give
it an arbitrary strategy (i.e. commands the player should
follow instead of the real protocol interactions). We call co-
erced players that actually follow the adversary’s commands
“puppets”.

A receipt-free protocol, in addition to specifying what
players should do if they are honest, must also specify what
players should do if they are coerced; we call this a “coercion-
resistance strategy” The coercion-resistance strategy is a
generalization of the “faking algorithm” in Canetti and Gen-
naro’s definition — the faking algorithm only supplies an an-
swer to a single query (“what was the randomness used for
the protocol”), while the coercion-resistance strategy must
tell the party how to react to any command given by the
adversary.

Intuitively, a protocol is receipt-free if no adversary can
distinguish between a party with real input x that is a pup-
pet and one that has a fake input x (but a different real
input) and is running the coercion-resistance strategy. At
the same time, the computation’s output should not change
when we replace coerced parties running the coercion-resistance
strategy with parties running the honest protocol (with their
real inputs). Note that these conditions must hold even
when the coercion-resistance strategy is known to the ad-
versary.

In our original definition [16], the adversary can force a
party to abstain. We weaken this definition slightly, and
allow the adversary to force a party to vote randomly (in
most voting systems, a random vote is effectively the same
as an abstention, so this is not much weaker). Under this
definition:

Theorem 4.2. The Split-Ballot voting protocol is receipt-
free, for any adversary that does not corrupt any of the vot-
ing authorities.

Due to space constraints, we defer the formal proof of this
theorem to the full version of the paper. However, the in-
tuition behind it is apparent from the coercion-resistance
strategy (described in Section 5.2).

5. SPLIT-BALLOT VOTING PROTOCOL
In this section we give an abstract description of the split-

ballot voting protocol (by abstract, we mean we that we de-

4An up to date version of the paper (with additional de-
tails) can be found in http://www.wisdom.weizmann.ac.
il/~naor/onpub.html

http://www.wisdom.weizmann.ac.il/~naor/onpub.html
http://www.wisdom.weizmann.ac.il/~naor/onpub.html


scribe the logical operations performed by the parties with-
out describing a physical implementation). In the interest of
clarity, we restrict ourselves to two voting authorities A1,A2,
n voters and a single poll question with answers in the group
Zm. We assume the existence of a homomorphic commit-
ment scheme (K,C) (with the properties defined in Section
3.2) whose message space is a group (M,+), randomizer
space a group (R,+), and commitment space a group (C, ·).
Furthermore, we assume the existence of homomorphic en-
cryption schemes with the corresponding message spaces.

5.1 Setup
The initial setup involves:

1. Choosing the system parameters (these consist of the
commitment scheme public key and the encryption
scheme public/private key pair). Authority A2 runs

KG(M) and KG(R), producing
“
pk(M), sk(M)

”
and“

pk(R), sk(R)
”

(which it sends over the private chan-

nel to A1. It also runs K using the output of the
random beacon as the public random string, and the
private coins used in running KG(M) and KG(R) as
the auxiliary. This produces the commitment public
key, cpk. Authority A2 now runs PK using the ran-
dom beacon to replace the verifier (this produces a
public proof that the commitment key was generated
correctly).

2. Ballot preparation. Each voting authority prepares
at least 2n ballots. Informally, each ballot contains
commitments to the numbers 0 through m − 1 in a
random order (each number corresponds to a candi-
date). We identify a ballot by the tuple w = (a, i, b) ∈
{0, 1} × [n] × {0, 1}, where Aa is the voting author-
ity that generated the ballot, i is the index of the
voter to whom it will be sent and b a ballot serial
number. The ballot Bw consists of a random permu-
tation πw : Zm 7→ Zm and a vector of commitments:
cw,πw(0), . . . , cw,πw(m−1), where

cw,πa,i(j)
.
= C

`
πw (j) , rw,πw(j)

´
,

and rw,0, . . . , rw,m−1 ∈R R is a vector of m random
values chosen by the authority.

5.2 Voting
The voter receives two ballots from each of the voting au-

thorities. Denote the ballots received by voter v ∈ {1, . . . , n}:
B1,v,0, B1,v,1, B2,v,0 and B2,v,1, and the voter’s response to
the poll question by xv ∈ Zm. Informally, the voter uses
a trivial secret sharing scheme to mask her vote: she splits
it into two random shares whose sum is xv. Each share is
sent to a different authority (by choosing the corresponding
commitment from the ballot). More formally:

1. The voter receives ballots B1,v,0, B1,v,1, B2,v,0 and
B2,v,1 from the authorities and enters the “voting booth”.
The voter chooses, uniformly at random, two bits
bv,1, bv,2 ∈R {0, 1} and a value tv ∈R Zm. The value
tv is one “secret share” of the vote, the other will be
xv− tv. Bit bv,a determines which ballot received from
authority Aa will be used for voting (the other is used
only for verification). The voter opens ballots B1,v,bv,1

and B2,v,bv,2 and leaves the other two ballots sealed.

2. To vote, the voter selects s1,v
.
= c1,v,bv,1,tv (i.e., the

commitment to tv) and s2,v
.
= c2,v,bv,2,xv−tv (the com-

mitment to xv−tv, where xv−tv is computed in Zm).5

3. The voter then physically deletes the description of
π1,v,bv,1 from B1,v,bv,1 and the description of π2,v,bv,2

from B2,v,bv,2 . After this step the voter “leaves the
voting booth”.

4. The voter sends s1,v to A1 and s2,v to A2 (“sending”
the ballot can consist of running it through a scanner
at the polling place). The voting authorities verify
that the proper erasures were performed and that two
of the ballots are still sealed.

5. The voter opens the two sealed (unvoted) ballots.

6. Authority A1 publishes the tuple (1, v, s1,v) on the
bulletin board and authority A2 publishes the tuple
(2, v, s2,v).

7. For a ∈ {1, 2}, authority Aa publishes Ba,v,1−bv,a and
ra,v,1−bv,a,0, . . . , ra,v,1−bv,a,m−1 to the public bulletin
board (i.e., it opens the commitments for the ballot
that wasn’t used to cast the vote).

8. The voter verifies that commitments for the voted bal-
lots have been correctly published (they match the val-
ues sent in step 2), and that both unvoted ballots were
correctly published in their entirety.

5.2.1 Coercion-Resistance Strategy. We assume the
adversary cannot observe the voter between steps 1 and 3 of
the voting phase (these steps are performed while the voter
is “in the voting booth”).

If the voter is coerced before step 1, the voter follows the
adversary’s strategy precisely, but uses random permuta-
tions instead of those revealed on the opened ballots. Be-
cause of the forced erasure, the adversary will not be able
to tell whether the voter used the correct permutations or
not. By using random permutations, the end result is that
voter votes randomly (coercing a voter to vote randomly is
an attack we explicitly allow).

If the voter is coerced at step 1 or later (after entering
the voting booth), she follows the regular voting protocol
in steps 1 through 3. Even if she is coerced before step
3, she lies to the adversary and pretends the coercion oc-
curred at step 3 (the adversary cannot tell which step in
the protocol the voter is executing while the voter is in the
booth). In this case, the adversary cannot give the voter
a voting strategy, except one that will invalidate the ballot
(since the voter has no more “legal” choices left). The voter
must still convince the adversary that her vote was for the
“fake input” provided by the adversary rather than her real
input. To do this, she chooses random permutations that
are consistent with the fake input and her chosen commit-
ments, and pretends these were the permutations revealed
on the opened ballots. Using the example in Figure 2.1,
if Sarah was trying to convince a coercer that she actually
voted for John (instead of Thomas), she would choose ran-
domly one of the options for John (e.g., C,H), then claim
that the left permutation she saw had C as the fourth value
and the right permutation had H on the second (ordering
the others randomly). Note that if the adversary forces the
voter to invalidate her ballot, she will do so (but this is a
forced abstention, which we explicitly do not prevent).
5This selection can be implemented, for example, by having
the voter mark a physical ballot with a pen (such as the
method described in Section 2.2).



5.3 Tally
The tally stage is performed by the voting authorities and

does not require voter participation (for the intuition be-
hind it, see Section 2.1). Before the start of the tally stage,
both authorities know s1,1, s2,1, . . . , s1,n, s2,n (this was pub-
lished on the public bulletin board in the voting phase). Au-
thority A1 also knows t1, . . . , tn, while authority A2 knows
x1 − t1, . . . , xn − tn. Below, we give a simplified version of
the tally protocol that reveals the sums xi without a modu-
lar reduction by m. This may be sufficient when the number
of voters is much larger than the number of candidates. At
the cost of a few extra steps (masking the sums by adding
random multiples of m), this small information leakage can
be avoided. Note: the tally stage uses as subprotocols some
zero-knowledge proofs. These are based on standard tech-
niques, and we omit them here due to lack of space.

1. Authority A1 computes, for all 1 ≤ i ≤ n: di
.
=

s1,i · s2,i = C
`
xi, r1,i,bi,1,ti + r2,i,bi,2,xi−ti

´
. It chooses

a random permutation σ1 : [n] 7→ [n], random values
u1,1, . . . , u1,n ∈R R and publishes to the public bul-
letin board, for all 1 ≤ i ≤ n: d′i

.
= dσ1(i) · C (0, u1,i).

2. Authority A1 proves in zero-knowledge that d′1, . . . , d
′
n

is a valid shuffle of d1, . . . , dn.

3. AuthorityA2 sends, for all 1 ≤ i ≤ n: e
(M)
i

.
= Epk (xi − ti)

and e
(R)
i = Epk (r2,i,xi−ti) to A1 (note that A2 uses its

own public-keys for encryption). It also proves in zero

knowledge that e
(M)
i is an encryption of a value in the

range {0, . . . ,m− 1}.
4. For all 1 ≤ i ≤ n, authority A1 sends over the pri-

vate channel to A2: e′
(M)
i = e

(M)

σ1(i) · Epk
`
tσ1(i)

´
=

Epk
`
xσ1(i)

´
and

e′
(R)
i = e

(R)

σ1(i) · Epk
“
r1,σ1(i),tσ1(i)

+ u1,i

”
=

Epk
“
r2,σ1(i),xσ1(i)−tσ1(i)

+ r1,σ1(i),tσ1(i)
+ u1,i

”
. (i.e. A1

reconstructs the complete votes and commitment ran-
domness using the homomorphic property of the en-
cryption, then shuffles them in the same way it origi-
nally shuffled the commitments).

5. AuthorityA2 chooses a random permutation σ2 : [n] 7→
[n], random values u2,1, . . . , u2,n ∈R R and publishes
to the public bulletin board, for all 1 ≤ i ≤ n: d′′i

.
=

d′σ2(i) · C (0, u2,i).

6. Authority A2 proves in zero-knowledge shuffle that
d′′1 , . . . , d

′′
n is a valid shuffle of d′1, . . . , d

′
n.

7. For all i ∈ [n], authority A2 decrypts e′
(M)

σ2(i) and

e′
(R)

σ2(i), getting the values xσ1(σ2(i)) and
r2,σ1(σ2(i)),xσ1(σ2(i))−tσ1(σ2(i))

+r1,σ1(σ2(i)),tσ1(σ2(i))
+u1,σ2(i),

respectively. The decrypted values are the messages
and randomness of the commitments d′1, . . . , d

′
n. Au-

thority A2 can now compute the messages and ran-
domness of the commitments d′′1 , . . . , d

′′
n by itself: A2

publishes to the public bulletin board ξi
.
= xσ1(σ2(i))

and
ρi

.
= r2,σ1(σ2(i)),xσ1(σ2(i))−tσ1(σ2(i))

+r1,σ1(σ2(i)),tσ1(σ2(i))
+

u1,σ2(i) + u2,i. Note that ξ1, . . . , ξn is equivalent (mod
m) to a permutation of the votes.

5.4 Universal Verification and Output
The verification can be performed by anyone with access

to the public bulletin board.

1. The verifier checks that the commitment key was gen-
erated correctly.

2. The verifier checks for all unvoted ballots that the
opened commitments match the published permuta-
tions

3. The verifier computes the vector d1, . . . , dn (by per-
forming the computation di = s1,i · s2,i with the pub-
lished commitments s1,i · s2,i)

4. The verifier checks that the HVZK proofs of commit-
ment shuffle published in steps 2 and 6 of the tally
phase are correct.

5. The verifier checks that d′′i = C (ξi, ρi) for all i ∈ [n].

6. If an error was found, the verifier outputs ⊥. Oth-
erwise, the verifier computes and outputs the tally
s0, . . . , sm−1, where sj = |{i ∈ [n] | ξi ≡ j (mod m)}|.

6. DISCUSSION AND OPEN PROBLEMS
Multiple Questions on a Ballot. As shown in the “illus-

trated example”, our voting protocol can be easily adapted
to use multiple questions on the same ballot. If there are
many questions, the pattern of votes on a single ballot may
uniquely identify a voter, hence tallying the questions to-
gether may violate voter privacy. In this case, the tally
protocol should be performed separately for each question
(or for each small group).

More than Two Authorities. We described the protocol
using two authorities. The abstract protocol can easily be
extended to an arbitrary number of authorities. However,
the main stumbling block is the human element: even for two
authorities this protocol may be difficult for some users. Di-
viding a vote into three parts will probably be too complex,
without additional ideas in the area of human interface.

Receipt-Freeness with a Corrupt Authority. The current
protocol is not receipt-free if even one of the authorities
is corrupt. Note that this is not a problem in the proof,
but in the protocol itself (if the voter does not know which
authority is corrupt): the voter can’t tell which of the ballots
the coercer will have access to, so she risks getting caught if
she lies about the permutation she erased from the ballot. It
is an interesting open question whether this type of attack
can be prevented.

Better Human Interface. Probably the largest hurdle to
implementing this protocol is the human interface. Devising
a simple human interface for modular addition could prove
useful in other areas as well.
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APPENDIX
A. HOMOMORPHIC COMMITMENT AND

ENCRYPTION SCHEMES OVER
IDENTICAL GROUPS

Our voting scheme requires a perfectly private commit-
ment scheme with “matching” semantically-secure encryp-
tion schemes. The commitment scheme’s message and ran-

domizer spaces must both be groups, and the commitment
scheme must be homomorphic (separately) in each of the
groups. There must be a matching encryption scheme for
each group, such that the encryption scheme’s message space
is homomorphic over that group.

To meet these requirements, we propose using the stan-
dard Paillier encryption scheme, where the plaintext is in
the group Zn for n = p1p2, a product of two safe primes.
For the commitment scheme, we propose a modified version
of the Pedersen commitment scheme where both messages
and randomness are also in the group Zn. Below we give
the details of this construction.

A.1 Modified Pedersen
The abstract version of Pedersen commitment has a public

key consisting of a cyclic group G and two random genera-
tors g, h ∈ G such that logg h is not known to the committer.
The cryptographic assumption is that logg h is infeasible to
compute.

The message and randomizer spaces for this scheme are
both Z|G|. C (m, r)

.
= gmhr. Since g and h are both gener-

ators of the group, for any m, gmhr is a random group ele-
ment when r is chosen at random. Therefore, this scheme is
perfectly hiding. If an adversary can find (m1, r1) 6= (m2, r2)
such that gm1hr1 = gm2hr2 , then it can compute logg h =
m2−m1
r1−r2

, violating the cryptographic assumption. Hence the
scheme is computationally binding. It is easy to see that the
scheme is homomorphic.

Finally, if we choose g, h = gx, where g is chosen randomly
and x is chosen randomly such that gx is a generator, we get
an identically distributed public key, but knowing x it is easy
to equivocate.

In the “standard” implementation of Pedersen, G is taken
to be the order q subgroup of Z∗p, where p = 2q + 1 and
both p and q are prime (i.e., p is a safe prime). g and h
are randomly chosen elements in this group. The discrete
logarithm problem in G is believed to be hard when p is a
safe prime chosen randomly in (2n, 2n+1).

Our modified version of Pedersen takes G to be the order
n = p1p2 subgroup of Z∗4n+1, where p1 and p2 are safe primes
and 4n + 1 is also prime (we can’t use 2n + 1, since that
is always divisible by 3 when p1 and p2 are safe primes).
The computational assumption underlying the security of
the commitment scheme is that, when p1 is a random safe
prime and g and h are random generators of G, computing
logg h is infeasible. Note that it is not necessary to keep
the factorization of n secret (in terms of the security of the
commitment scheme), but knowing the factorization is not
required for commitment.

A.2 Choosing the Parameters
The connection between the keys for the commitment and

encryption schemes makes generating them slightly tricky.
On one hand, only one of the authorities can know the pri-
vate key for the encryption scheme (since its purpose is to
hide information from the other authority). On the other
hand, the security of the commitment must be publicly veri-
fiable (even if both authorities are corrupt), hence we cannot
allow the authorities to choose the parameters themselves.
Moreover, for the commitment to be binding, n must have a
large random prime factor, and g and h must be chosen ran-
domly. Using a random beacon, this can be done securely,
but we leave the details to the full version of the paper.
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