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S 1 Supplementary Model Descriptions

NOTE: The model descriptions are presented in alphabetical order. The following abreviations
are used: SMB = Surface Mass Balance, DEM= Digital Elevation Model, ∂h/∂t = rate of ice
thikckness change.

S 1.1 “Brinkerhoff” – Brinkerhoff et al. (2016)

The method of Brinkerhoff et al. (2016) poses the problem of finding bedrock elevations in the
context of Bayesian inference. The model uses the prior hypotheses that bed elevations and
the ice flux divergence (SMB-∂h/∂t) can be modelled as Gaussian random fields with assumed
covariance but unknown mean. The choice of covariance function enforces strong prior informa-
tion about smoothness. Depth averaged velocities are found by solving the continuity equation.
The likelihood assumes that velocities and the ice flux divergence are normally distributed with
known covariance around the supplied data. With prior and likelihood in hand, the model
uses the Metropolis-Hastings algorithm (Hastings, 1970) to generate samples from the posterior
distribution of bed elevations.
For ITMIX, only the maximum likelihood solution is reported (not the full posterior distribu-
tion). Because of the Gaussian distribution of observations and priors, the choice of observation
and prior covariance does not affect the maximum likelihood solution. The model was applied
only to the synthetic cases, as velocity fields provided for the real cases had either insufficient
spatial coverage or non-physical behaviour incompatible with the assumed model physics.

S 1.2 “Brinkerhoff-v2” – Brinkerhoff (unpublished)

The general idea behind “Brinkerhoff-v2” is to find a bedrock topography that – when forcing a
given ice flow model with a prescribed SMB field – gives rise to the observed surface geometry
Mathematically, the following inverse problem is solved: Find the bedrock topography B(x, y)
that minimizes the functional

I =

∫
Ω̄

(Ŝ − Ŝobs)
2

2
+ γ∇B · ∇B dΩ̄ + λ

∫
Γ
(Sobs −B) dΓ, (1)

where Ω̄ and Γ are the glacier extent and boundary, respectively, Ŝ and Ŝobs are the modelled
and observed surface elevations smoothed over a length scale l, γ is a smoothness parameter,
and λ is a Lagrange multiplier. The first term in I quantifies the misfit between modelled and
observed surface elevations. The second term is a Tikhonov regularization term which imposes
smoothness on the computed bed elevation. The third term – which is not applied at ice divides
with non-zero thickness – imposes the bed elevation to be equal to the surface elevation at the
observed ice boundaries.
S = B +H is the steady state solution to the continuity equation

∇ · ūH = ḃ− ∂S

∂t
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obs

, (2)

subject to the inequality constraint S ≥ B. The latter ensures that ice thickness H is positive.
We treat ∂S

∂t |obs as an observed quantity rather than as a true time derivative, leading to the

concept of “effective mass balance” ḃeff = ḃ− ∂S
∂t |obs. In the continuity equation, ū is the depth

averaged velocity, and ḃ the climatic mass balance. We compute the velocity field using the
Blatter-Pattyn approximation to the Stokes’ equations (Pattyn, 2003)
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subject to a stress free upper surface and a basal shear stress given by

τb,i = −β2ui, (5)

where β2 is a traction parameter.
Because we solve these equations over the observed glacier extent (and do not allow for boundary
migration), we must enforce the condition that velocity be tangential to the boundaries

u · n = 0, (6)

where n is the surface normal. We allow tangential velocity to be free. Such a condition
also amounts to a zero-flux boundary for the mass conservation equation, which may usually
only be specified at one point on a particle trajectory. Here we apply it over the entire domain
boundary, which imposes an additional constraint on the effective mass balance field. Integrating
the continuity equation over the entire domain and integrating by parts we find that∫

Γ
ūH · n dΓ =

∫
Ω̄
ḃeff dΩ̄. (7)

The no-penetration boundary condition makes the left side zero, implying that the effective
mass balance must also integrate to zero for the continuity equation to have a valid solution.
We enforce this constraint by applying an additive constant to the observations of effective
mass balance. In the absence of additional considerations, this also implies that the solution
is permanently sensitive to initial conditions, in that the mass of the system remains constant.
However, since thickness is constrained to be positive, this constraint effectively acts as an
internal source term. As such we initialize our solution procedure from a zero ice thickness
state, yielding as a steady-state solution the lowest-volume ice thickness distribution consistent
with continuity and the Blatter-Pattyn equations.
We discretize the continuity and Blatter-Pattyn equations using linear finite elements (Zienkiewicz
and Taylor, 2000). The continuity equation is hyperbolic, so we stabilize it using a streamline
upwind Petrov-Galerkin method (Brooks and Hughes, 1982). We simultaneously solve both
equations with the variational inequality solver SNES VI (Balay et al., 2016) that uses Newton’s
method for dealing with the non-linear viscosity and coupling terms and an active set method
for dealing with the bounds. We use pseudo-transient continuation to find the steady state
solution to the coupled system (Kelley and Keyes, 1998).
With a mean of computing S, we use a heuristic fixed point method to find the approximate
minimum of I. At each iteration we compute the steady surface elevation, and then use Gaussian
smoothing over the length scale l to find Ŝ. We set l to be approximately one ice thickness,
though this is necessarily a rough estimate since we do not know the thickness a priori. We
then use the difference between this and the observed surface elevations smoothed over the same
length scale to compute a new bedrock elevation according to:

B −B0

∆τ
= − Ŝ − Ŝobs

∆τ
+ γ∇ · ∇B, (8)

where ∆τ is a fictitious time scale of relaxation, and the solution is subject to the Dirichlet
boundary condition B = S on all boundaries where ice is known to have zero thickness. We
alternate between using this equation to update bedrock elevations and producing new steady
state surface elevations. We progressively reduce the regularization parameter γ until the average
surface elevation error falls below an arbitrary threshold, which we set to 2m for this paper.
As an optional final step, if surface velocities are available, we invert for basal traction using
what have become standard techniques in ice sheet modelling known as adjoint methods (e.g.
MacAyeal, 1993; Brinkerhoff and Johnson, 2013). We perform this procedure as an outer iter-
ation relative that described above. Experimentation has shown that only a few iterations are
usually required for the basal traction field to converge. In the absence of velocity observations,
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β2 is tuned such that approximately half of the resulting surface velocity field is due to sliding.
A uniform flow rate factor of A = 3.17× 10−24 Pa−3 s−1 was used. The model was applied to all
cases that were topologically contiguous and for which SMB was available.

S 1.3 “Farinotti” (ITEM) – Farinotti et al. (2009b)

The method of Farinotti et al. (2009b) (also referred to as “ITEM”, e.g. Farinotti et al., 2009a;
Gabbi et al., 2012), is based on mass conservation and principles of ice flow dynamics. Basically,
the approach estimates the ice volume flux across profiles located along manually prescribed
ice flow lines, and converts it into ice thickness by using Glen’s flow law (Glen, 1955). For
any point along a given flowline, the ice volume flux is approximated by integrating the ice
flux divergence (difference between SMB and ∂h/∂t, sometimes referred to as “apparent mass
balance”) upstream of that point, whereas only the area within manually prescribed “ice flow
catchments” is considered. The ice flux divergence is assumed to have a linear dependence on
elevation, and two separate gradients are prescribed for the glacier ablation and accumulation
zone. The ice thickness obtained along the individual flow lines is then interpolated across the
glacier, and the local surface slope is used to modulate the resulting local ice thickness.

With the exception of the correction factor C (cf. Equation 7 in Farinotti et al., 2009b), the
same model parameters as in Farinotti et al. (2009a) (see their Tab. 2) were used for ITMIX.
C was set to 0.65, i.e. a value about 15 % higher than in the original publications. This is
because Gabbi et al. (2012) suggested a systematic overestimation in the derived ice thickness
distributions, and because a higher value of C translates into a lower ice thickness. Although
the approach was originally designed for mountain glaciers only, it was applied to all 21 test
cases, including ice caps.

S 1.4 “Fuerst” – Fürst et al., unpublished

The approach by Fürst et al. (unpublished at the time ITMIX was conducted; now presented
in The Cryosphere Discussions (Fürst et al., 2017)) is a minimization approach based on mass
conservation. It maps glacier ice thickness H following an idea similar to the one by Morlighem
et al. (2011) (cf. Sec. S 1.13). Required input comprises distributed fields of (a) surface mass bal-
ance ḃ, (b) rate of ice thickness change ∂H/∂t, and (c) surface ice flow velocity u = (u1, u2). To
solve for mass conservation, the Elmer/Ice model (Gillet-Chaulet et al., 2012; Gagliardini et al.,
2013) is used. Discretization is performed with the stabilised streamline upwind Petrov-Galerkin
(SUPG) scheme (Brooks and Hughes, 1982). Along the domain margin, the ice thickness is set
to zero as a Dirichlet boundary condition.

Inconsistencies in the input fields transmit to the thickness solution H, which might therefore
show strong variations and negative values. To reduce such deficiencies, an optimisation is
pursued which iteratively updates the control variables ḃ and u. For this purpose, the following
cost function J is minimized:

J = λpos ·
∫

Ω
H2

∫ H
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δ(s)ds dΩ +

+ λregH ·
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Here, Ω is the ice-covered domain and λi (i= [pos, regH, ḃ, U, regU]) are weighting parameters.
Superscripts “data” denote the initially provided input fields (measurements). In this way, J
penalises negative ice thicknesses (first term in Eq. 9), strong variations in the ice thickness
(second term), the mismatch between updated and initial fields of the control variables (third
and fourth term), as well as strong spatial variations in the velocity components (last term).
The multi-variate optimisation requires derivatives of J with respect to all control variables.
These are calculated using the adjoint system. The iterative optimisation preferentially modifies
ḃ because magnitudes differ between the control variables. To align relative change values,
a scaling factor of 10−1 was introduced for the velocity derivatives. For the optimisation of
J , we apply the “M1QN3” module (Gilbert and Lemaréchal, 1989) that can solve large-scale
unconstrained minimisation problems.
For the synthetic cases in ITMIX, good performance was achieved using λpos = 1, λregH = 3·10−5,
λḃ = 8 · 10−4, λu = 8 · 10−1 and λregU = 8 · 10−2. Two real-world tests cases with sufficient
input data (Unteraar and Austfonna) were considered as well. On Unteraar Glacier, no velocity
information was available in the accumulation area, which required a reduction of λu in this area
by a factor 5 ·102. On Austfonna, the provided velocity vectors produced unrealistic streamlines
for an ice cap. Therefore, flow directions were prescribed from surface slopes. Additionally,
surface elevation changes were manually set to zero as up-slope ice flow would have resulted
otherwise.

S 1.5 “Gantayat” – Gantayat et al. (2014)

The approach by Gantayat et al. (2014) is based on the shallow ice approximation (e.g. Cuffey
and Paterson, 2010) and Glen’s flow law (Glen, 1955). It solves the equation

us = ub +
2A

n+ 1
(fρgH sinα)n (10)

for ice thickness H, where us and ub are surface and basal velocities respectively, A is the
flow rate factor, n = 3 the creep exponent, f a shape factor, ρ = 900 kg m−3 the ice density,
g = 9.81 m s−2 the gravitational acceleration, and α the surface slope. The equation is solved
within 100 m elevation bands and the result is smoothed with a kernel of 3 × 3 grid cells to
obtain the final ice thickness distribution.
For ITMIX, A = 3.2 × 10−24 Pa−3 s−1 and f = 0.8 where chosen for all test cases; us was ob-
tained from the provided surface velocity fields; and ub = 0.25us was assumed (Gantayat et al.,
2014). Because of the data requirements, only 7 test cases were considered.

S 1.6 “Gantayat-v2” – modified Gantayat et al. (2014)

“Gantayat-v2” is a modified version of the approach by Gantayat et al. (2014). Instead of
solving Equation 10 for elevation bands, the same equation is first solved along discrete points
of manually digitized branchlines (e.g. Linsbauer et al., 2012), and the resulting ice thickness is
spatially interpolated by assuming zero ice thickness at the glacier margin. For the interpolation,
the ANUDEM-algorithm (Hutchinson, 1989) is used.
For ITMIX, individual branchlines were generated requiring (a) a lateral spacing between ad-
jacent lines of about ∼200 m, (b) a minimal distance of ∼100 m from the glacier margin, and
(c) that branchlines from individual glacier tributaries gradually merge with the branchlines
of the main stream. The same 7 test cases as for “Gantayat” were considered, and the same
parameters used.

S 1.7 “GCbedstress” – Clarke et al. (2013)

The bed-stress method of Clarke et al. (2013) shares many conceptual features with Farinotti
et al. (2009b) but differs in its implementation. Glacier flowsheds are hand-delineated and
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then transversely dissected by ladder-like “rungs” that represent flux gates oriented roughly
perpendicular to the local ice flow direction. Ice discharge through these flux gates is calculated
by integrating the apparent balance (SMB−∂h/∂t) over the upstream area associated with
each gate. Discharge values associated with each rung are then applied to intervening cells by
interpolation in a process that is equivalent to inserting rungs. The average ice flux per unit
width of channel is found by dividing ice discharge by the channel width for each cell. This
width is taken to be the sum of the distance from the nearest channel boundaries to the left and
right of the downflow direction. “Raw” ice thickness estimates are obtained from the ice flux
using Glen’s law (flow rate factor A = 2.4×10−24 Pa−3 s−1), together with the estimated surface
slope for each cell and the inclined slab flow assumption. The raw estimates are then smoothed
by minimizing a cost function that negotiates a tradeoff between accepting the raw estimates or
maximizing the smoothness of the solution. Zero ice thickness is used as a boundary condition
at ice-free margins.

When SMB fields were not provided within ITMIX, these were constructed assuming a linear
variation with elevation above and below the estimated equilibrium line altitude. When ∂h/∂t
fields were lacking these were assumed to vanish, or take a constant value, or vary linearly
with elevation, depending on available information. No sliding was assumed, which leads to
systematically higher ice thickness estimates than in the case of sliding. The tradeoff between
raw estimates and smoothness was found to depend on the grid spacing in a manner unforeseen
by Clarke et al. (2013) so that the assigned parameter χ (see their Eq. 6) differs among the
considered test cases.

S 1.8 “GCneuralnet” – Clarke et al. (2009)

The artificial neural net (ANN) method of Clarke et al. (2009) is based on the assumption that
presently glacierized areas denuded of their ice cover would resemble nearby ice-free landscapes.
This assumption relies on the geomorphic premise that “landscape signatures of glaciation are the
expression of regional influences such as geology, climate, and the intensity of past glaciations”
(Clarke et al., 2009). The ice thickness is estimated considering the minimum range distance
from an on-glacier site to enclosing valley walls in eight compass directions (45◦ aperture) using
an azimuthal stencil that has two elevation layers. The maximum search range for the stencil
is limited by the map dimensions and other considerations. To train the ANN the stencil is
centred on an ice-free cell and range distances to valley walls are measured for each sector and
layer of the stencil as the thickness of ice cover is increased.

The surface DEMs provided within ITMIX are unsuitable for direct application of the method.
This is because the DEMs either lack elevation data beyond the glacier margins, or because the
tight framing may cause the stencil to probe the frame edge. The provided map domains where
therefore artificially expanded by reflecting elevation and ice mask data at the frame boundaries.
This expedient falsifies the topography and ice cover beyond the frame boundaries. It can only
be justified because it allows stencil calculations to proceed and the ANN method to be included
in ITMIX. Note, moreover, that the geomorphic premise makes the ice caps (Academy, Aust-
fonna and Devon) and crater mountain glaciers (Elbrus and Mocho) considered within ITMIX
unsuitable candidates for the ANN method. This is because little about the nature of their
subglacial topography can be inferred from the geometric character of the surrounding ice-free
terrain.

S 1.9 “Huss” (HF-model) – Huss and Farinotti (2012)

The method of Huss and Farinotti (2012) further develops the approach by Farinotti et al.
(2009b). It avoids the digitization of glacier flowlines, includes additional physics (e.g. basal
sliding, longitudinal variations in the valley shape factor, influence of ice temperature and cli-
matic regime), and is applicable at the global scale. Glacier hypsometry and surface character-
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istics (mean slope and width) are evaluated for 10 m elevation bands, and all calculations are
performed using this simplified 2D shape. Apparent mass balance gradients for the ablation and
accumulation area (see Farinotti et al., 2009b) are estimated based on the continentality of the
glacier, which is derived from local equilibrium line altitudes. Ice volume fluxes along the glacier
are converted into ice thickness using an integrated form of Glen’s flow law. The variations in
the valley shape factor and the basal shear stress in the longitudinal glacier profile are taken
into account. Simple parametrisations describe both the temperature-dependence of the flow
rate factor and the variability in basal sliding. Calculated mean elevation-band thickness is
extrapolated to each cell of a regular grid considering local surface slope, and the distance from
the glacier margin. For marine-terminating glaciers, a fixed ice volume flux is prescribed at the
glacier terminus.

For ITMIX, all model parameters were set to the values used in Huss and Farinotti (2012). For
the synthetic cases, geographical position and continentality defining the spatial variation of the
model parameters, were not provided within ITMIX. These variables were thus estimated from
the supplied surface mass balance distribution.

S 1.10 “Linsbauer” (GlabTop) – Linsbauer et al. (2009, 2012)

The Glacier bed Topography (GlabTop) method (labelled “Linsbauer” throughout the manuscript)
by Linsbauer et al. (2009, 2012) uses an empirical relation between average basal shear stress τ
and glacier elevation range (Haeberli and Hoelzle, 1995) for calculating the ice thickness at indi-
vidual points along manually digitized glacier branchlines. From τ and the zonal surface slope α
(computed within 50 m elevation bins along the branchlines) the ice thickness h is calculated as
h = τ/(fρg sinα), where f is a shape factor, ρ = 900 kg m−3 the ice density, and g = 9.81 m s−2

gravitational acceleration. The dependence on α implies thin ice where the glacier surface is
steep and thick ice where it is flat. A distributed ice thickness is obtained by interpolating the
estimated point-values within the glacier outlines.

For ITMIX, branchlines covering all glacier branches and tributaries were digitized manually. A
maximal value of τ = 150 kPa was assumed and f = 0.8 was set. The remaining parameters,
as well as the interpolation algorithms used for modelling, are the same as in Linsbauer et al.
(2012). Note that GlabTop was designed for alpine glaciers and has not been applied for ice
caps so far. Within ITMIX, however, it was applied to all 21 test cases, including ice caps.

S 1.11 “Machguth” (GlabTop2) – Frey et al. (2014)

GlabTop2, labelled with “Machguth” and fully described in Frey et al. (2014), is based on the
same concept as the “Linsbauer” model (see previous section). In particular, local ice thickness
is calculated from an estimate of the basal shear stress and the surface slope. The laborious
process of manually drawing branchlines, however, is rendered obsolete by computing the surface
slope from the average slope of all grid cells within a predefined elevation buffer. The method is
entirely grid-based and first calculates the ice thickness at a set of randomly selected grid cells.
In a second step, this thickness is interpolated to the entire glacier area. To achieve realistic
glacier cross-sections, the interpolation scheme assigns a minimum, non-zero ice thickness to all
grid cells directly adjacent to the glacier margin.

For ITMIX, the identical settings as in Frey et al. (2014) were used. A maximal ice thickness
of 1000 m, however, was introduced to avoid excessive glacier thickness in very flat areas of ice
caps. To avoid influence of small-scale surface undulations on modelled ice thickness, all pro-
vided DEMs were down-sampled to 75 m cell size for the calculations, and then re-interpolated
to the original resolution. The method is fully automated and fast, but includes a non-physical,
tunable parameter controlling the random point sampling. The model has been shown to be
well-suited for mountain glaciers (Frey et al., 2014) but was not applied to ice caps so far. All
test cases besides Austfonna were considered.
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S 1.12 “Maussion” (OGGM) – Maussion et al. (unpublished)

The Open Global Glacier Model (OGGM) by Maussion et al. (unpublished) was primarily
developed for the dynamical modelling of mountain glaciers and the estimation of their total
volume. Estimation of a distributed subglacial topography is implemented through a procedure
that extends and fully automatizes the method of Farinotti et al. (2009b). Automatisation is
achieved by generating multiple flowlines according to Kienholz et al. (2014) (Fig. S1a).

At the junction between a tributary and the main glacier stem, the tributary’s catchment area
is computed using a flow-routing approach. The geometrical width of each cross section along
the flowline can then be computed from the intersection of a normal vector with either (a)
the glacier outline or (b) the outline of the tributary’s catchment. While these geometrical
widths are visually accurate (cf. Fig. S1b), their cumulative area often does not match the
total area of the glacier. The area-altitude distribution of the so-generated “flowline glacier”
should, however, match the actual one, and the geometrical widths are thus corrected with an
altitudinal, multiplicative factor. This ensures the total area of the glacier to be reproduced
(Fig. S1b and S1c).

After these geometrical operations, the mass balance for each point on the flowline is derived
from monthly temperature and precipitation data (extracted from the CRU dataset; Harris et al.,
2014) and the temperature index model by Marzeion et al. (2012). In a nutshell, the calibration
procedure searches for a 31-years climate period in the past for which the glacier would have
been in equilibrium while keeping its modern-time geometry. This “equilibrium mass-balance” is
then assumed to be equal to the “apparent mass-balance” as defined by Farinotti et al. (2009b).
The major implication for the inversion in comparison to Farinotti et al. (2009b) is that the
OGGM mass-balance profiles are not parametrized but actually depend on the local climate.
This dependence is mostly related to the amounts of solid precipitation.

The local ice volume flux q is then calculated by integrating the resulting mass-balance field
upstream of each grid point. Mass conservation is given by

q = uS (11)

where the ice velocity u and the glacier cross-section area S are given by:

u =
2A

n+ 2
h(ρghα)n and S =

2

3
wh, (12)

where A is the flow rate factor, n Glen’s flow law exponent, ρ the ice density, g the gravitational
acceleration, α the surface slope, and w the cross-section width. Combination of the above
equations allows for the ice thickness h to be computed. Note that in this step, OGGM assumes
no sliding and a parabolic shape of the glacier bedrock. The flowline’s thickness is finally
interpolated to the actual glacier geometry. OGGM uses a 2D cubic interpolation weighted with
the inverse sinus of the local slope. When doing so, the previously computed total volume is
conserved. This procedure is rather coarse and might be further developed in the future.

Glen’s flow rate factor A is a free calibration parameter in OGGM. For ITMIX, A was calibrated
with the “observed” average glacier thicknesses reported in GlaThiDa v1 (Gärtner-Roer et al.,
2014). During calibration, GlaThiDa entries referring to any of the ITMIX test cases where
omitted, and the resulting value of A applied to all test cases. We found an optimised value for
A of 7.73 × 10−24 Pa−3 s−1, which is about three times larger that the typical value suggested
by Cuffey and Paterson (2010). This is consistent with the neglection of basal sliding, which
has to be compensated by less stiff ice. The result, however, should not be over-interpreted, as
the calibration also compensates for a series of additional uncertainties in the inversion.

For ITMIX, the ice caps were handled as the sum of individual glacier basins as provided by the
Randolph Glacier Inventory v5.0 (Arendt et al., 2015). Further information on OGGM, including
its code, are available at www.oggm.org. More information about the ITMIX-specific calibration
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Figure S1: Example of the OGGM inversion workflow applied to the Tasman Glacier, New Zealand:
(a) definition of a local map and computation of the flowlines; (b) computation of the glacier geometrical
widths; (c) inversion of the glacier thickness on the width-corrected flowlines; (d) spatial interpolation of
the ice thickness. Figure from https://github.com/OGGM/oggm, Copyright: OGGM authors.

procedure can be found at http://fabienmaussion.info/2016/06/18/itmix-experiment-phase1/.
ITMIX results were computed by using OGGM version v0.1.1 (Maussion et al., 2017).

S 1.13 “Morlighem” – Morlighem et al. (2011)

The method of Morlighem et al. (2011) was originally designed to fill gaps between ground-
penetrating radar measurements over the Greenland and Antarctic ice sheets. Based on mass
conservation, it computes the ice thickness by requiring the ice flux divergence to be balanced
by the rate of thickness change and the net surface and basal mass balances. The strength of
the method lies in the capability of including direct ice thickness measurements (e.g. Morlighem
et al., 2014), which is achieved by optimizing the ice flux divergence and depth-averaged velocities
to minimize the misfit between observed and modelled thickness.

For ITMIX, the optimization sequence was not used, as no ice thickness measurements were
provided. The algorithm thus relied solely on mass conservation. For the test cases including
surface velocities, these were assumed to be equal to the depth averaged velocities. In the other
cases, the shallow ice approximation was used together with an assumption of no-sliding to con-
vert the computed ice mass flux into ice thickness (flow rate factor A = 9.3 × 10−25 Pa−3 s−1).
The method was only applied to test cases providing SMB.

S 1.14 “RAAJgantayat” – Re-implemented from Gantayat et al. (2014)

“RAAJgantayat” is a set of solutions derived with an independent re-implementation of the
approach by Gantayat et al. (2014) (see Sec. S 1.5 for a description). This particular version was
applied to four valley glaciers (Tasman, Unteraar, Brewster, North Glacier) and one synthetic
case (Synthetic1).

For Brewster and North Glacier, the required surface flow velocity fields were obtained by inter-
polating the provided point velocities with a standard inverse-distance weighting technique. For
the other cases, the available velocity field were used directly. To avoid unrealistically large ice
thicknesses, distributed surface slope values derived from the provided DEMs were filtered so
that values below 2◦ were eliminated. For all test cases, the shape factor (flow rate factor) was
set to f = 0.75 (A = 3.2 × 10−24 Pa−3 s−1). All other parameters (including ice density, creep
exponent, gravitational acceleration) were set to the same values as in Gantayat et al. (2014).
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S 1.15 “RAAJglabtop2” – Re-implemented from Linsbauer et al. (2009)

Similarly as above, “RAAJglabtop2” is a set of solutions stemming from an independent re-
implementation of an existing model, i.e. the model GlabTop2 by Frey et al. (2014) (see
Sec. S 1.11). Results were generated for three real-world geometries (Tasman, North Glacier,
Unteraar) and one synthetic test case (Synthetic2).
For the simulations, a shape factor of f = 0.74 was used. The average basal shear stress τ ,
derived from the glacier’s elevation range, was set to 130, 150, 150, and 97 kPa for the test cases
North Glacier, Tasman, Unteraar, and Synthetic2, respectively. All other parameters were set
to the values given in Frey et al. (2014).

S 1.16 “Rabatel” – Rabatel et al. (unpublished)

The “Rabatel” method uses glacier surface flow velocities and SMB to quantify the ice flux for
individual cross sections perpendicular to the central flow line of the glacier. The ice thick-
ness is then quantified along these cross sections and a spatial distribution obtained through
interpolation between various cross sections. The approach can be divided into four main steps:
1. Definition of the cross sections: The central flow line is delineated from the uppermost
elevation of the glacier to the glacier snout, perpendicular to the contour lines. Cross sections
are defined perpendicular to the central flow line, and chosen to cover the glacier homogeneously.
In the ablation zone, the limits of the cross sections are the glacier edges. Where tributaries
are present, or in the accumulation zone, the cross sections are delimited using a threshold on
the surface flow velocity. The threshold is a parameter that is either fixed across the glacier, or
adjusted for individual cross sections. When thickness measurements are available, the threshold
can be adjusted to accommodate them.
2. Quantification of ice flux and average thickness for individual cross sections: As in Farinotti
et al. (2009b), the gridded glacier surface topography and an elevation gradient ∂b̃/∂z are used
to calculate the “apparent mass-balance” b̃i for each grid cell i. The ice flux Qj of each cross-

section j is then computed from the sum of b̃i of all n grid cells that contribute to the flux at
that location, i.e.

Qj =
∑
n

b̃i. (13)

On the other hand, Qj can be computed from the average velocity of the cross section vj , and
its surface area Sj :

Qj = vjSj . (14)

According to Cuffey and Paterson (2010), the depth-averaged ice flow velocity typically corre-
sponds to 80 % of the flow velocity at the glacier surface. Combining equations (13) and (14),
and knowing the distribution of b̃, the surface area of each cross section can be computed from
the average surface flow velocity vsurf of the cross section:

Sj =

∑
n b̃i

0.8 vsurf
. (15)

Since the length lj of the cross section is known, the average ice thickness for that cross section
can be computed as hj = Sj/lj .
3. Ice thickness distribution along the cross section: The average ice thickness is “distributed”
along the cross section by using the surface flow velocity pattern. For that, it is assumed that
the ice thickness hi for each grid cell along the cross section follows the distribution of the surface
flow velocity, i.e.

hi = vihj/vj . (16)

4. Extrapolation at the glacier scale: The final step consists in extrapolating the thickness cal-
culated for individual cross sections at the glacier scale. For ITMIX, in which the method was
applied to the test case “Synthetic1” only, this was done by using a Kriging method.
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S 1.17 “VanPeltLeclercq” – Adapted from van Pelt et al. (2013)

The “VanPeltLeclercq” approach iteratively derives a distributed glacier bed topography by
minimizing the mismatch between modelled and observed glacier surface elevations (e.g. Leclercq
et al., 2012; Michel et al., 2013; van Pelt et al., 2013). Following van Pelt et al. (2013), repeated
time-dependent model runs are performed with a model for ice dynamics. In contrast to van
Pelt et al. (2013), who used the Parallel Ice Sheet Model (PISM, Bueler and Brown, 2009) to
reconstruct basal topography in both synthetic and real cases, the dynamical model “SIADYN”
is used. SIADYN is based on the vertically integrated shallow ice approximation (e.g. Hutter,
1983), including Weertman sliding (Huybrechts, 1991), and is part of the ICEDYN package
(Sect. 3.3 in Reerink et al., 2010). Model runs are stopped at the time the provided surface
DEMs refer to. After every run, the misfit between modelled and observed surface elevation
is computed. The bed topography is then adjusted by a fraction of this misfit, thus resulting
in a new bed topography for a next model iteration. In test-cases providing velocity data, the
iterative procedure is stopped when a minimum velocity misfit is achieved. In absence of such
data, the procedure is terminated when the average surface elevation misfit drops below 5 m.
Only test cases providing SMB information were considered, as the forward model requires SMB
input. Since ITMIX does not provide SMB time series but just one SMB field, the model was
run with constant forcing until equilibrium. This may result in a mismatch between modelled
and observed glacier extent at the time the surface topography was measured. To avoid this,
SMB fields of the individual test cases were adjusted with a constant offset. This SMB offset
was optimized for each glacier individually. Higher accuracy in the derived bedrock elevations
can potentially be obtained when time-dependent SMB data are available. When velocity ob-
servations were available, these were additionally used to tune the model parameters affecting
basal sliding and deformational flow.
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S 2 Supplementary Figures and Tables
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Figure S2: Differences between estimated and measured ice thickness for all test cases. Models are shown
in alphabetical order (models not displayed in the figure are found in Fig. S2 on the next page). Boxplots
show minimum and maximum values (crosses), the 95 % confidence interval (whiskers), the interquartile
range (box) and the median (lines within box). [Continued on next page]
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Figure S2: [Continued from previous page]
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Figure S3: Differences between estimated and measured ice thickness, pooled for the individual model
categories defined in Section 4 of the main text. The total number of solutions provided by models of a
given category is given. Categories include (1) minimization approaches, (2) mass conserving approaches,
(3) shear-stress based approaches, (4) velocity-based approaches, and (5) other approaches. Boxplots
show, the 95 % confidence interval (whiskers), the interquartile range (box) and the median (lines within
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Table S1: Years the input data used during the experiment are referring to. OL: Glacier outline,
DEM: digital elevation model of the glacier surface, SMB: surface mass balance, Vel.: ice flow
velocity at the surface, ∂h/∂t: rate of ice thickness change, H: ice thickness measurements.
References for data sources are given in Table 1 of the main article.

Test case OL DEM SMB Vel. ∂h/∂t H

Academy 1997 1997 - - - 1997
Aqqutikitsoq 2014 2014 - - - 2014
Austfonna 2008 2007 2004-2013 1995-1996 2003-2009 1983
Brewster 1997 1997 2004-2008 2004-2008 - 1997
Columbia 2007 2007 - - - 2010
Devon 1999 2000 - 2007-2008 - 2000
Elbrus 1997 1997 1984-2010 - 1957-1997 2005-2007,2013,2014
Freya 2013 2013 2008-2014 - - 2013
Hellstugubreen 2003 2009 1997-2010 2011-2013 1997-2009 2011
Kesselwandferner 1997 1997 1988-1997 - - 1995
Mocho 2000 2013 2006-2014 - - 2013
North Glacier 2007 2007 - 2006-2012 - 2008,2009,2011
South Glacier 2007 2007 2007-2012 2006-2014 - 2008,2009,2011
Starbuck 2003 2003 - - - 2013
Tasman 1986 1986 2000-2010 2000-2011 - 1971-1973
Unteraar 2003 2003 1997-2003 1997 1997-2003 1997,1998,2000
Urumqi 2012 2012 2011-2014 - - 2012
Washmawapta 2007 2007 - - - 2006

Table S2: Overview of the values used for the rate factor A in Glen’s flow law (Glen, 1955).
“constant/variable” indicates whether the particular model applies a constant rate factor to all
test cases, or whether A is varied on a case-by-case basis. “tuned/prescribed” indicates whether
the rate factor is used as a tuning parameter or is prescribed a priori. Models that do not
include a rate factor are labelled with “-”.

Model A (Pa−3 s−1) constant/variable tuned/prescribed

Brinkerhoff 3.17× 10−24 constant prescribed
Brinkerhoff-v2 3.17× 10−24 constant prescribed
Farinotti 2.40× 10−24 constant prescribed
Fuerst - - -
Gantayat 3.20× 10−24 constant prescribed
Gantayat-v2 3.20× 10−24 constant prescribed
GCbedstress 2.40× 10−24 constant prescribed
GCneuralnet - - -

Huss 1.07− 2.38× 10−24 variable(1) prescribed
Linsbauer - - -
Machguth - - -

Maussion 7.73× 10−24 constant tuned(2)

Morlighem 0.93× 10−24 constant prescribed
RAAJgantayat 3.20× 10−24 constant prescribed
RAAJglabtop2 - - -
Rabatel - - -
VanPeltLeclercq 0.48− 1.32× 10−24 variable prescribed
(1) A is a function of ice temperature. For details, refer to Huss and Farinotti (2012).
(2) Tuned to measurements within GlaThiData (WGMS, 2016). See Sec. S 1.12 for details.
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Table S3: Case-by-case model performance. For each test case and every participating model,
the average (avg), median (med), interquartile range (IQR), and 95 % confidence interval (95 %)
of the deviations from ice thickness measurements are given (indicators). Values are percental
deviations from the mean ice thickness. The numbers in parenthesis are the rank of every
indicator (first three ranks are highlighted). The average rank of the four indicators is given in
the last column (AVG).

Test case / Model avg med IQR 95% AVG

Academy
1 GCbedstress 3 (2) 4 (1) ±17 (1) ±77 ( 5) 2.2
2 Farinotti −27 (3) −23 (3) ±21 (3) ±59 (2) 2.8
3 Huss 2 (1) 7 (2) ±23 ( 4) ±73 ( 4) 2.8
4 Maussion −51 ( 5) −49 ( 5) ±18 (2) ±44 (1) 3.2
5 Machguth 32 ( 4) 24 ( 4) ±27 ( 5) ±66 (3) 4.0
6 Linsbauer 77 ( 6) 63 ( 6) ±41 ( 6) ±128 ( 6) 6.0

Aqqutikitsoq
1 Linsbauer 7 ( 4) 9 (3) ±24 (3) ±81 (1) 2.8
2 Huss 2 (2) −4 (1) ±33 ( 5) ±115 ( 7) 3.8
3 Machguth −11 ( 5) −13 ( 5) ±21 (2) ±92 (3) 3.8
4 Maussion −16 ( 6) −23 ( 6) ±19 (1) ±86 (2) 3.8
5 Farinotti 1 (1) −6 (2) ±38 ( 7) ±114 ( 6) 4.0
6 GCbedstress 6 (3) 11 ( 4) ±34 ( 6) ±102 ( 4) 4.2
7 GCneuralnet −34 ( 7) −30 ( 7) ±25 ( 4) ±106 ( 5) 5.8

Austfonna
1 Gantayat-v2 9 (1) 8 (1) ±21 ( 4) ±64 ( 4) 2.5
2 Maussion −27 ( 5) −26 ( 5) ±13 (1) ±38 (1) 3.0
3 Farinotti −20 (3) −22 ( 4) ±17 (3) ±52 (3) 3.2
4 Fuerst −26 ( 4) −30 ( 6) ±16 (2) ±47 (2) 3.5
5 Huss 18 (2) 19 (2) ±28 ( 6) ±74 ( 6) 4.0
6 Gantayat 28 ( 6) 21 (3) ±22 ( 5) ±67 ( 5) 4.8
7 Linsbauer 118 ( 7) 109 ( 7) ±55 ( 7) ±166 ( 7) 7.0

Brewster
1 Brinkerhoff-v2 5 (2) 3 (1) ±19 (2) ±40 (1) 1.5
2 Farinotti 13 (3) 8 (2) ±19 (1) ±57 ( 5) 2.8
3 Machguth 20 ( 4) 17 ( 4) ±22 (3) ±47 (2) 3.2
4 VanPeltLeclercq 4 (1) 10 (3) ±29 ( 6) ±106 ( 8) 4.5
5 Linsbauer 29 ( 6) 21 ( 6) ±28 ( 4) ±62 ( 6) 5.5
6 Maussion −40 ( 7) −35 ( 8) ±28 ( 5) ±48 (3) 5.8
7 GCbedstress 27 ( 5) 18 ( 5) ±32 ( 8) ±96 ( 7) 6.2
8 Huss −46 ( 9) −46 ( 9) ±30 ( 7) ±53 ( 4) 7.2
9 RAAJgantayat 41 ( 8) 28 ( 7) ±40 ( 9) ±121 ( 9) 8.2

Columbia
1 Farinotti −14 (1) −26 (3) ±44 (2) ±147 (3) 2.2
2 Huss 38 (3) 23 (2) ±55 (3) ±129 (2) 2.5
3 Linsbauer 58 ( 4) 63 ( 4) ±42 (1) ±106 (1) 2.5
4 Maussion −18 (2) 6 (1) ±88 ( 5) ±238 ( 5) 3.2
5 Machguth 87 ( 5) 83 ( 5) ±62 ( 4) ±184 ( 4) 4.5

Devon
1 Farinotti −15 (2) −16 (3) ±31 (2) ±106 ( 4) 2.8
2 Gantayat 3 (1) −1 (1) ±40 ( 6) ±97 (3) 2.8
3 Huss 17 (3) 10 (2) ±32 (3) ±108 ( 5) 3.2
4 Gantayat-v2 −20 ( 4) −23 ( 4) ±35 ( 4) ±94 (2) 3.5
5 Maussion −49 ( 6) −46 ( 6) ±22 (1) ±90 (1) 3.5
6 Machguth 47 ( 5) 43 ( 5) ±37 ( 5) ±166 ( 6) 5.2
7 Linsbauer 78 ( 7) 72 ( 7) ±43 ( 7) ±177 ( 7) 7.0

Continued on next page.
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Table S3: Continued from previous page.

Test case / Model avg med IQR 95% AVG

Elbrus
1 Maussion 15 (1) 13 (1) ±30 (1) ±112 (1) 1.0
2 Machguth 49 (3) 34 (3) ±34 (2) ±167 ( 4) 3.0
3 Linsbauer 54 ( 4) 40 ( 4) ±37 (3) ±166 (3) 3.5
4 VanPeltLeclercq 23 (2) 28 (2) ±43 ( 5) ±194 ( 6) 3.8
5 Huss 66 ( 5) 58 ( 5) ±42 ( 4) ±142 (2) 4.0
6 Farinotti 79 ( 6) 76 ( 6) ±54 ( 6) ±171 ( 5) 5.8

Freya
1 GCbedstress 6 (1) 3 (1) ±16 ( 4) ±50 ( 4) 2.5
2 Huss 10 (3) 7 (2) ±14 (3) ±48 (3) 2.8
3 Machguth −13 ( 5) −12 (3) ±14 (2) ±45 (1) 2.8
4 Maussion −20 ( 6) −21 ( 6) ±14 (1) ±46 (2) 3.8
5 Linsbauer 12 ( 4) 12 ( 4) ±17 ( 5) ±54 ( 5) 4.5
6 Morlighem −10 (2) −14 ( 5) ±31 ( 7) ±89 ( 8) 5.5
7 Farinotti 22 ( 7) 22 ( 7) ±32 ( 8) ±78 ( 6) 7.0
8 Brinkerhoff-v2 37 ( 8) 42 ( 9) ±28 ( 6) ±85 ( 7) 7.5
9 VanPeltLeclercq 57 ( 9) 39 ( 8) ±40 ( 9) ±168 ( 9) 8.8

Hellstugubreen
1 Morlighem 2 (2) 2 (1) ±19 (2) ±67 (1) 1.5
2 GCbedstress −2 (1) 3 (2) ±25 ( 4) ±112 ( 8) 3.8
3 Huss −27 ( 6) −24 ( 7) ±19 (1) ±76 (2) 4.0
4 Maussion −29 ( 7) −23 ( 6) ±23 (3) ±84 (3) 4.8
5 Farinotti 19 ( 5) 17 ( 4) ±31 ( 8) ±97 ( 4) 5.2
6 Brinkerhoff-v2 −3 (3) 10 (3) ±30 ( 7) ±123 ( 9) 5.5
7 VanPeltLeclercq 14 ( 4) 18 ( 5) ±32 ( 9) ±101 ( 5) 5.8
8 Linsbauer −33 ( 8) −28 ( 8) ±28 ( 6) ±105 ( 6) 7.0
9 Machguth −54 ( 9) −46 ( 9) ±26 ( 5) ±111 ( 7) 7.5

Kesselwandferner
1 Linsbauer −14 (2) −11 (2) ±20 (1) ±60 (2) 1.8
2 Machguth −17 ( 4) −17 (3) ±22 (2) ±52 (1) 2.5
3 Brinkerhoff-v2 −4 (1) −8 (1) ±27 ( 7) ±122 ( 8) 4.2
4 Morlighem −20 ( 6) −22 ( 4) ±24 ( 4) ±69 ( 5) 4.8
5 Maussion −28 ( 7) −27 ( 7) ±25 ( 6) ±69 ( 4) 6.0
6 Huss −30 ( 8) −24 ( 6) ±28 ( 8) ±68 (3) 6.2
7 Farinotti −20 ( 5) −24 ( 5) ±40 ( 9) ±129 ( 9) 7.0
8 VanPeltLeclercq −41 ( 9) −39 ( 9) ±24 ( 5) ±77 ( 6) 7.2
9 GCbedstress 52 (10) 42 (10) ±24 (3) ±111 ( 7) 7.5

10 GCneuralnet −15 (3) −28 ( 8) ±50 (10) ±135 (10) 7.8

Mocho
1 GCbedstress 1 (1) 9 (3) ±44 ( 6) ±112 (3) 3.2
2 Machguth −27 ( 6) −12 ( 4) ±40 ( 4) ±109 (1) 3.8
3 Farinotti −17 (2) −3 (1) ±50 ( 8) ±121 ( 5) 4.0
4 Huss −28 ( 7) −12 ( 6) ±36 (2) ±109 (2) 4.2
5 Maussion −23 ( 4) −12 ( 5) ±39 (3) ±125 ( 6) 4.5
6 VanPeltLeclercq −21 (3) −9 (2) ±45 ( 7) ±157 ( 7) 4.8
7 Linsbauer −33 ( 8) −17 ( 7) ±34 (1) ±115 ( 4) 5.0
8 GCneuralnet −23 ( 5) −28 ( 8) ±42 ( 5) ±216 ( 8) 6.5

Continued on next page.
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Table S3: Continued from previous page.

Test case / Model avg med IQR 95% AVG

NorthGlacier
1 Huss 14 (2) 16 (2) ±26 (2) ±83 (3) 2.2
2 Maussion −6 (1) −3 (1) ±38 ( 5) ±78 (2) 2.2
3 Linsbauer 68 ( 8) 69 ( 7) ±18 (1) ±53 (1) 4.2
4 GCbedstress 37 ( 6) 34 ( 5) ±32 (3) ±92 ( 4) 4.5
5 RAAJgantayat 24 (3) 17 (3) ±38 ( 4) ±131 ( 9) 4.8
6 RAAJglabtop2 34 ( 5) 32 ( 4) ±49 ( 9) ±108 ( 7) 6.2
7 Farinotti 27 ( 4) 35 ( 6) ±49 ( 8) ±122 ( 8) 6.5
8 GCneuralnet −60 ( 7) −71 ( 8) ±47 ( 7) ±102 ( 6) 7.0
9 Machguth −122 ( 9) −124 ( 9) ±39 ( 6) ±92 ( 5) 7.2

SouthGlacier
1 Maussion −6 (3) −3 (2) ±32 (1) ±87 (2) 2.0
2 Huss 4 (1) 9 (3) ±35 ( 5) ±76 (1) 2.5
3 Machguth 5 (2) 14 ( 4) ±35 ( 4) ±89 ( 4) 3.5
4 Linsbauer 14 ( 5) 23 ( 6) ±33 (2) ±87 (3) 4.0
5 GCneuralnet −10 ( 4) −1 (1) ±52 ( 8) ±116 ( 7) 5.0
6 Brinkerhoff-v2 24 ( 6) 22 ( 5) ±45 ( 7) ±134 ( 8) 6.5
7 Morlighem 29 ( 7) 39 ( 8) ±44 ( 6) ±97 ( 5) 6.5
8 GCbedstress 45 ( 9) 48 ( 9) ±35 (3) ±97 ( 6) 6.8
9 Farinotti 35 ( 8) 37 ( 7) ±57 ( 9) ±140 ( 9) 8.2

Starbuck
1 Huss −14 (2) −19 (3) ±27 (1) ±94 (2) 2.0
2 Linsbauer −7 (1) −15 (2) ±39 (3) ±114 (3) 2.2
3 Farinotti −34 ( 4) −39 ( 4) ±28 (2) ±83 (1) 2.8
4 Machguth 15 (3) 15 (1) ±59 ( 4) ±166 ( 4) 3.0

Tasman
1 Maussion −19 (2) −9 (2) ±35 (2) ±136 ( 6) 3.0
2 Gantayat-v2 −45 ( 4) −51 ( 6) ±32 (1) ±120 (3) 3.5
3 RAAJgantayat −10 (1) 7 (1) ±63 ( 8) ±225 ( 9) 4.8
4 Machguth −94 ( 9) −92 ( 8) ±45 ( 4) ±117 (2) 5.8
5 Linsbauer −84 ( 7) −91 ( 7) ±46 ( 5) ±132 ( 5) 6.0
6 RAAJglabtop2 −91 ( 8) −100 ( 9) ±39 (3) ±120 ( 4) 6.0
7 Farinotti −19 (3) −51 ( 5) ±57 ( 7) ±225 (10) 6.2
8 Gantayat 52 ( 5) 39 ( 4) ±74 ( 9) ±169 ( 7) 6.2
9 GCneuralnet −106 (10) −116 (10) ±54 ( 6) ±111 (1) 6.8

10 Huss −73 ( 6) −24 (3) ±125 (11) ±271 (11) 7.8
11 Morlighem −237 (11) −214 (11) ±102 (10) ±196 ( 8) 10.0

Unteraar
1 Brinkerhoff-v2 −39 (2) −33 (2) ±33 (1) ±118 (3) 2.0
2 Farinotti −43 ( 4) −40 (3) ±41 (3) ±119 ( 4) 3.5
3 Maussion −58 ( 6) −53 ( 5) ±35 (2) ±101 (1) 3.5
4 Huss −52 ( 5) −56 ( 6) ±42 ( 4) ±115 (2) 4.2
5 VanPeltLeclercq −24 (1) −26 (1) ±59 ( 9) ±184 (14) 6.2
6 RAAJglabtop2 −69 ( 8) −64 ( 7) ±52 ( 8) ±142 ( 8) 7.8
7 Linsbauer −70 ( 9) −68 ( 9) ±52 ( 7) ±135 ( 7) 8.0
8 Gantayat −43 (3) −48 ( 4) ±70 (13) ±184 (13) 8.2
9 Gantayat-v2 −78 (10) −77 (10) ±43 ( 5) ±145 (10) 8.8

10 Machguth −88 (11) −90 (12) ±51 ( 6) ±131 ( 6) 8.8
11 RAAJgantayat −67 ( 7) −65 ( 8) ±64 (10) ±171 (12) 9.2
12 GCbedstress −94 (12) −89 (11) ±72 (14) ±144 ( 9) 11.5
13 Morlighem −146 (15) −164 (15) ±66 (12) ±129 ( 5) 11.8
14 GCneuralnet −137 (14) −125 (13) ±65 (11) ±171 (11) 12.2
15 Fuerst −113 (13) −135 (14) ±86 (15) ±228 (15) 14.2

Continued on next page.
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Table S3: Continued from previous page.

Test case / Model avg med IQR 95% AVG

Urumqi
1 Brinkerhoff-v2 29 (3) 30 ( 4) ±28 (2) ±55 (1) 2.5
2 Morlighem −31 ( 4) −29 (3) ±27 (1) ±102 (2) 2.5
3 Farinotti 7 (2) 7 (2) ±34 (3) ±139 ( 8) 3.8
4 GCbedstress −1 (1) −5 (1) ±60 ( 8) ±134 ( 6) 4.0
5 Huss −54 ( 5) −50 ( 5) ±45 ( 5) ±113 ( 4) 4.8
6 Maussion −97 ( 8) −97 ( 7) ±43 ( 4) ±104 (3) 5.5
7 Linsbauer −78 ( 6) −89 ( 6) ±57 ( 6) ±136 ( 7) 6.2
8 Machguth −92 ( 7) −98 ( 8) ±60 ( 7) ±129 ( 5) 6.8

Washmawapta
1 Farinotti −44 (1) −44 (1) ±33 (1) ±97 (1) 1.0
2 GCbedstress −121 (2) −117 (2) ±69 ( 4) ±141 (3) 2.8
3 Maussion −128 ( 4) −128 (3) ±48 (2) ±106 (2) 2.8
4 Huss −122 (3) −136 ( 4) ±67 (3) ±155 ( 5) 3.8
5 Linsbauer −165 ( 5) −159 ( 5) ±70 ( 5) ±154 ( 4) 4.8
6 Machguth −172 ( 6) −167 ( 6) ±74 ( 6) ±177 ( 6) 6.0

Synthetic1
1 Brinkerhoff-v2 −20 (2) −19 (2) ±15 (2) ±41 (3) 2.2
2 Fuerst −27 (3) −27 ( 4) ±10 (1) ±25 (1) 2.2
3 VanPeltLeclercq 19 (1) 17 (1) ±19 ( 5) ±62 ( 6) 3.2
4 RAAJgantayat −28 ( 4) −27 (3) ±22 ( 6) ±50 ( 5) 4.5
5 Brinkerhoff −38 ( 7) −34 ( 6) ±18 ( 4) ±46 ( 4) 5.2
6 Morlighem −39 ( 9) −37 ( 7) ±17 (3) ±39 (2) 5.2
7 Gantayat −39 (10) −46 (10) ±31 ( 9) ±68 ( 7) 9.0
8 Huss −38 ( 8) −40 ( 8) ±31 (10) ±80 (12) 9.5
9 Farinotti −41 (11) −48 (11) ±23 ( 7) ±80 (11) 10.0

10 Gantayat-v2 −45 (12) −53 (13) ±23 ( 8) ±74 ( 8) 10.2
11 Rabatel 29 ( 5) 34 ( 5) ±46 (16) ±123 (15) 10.2
12 GCbedstress −34 ( 6) −41 ( 9) ±37 (13) ±85 (14) 10.5
13 Linsbauer −54 (14) −51 (12) ±33 (11) ±78 (10) 11.8
14 Maussion −69 (16) −68 (16) ±36 (12) ±74 ( 9) 13.2
15 Machguth −57 (15) −56 (14) ±37 (14) ±82 (13) 14.0
16 GCneuralnet −50 (13) −61 (15) ±46 (15) ±163 (16) 14.8

Synthetic2
1 GCbedstress −9 ( 4) −10 ( 5) ±10 ( 5) ±30 (2) 4.0
2 RAAJglabtop2 −2 (1) −9 (3) ±13 ( 9) ±53 ( 8) 5.2
3 VanPeltLeclercq 11 ( 6) 9 ( 4) ±12 ( 8) ±35 ( 4) 5.5
4 Linsbauer −18 ( 8) −20 ( 9) ±10 ( 4) ±33 (3) 6.0
5 Brinkerhoff-v2 −22 (11) −17 ( 7) ±9 (3) ±37 ( 5) 6.5
6 Farinotti −5 (2) 7 (2) ±18 (12) ±74 (11) 6.8
7 Brinkerhoff −30 (14) −30 (13) ±6 (1) ±27 (1) 7.2
8 Machguth −13 ( 7) −19 ( 8) ±11 ( 7) ±55 ( 9) 7.8
9 Fuerst −28 (13) −25 (12) ±6 (2) ±40 ( 6) 8.2

10 Huss 11 ( 5) 3 (1) ±33 (15) ±93 (14) 8.8
11 Maussion −21 (10) −16 ( 6) ±31 (13) ±75 (12) 10.2
12 Gantayat −19 ( 9) −21 (10) ±16 (11) ±90 (13) 10.8
13 Gantayat-v2 −26 (12) −22 (11) ±14 (10) ±66 (10) 10.8
14 Morlighem −32 (15) −32 (15) ±11 ( 6) ±52 ( 7) 10.8
15 GCneuralnet −7 (3) −30 (14) ±31 (14) ±161 (15) 11.5

Continued on next page.

19



Table S3: Continued from previous page.

Test case / Model avg med IQR 95% AVG

Synthetic3
1 GCbedstress −3 (2) −2 (2) ±10 ( 7) ±34 ( 6) 4.2
2 Fuerst −17 ( 7) −15 ( 8) ±5 (1) ±28 (3) 4.8
3 Brinkerhoff −18 ( 8) −17 ( 9) ±6 (2) ±18 (1) 5.0
4 VanPeltLeclercq 14 ( 6) 14 ( 7) ±6 (3) ±28 ( 4) 5.0
5 Gantayat −9 ( 5) −5 (3) ±9 ( 6) ±42 ( 7) 5.2
6 Huss −1 (1) 0 (1) ±18 (11) ±75 (12) 6.2
7 Farinotti 7 (3) 8 ( 5) ±14 ( 8) ±64 (10) 6.5
8 Morlighem −24 (12) −22 (12) ±6 ( 4) ±25 (2) 7.5
9 Brinkerhoff-v2 −23 (10) −20 (11) ±7 ( 5) ±31 ( 5) 7.8

10 Machguth −8 ( 4) −18 (10) ±15 ( 9) ±54 ( 9) 8.0
11 Gantayat-v2 −18 ( 9) −10 ( 6) ±16 (10) ±46 ( 8) 8.2
12 Linsbauer 23 (11) 7 ( 4) ±31 (12) ±73 (11) 9.5
13 GCneuralnet 58 (13) 69 (13) ±46 (13) ±105 (13) 13.0
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