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This supplement to the article Linking sea ice deformation to ice thickness redistribution using high-resolution satellite
and airborne observations covers a description of the following aspects:

1. Calculation of deformation from sea ice drift (Sect. 1).

2. Estimate of the accumulated trajectory position error from a manual reference data set (Sect. 2).

3. Ice thickness profiles with level ice characterization for the Eastern and Central profile lines (Sect. 3).5

1 Derivation of sea ice deformation from sea ice drift

This section provides further details about the calculation of deformation, described in the main article in Section 2.4. Defor-
mation is quantified by strain rates that describe how an object distorts relative to a reference length-scale. The invariants of the
2D strain rate tensor are a normal component comprising tensile and compressive strain and termed divergence rate (ε̇div) and
a shear rate (ε̇shear). Divergence and shear rate can be combined to yield the total deformation rate (|ε̇|). They are calculated10
from the spatial derivatives of the u, v components of the velocity grid (∂u∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y ):
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To calculate the spatial derivatives of the ice drift velocity fields, we used a linear approximation based on Green’s Theorem
that relates the double integral over a plane to the line integral along a simple curve surrounding the plane. We discretized the
curve applying the trapezoid method that linearly interpolates velocity between the vertices (i) of the grid cells (e.g. Kwok15
et al., 2008; Dierking et al., 2020). The spatial derivatives are thus given by:
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where A is the area surrounded by the line integral. We calculated the spatial derivatives from the spatially filtered velocity
fields with a spatial resolution of 700x700 m. We considered for every derivative a set of four grid cells. Hence, we used eight
vertices (N = 8) to describe the line integral around the plane. For a gridded field, we can simplify this approach. For example,20
the 8pt ring-integral for a subset of the u-component in x-direction is:

∂u

∂x
=

1

2A
[(u2 +u1)(y2− y1) + (u3 +u2)(y3− y2) + (u4 +u3)(y4− y3)+

(u5 +u4)(y5− y4) + (u6 +u5)(y6− y5) + (u7 +u6)(y7− y6) + (u8 +u7)(y8− y7) + (u8 +u1)(y8− y1)]
(3)

Thanks to the regular grid, we can simplify:

0 = (y4− y3) = (y5− y4) = (y8− y7) = (y1− y8)

∆y =−(y2− y1) =−(y3− y2) = (y6− y5) = (y7− y6)

∆x= ∆y

A= (2∆y)× (2∆x) = 4∆y∆y

(4)
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with ∆y =700 m.25
Then, the derivate is:
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This is equivalent to calculating the convolution of the u-component with a 3x3 Sobel kernel and normalizing it by a factor of
8 ∆y. For example, ∂u

∂x is calculated:
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We located the result to the center of the four grid cells. Moving with a step width of one grid cell, the grid spacing of the
deformation fields remained 700 m.

2 Estimate of the accumulated trajectory position error from a manual reference data set

This section provides further details about the uncertainty estimates of the Lagrangian tracking described in Section 2.5.1. We
quantified the accumulated trajectory position error from manual tracking of multi-year ice floes located in the refrozen35
polynya (see Fig. 1a). Fig. S1 shows how the accumulated trajectory position error increased from maximum 210 m (after
the second time step) to 2150 m (last time step). On average, the error increased from 51 m to 1050 m (red dots, Fig. S1). We
estimated the uncertainty for each time step as a linear function that passed through the smallest grid size, i.e., 700 m and
2150 m at time step 0 and 29, respectively (dashed line in Fig. S1).
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Figure S1. Difference between manual reference track and calculated trajectory for each time step. The mean of the differences after
the second and the last time step are shown in red. The dashed black line gives the estimated uncertainty for each time step.
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Figure S2. Ice thickness profile of the a. Central and b. Eastern profile. The black and gray colors distinguish between level and deformed
ice, respectively. Note the different degrees of deformation, depicted by the areal fraction of level ice and the total thickness of the ridges.

3 Ice thickness profiles with level ice characterization for Eastern and Central profile line40

This section provides further details about the ice thickness profiles and the level ice classification. For details on the method,
the geographic location, and the classification of the Northern profile line, please see Section 2.1, Figure 1, and Figure 6 in
the main article, respectively. We classified level ice and deformed ice following the level ice classification of Rabenstein et al.
(2010). For details on the calculation, please see Section 2.1 of the main article. The Northern profile is displayed in Fig. 6.
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