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Abstract. The potential of high-resolution repeat DEMs
was investigated for glaciological applications including
periglacial features (e.g. rock glaciers). It was shown that
glacier boundaries can be delineated using airborne LIDAR-
DEMs as a primary data source and that information on de-
bris cover extent could be extracted using multi-temporal
DEMs. Problems and limitations are discussed, and accu-
racies quantified. Absolute deviations of airborne laser scan-
ning (ALS) derived glacier boundaries from ground-truthed
ones were below 4 m for 80% of the ground-truthed values.
Overall, we estimated an accuracy of +/−1.5% of the glacier
area for glaciers larger than 1 km2. The errors in the case of
smaller glaciers did not exceed +/−5% of the glacier area.
The use of repeat DEMs in order to obtain information on
the extent, characteristics and activity of rock glaciers was
investigated and discussed based on examples.

1 Introduction

Glacial and periglacial environments have been changing
rapidly in the past decades (e.g., Dyurgerov and Meier, 2000;
Haeberli, 1999) as a result of climate change (e.g., Lemke et
al., 2007; Trenberth et al., 2007). Determination of their ac-
tual geometry is crucial to the monitoring process and for
understanding the short-term responses of their extent.

The mapping of glacier extent and volume changes us-
ing remote sensing techniques is a widely used and pow-
erful tool. Various studies show both the potential and the
limitations of using satellite data (e.g., Andreassen et al.,
2008; DeBeer and Sharp, 2007; Paul et al., 2007; Kääb et
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al., 2002), airborne techniques such as photogrammetry (e.g.,
Würländer et al., 2004; Patzelt, 1980) or LIDAR (light de-
tection and ranging, e.g., Geist and Stötter, 2007; Geist et
al., 2003; Favey et al., 2002; Baltsavias et al., 2001a). Auto-
matic or semi-automatic classification algorithms (Hendriks
and Pellikka, 2007; Ḧofle et al., 2007; Kodde et al., 2007;
Paul et al., 2002; Rott and Markl, 1999) are used to classify
glacier areas.

However, the mapping of debris-covered glacier areas
proves to be problematic in the case of both automatic and
manual methods (e.g., Knoll and Kerschner, 2009; Paul et
al., 2002; Hendriks and Pellikka, 2007). Fig. 1 illustrates the
problem of glacier boundary delineation of complex glacier
boundaries, addressed further on. Neither the highly resolved
orthophotograph (Fig. 1b: 0.5 m spatial resolution) nor the
RGB-composite of a Landsat scene of the Hintereisferner
glacier margin (Fig. 1b: bands 4, 5 and 6 as proposed by Rott
and Markl, 1999) allow for definite detection of the glacier
boundary, including the debris-covered part of the glacier
tongue as demonstrated later. Furthermore, the automatic
mapping of small glaciers is difficult in particular from space
(e.g., Paul et al., 2002). Lambrecht and Kuhn (2007) showed
that 79% of all Austrian glaciers are smaller than 0.5 km2,
and 43% are smaller than 0.1 km2.

The main aim of this study is thus to investigate the po-
tential of a set of high-resolution DEMs to map glacier ex-
tents with sufficient accuracy, independent of their size and
debris cover. Accuracies are quantified and limitations dis-
cussed. Further, we highlight the potential of repeat DEMs
for interpretation of small-scale rock glacier surface eleva-
tion changes.
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Fig. 1. (a)The orthophotograph (0.5 m spatial resolution) taken 2003, and(b) the Landsat 7 ETM+ scene (taken 10 September 2004) of the
area around Hintereisferner, with the channels 4, 5, 6 H as an RGB-composite. The red rectangle indicates the extent of the close-up in the
upper left corner.

Fig. 2. Aerial photographs of(a) Mittlerer Guslarferner (9 September 2008),(b) Hintereisferner (9 September 2008),(c) Rotmoos- and
Wasserfallferner (28 August 2009) and(e) Vernagtferner (28 August 2009).(d) is an oblique perspective of a SPOT-image of Reichenkar
rock glacier presented in Google Earth (Google Earth, 2009).

2 Test sites and data

Four glaciers and one rock glacier in theÖtztal Alps and the
neighboring part of the Stubai Alps (ca. 47◦ N, 11◦ E) were
chosen as test sites. Aerial photographs in Fig. 2 provide
a view of the individual study sites. Local climatic con-

ditions during the past four decades are described in Aber-
mann et al. (2009). To test the glacier boundary delineation
for a small, debris-free glacier, we chose Mittlerer Guslar-
ferner (Fig. 2a). Nearby Hintereisferner (Fig. 2b) has been
the object of extensive glaciological investigations over the
past decades. This has resulted in a large number of DEMs,
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Fig. 3. The study area: Glaciers in thëOtztal and Stubai Alps
(grey) with three reference glaciers (HE: Hintereisferner, MG: Mit-
tlerer Guslarferner, RW: Rotmoos- und Wasserfallferner) and one
rock glacier (red, RR: Reichenkar rock glacier). Ground truth has
been performed for the blue glaciers (GG: Großer Guslarferner, HJ:
Hochjochferner and VF: Vernagtferner) as well as Hintereisferner.

remote sensing data and ground truth. For this reason, Hin-
tereisferner was chosen for the investigation of the perfor-
mance of the data set on a debris-covered margin. Problems
with glacier boundary delineations in firn areas are high-
lighted, using Rotmoosferner as an example (Fig. 2c); and
ground truthing is demonstrated at Vernagtferner (Fig. 2e)
and was performed on three more glaciers. The thoroughly
investigated ice-cored Reichenkar rock glacier (Krainer et
al., 2002; Krainer and Mostler, 2000, Fig. 2d) is used as an
example to show potential applications for delineating rock
glacier extents. Figure 3 shows a map of the whole study
area with glaciers in thëOtztal and Stubai Alps (grey) and
the example glaciers (red).

For the purpose of ground control, geodetically measured
points are included. These were acquired with a theodolite
and an electro-optical rangefinder (Kern, DM501) achieving
an xyz-accuracy of less than 5 cm standard error (H. Schnei-
der, personal communication, 2009). The results of the
length change measurements are published annually by the
Austrian Alpine Club (issues up to and including 2003/2004
named “Mitteilungen des̈Osterreichischen Alpenvereins”,
after 2004/2005 named “Bergauf”; Patzelt, 2005; Patzelt,
2006). Within the study area these comparably accurate
length change measurements were performed at the mar-
gins of Hintereisferner, Vernagtferner, Großer Guslarferner
and Hochjochferner, totalling 118 measured points compared

Table 1. Summary of technical specifications of the LIDAR acqui-
sition campaign of the regional government of Tyrol, 2006.

Sensor Optech ALTM3100

Laser Wavelength 1064 nm
Scan Frequency 33 Hz
Scan angle +/−20◦

Point density Minimum: 1 point/4 m2

Measurement frequency 71 kHz
Average flight height 1100 m a.g.l.
Mode Last Pulse
Interpolation software SCOP++
Interpolation method Moving Planes
Horizontal accuracy +/−0.3 m
Vertical accuracy +/−0.1 m
Spatial resolution 1 m

using an independent method. These glaciers are colored
blue in Fig. 3. We show the example of Vernagtferner in
Sect. 4.5. Coincidentally these ground-based measurements,
which were taken on 22 and 23 August 2006, deviate from
the LIDAR acquisition date (23 August 2006) by one day at
most.

DEMs with 10 m spatial resolution acquired in 1997, and
high-resolution LIDAR-DEMs from 2006, were available for
all test sites. The DEMs from 1997 were acquired during the
compilation of the second Austrian glacier inventory using
digital photogrammetry (Kuhn et al., 2009; Lambrecht and
Kuhn, 2007; Ẅurländer and Eder, 1998). The 2006 LIDAR-
DEMs were acquired by the regional government of Tyrol.
The technical specifications of this LIDAR acquisition cam-
paign are summarized in Table 1.

Another set of LIDAR-DEMs covers a study area around
Hintereisferner for which 14 DEMs were produced between
2001 and 2007. Relative horizontal accuracies are better than
1 m and relative vertical accuracies better than 0.3 m accord-
ing to Geist and Stötter (2007), where more technical speci-
fications of this acquisition campaign are described. For the
application of our method three survey flights were chosen
since they were acquired at a similar time of year (October
2001, 2004 and 2005) close to the minimum snow extent.

The example of Hintereisferner has been used to demon-
strate the applicability and potential of the repeat high-
resolution DEMs as shown in Fig. 1. The orthophotograph
(Fig. 1a) was acquired in the OMEGA project (e.g. Pel-
likka and Rees, 2009; Kuhn, 2007). The Landsat scene
was acquired on 10 September 2004 (path 193, row 27, id
LE71930272004254ASN01). Table 2 shows details on the
acquisition dates of all data used, its accuracies as well as
image and spatial resolution.
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Table 2. Summary of the acquisition dates as well as resolutions and accuracies of the data used in this study.

Source data Date Band Image DEM Horizontal Vertical
resolution [m] resolution [m] accuracy [m] accuracy [m]

Aerial photography 11 September 1997 1 10 1 0.7
LIDAR 11 October 2001 − 1 < 1 < 0.3
LIDAR 5 October 2004 − 1 < 1 < 0.3
LIDAR 12 October 2005 − 1 < 1 < 0.3
LIDAR 23 August 2006 − 1 0.3 0.1
Landsat 10 September 2004 4,5,6 H 30 − ca. 30 −

Aerial photography 12 August 2003 0.5 − 1 −

Fig. 4. Workflow of the glacier mapping procedure with multi-
temporal (high-resolution) DEMs.

3 Methodology

Glacier boundary delineation was performed following the
schematic workflow as sketched in Fig. 4, where t1 is the
point in time of the first and t2 of the second DEM. To dis-
tinguish between glaciers and their surroundings, surface el-
evation changes between the two points in time were calcu-
lated. Investigating the course of surface elevation changes
provided information on the actual glacier boundary as well
as on debris-cover or dead-ice extent: a gradual increase of
surface elevation loss from the glacier margin at t1 upwards
indicated a debris-free glacier tongue with a maximal change
at the position of the glacier margin of t2.

A glacier with debris cover evolves differently from bare
ice due to the fact that thick debris cover reduces ablation
(Kirkbride and Warren, 1999). For this reason, elevation dif-
ferences between t1 and t2 are significantly smaller at the
debris-covered parts and show instant increase at the place

where debris cover meets bare ice. We used these differences
to gain information about the occurrence and, depending on
the time interval between the acquired DEMs, the extent of
debris cover. Examples of these cases will follow in Sect. 4.

Two relief-shaded representations of the high-resolution
DEM (in the following: shaded reliefs) at t2 with different
azimuth angles for illumination (315◦ and 135◦) were calcu-
lated to present optimal visualization of contrasts in different
aspects. Taking advantage of the already existing glacier in-
ventory from a previous date (Lambrecht and Kuhn, 2007),
we then undertook a qualitative analysis of the ways in which
ice thickness has evolved from the former glacier terminus
position upwards. Indicating the existence of former glacier
boundaries is not mandatory but it saves time, as these show
where to expect glacier-covered areas. Nevertheless, even if
a former data set of glacier boundaries is found to exist, it is
advisable to test this using a difference raster, in order to pre-
vent a glacier not captured in a previous study from escaping
capture in a new one.

If a gradual increase in ice thickness loss from the for-
mer glacier margin upwards was detected, we set the glacier
boundary directly by manually digitizing the strongest
roughness change in the shaded reliefs via visual inspection.
Upon detection of an abrupt increase in ice thickness loss,
shaded reliefs were used to establish the boundary between
bare ice and dead ice or debris-covered ice. The difference
raster helped to determine the extent of the debris-covered ar-
eas in cases where the temporal resolution was high enough
(e.g. 1 year). In cases where temporal resolution was lower
(e.g., years to decades), the potential glacier boundary could
be derived in areas where a significant thickness change had
occurred.

Surface elevation changes are much smaller in accumula-
tion zones of glaciers (Abermann et al., 2009). We therefore
could only partly take advantage of the difference raster for
boundary delineation and thus used the roughness changes in
the shaded reliefs. If they were not distinct enough, we used
orthophotographs to map the glacier extent in these areas.
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Fig. 5. Shaded reliefs of Mittlerer Guslarferner’s margin calculated out of the LIDAR-DEMs with(a) the original 1 m and the resampled(b)
5 m, (c) 20 m and(d) 50 m resolutions. The glacier margin of 1997 is dashed in all figures; the glacier margin of 2006 is not displayed in
order to show the distinct roughness differences between rock and ice objectively.

Fig. 6. Ice thickness changes between 2004 and 2005 using(a) 5 m spatial resolution,(b) 20 m resolution and(c) 50 m resolution for the
tongue of Hintereisferner.

The influence of the spatial resolution of the DEM on
the quality of the glacier boundary delineation with high-
resolution DEMs as a main data source is highlighted in
Figs. 5 and 6. We calculated four shaded reliefs out of differ-
ently resampled DEMs (Fig. 5a–d) for a part of the margin
of Mittlerer Guslarferner. A qualitative analysis of surface
roughness differences is applicable for DEMs that exist at a
resolution better than 5 m. One-meter DEMs are optimal and
allow the use of orthophotographs or any other additional
information for glaciers without debris cover to be omitted
(Fig. 5a). A spatial resolution of 20 m or higher fails to re-
solve roughness changes adequately (Fig. 5c and d).

Figure 6 shows as an analogy the ice thickness changes
calculated from differently resampled DEMs at the margin
of Hintereisferner (same extent as in Fig. 1). The differ-
ences between the rocky surroundings, the debris-covered
part of the margin and the debris-free ice is visible up to
the 50 m resolution. However, since the differences between
the surface characteristics are small (compare noise in rocky
surroundings with debris-covered part in Fig. 6b and c), no
significant conclusions can be drawn for spatial resolutions
larger than 5 m. Thus the proposed method is limited to high-
resolution remote sensing data.

While investigating the potential of a sequence of high-
resolution DEMs for rock glacier monitoring we were lim-
ited to an example where a photogrammetric DEM of 1997
and the LIDAR-DEM of 2006 exist (Reichenkar rock glacier)
due to the lack of repeat LIDAR-DEMs. Surface elevation
changes were calculated and their distribution analyzed in
order to detect the margin of the rock glacier as well as the
results from small- and larger-scale dynamics.

4 Results

We now highlight the results of the glacier boundary delin-
eation, providing reference glaciers of different character-
istics as examples (see 4.1.–4.4). The course of elevation
changes from the former glacier boundary upwards is pre-
sented visually by profiles that are indicated on the maps and
displayed as inserted figures.

www.the-cryosphere.net/4/53/2010/ The Cryosphere, 4, 53–65, 2010
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Fig. 7. (a) Elevation change 1997–2006 with the glacier boundary of 1997 (dashed) on Mittlerer Guslarferner and a profile of surface
elevation changes inserted in the lower right corner. In(b) the shaded relief of the LIDAR-DEM 2006 is shown with the glacier boundary of
2006 (solid line). The same scene as in Fig. 5 is shown.

4.1 Debris-free glacier tongue: the example of Mittlerer
Guslarferner

The small (0.5 km2) debris-free Mittlerer Guslarferner had
a gradual loss in ice thickness from the former glacier mar-
gin (B) upwards (Fig. 7a, same extent as Fig. 5). Between
B (glacier margin in 1997) and A (glacier margin in 2006),
absolute values of surface elevation changes increased gradu-
ally up to about 13 m at A and decreased from A upwards, as
shown in the inserted profile. An optimal delineation of the
glacier extent was performed by following the pronounced
roughness changes in the shaded reliefs as shown in Fig. 7b.
Compare also Fig. 5, where the delineated glacier bound-
ary was not added and thus the roughness changes are more
clearly visible.

4.2 Accumulation zone: the example of Rotmoosferner

We achieved good results in large parts of the accumulation
area by qualitatively analyzing the roughness changes in the
shaded reliefs. In this way the glacier surface could be dis-
tinguished from its rocky surroundings. As suggested in UN-
ESCO (1970) as well as Paul et al. (2009), we included adja-
cent perennial snow-covered areas in the glacier surface area.
The acquisition dates of the LIDAR-DEMs (October and late
August, see Table 2) were optimal: they were close to the
minimum snow extent in the Alps when the surroundings of
the glaciers were likely to be snow-free. In some cases also
in the lower parts of the accumulation zone, our analysis of
surface elevation changes helped us to decide which areas
to include in the glacier extent. We also performed a qual-
itative analysis of aerial photographs which helped us reach
conclusions about the remaining somewhat ambiguous areas.
Fig. 8a provides an example of the firn area on Rotmoos-

ferner. It was not possible, by analyzing the shaded relief of
the DEM (black ellipse) alone, to tell whether it was partly
debris-covered ice or consisted only of rocks. Our analy-
sis of the surface elevation changes failed to yield a distinct
answer since surface elevation changes were very minimal
in this region. Fortunately, a qualitative comparison with
an aerial photograph taken by the regional government of
Tyrol in 2003 (TirisMaps, 2009) provided a strong indica-
tion. Crevasse patterns could be seen in this debris- or rock-
covered part of the glacier (Fig. 8b).

4.3 Debris-covered glacier margins: the example of
Hintereisferner

In cases where we identified an abrupt increase in elevation
loss around the former glacier boundary, we followed a dif-
ferent workflow from the one in Fig. 4. An example of this
is given in Fig. 9 for the margin of Hintereisferner (same
extent as in Fig. 6). Figure 9a shows the differences calcu-
lated between 2001 and 2005. As UNESCO (1970) as well
as Paul et al. (2009) suggested, adjacent debris-covered areas
and dead-ice bodies have to be included in glacier invento-
ries. In accordance with this, the areas in which a significant
elevation change had occurred were included in the so-called
“potential” glacier area (Fig. 9b). The significance of the
potential glacier area depends on the temporal resolution of
the multi-temporal DEMs. If the two DEMs used were ac-
quired at widely differing points in time (e.g. decades), and
if during this period a significant ice volume loss occurred,
it may well be that ice that was stored beneath the debris
cover was partly melted by the time of the second acquisi-
tion date. In such cases the additional use of multi-temporal
DEMs should provide a clue as to where ice could still exist
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Fig. 8. (a)Rotmoosferner’s firn area displayed as a shaded relief of the 2006 DEM with glacier margins of 1969 (blue), 1997 (orange) and
2006 (red) and the ambiguous area (black ellipse) as addressed in the text.(b) shows an aerial photograph of 2003.

Fig. 9. In (a) the ice thickness changes between 2001 and 2005 are shown together with the potential glacier boundary (grey). A profile of
surface elevation changes is inserted in the upper left corner. The calculated shaded relief from the 2005 DEM is shown in(b), including the
debris-cover/bare ice boundary. Indicator 1 marks gully-formation that is discussed in Sect. 5. In(c), DEM-differences between 2004 and
2005 allow for the detection of the glacier boundary 2005.

below the debris cover. If the interval between the two DEMs
is short (e.g. years, not decades), we conclude that in places
where an elevation change has occurred, it may be assumed
that there is still ice below. In our study area around Hin-
tereisferner we had the advantage of a very good temporal
resolution; therefore, the glacier extent could be determined
very precisely using two DEMs with a one-year time differ-
ence (Fig. 9c).

The surface elevation changes along the profile in Fig. 9a
allowed for a more detailed analysis comparing bare ice and
debris-covered areas. From the profile starting point until
C, absolute values of surface elevation changes increased
gradually (as compared to the example in Fig. 7) to more
than 20 m, since this is the bare-ice region. C coincides

with the debris-cover/bare-ice boundary (Fig. 9b). Within
a short distance only, between C and D, surface elevation
changes decreased rapidly to around 10 m. This transition
between debris-free and debris-covered ice can follow a less-
pronounced shape, depending on the thickness of the debris
layer and the topography of the surroundings. A decrease in
thickness changes compared to the bare ice is to be expected.
The insulation of the debris between D and E thus reduced
ablation by about half for the example given. Thickness vari-
ations in the debris layer resulted in significant ablation vari-
ations on a smaller scale (e.g., meters to tens of meters). Be-
tween E and F the debris cover thickened and the transition
from debris-covered ice to ice-free surroundings took place.
F coincided with the potential glacier extent.

www.the-cryosphere.net/4/53/2010/ The Cryosphere, 4, 53–65, 2010
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Fig. 10. Reichenkar rock glacier at 47◦03′56′′ N, 11◦02′56′′ E: (a) shows an overview of the area around Reichenkar rock glacier with the
glacier boundary 1997 in blue and the rock glacier’s extent of 2006 in orange. Surface elevation changes are shown in a color scheme and the
elevation changes along the length profile (dashed in the map) are plotted in the inserted rectangle (upper left corner). The black rectangle
on the upper right marks the extent of(b) and (c). (b) shows surface elevation changes with the same color scheme as in (a) with 50%
transparency and the orthophotograph of 1997 below. (c) displays a shaded relief calculated from the LIDAR-DEM 2006.

4.4 Potential for rock glacier monitoring: Reichenkar
rock glacier

Another interesting mode of application of LIDAR and
multi-temporal DEMs is the mapping and monitoring of rock
glaciers (as mentioned in the literature, e.g. Kääb, 2008a).
Figure 10a shows Reichenkar rock glacier with the orthopho-
tograph of 1997 in the background and surface elevation
changes (1997–2006) in a color code. Over large parts of
the rock glacier a surface elevation loss occurred between
1997 and 2006 due to the comparably thick ice core of the
rock glacier (between 30 and 40 m (Krainer et al., 2002) that
was gradually melting out. The most negative values were
in the uppermost part (upwards from G) where a rock-free
glacier (Reichenkarferner, blue line, Lambrecht and Kuhn,
2007) transforms into the rock glacier. The longitudinal pro-
file inserted in Fig. 10a reveals an interesting feature at mark-
ers H and I, where an elevation loss at H is followed by an el-
evation gain further downstream (I). This could be attributed
to the propagation of a ridge downwards, a small-scale phe-
nomenon connected with rock glacier elevation changes that
is also found in other studies (e.g. Kääb and Vollmer, 2000).
Even smaller-scale change patterns were found further down
the longitudinal profile, where a significant surface elevation
gain is visible at K (up to 8 m; the close-up of this region
is found in Fig. 10b with a zoom into the profile inserted).
Hardly any change in elevation was observed upwards from

K (e.g. at J) indicating a compressive flow of the rock glacier
due to a change in surface slope from steeper (upwards from
K) to flatter (from K downwards) terrain. In this part of the
rock glacier, considerable velocities of up to 4 ma−1 were
measured by Krainer and Mostler (2006). A pronounced pos-
itive surface elevation change occurred at the rock glacier’s
snout with up to 10 m surface elevation gain at L This ac-
companied an advance of the snout of about 25 m in 9 years.
This result fits well to measured horizontal flow velocities
between 2.5 and 2.9 ma−1 at the central part of the rock
glacier’s snout as measured by Krainer and Mostler (2006).
The distinct snout of the rock glacier can be delineated very
well manually following the pronounced roughness changes
of the shaded relief (Fig. 10c).

4.5 Accuracy and ground truth

The accuracy estimation of the proposed method was
achieved in different ways. Given that the method is based on
a manual delineation, we had to anticipate and deal with in-
terpretation errors. To this end, we first compared the results
obtained by two different parties for certain glaciers. The de-
viation was less than 1% of the total area. In addition, we
undertook random evaluations of some glaciers of different
size categories. This produced one maximum and one min-
imum extent by including/excluding each of the ambiguous
areas, respectively. The resulting glacier areas appear not to
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Fig. 11. The glacier margin of Vernagtferner with the LIDAR-
derived boundary (solid) and the geodetically measured one
(crosses).

have deviated from each other by more than +/−1.5% of the
total glacier-covered area for glaciers bigger than 1 km2, and
up to +/−5% for smaller glaciers.

Further to our application of this essentially qualitative
approach that allowed for estimation of a relative error in
the overall glacier area, we demonstrated a more quan-
titative one for all available geodetically measured (com-
bined laser ranger and theodolite) points. They were ac-
quired through the length-change measurement service of
the Austrian Alpine Club. Figure 11 shows the delineated
glacier boundary of Vernagtferner along with the geodeti-
cally measured points (crosses). Both the LIDAR-DEM and
the field measurements coincidentally derive from the same
date (22 August 2006).

By analogy, we implemented this data as ground truth
for 3 more glaciers (Großer Guslarferner, Hochjochferner
and Hintereisferner). This resulted in 118 measured points
with which to compare the LIDAR interpretation. Figure 12
shows the resultant cumulative relative occurrence of the in-
dividual point distances sorted according to their absolute de-
viation. This can be interpreted as the relative occurrence of
measured spots that lie closer to the reference measurement
(geodetically) than the respective distance plotted at the y-
axes (e.g., 85% of all reference points are within 4 m dis-
tance of the margin derived in this paper, or 95% within 8 m).
However, while these values are valid for glaciers of differ-
ent size categories, their impact on the overall area accuracy
depends on the size of the glacier itself.

Fig. 12. Absolute deviations of the glacier boundary delineation
performed in this study from the geodetically measured margin and
their cumulative relative occurrences.

5 Discussion

Figure 13 provides an overview of the spatial resolution and
the vertical accuracy of DEMs typically used in glaciology.
It also shows the orders of magnitude of the typical mean an-
nual thickness loss of all Austrian glaciers in the last decade
(Abermann et al., 2009; Kuhn et al., 2009; and Lambrecht
and Kuhn, 2007), of the typical ice thickness loss at debris-
free as well as debris-covered parts of Hintereisferner be-
tween 2001 and 2005, and of the ice thickness loss at the
debris-free margin of Hintereisferner between 1953 and 2003
(Fischer et al., accepted) on the right side of the figure. The
remote sensing data outside the rectangular box (orthopho-
tographs and Landsat data) do not include topographic infor-
mation. References for the individual data sets are given in
brackets. The applicability of ice thickness changes for the
detection of glacier boundaries depends on the magnitude of
elevation change (time difference, climate signal) compared
to the root sum square of the vertical accuracies of the DEMs
applied. The use of LIDAR-DEMs together with DEM 1997
is thus a comparatively accurate option in terms of both the
achieved horizontal resolution and the vertical accuracies.

Compared to other data sets used for glacier boundary de-
lineation, the proposed sets have the advantage of enabling
the debris-covered and dead-ice areas to be delineated as
well. This had been pointed out, e.g., by Hendriks and Pel-
likka (2007), as a major disadvantage of multi-spectral meth-
ods. Knoll and Kerschner (2009), who worked with LIDAR
but did not have multi-temporal DEMs, also addressed this
problem.

In order to make use of this advantage, it is worth men-
tioning the order of magnitude that these surface elevation
changes must have in order to be able to definitely distinguish

www.the-cryosphere.net/4/53/2010/ The Cryosphere, 4, 53–65, 2010
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Fig. 13. Schematic distribution of spatial resolution vs. vertical accuracy of commonly used remote sensing data. Orthophotographs and
Landsat-scenes do not include vertical information. Typical overall mean annual ice thickness change in Austria’s glaciers, values of ice
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Table 3. Accuracy of the DEM-differences for the examples provided in the paper.

DEM1 εDEM1 [m] DEM2 εDEM2 [m] 1t ε1z [m]

Ex. Guslarferner (Fig. 6) DEM 1997 +/−0.7 LIDAR 2006 +/−0.3 9 yrs +/−0.8
Ex. Hintereisferner (Fig. 10a) LIDAR 2001 +/−0.1 LIDAR 2005 +/−0.1 4 yrs +/−0.1
Ex. Hintereisferner (Fig. 10c) LIDAR 2004 +/−0.1 LIDAR 2005 +/−0.1 1 yr +/−0.2
Ex. Reichenkar rock glacier (Fig. 14) DEM 1997 +/−0.7 LIDAR 2006 +/−0.3 9 yrs +/−0.8

them from noise introduced by errors in the DEMs. Applying
the law of error propagation according to Etzelmüller (2000),
the error from the DEM differences (ε1z) is the root of the
sum of square errors of the individual DEMs (εDEM1 and
εDEM2),

ε1z =

√
ε2

DEM1+ε2
DEM2. (1)

For the data sets presented in this study, values ofε1z are
summarized in Table 3. For DEM combinations using other
data setsε1z can be estimated with the vertical accuracies as
shown in Fig. 13.

Processes resulting in surface elevation change on ice-free
terrain (such as denudation, washout, rockfall or gully for-
mation) could also be misinterpreted as glacier-induced ele-
vation change should they reach the typical orders of magni-
tude of the latter. Hallet et al. (1996) report “effective rates
of glacial erosion” in the Swiss Alps to be around 1 mm/a.
Wittmann et al. (2007) quantify “denudation rates” at about
0.9± 0.3 mm/a, the same as for the Swiss Alps. Since
they are far smaller than typical elevation changes caused by
icemelt, these processes can be neglected, even if only ele-
vation changes within one year are considered (e.g., Fig. 9c,
cf. typical rates of surface elevation change, Fig. 13). Gully
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formation along lateral moraines shortly after glacier reces-
sion can exceed these values, from typically 23 mm/a (Bal-
lantyne, 2002) to 151 mm/a (Curry et al., 2005) on different
Alpine sites. The maximum values found by Schiefer and
Gilbert (2007) at 1.5 m/a can be taken as an extreme case
of non-glacier-related elevation change. While such forma-
tions are visible in a shaded relief of the DEM (Fig. 9b, in-
dicator 1) they do not coincide with strong elevation change,
which means that they were formed before 2001. Had they
been formed between the DEMs studied, their longitudinal
shape would have been visible in the DEM differences. This
is one more reason why we applied the method manually, ex-
cluding such structures from the resulting glacier area. Rock-
slides can also cause considerable surface lowering, which
might be misinterpreted as glacier area. But they invariably
appear with a significant mass gain at the lower section of the
rockslide and can thus be distinguished easily.

Another advantage of the glacier boundary delineation
with very high resolution DEMs is the ability to implicitly
derive volume changes also for very small glaciers, where
many other remote sensing data sets fail, simply due to
their large spatial resolution or considerable vertical errors
(cf. Figs. 5, 6 and 13).

To minimize errors due to interpretation of surface eleva-
tion changes introduced by seasonal snow cover we mainly
incorporated information from DEM differencing to the ab-
lation areas. In these parts of the glacier fresh snow cover is
not significant at the data acquisition dates (late summer or
early autumn) compared to the strong elevation changes due
to negative mass balances of the last years.

A major disadvantage of the method proposed is the con-
siderable manual digitization effort that is necessary for the
derivation of glacier boundaries, requiring between 0.5 and
2 h per glacier, depending on its complexity and size.

6 Conclusions

The inclusion of multi-temporal DEMs with a relative verti-
cal accuracy significantly better than the ice thickness change
over the investigated period improves the accuracy of glacier
boundary mapping. This method is well suited to study areas
with a comparably small extent, where an accurate knowl-
edge of glacier area and volume change is needed, since
it requires considerable manual digitization. One great ad-
vantage compared with other techniques for glacier bound-
ary delineation is the high degree of accuracy achieved for
the delineation of small glaciers (e.g.,< 0.5 km2). Combin-
ing this with additional information such as multi-temporal
DEMs and orthophotographs or other remote sensing data
further improves the result. A broader application of the de-
veloped method was performed by Abermann et al. (2009):
a regional update of an existing glacier inventory was un-
dertaken. In addition, a new inventory is planned for other
regions in Austria based on this methodology. Geophysical

investigations of dead-ice regions could provide further in-
sight into, and better ground truth, regarding these areas. It
may well be an interesting topic for future study.

The better the vertical accuracy and the horizontal reso-
lution of the DEMs, the shorter is the time period between
the acquisition of the DEMs that is needed to obtain statis-
tically significant elevation changes. When applied to the
climatic conditions of glaciers closer to a steady state, this
mapping procedure would be less successful as surface ele-
vation changes would also be smaller. The accuracy of the
glacier boundary delineation has proven higher in areas with
large elevation change, i.e., low elevations and bare ice.

A sequence of multi-temporal airborne LIDAR-DEMs
also covering rock glaciers will enhance the importance of
this application for conducting studies on detailed elevation
changes in creeping permafrost, including the implication of
volume changes.

The use of multi-temporal DEMs will be of significant im-
portance for future glaciological applications. The number of
accurate high-resolution DEMs is increasing with both air-
borne and satellite data. The predicted future climate change
(Trenberth et al., 2007) will result in continuing glacier vol-
ume and area loss. For this reason this method may be ex-
tended further and it is planned to make use of the infor-
mation from high-resolution surface elevation changes to de-
velop a semi-automatic glacier boundary delineation algo-
rithm.
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and the paper’s editor, A. K̈aäb, are gratefully acknowledged for
constructive remarks and useful suggestions which improved the
manuscript considerably.

Edited by: A. K̈aäb
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