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Abstract. Numerical simulation of glacier dynamics in This importance of alpine glaciers creates a need to un-
mountainous regions using zero-order, shallow ice models iglerstand their behaviour in coming decades. One approach
desirable for computational efficiency so as to allow broadis to explicitly simulate glaciers at a sub-kilometer resolu-
coverage. However, these models present several difficultieBon over large, ice-covered regions of the globe. Such an ap-
when applied to complex terrain. One such problem ariseproach demands models of ice dynamics capable of simulat-
where steep terrain can spuriously lead to large ice fluxesng mountain glaciers in computational domains containing
that remove more mass from a grid cell than it originally many (e.g. 16) grid nodes over century-long model periods.
contains, leading to mass conservation being violated. Thidigher-order ice dynamical models are capable of simulat-
paper describes a vertically integrated, shallow ice model using individual glaciers or large ice sheets, but presently their
ing a second-order flux-limiting spatial discretization schemehigh computational demands restrict their use over domains
that enforces mass conservation. An exact solution to ice flowequired to simulate regional mountain glacier evolution. By
over a bedrock step is derived for a given mass balance forcreducing the complexity of the stresses that are simulated in
ing as a benchmark to evaluate the model performance im dynamical model, greater computational effort can be put
such a difficult setting. This benchmark should serve as a useinto addressing large-scale problems at some cost to model
ful test for modellers interested in simulating glaciers overaccuracy. One such model is the vertically integrated, shal-
complex terrain. low ice formulation discretized using finite differences (e.g.
Mahaffy, 1976. This approach to the shallow ice problem
has been used for example to simulate mountain glacier com-
1 Introduction plexes in the Sierra Nevada, USA during the last deglaciation
Plummer and Phillips2003 and glacier advances on the
Numerical simulation of glaciers and ice sheets is essentiasmmit of Mauna Kea, Hawaii during the last deglaciation
for understanding the cryospheric response to a changing clicansiow et al, 2010.
mate and is increasingly an integral part of modern climate  one major problem with standard numerical solvers for
change projections. Although the vast majority of fresh watershajlow ice models is a tendency not to conserve mass in
capable of causing sea level rise over the long-term lies in th@egions where thin ice is draped over steep bed topogra-
Antarctic and Greenland ice sheets, arguably it is the mounphy Many of the spatial discretization schemes developed
tain glaciers which are most susceptible to climate change ifor jce sheets (e.gdindmarsh and Paynda996 Huybrechts
the near future. Most of them lie at moderate to high latitudesang payne1996, where steep bed topography can be an
in mountainous terrain. It has been shown that these glaciergsye as well (e.g. East Greenland), will spuriously create
are the largest contributor to contemporary sea level rise anghass at such troublesome locations. Where surface gradi-

that they will contribute to sea level rise in the coming cen- ents are large, this mass creation can lead to very large errors
tury (e.g.Radic and Hock2011 Marzeion et al.2012.
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230 A. H. Jarosch et al.: Restoring mass conservation to SIA models

in modelled steady-states. This paper describes the applicallows various theoretical advances to be made, mostly in
tion of a second-order flux-limiting spatial scheme to the fi- demonstrating the well-posedness of the shallow ice problem
nite difference solution of a shallow ice model that ensuresand analyzing the convergence of finite element discretiza-
mass conservation. Furthermore, we describe a benchmations (e.g.Calvo et al, 2002 Jouvet et a].2011 Jouvet and
test case along with an exact solution upon which models camBueler, 2012).
be tested for mass conservation when such situations arise. Our aim here is more practical. We address shortcom-
Confirming that a shallow ice model can meet the benchmarkngs in widely used numerical methods for solving shallow
described here along with the benchmarks for the transienice problems. A frequently used approach is to treat Ep. (
simulation of a growing ice sheet describedBuyeler et al.  as a parabolic (i.e. diffusion) problem, writing it in the form
(2009 is strongly recommended prior to conducting simula-
tions of glaciers over rough topography. s _ V. (DVs) =11, (4)

ot

2 Standard shallow ice models and numerical methods ~ Where

In a Cartesian coordinate system with the xy-plane oriented? (%, |Vs|) = Th"*2|Vs|"~1 ®)
horizontally, the continuity equation, together with Glen’s
flow law (Glen 1958, are the equations solved for the
isothermal shallow ice modelFéwler and Larson1978

is a diffusion coefficient. This underlies the numerical meth-
ods first developed irMlahaffy (1976 and described in

Morland and JohnsorL980 more detail inHindmarsh and Payn@ 996 or Huybrechts
and Payn€1996. An often used time-stepping method up-
§+V~ o (1a) dates ice surface elevatioﬁ(x,y')=s(x,y,ti) by using
ot 1= a lagged diffusivityD' = D(h', |Vs'|) and solving for an un-
g =—-Th"t?2|vs" 1vs (1b) constrained updated ice surface elevafiort through
r— 2A(pg) 7 (10) il i

n+2 Vv (D'V5 Y =il (6)

where s(x,y,t) is ice surface elevationh(x,y,t) =
s(x,y,t) —b(x,y) is ice thicknessb(x, y) is bed elevation
and A andn are the rate factor and power law constants in
Glen’s flow law, whilep and g are ice density and accel-
eration due to gravity, respectively, andis surface mass
balanceV is the 2-D gradient operator.

Importantly, Eq. {) holds only where there is icé ¢ 0).
Ice geometry evolution models are intrinsically free bound- ;4
ary models in which parts of the domain may be ice-free.’

A complete formulation of the ice flow problem must there- A slightly more self-consistent approach to the inequality

fore incorporate a means of evolving ice-covered and ice'freeconstrainth ~ 0 which governs Eq.1) would be to apply
parts of the domain geometrically. In ice-free parts of the do-Eq 6) only wheresi+1 > b, and to demand instead that
main,h = 0 ands = b. Ice will grow if iz > 0, but not other- ' '

whereAr = ri+1 — ¢, This corresponds to the semi-implicit
time-stepping scheme described Hyndmarsh and Payne
(1996. The actual ice thickness is then updated by truncat-
ing this solution anywhere the unconstrained ice surface ele-
vation corresponds to negative ice thickness using a “naive”
projection step such that

= max'tL, b). (7)

wise. Taken together, this implies that, wheg: 0, il i o '

T_v'(DlV§l+l) 2ml+1, (8)
0
£+qum. @)

wheresi+1 = 0 (this essentially being the discretized version
Negative ice thicknesses are never realized. In addition, at thef inequality @)), while not allowing negative’** at all.
ice margin (the free boundary between regions wherd® This is mathematically equivalent of finding the updated ice
andh > 0), mass must be conserved and in addition we ex-thickness by minimizing the functional
pect the surface to be at least continuous. This implies _2

5s—s' ,
q-n=0, h=0 (3) J(§)=/%+D1|V§|2d97 9)
at this free boundary, witle normal to the free boundary g
in the xy-plane. The formulation of Eqsl)&(3) is known  subject tos > b, where Q is the entire domain, i.e. the
mathematically as an obstacle probleBvgns 1998. Us- union of ice-covered and ice-free regionKir(derlehrer
ing the inequality constraints one can re-write the problemand Stampacchjal98Q Evans 1998. In other words,
in its so-called weak form as a variational inequality, which s'+1 = arg min>; J(5), and this can be solved numerically
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using projected successive over-relaxation (PSOR) meth-
ods Glowinski, 1984 that are similar to solving Eq6) with
the projection step Eq7J.

Importantly, however, the continuum formulation of
Egs. 6)—(7) as well as of Eq.9) is misleading:D’ = 0 any-
where the ice thickneds is zero, suggesting that ice flow *

alone should not be able to expand the ice covered area,
when clearly this should be possible. In the methods de-
scribed above, a spatial discretization must be applied first, __qk,l+%
and the nature of this spatial discretization is crucial.

In particular, spatial discretization schemes designed for
diffusion equations of the form of Eg4)Ywith bounded diffu-
sivities D may spuriously generate negative ice thicknesses. o _qk+%,l'>°
In fact, such methods may not be appropriate at all in set- ' ’
tings where bed topography is steep. The easiest way to un-
derstand this is to re-write Eql) as a conservation law for
ice thicknesd = s — b:

oh

==V [rh"+2|V(b v +h)] =, (10)
whereh > 0, with an analogous inequality to EQ) holding  cell boundaries such that the y-component of flux on the cell
whereh = 0. In steep terrain, the gradient teRitb+4) may ~ edge between cellg, /) and (k,! + 1) is qu; and the x-

now be dominated by bed slojs, leading approximately  component of flux on the cell edge between celig) and
to the hyperbolic problem (see alBowler and Larsoy1979 (k+11)isq" : (Fig. 1).
k+3.0

Fig. 1. Basic grid setup and definition of fluxes.

The M2 and M3 schemes both relate these fluxes to differ-

oh
o _ . [Fh”+2|Vb|”‘1Vb] i (11) ences in surface elevation through
at si+l il

yi+l ; Sk +1 " Skl (12a)
In the absence of a surface mass balance term (i.e. whe¥ d+3 T ki+3 Ay
m = 0), this hyperbolic equation in its continuum form pre- bl it
serves positivity, i.e. given non-negative initial conditionson ri+1_ .; Sk+1.1 ~ Skl (12b)
h, negativeh will never be generated. Spatial discretizations “k+3.0 ~ " k+3.l Ax ’
appropriate for hyperbolic equations will maintain this prop- whereD | and Dl are the diffusivities evaluated on
erty. However, discretizations designed for parabolic prob— k,l+ 3

lems, including the symmetric centered difference schemeéhe cell boundarles The fully discretized version of Eig) (

described in, e.gHuybrechts and Payn€l996, may not is then

preserve positivity forz, and can therefore spuriously gen- ;11 * l+1_ witl o oyitl oyl

Lo : " Sy =S L/ Yl P 1 kit Dei-1

erate negative ice thicknesses. The projection step Bq. ( &Lkl 73 R B

of course will then set ice thickness back to zero where this ~ A? Ax Ay

occurs. However, in the process, this causes the numericaind the projection step Eqf)(is applied cell-wise.

scheme to create mass, which can severely affect its results. Hindmarsh and Payne’'s M2 and M3 schemes only differ
Two of the most widely used discretizations in ice sheetin how they handle the d|ffus|v|t|e9’ 1 and Dk 1 - We

models are those referred to as "method 2 (abbr. M2) anoldefme the norm of the surface gradlent at the ce2II boundary

“method 3” (abbr. M3) byHindmarsh and Payrn(@996 or as X 2 d ithah 197
“type I” and “type 11”1 by Huybrechts and Payr{@996. All (k + 3)* in accordance withahafty (1976 as

these schemes are appropriate for the primarily diffusive case - 1 _ [(

=iy, (13)

) ) . . 2
i i i ol
Skt Ski—1HSka i A1<+1,11>

of small bed slopes. Essentially, we can view these as finitel VS k+ A 4Ay

volume discretizations on a regular mesh, with ice surface _ ot (14)
elevation piecewise constant on each cell. The location of St 10~k

cell centers aréxy, y;) on a grid with uniform spacing such < Ax ) :|

thatAx = x;11 — x andAy = y; 11 — y;. We label the cells
by indices(k, /) and denote the normal component of flux on 2Below we give the form of diffusivities only at the cell bound-
ary k+ %); diffusivities at other cell boundaries (including ones
type II” and “method 3" are actually not equivalent due to a parallel to the x-axis) can be computed by switching indices appro-
blunder inHuybrechts and Payr@996. priately, but we do not give details here to save space.

1«
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and can now write M2, which uses an averaged ice thicknes$12 or M3 values suggested above except at cell boundaries

at the cell, as that correspond to a glacier-rock wall boundary. These can
; ; ni2 be recognized as boundaries with indi¢es- % 1) for which
) hi  +h , h
i _ kg T M in—1 we have
Dy, =T (—2 ) Vs |k+%’]. (15)

(1 =Skpr.) My =R ) <0 and hy yhy g, =0. (17)
M3 uses an average over the fackdr? that appears in the
definition of D, The first of these statements says that ice thickness is greater
in the cell that is at a lower elevation, while the second state-
ment says that one of the cells has zero ice thickness (which
must therefore be the one with the greater surface elevation).
For these cell boundarieBJummer and Phillipg2003 set
With these discretizations, the projection step scheme (Cf.D,’(Jr%yl =0 and they also apply an analogous scheme for
_Eq. 7)_has performed well in many ice sheet models, and , at cell boundaries parallel to the y-axis. A slightly
in particular, has reproduced a number of known exact solu- *.i+3 . ) )
tions outlined inBueler et al (2005 2007. However, these different scheme with essentially the same properties was de-

exact benchmarks all refer to the case of a flat bed, for whictY€l0ped independently baseloff(2009. _

we havel = s. Our aim here is to explore a number of com- There is however another possible complication that is not
plications that arise precisely when this is not the case. Thaf@ptured by this adjustment of diffusivities. This can occur
is, we wish to study complications that are typically asso-When arelatively thin glacier flows over a steep bedrock step,

ciated with bed undulations, and which become particularly@S in an icefall. FigurZb shows the situation we have in
relevant for modelling mountain glaciation. mind. Here we can generate a significant ice flux out of the

upstream grid celik, ) at the top of the ice fall, simply be-
cause of the large surface slope between the upstream cell
3 Mass conservation problems in projection step (k,1) and the downstream celk + 1,/).This large flux can
schemes then lead to more ice flowing out of the grid ceél, /) in
a single time step from’ to 1 than was present at time
One simple yet problematic case is the one of a mountaini The updated ice thickness valgjg* — by ; becomes neg-

a M2 or M3 diffusivity can generate a spurious mass flux outsets itsi 1 back to zero. Ice mass is created in the process.

of the bare rock sidewall of a u-shaped valley into a glacier

'n,. the tzottom of that yalley. Here, we _have a (fe” in which ice thickness; ", again either from a positive mass balance,
My =iy —brr =0 aQJacth to a cell in which; ., >0 . 0, or through inflow from the cellk — 1, 7). Such a situ-
and yet we also havg, , > s; 4, as displayed in Figa®.  afion is possible in Plummer and Philips’ scheme. After time
That is, the ice-free cell has a higher surface elevation thani+2 e can therefore return to the same situation as time
the ice-covered cell. Consequently we expect@i}jgt%’l >0 with a thin ice cover in cellk, /) and a steep surface slope
and either an M2 or M3 scheme above predicts ice flowinginto cell (k+1,7). Mass can therefore be created on alternat-
from the ice-free into the ice-covered cell. If ice does flow out ing time steps, causing the resulting error to grow over time.
of the ice-free cell, then the time-stepping scheme (B). The main reason why the M2 and M3 schemes above are
will predict a negative ice thickness for the respective cellable to create mass in this way is that they do not limit the
after a single time step. The projection step (Bethen sets  flux across a cell boundary as the ice thickness in the up-
the actual surface eIevatim}gfgl back to the bed elevation stream cell goes to zero. Consider a very small ice thickness
by . In terms of mass conservation, we have just extractedix,; in cell (k,1) whose bed elevation is greater than the sur-
mass from the ice-free cqlt, /) and transferred it to the ice- face elevation in the next cell downstream, > siy1,;. Us-
covered cellk +1,1). In the projection step (EF), we have  iNg hy; < g1y andsg; = bi +hiy = by, an M2 scheme
added that mass back into the c@ll) in a bid to avoid  approximately gives the fluql’(‘# , across thek(+ %,l) cell
unphysical negative ice thickness. Formulated this way, theyoundary as .
projection step scheme therefore creates mass.

This mass conservation issue was previously recognized M1 n+2
by Plummer and Phillipg2003, who proposed a slightly ‘IH%,,% ( 2 >
modified scheme that prevents such a mass violation. In par-
ticular, Plummer and Phillip$2003 setDl"{Jr; o eitherthe  As i — O the expression on the right does not go to zero.

z Thus a finite amount of mass can be extracted from a cell
3Subsequently we focus on mass conservation problems alondvith vanishingly small mass content. This occurs because the
the x-axis, but they can equally be generated in three dimensions. diffusivity on the cell boundary is dominated by the non-zero

i n+2 i n+2
D,‘ _ h;(,l + h;c+l,l |Vs[|nfl (16)
k+30 2 k+3.0°

Attime r'+2, the upstream cell is likely to acquire a non-zero
i42

-1
Sk+1,0—bi 1 |"

Ax

br, 1 —Sk+1.1

Ax (18)
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z a) When there is an advancing ice margin, it is important that
the diffusivity should not go to zero at a cell boundary adjoin-
ing the ice-free cell. Otherwise ice could never flow from an
ice-covered cell into an ice-free cell, and the ice margin could
never advance due to flow. However, we need to avoid the re-
verse situation in which too much ice flows from a barely
ice-covered cell into another cell with lower surface eleva-
tion.

To do this, a flux-modification scheme is required. We
adapt one of the flux-limiting schemes from the conservation
law literature, namely a second-order Monotone Upstream-
centered Schemes for Conservation Laws (MUSCL ,\ag.
Leer, 1979 Gottlieb and Shu1998 for the ice flux dis-
cretization. To do so we propose and use a new factorization
of ice flux such that

k-1 k k+1 k42

2 b)
g =wh"? (19)
with
w=—T|Vs[" Vs (20)
instead of
q=—-DVs (21)

k-1 k k+1 k42

! as used in Eqg.4). This allows us to think of the shallow

Fig. 2. The valley glacier case ifa) and the icefall case ifb). ice, mass continuity equation, E4)(vaguely as a Burger’'s
Bedrock in grey and ice in light blue. equation in the form of

ice thi i oV (@h™2) =i 22
ice thickness in the downstream c@H1,7). An analogous o +V-(@ ) =n. (22)

observation applies to M3 schemes.

Below, we will illustrate this shortcoming of M2 and M3 .
. L ) . Note that Eq.22) has the appearance of a hyperbolic conser-
discretizations further by showing that they fail to reproduce
vation law, which is not actually the case as the gradient term

certain exact steady-state solutions to the shallow ice equay, ot appears in the definition af depends on the gradi-
tions. Before we do so, we propose an alternative scheme for
ent of 1, and the flux is at least in part diffusive. However,

computing diffusivities that restores the mass conservation. for steep terrainys may be dominated by the bed slogé,
and in this limiting case Eq2@) does become hyperbolic as
previously explored byowler and Larsoif1978. Our main

4 A mass-conserving scheme interest in applying a flux-limiting scheme to the shallow ice
problem defined by Eq2@) lies in the positivity-preserving

The difficulties of conserving mass with both M2 and M3 property of such schemes. This prevents the spurious extrac-
schemes are all rooted in the Computatlon of the d|ﬁ:US|V|t|GSt|0n of excessive volumes of ice from gnd cells in Steep ter-

D,l{+2 andD, .. These numerical artifacts stem from the rajn that lies at the heart of the mass conservation problem
evaluation of the ice thickness terhi*2 in the definition  identified in the previous section. _ _
of diffusivity (Eq. 5). In both schemes; on the (k + 3 10 A distinct feature of MUSCL schemes is the separation of

cell boundary is evaluated numerically as an average oveflux at the cell boundaryk + 3,1) into two components, the
the ice thicknesses in the adjacent cells. Consequently, thé + 2+,l) and(k + 1 5 ~, 1) term, which we define below for
diffusivity on the cell boundary does not go to zero when the our application. Ice thicknegsat the cell boundary is once
ice thickness in just one of these cells goes to zero. again the dominant term in the flux discretization, so we can

www.the-cryosphere.net/7/229/2013/ The Cryosphere, 7, 22810, 2013



234

A. H. Jarosch et al.:

Restoring mass conservation to SIA models

define which can be discretized in time, as a simpler alterntive
, 1 , . Eqg. (6), explicitly using a forward Euler scheme
i 1 1 L 2
hk 1— b = hk,l + §¢(rk,l)(hk+1,1 - hk,l) ( 3) vl ;
,~ T ,~ i Lt V(DS =i (35)
hk+%+,l = hk+1,1 - §¢(rk+l,l)(hk+2,1 - th_J) (24) At
_ . 1 _ _ All that is left to do is to define the gradient of the flux in its
h;{i%_l =hp_1,+ §¢(rk_1,;)(h;(,l —hp_1p) (25) fully discretized form:
hl [ } ( )(hl _ hi ) (26) Dl Yk-*—ll Ykl _ Dl Ylé,l_xli—l,l
k-3t L 2¢ Te D)1, — Mkt o k+31" Ax k=11~ Bx
V- (D'Vs') = 2 +
with , l. Ax o
. . Di Sie+1 =5k _Dpi Skl ~Sk1-1
hi , —h_ ki+3 Ay ki-% Ay
reg = L AL 27) : X (36)
hk+1l it Y

the ratio of downstream to upstream ice thickness change anéihe value for the time stefir used is crucial in this forward

¢ (rr1) being the flux-limiting function. We investigate the
usability of two flux limiters in our study, the minmod limiter
¢mm(r) and superbee limitepsp(r) (Rog 1986:

dmm(r)
Psh(r) =

Using the ice thickness estimates from EQS) @nd @4), we
can define two flux terms at the cell boundary

=max[0,min(1,r)] (28)

max[0, min(2r, 1), min(r, 2)]. (29)

i _ i n+2 i
Dl g, =Th e s iy (30)
and D’ ey by using Eq. 23) instead of Eq.Z4). To limit

the flux at the cell boundary, one defines a minimum and
maximum diffusivity such that

D! _=min(D ._ ,D 31

k+3.0.min ( e+ 370 Tkt (31)
i i i

=max| D' . _ 32

k+3,1,max < +370 k+§+,z) (32)

and constructs a diffusivity for thg + % [) cell boundary as

D11(+2 1=
Dk+%,l,min i S/i+1l <S’il and hi k+17 = ;c+% N
Ii+%’l’max if Yk+1l < ‘kz and h’ ey > ;C 1 )
Dli<+%,l,max i Sk+1J = Sk,l and hiﬁ%’,l §h;( ir
Dli+%,l,min if Sli+1,l > s,i’l and h;+%_,1 > h;( s
The diffusivities D! D! and D! can be con-

1
k=3.0" Tki+3’ k-3

2
structed in a S|m|Iar manner. Note that the local surface

scheme to provide numerically stable solutions. A stability
condition can be used to automatically calculate a suitable
value as

min(Ax2, Ay?)

Dl D!
=30 Tkid

At = Cstao (37)

max(D!

k+2

k, ,,;)
Hindmarsh(2001) analysed time-stepping stability crite-
ria and reports for explicit time-stepping scheraggy < %

for one-dimensional andsigp < z(n—il) for two-dimensional

configurations. In case of = 3 this leads ta:stap < 0.1666
andcstap < 0.125, respectively.

5 One-dimensional steady-states

A good way to test a shallow ice code is to compare results
with exact solutionsBueler et al. 2005 2007). Below we
construct such a steady-state solution which includes bed to-
pography and a prescribed accumulation rate which is a func-
tion of position only.

In one dimension with the assumption of steady-state, the
shallow ice model (Edl) can be written in the form

QX = mﬂ (38)

where the subscript¢” denotes an ordinary derivative, and

q= _th+2|sx|n_lsx (39)

To simplify matters, we assume that accumulation ratke-
pends only on position and is such that there is a continuous
ice region for the interval & x < xm. Herexp, is the margin
position, which must be determined as part of the solution.
At x = xm,

slopes are used to identify the upstream direction, which is

needed in a MUSCL scheme to assign the correct limitedlx=xn =0 qlx=xn =0

flux terms. We recall that our initial equation was

as
—+V.q=m,

o (34)

The Cryosphere, 7, 229240, 2013

(40)

40ur proposed flux-limiting scheme works well with implicit
time-stepping schemes but we choose to illustrate the simplest case
of an explicit forward time step here.
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and we have in the intervalx;, < x < xm.
At the bedrock step at = x;, we can therefore define an
h>0 for0<x <xm. (41)  jce thickness just downstream of the step as
In addition, we assume that there is no inflow of ice at thes,y = lim h(x) =
fixed upstream boundamy= 0. In that case, ice fluy can be xoxf
found explicitly as a function of position for any9x < xp: M42) (42 2
@ut2) o )"/IQ o()dd | . (49)
X 211 nA n Iog
= /m(x/)dX’- (42)  In order to extend the solution to the intervakOr < x,, we
0 can then integrate EG47) backwards fromx = x;:
i ; ; : X . ’ 2142 2n+2
To simplify our notation, we wnteQ(x):fO m(x")dx’. h(x)"n =h," +
Givenmi(x), Q(x) is then a known function of position. The
unknown margin position is then determined implicitly by (2n+2)(n+2) /IQ( )I 0(x)dx, (50)
the second condition in EG40), I nAR " pg
Q(xm) =0. (43)  whereh,_ =lim__, - h(x). Toclose this solution, it remains
to determine the ice thicknegs_ at the top of the bedrock

Givenxn, ice thicknes& must then be found as a function of

" : . . . step.
position through solving the differential equatigr= Q(x), In general, we expect the surface elevatidn be contin-
or uous. Buts = h + b, so this implies
—Th" 2|5, " sy = Q(x), (44)  p_ 4+bo=hyy O hy_ =hys — bo. (51)
subject to the first condition in EG4Q), /(xm) = 0. This must be substituted in Eq5@) with hyy given by

There are no general methods for solving Ef) (ana- Eg. 49).
lytically. To get around this, we restrict our choice of bed It is, however, possible that,_ computed in this way
topography to generate a tractable problem. Our objective iss negative. Specifically, this occurs when, computed in
to develop a test for numerical shallow ice codes that incor-Eq. @49) is less tharbg. In that case, Eq.5(1) cannot hold,
porate bed topography. Consequently, we do not wish to puais/ will be negative just upstream of the bedrock step, and
b = 0. On the other hand, Ec#4) is easiest to deal with for  will therefore violate the condition given in Egt1). A more
a flat bed, in which case; = h,. To make use of this, we acceptable solution can instead be obtained in the case that

consider a bed for which is a step function, hgy < bg if we puth,_ =0 in Eq. 60).
b Allowing for this possibility, the required exact steady-
b(x) = {OO r=Xs (45)  state solution is given by Eqs5@) and @8), with ,_ de-
=X termined by

wherebg andx, are constants, and we assume thatf < hy_ = max(hy+ — bo, 0). (52)
Xm.

In the interval O< x < x; andx; < x < xm, this allows us  This solution, with a discontinuity in surface elevation, may
to write Eq. @4) as seem an unnatural test for a shallow ice model. However,

) L it can be shown that the solution we have given is in fact

—Th" 2 he | hy = Q (), (46)  the correct limit of a solution with a continuous but steep

bedrock step as the width of that bedrock step goes to zero.
In numerical simulations with finite grid size, steep steps in
bed topography may not be well resolved, and it is desirable

which we can re-write as

h%hx =— [M} IQ(x)I%_lQ(x), (47) to have a numerical scheme that remains robust when this is
2A(pg)" the case.
where we have expanddd according to Eq. 1c) for clar- Crucial to the mechanism for mass creation described in
ity. Integrating using the boundary conditiéixy,) = 0, and Eqg. (18) was a setting in which bedrock elevatibp; in the
subsequently solving far, we get upstream celik, /) is greater than ice surface elevatigni ;
in the downstream cell, and this is precisely the situation real-
h(x) = ized when there is a sufficiently tall bedrock stgp = 0 as
242 (+2)E =2 advocated above. In fact, we show explicitly in Appendix
—/ [0(x )|n Lo ydx' (48)  that there are conditions under which M2 and M3 schemes
2nnAnpg cannot reproduce such steady-states.
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6 A specific, exact solution for a bedrock step

The solutions in Eqs4@) and 60) are still given in terms of
the general flwQ (x) = fé‘ m(x)dx’. Next, we give a choice
Q(x) that allows us to computé explicitly, and which

A. H. Jarosch et al.:

Restoring mass conservation to SIA models

for numerical ice flow schemes in mountainous regions, we
numerically implement Eqs1@) and (L3)°. We test three dif-
ferent schemes. First, we use the diffusivity from Etp)(
and refer to the corresponding solution as “M2” results. Sec-
ondly, we compute results using the diffusivity from E8Q)

is such that the corresponding accumulation rate functionalong with the superbee flux limiter, E9). We label this
n = Q(x) is sensible (in particular, which satisfies the ob- solution “MUSCL superbee”. Using the minmod flux limiter,

vious requirement tha® (0) = 0 and which is such thak is

Eqg. 28), gives slightly different results, which we will dis-

negative forx > xm, so that there is indeed a single ice body cuss below. Thirdly, we use a simple upstream scheme based

in steady—state). This is given by

Q(x) = —5orx bim — 21" (xm — 1), (53)
xm

with a corresponding accumulation rate function

. nmo ,_ e

m(x):zn—_olx Liam = x1" L (xm — 2x).. (54)
Xm

Q satisfiesQ(xm) = 0, andxm, can indeed be identified with

the steady-state margin position. In additionr< O if x > xp,
so there is no ice outside the margip.
With this choice ofi andQ, we have

1

o n

0
-1 X (xm - .X) )

.an

1_
o))" o) = (55)
and hence the ice surface profile in Egt8)(and 60) can be
computed as

T2
(2n+2)(n+2)nm
h(x) = - 2 (xXm + 2¢) (xm — x)°
2n6nAn,0gxm
(56)
for x; < x < xm, and
2n+2 2n 2 2 n
h(x) = hsj ]’l n ( +2)(n+ ) T
21 6nAn,0gxm
(i +20) (i — 2] 7 (57)

for 0 < x < x;. Hereh, andh,_ are given through the cal-
culations

n

2042
(xm + 2x5) (Xm — Xs) :| (58)

2 6nAr%pgxm

o) = [Mﬂw

hs—(x) = max(hs4 — bo, 0) . (59)

7 Numerical benchmark experiments

7.1 Cliff benchmark

To demonstrate the performance of our newly introduced

on writing the evolution Eq.1@) in the form

ah _
o TV ) =i,

(60)
whereu = —T'h"t1|Vs|"~1Vs. Applying a simple upwind-
ing toh in Eq. (60) leads to the following scheme (e dal-
geirsdottir 2003: define an upstream ice thickness through

i H i i
bty = [ (61)
F3 L T 1 l ’
kgl hjqy W s, > Sk
and so the diffusivity becomes
i i n+1
k+3.1 2 Prd
st — st + st —st 2
k41" Sk -1 k41,041~ Sk+11-1
_l’_
4Ay
n—1
Si Si 27 7
k+1,0 " Skl

We refer to this case as “Upstream” in FRy.For temporal
evolution, we solve Eq.36) with a sufficient stability condi-
tion as mentioned earlier.

First let us define a set of parameters for the explicit solu-
tion (Egs.56 and57). We usex;,, = 20000 m,x; = 7000 m,
bo=500myg=2myr 1 A=1x10%yr1pas n=3,

p =910kgnT3, andg = 9.81 ms 2 as well as a spatial res-
olution of Ax = 200 m. The time-stepping stability parame-
terin Eq. B7) is cstap= 0.165.

We start our numerical solutions with an initial condition
of zero ice. We assume that the continuum solution should
evolve toward the single steady-state solution which we have
found exactly. The results of our numerical computations for
the M2 scheme, the MUSCL superbee scheme, and the up-
stream scheme are displayed in Figin comparison with
a result computed with Eqs5§) and 67). We plot numeri-
cal results in 1000 yr intervals for a 50 000 yr evolution of the
models. The MUSCL superbee scheme (blue lines inig.
converges towards the steady-state solution (orange line in

5A Python version of the 1-D code is included in the Supple-

scheme and to showcase our exact solution as a benchmankent.

The Cryosphere, 7, 229240, 2013
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800 50000 years evolution ‘ Table 1. Relative volume errors, R = (Vhumerical—
—  MUSCL superbee Vexacd/ Vexact- 100, for our schemes, the M2 scheme,
700 — Upstream | and the upstream scheme for different spatial resolutions.
— M2 Vexact= 4.546878x 10°m? in the 2-D case described in Set.
600V — bed 1 with results plotted in Fig3.
Egs. (56) and (57)

Ax  REyg  REQ MUSCL REg M2 REyo|

T minmod superbee upstream
e 1000m —9.956 % —7.588% 116.912% —10.553%
300l 500m —6.428% —5.075% 132.095% —6.533%

250m —4.145% —3.401% 139.384 % 42.520 %

200 200m —3.689% —3.092% 140.830 % 67.124%

125m —-2.975% —2.579% 142.997 % 99.487 %

50000 years evolution

500

— MUSCL superbee

— M2
Fig. 3. Comparison of the “MUSCL superbee” scheme (blue lines) 5| — bed
with a classical “M2” scheme (red lines), an upstream scheme = initial S

(green lines), and a solution computed with Eds6) (and 67)
(orange line). For all numerical schemes, solutions are plotted at
1000 yr intervals for a 50 000 yr evolution.

460

z[m]

440}

Fig. 3), whereas the classical M2 scheme and the upstream
scheme fail to do so and create a large amount of spurious 45|
mass.

We compare volume estimates between the model outputs Az
and the explicit solution. Integrating the steady-state solution 40¢ ;——=——15 55 55 S0 55 40
results in a target 2-D volume of239371x 10° m2. After x [km]

5(_) 000yr of evolution, the “MUSCIZ‘ superbee”_ scheme endsFig. 4. Comparison of the “MUSCL superbee” (blue lines), with
with a volume of 4399017x 10°m?, or a relative error of  ; djacsical “M2” scheme (red lines) for the mass conservation prob-
—3.092%. The classical M2 scheme leads to a volume Ofiem described in Sec8. The initial surface is displayed as a ma-
10.93219x 10°m?, or a relative error of 140.830 % and the genta line. For both numerical schemes, solutions are plotted at
upstream scheme to a volume c586381x 10° m® or arel- 1000 yr intervals for a 50 000 yr evolution.
ative error of 67.124 %. Convergence of the MUSCL scheme
with both flux limiters as well as the M2 scheme and the up-
stream scheme for differedtx towards the explicit solution  played in Fig.4. We monitor the changes in ice volume,
is demonstrated in Tablke Note that the relative error of the which should be zero as = 0. After 50 000 yr, the solutions
M2 scheme is increasing with decreasiftg. The upstream  with the MUSCL superbee scheme (blue lines in HEigas
scheme displays a quite different behaviour. As long as thevell as the MUSCL minmod scheme (not shown) conserve
horizontal resolutionAx, is sufficiently larger than half the mass whereas the M2 scheme has a relative volume error of
vertical bedrock step heighbp, the upstream scheme per- —9.5% in comparison with the initial volume. The earlier
forms reasonably well in the benchmark, even though not aglescribed modification, Eq17), to the M2 scheme has not
well as either of the MUSCL schemes. As soomas< bo/2  been applied in this comparison, which demonstrated that
the relative volume error of the upstream scheme increasesoth of our schemes have no mass conservation difficulties
dramatically and the scheme fails the benchmark (cf. Ta-in this test as well. Thus a correction step as described in
ble 1). Therefore we limit the remaining comparisons be- Eq. (17) is not required when using our schemes.
tween numerical schemes in the manuscript to the M2 and
MUSCL schemes. 7.2 Bueler C benchmark

The mass conservation problem in the projection step
scheme, described in Se@f.has been tested with our new The Bueler C benchmarkB(eler et al. 2009 is an ideal
scheme as well. We create a setup similar to the one distest case to compare finite difference discretization schemes
played in Fig.2a, with as spatial resolution afx =200m  with a time evolving exact solution. In this benchmark,
and let it evolve for 50 000 yr witln = 0. The result is dis- a time evolving mass balance is given to the flow code to

www.the-cryosphere.net/7/229/2013/ The Cryosphere, 7, 22810, 2013
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800 —— —

ra) @@ MUSCL minmod

- @@ MUSCL superbee H
p

@@ M2

makes the MUSCL scheme perform worse in comparison to
the M2 scheme.

N
o
S

8 Conclusions

After revisiting a well-known mass conservation problem of
finite difference models for glacier flow in mountainous re-
gions, we have identified another complication which arises
with very steep topography. In that case, several widely-used
numerical schemes will extract excess mass from cells with
thin ice cover, and subsequently add mass to these cells again
to avoid negative ice thicknesses, thereby violating mass con-
servation.

To overcome both problems, we propose using a second-
order flux-limiting spatial discretization for the diffusion
term in the standard shallow ice equation. In this contribution
we have investigated the applicability of a MUSCL scheme
with two different flux limiters, the minmod and the super-
bee.

As a benchmark to evaluate the performance of the
MUSCL scheme in comparison to M2 and upstream schemes
in such steep topographies, we have derived an exact solu-
tion to ice flow over a bedrock step for a given mass balance
forcing. Using this newly derived exact solution in combina-
tion with the well-established exact solutionsBifeler et al.
(2005, we find the MUSCL scheme in combination with the
superbee flux limiter a very suitable spatial discretization for
mountain glacier flow models, which has no difficulties with
the abovementioned mass conservation issues.

Our newly developed exact solution for ice flow over
a bedrock step adds another exact solution-based benchmark
to the existing onesBueler et al.2005 2007, against which
Fig. 5. Results of the Bueler C benchmark (cf. S&c®) forincreas-  numerical ice flow models should be evaluated. If shallow ice
ing spatial resolution on a log-log scale. The maximum error in theflow models are to be applied in mountainous regions with
whole domaingmax, is displayed in(@), and(b) shows the central  complex topography, we anticipate that our proposed scheme
dome height erro¢gome and benchmark will help significantly to improve and evalu-
ate such models.

200

Max absolute errors [m]

100

50 4 L R I T | |
100

=y

— T — T
Fb) @@ MUSCL minmod
C @@ MUSCL superbee
L @@ M2

I ——

10

Dome absolute errors [m]
-

0.1

0.01 L I I I )
50000 25000 12500 6250 3125
Azlm]

grow an ice dome over 15208 yr (as required by the benchAppendix A

mark) after which the numerical solution is compared to

the exact one. We take error in central dome ice thicknessThe failure of M2/M3 schemes in computing steady-states

edome=|hexacf0, 0) — hnum(0, 0)|, and maximum ice thick-

ness difference in the whole domaifmax = max(|hexact— With the exact solutions above in place, we can illustrate

hnuml), @s our performance measures. Fighidisplays the  further why M2 and M3 schemes can fail. Consider the

decrease irgome andemax With decreasing values afx for discretized steady-state shallow ice equation in one spatial

the same benchmark setup as displayed in Figs. 7 and 8 idimension, discretized using a finite difference scheme as

Bueler et al(2005. above. Using only one subscript label to indicate cells num-
In both cases we demonstrate that the MUSCL schemdered along the x-axis, we have

performs better than the M2 scheme for smaller grid sizesq =g, 1

(Ax < 6250 m) if the right flux limiter is chosen, i.e. the su- s S R g (A1)

perbee limiter (cf. Eq29). This is an anticipated result as Ax

the MUSCL scheme is second-order and thus more accuratt®r an ice-covered cell, where

than the M2 scheme, but it is surprising that an unfortunate

. L ) X 2 " Sk+1— Sk
choice of flux limiter, i.e. the minmod limiter (cf. E@8), 1= Dk+%—-

Ax (A2)
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Let g1 =0, so the cell boundary to the left of the cel=

2
1 is a domain boundary with no inflow, corresponding to
x = 0 in the continuum solutions above. Assuming that cellsT’

1,2,...,k areice covered, EqAQ) then shows that

k
Gt d =Zn'1ij, (A3)
=1

which is analogous to the statement that) = fy it (x")dx’
in the continuum problem above.

Suppose that there is a single ice mass betweer® and
the marginx = xn,, and that there is no ice far > xm. Let
the discrete margin position be the cell boundagy+ %
so thathy > 0 for k < km but iy =0 for k > km, and simi-
larly Gyl > 0 for k < km butqk+% =0 for k > km. Equa-
tion (A3) of course holds only fok < kp,. It can be shown
from the projection step (cf. EQ) that the margin location
km in steady-state is then given by the valuggfthat satis-
fies both of the following inequalities:

km+1

> njAx <0, (A4)
j=1

km
ijAx >0 and
=1

which are equivalent to the statement t!ﬁé‘t“ m(x)dx' =0

239

and on ice thickness downstream from the current cell,

Bi+hiia \" T2 [ he + bk — hyy1 — bpyr |7
2 Ax
hi+bx = hie1 —brga r B\
Ax - 2

"D b — hi1 — by
Ax

b — hx+1 — brya
Ax

= gmin(hk+1, bk, bry1). (A6)

Hence no non-negative solution fioy can be computed from
Eqg. A5) if

43 < gmin(hk+1, bk, bita).

In this situation, the assumption we have made in arriving at
Eq. (A5) must break down. In particular, the assumption of
a single connected ice mass in whigh> 0 for k < ky, must

fail for the discrete solution even if it holds for the contin-
uum problem, and the discrete solution will not approximate
the continuous solution. Again, this occurs because the flux
Gyl does not go to zero even as the ice thickngsm the

upstream cell does.

Supplementary material related to this article is

in the continuum formulation above; it is easy to show that available online at: http://www.the—qryosphere.net/7/229/
the margin location defined by these inequalities converge€013/tc-7-229-2013-supplement.zip

to the continuum solution ofé‘”‘nh(x’)dx’.
Given a discrete margin locatidty, ice thicknesseg;

for k < km can then be computed recursively, starting with

ice thickness just upstream of the margirt at kr,,. For each
k < km, we have flu><qk+% explicitly through Eq. A3). To
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take an example, consider a M2 discretization for diffusivity, ryng (FwF): P22443-N21. CGS was supported by a Canada
though the argument below can also be applied in slightlyresearch Chair and NSERC Discovery Grant 357193. This paper

modified form to a M3 discretization. Wity = hy + by, we
then have

h h n+2 (n—1)
F( rt k+l>

hic+bg — hgy1—brya
Ax

k
qk+% = ijAx.
Jj=1

2

hi+ bk — hiy1 — b1
Ax B

(A5)

This nonlinear equation must then be solved Agr given
ice thicknesgi;, 1 at the next grid cell downstream, as well
as the bed elevatiorig. andby.1. This procedure is started
with k = kp,, for which we havéi, 1 = 0.

Problems arise in this procedure if at some valué ofe
haveb; > hyy1 + bry1. This occurs when surface elevation
in the (k + 1)th cell is lower than bed elevation in theth
cell. If we also demand thdt; > 0, then one can show that
the expression on the left-hand side of E5) is bounded
below by a quantitymin that depends only on bed geometry
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