Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Volume 8, 2014

Volume 8, 2014

02 Jan 2014
| Highlight paper
Seabed topography beneath Larsen C Ice Shelf from seismic soundings
A. M. Brisbourne, A. M. Smith, E. C. King, K. W. Nicholls, P. R. Holland, and K. Makinson
The Cryosphere, 8, 1–13, https://doi.org/10.5194/tc-8-1-2014,https://doi.org/10.5194/tc-8-1-2014, 2014
03 Jan 2014
Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet
M. J. Siegert, N. Ross, H. Corr, B. Smith, T. Jordan, R. G. Bingham, F. Ferraccioli, D. M. Rippin, and A. Le Brocq
The Cryosphere, 8, 15–24, https://doi.org/10.5194/tc-8-15-2014,https://doi.org/10.5194/tc-8-15-2014, 2014
07 Jan 2014
A wavelet melt detection algorithm applied to enhanced-resolution scatterometer data over Antarctica (2000–2009)
N. Steiner and M. Tedesco
The Cryosphere, 8, 25–40, https://doi.org/10.5194/tc-8-25-2014,https://doi.org/10.5194/tc-8-25-2014, 2014
07 Jan 2014
Lidar snow cover studies on glaciers in the Ötztal Alps (Austria): comparison with snow depths calculated from GPR measurements
K. Helfricht, M. Kuhn, M. Keuschnig, and A. Heilig
The Cryosphere, 8, 41–57, https://doi.org/10.5194/tc-8-41-2014,https://doi.org/10.5194/tc-8-41-2014, 2014
07 Jan 2014
Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change
B. Marzeion, A. H. Jarosch, and J. M. Gregory
The Cryosphere, 8, 59–71, https://doi.org/10.5194/tc-8-59-2014,https://doi.org/10.5194/tc-8-59-2014, 2014
10 Jan 2014
A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data
F. Hüsler, T. Jonas, M. Riffler, J. P. Musial, and S. Wunderle
The Cryosphere, 8, 73–90, https://doi.org/10.5194/tc-8-73-2014,https://doi.org/10.5194/tc-8-73-2014, 2014
13 Jan 2014
Impact of physical properties and accumulation rate on pore close-off in layered firn
S. A. Gregory, M. R. Albert, and I. Baker
The Cryosphere, 8, 91–105, https://doi.org/10.5194/tc-8-91-2014,https://doi.org/10.5194/tc-8-91-2014, 2014
14 Jan 2014
A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland
A. A. W. Fitzpatrick, A. L. Hubbard, J. E. Box, D. J. Quincey, D. van As, A. P. B. Mikkelsen, S. H. Doyle, C. F. Dow, B. Hasholt, and G. A. Jones
The Cryosphere, 8, 107–121, https://doi.org/10.5194/tc-8-107-2014,https://doi.org/10.5194/tc-8-107-2014, 2014
17 Jan 2014
Corrigendum to "Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet" published in The Cryosphere, 8, 15–24, 2014
M. J. Siegert, N. Ross, H. Corr, B. Smith, T. Jordan, R. G. Bingham, F. Ferraccioli, D. M. Rippin, and A. Le Brocq
The Cryosphere, 8, 123–123, https://doi.org/10.5194/tc-8-123-2014,https://doi.org/10.5194/tc-8-123-2014, 2014
22 Jan 2014
Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica
J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard
The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014,https://doi.org/10.5194/tc-8-125-2014, 2014
24 Jan 2014
A double continuum hydrological model for glacier applications
B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback
The Cryosphere, 8, 137–153, https://doi.org/10.5194/tc-8-137-2014,https://doi.org/10.5194/tc-8-137-2014, 2014
28 Jan 2014
Monitoring water accumulation in a glacier using magnetic resonance imaging
A. Legchenko, C. Vincent, J. M. Baltassat, J. F. Girard, E. Thibert, O. Gagliardini, M. Descloitres, A. Gilbert, S. Garambois, A. Chevalier, and H. Guyard
The Cryosphere, 8, 155–166, https://doi.org/10.5194/tc-8-155-2014,https://doi.org/10.5194/tc-8-155-2014, 2014
30 Jan 2014
Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis
C. M. Surdu, C. R. Duguay, L. C. Brown, and D. Fernández Prieto
The Cryosphere, 8, 167–180, https://doi.org/10.5194/tc-8-167-2014,https://doi.org/10.5194/tc-8-167-2014, 2014
30 Jan 2014
Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet
T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz
The Cryosphere, 8, 181–194, https://doi.org/10.5194/tc-8-181-2014,https://doi.org/10.5194/tc-8-181-2014, 2014
30 Jan 2014
Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet
T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz
The Cryosphere, 8, 195–208, https://doi.org/10.5194/tc-8-195-2014,https://doi.org/10.5194/tc-8-195-2014, 2014
03 Feb 2014
| Highlight paper
Brief Communication: Further summer speedup of Jakobshavn Isbræ
I. Joughin, B. E. Smith, D. E. Shean, and D. Floricioiu
The Cryosphere, 8, 209–214, https://doi.org/10.5194/tc-8-209-2014,https://doi.org/10.5194/tc-8-209-2014, 2014
06 Feb 2014
Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images
C. J. Legleiter, M. Tedesco, L. C. Smith, A. E. Behar, and B. T. Overstreet
The Cryosphere, 8, 215–228, https://doi.org/10.5194/tc-8-215-2014,https://doi.org/10.5194/tc-8-215-2014, 2014
14 Feb 2014
Sea-ice extent and its trend provide limited metrics of model performance
D. Notz
The Cryosphere, 8, 229–243, https://doi.org/10.5194/tc-8-229-2014,https://doi.org/10.5194/tc-8-229-2014, 2014
17 Feb 2014
Diffusive equilibration of N2, O2 and CO2 mixing ratios in a 1.5-million-years-old ice core
B. Bereiter, H. Fischer, J. Schwander, and T. F. Stocker
The Cryosphere, 8, 245–256, https://doi.org/10.5194/tc-8-245-2014,https://doi.org/10.5194/tc-8-245-2014, 2014
20 Feb 2014
Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model
N. Wever, C. Fierz, C. Mitterer, H. Hirashima, and M. Lehning
The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014,https://doi.org/10.5194/tc-8-257-2014, 2014
20 Feb 2014
Atmosphere–ice forcing in the transpolar drift stream: results from the DAMOCLES ice-buoy campaigns 2007–2009
M. Haller, B. Brümmer, and G. Müller
The Cryosphere, 8, 275–288, https://doi.org/10.5194/tc-8-275-2014,https://doi.org/10.5194/tc-8-275-2014, 2014
25 Feb 2014
Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas
H. Pang, S. Hou, S. Kaspari, and P. A. Mayewski
The Cryosphere, 8, 289–301, https://doi.org/10.5194/tc-8-289-2014,https://doi.org/10.5194/tc-8-289-2014, 2014
27 Feb 2014
Cyclone impact on sea ice in the central Arctic Ocean: a statistical study
A. Kriegsmann and B. Brümmer
The Cryosphere, 8, 303–317, https://doi.org/10.5194/tc-8-303-2014,https://doi.org/10.5194/tc-8-303-2014, 2014
28 Feb 2014
Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties
A. C. Adolph and M. R. Albert
The Cryosphere, 8, 319–328, https://doi.org/10.5194/tc-8-319-2014,https://doi.org/10.5194/tc-8-319-2014, 2014
03 Mar 2014
What drives basin scale spatial variability of snowpack properties in northern Colorado?
G. A. Sexstone and S. R. Fassnacht
The Cryosphere, 8, 329–344, https://doi.org/10.5194/tc-8-329-2014,https://doi.org/10.5194/tc-8-329-2014, 2014
03 Mar 2014
A range correction for ICESat and its potential impact on ice-sheet mass balance studies
A. A. Borsa, G. Moholdt, H. A. Fricker, and K. M. Brunt
The Cryosphere, 8, 345–357, https://doi.org/10.5194/tc-8-345-2014,https://doi.org/10.5194/tc-8-345-2014, 2014
03 Mar 2014
Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru
M. N. Hanshaw and B. Bookhagen
The Cryosphere, 8, 359–376, https://doi.org/10.5194/tc-8-359-2014,https://doi.org/10.5194/tc-8-359-2014, 2014
07 Mar 2014
Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan
M. Juen, C. Mayer, A. Lambrecht, H. Han, and S. Liu
The Cryosphere, 8, 377–386, https://doi.org/10.5194/tc-8-377-2014,https://doi.org/10.5194/tc-8-377-2014, 2014
11 Mar 2014
Limitations of using a thermal imager for snow pit temperatures
M. Schirmer and B. Jamieson
The Cryosphere, 8, 387–394, https://doi.org/10.5194/tc-8-387-2014,https://doi.org/10.5194/tc-8-387-2014, 2014
13 Mar 2014
Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model
V. Vionnet, E. Martin, V. Masson, G. Guyomarc'h, F. Naaim-Bouvet, A. Prokop, Y. Durand, and C. Lac
The Cryosphere, 8, 395–415, https://doi.org/10.5194/tc-8-395-2014,https://doi.org/10.5194/tc-8-395-2014, 2014
17 Mar 2014
Implementation and evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA-Crocus detailed snowpack model
C. M. Carmagnola, S. Morin, M. Lafaysse, F. Domine, B. Lesaffre, Y. Lejeune, G. Picard, and L. Arnaud
The Cryosphere, 8, 417–437, https://doi.org/10.5194/tc-8-417-2014,https://doi.org/10.5194/tc-8-417-2014, 2014
18 Mar 2014
Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations
M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch
The Cryosphere, 8, 439–451, https://doi.org/10.5194/tc-8-439-2014,https://doi.org/10.5194/tc-8-439-2014, 2014
18 Mar 2014
Decadal trends in the Antarctic sea ice extent ultimately controlled by ice–ocean feedback
H. Goosse and V. Zunz
The Cryosphere, 8, 453–470, https://doi.org/10.5194/tc-8-453-2014,https://doi.org/10.5194/tc-8-453-2014, 2014
19 Mar 2014
Homogenisation of a gridded snow water equivalent climatology for Alpine terrain: methodology and applications
S. Jörg-Hess, F. Fundel, T. Jonas, and M. Zappa
The Cryosphere, 8, 471–485, https://doi.org/10.5194/tc-8-471-2014,https://doi.org/10.5194/tc-8-471-2014, 2014
24 Mar 2014
Evaluation of the snow regime in dynamic vegetation land surface models using field measurements
E. Kantzas, S. Quegan, M. Lomas, and E. Zakharova
The Cryosphere, 8, 487–502, https://doi.org/10.5194/tc-8-487-2014,https://doi.org/10.5194/tc-8-487-2014, 2014
25 Mar 2014
A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada
C. Kienholz, J. L. Rich, A. A. Arendt, and R. Hock
The Cryosphere, 8, 503–519, https://doi.org/10.5194/tc-8-503-2014,https://doi.org/10.5194/tc-8-503-2014, 2014
27 Mar 2014
Modeling bulk density and snow water equivalent using daily snow depth observations
J. L. McCreight and E. E. Small
The Cryosphere, 8, 521–536, https://doi.org/10.5194/tc-8-521-2014,https://doi.org/10.5194/tc-8-521-2014, 2014
27 Mar 2014
Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia
L. Karlstrom, A. Zok, and M. Manga
The Cryosphere, 8, 537–546, https://doi.org/10.5194/tc-8-537-2014,https://doi.org/10.5194/tc-8-537-2014, 2014
03 Apr 2014
Influence of snow depth distribution on surface roughness in alpine terrain: a multi-scale approach
J. Veitinger, B. Sovilla, and R. S. Purves
The Cryosphere, 8, 547–569, https://doi.org/10.5194/tc-8-547-2014,https://doi.org/10.5194/tc-8-547-2014, 2014
03 Apr 2014
Brief Communication: On the magnitude and frequency of Khurdopin glacier surge events
D. J. Quincey and A. Luckman
The Cryosphere, 8, 571–574, https://doi.org/10.5194/tc-8-571-2014,https://doi.org/10.5194/tc-8-571-2014, 2014
07 Apr 2014
Vital role of daily temperature variability in surface mass balance parameterizations of the Greenland Ice Sheet
I. Rogozhina and D. Rau
The Cryosphere, 8, 575–585, https://doi.org/10.5194/tc-8-575-2014,https://doi.org/10.5194/tc-8-575-2014, 2014
08 Apr 2014
| Highlight paper
Fracture-induced softening for large-scale ice dynamics
T. Albrecht and A. Levermann
The Cryosphere, 8, 587–605, https://doi.org/10.5194/tc-8-587-2014,https://doi.org/10.5194/tc-8-587-2014, 2014
10 Apr 2014
Influence of anisotropy on velocity and age distribution at Scharffenbergbotnen blue ice area
T. Zwinger, M. Schäfer, C. Martín, and J. C. Moore
The Cryosphere, 8, 607–621, https://doi.org/10.5194/tc-8-607-2014,https://doi.org/10.5194/tc-8-607-2014, 2014
11 Apr 2014
Surge dynamics in the Nathorstbreen glacier system, Svalbard
M. Sund, T. R. Lauknes, and T. Eiken
The Cryosphere, 8, 623–638, https://doi.org/10.5194/tc-8-623-2014,https://doi.org/10.5194/tc-8-623-2014, 2014
14 Apr 2014
| Highlight paper
Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations
M. P. Lüthi
The Cryosphere, 8, 639–650, https://doi.org/10.5194/tc-8-639-2014,https://doi.org/10.5194/tc-8-639-2014, 2014
14 Apr 2014
Soil erosion and organic carbon export by wet snow avalanches
O. Korup and C. Rixen
The Cryosphere, 8, 651–658, https://doi.org/10.5194/tc-8-651-2014,https://doi.org/10.5194/tc-8-651-2014, 2014
15 Apr 2014
A data set of worldwide glacier length fluctuations
P. W. Leclercq, J. Oerlemans, H. J. Basagic, I. Bushueva, A. J. Cook, and R. Le Bris
The Cryosphere, 8, 659–672, https://doi.org/10.5194/tc-8-659-2014,https://doi.org/10.5194/tc-8-659-2014, 2014
15 Apr 2014
Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models
T. Flament, E. Berthier, and F. Rémy
The Cryosphere, 8, 673–687, https://doi.org/10.5194/tc-8-673-2014,https://doi.org/10.5194/tc-8-673-2014, 2014
17 Apr 2014
Modeling near-surface firn temperature in a cold accumulation zone (Col du Dôme, French Alps): from a physical to a semi-parameterized approach
A. Gilbert, C. Vincent, D. Six, P. Wagnon, L. Piard, and P. Ginot
The Cryosphere, 8, 689–703, https://doi.org/10.5194/tc-8-689-2014,https://doi.org/10.5194/tc-8-689-2014, 2014
22 Apr 2014
Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends
M. Zygmuntowska, P. Rampal, N. Ivanova, and L. H. Smedsrud
The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014,https://doi.org/10.5194/tc-8-705-2014, 2014
24 Apr 2014
Adjoint accuracy for the full Stokes ice flow model: limits to the transmission of basal friction variability to the surface
N. Martin and J. Monnier
The Cryosphere, 8, 721–741, https://doi.org/10.5194/tc-8-721-2014,https://doi.org/10.5194/tc-8-721-2014, 2014
28 Apr 2014
Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014,https://doi.org/10.5194/tc-8-743-2014, 2014
29 Apr 2014
Sea ice and the ocean mixed layer over the Antarctic shelf seas
A. A. Petty, P. R. Holland, and D. L. Feltham
The Cryosphere, 8, 761–783, https://doi.org/10.5194/tc-8-761-2014,https://doi.org/10.5194/tc-8-761-2014, 2014
30 Apr 2014
Snow density climatology across the former USSR
X. Zhong, T. Zhang, and K. Wang
The Cryosphere, 8, 785–799, https://doi.org/10.5194/tc-8-785-2014,https://doi.org/10.5194/tc-8-785-2014, 2014
30 Apr 2014
Drifting snow measurements on the Greenland Ice Sheet and their application for model evaluation
J. T. M. Lenaerts, C. J. P. P. Smeets, K. Nishimura, M. Eijkelboom, W. Boot, M. R. van den Broeke, and W. J. van de Berg
The Cryosphere, 8, 801–814, https://doi.org/10.5194/tc-8-801-2014,https://doi.org/10.5194/tc-8-801-2014, 2014
05 May 2014
Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska
L. Liu, K. Schaefer, A. Gusmeroli, G. Grosse, B. M. Jones, T. Zhang, A. D. Parsekian, and H. A. Zebker
The Cryosphere, 8, 815–826, https://doi.org/10.5194/tc-8-815-2014,https://doi.org/10.5194/tc-8-815-2014, 2014
06 May 2014
| Highlight paper
Modelling environmental influences on calving at Helheim Glacier in eastern Greenland
S. Cook, I. C. Rutt, T. Murray, A. Luckman, T. Zwinger, N. Selmes, A. Goldsack, and T. D. James
The Cryosphere, 8, 827–841, https://doi.org/10.5194/tc-8-827-2014,https://doi.org/10.5194/tc-8-827-2014, 2014
07 May 2014
High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica
E. Y. Osipov, T. V. Khodzher, L. P. Golobokova, N. A. Onischuk, V. Y. Lipenkov, A. A. Ekaykin, Y. A. Shibaev, and O. P. Osipova
The Cryosphere, 8, 843–851, https://doi.org/10.5194/tc-8-843-2014,https://doi.org/10.5194/tc-8-843-2014, 2014
12 May 2014
Parameterization of atmosphere–surface exchange of CO2 over sea ice
L. L. Sørensen, B. Jensen, R. N. Glud, D. F. McGinnis, M. K. Sejr, J. Sievers, D. H. Søgaard, J.-L. Tison, and S. Rysgaard
The Cryosphere, 8, 853–866, https://doi.org/10.5194/tc-8-853-2014,https://doi.org/10.5194/tc-8-853-2014, 2014
13 May 2014
Transition of flow regime along a marine-terminating outlet glacier in East Antarctica
D. Callens, K. Matsuoka, D. Steinhage, B. Smith, E. Witrant, and F. Pattyn
The Cryosphere, 8, 867–875, https://doi.org/10.5194/tc-8-867-2014,https://doi.org/10.5194/tc-8-867-2014, 2014
15 May 2014
Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability
J. R. Cochran, S. S. Jacobs, K. J. Tinto, and R. E. Bell
The Cryosphere, 8, 877–889, https://doi.org/10.5194/tc-8-877-2014,https://doi.org/10.5194/tc-8-877-2014, 2014
16 May 2014
The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: a model study
S. Willmes, M. Nicolaus, and C. Haas
The Cryosphere, 8, 891–904, https://doi.org/10.5194/tc-8-891-2014,https://doi.org/10.5194/tc-8-891-2014, 2014
16 May 2014
Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions – Part 1: Product description
L. Brucker, E. P. Dinnat, and L. S. Koenig
The Cryosphere, 8, 905–913, https://doi.org/10.5194/tc-8-905-2014,https://doi.org/10.5194/tc-8-905-2014, 2014
16 May 2014
Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions – Part 2: Initial product analysis
L. Brucker, E. P. Dinnat, and L. S. Koenig
The Cryosphere, 8, 915–930, https://doi.org/10.5194/tc-8-915-2014,https://doi.org/10.5194/tc-8-915-2014, 2014
19 May 2014
Spatial–temporal dynamics of chemical composition of surface snow in East Antarctica along the Progress station–Vostok station transect
T. V. Khodzher, L. P. Golobokova, E. Yu. Osipov, Yu. A. Shibaev, V. Ya. Lipenkov, O. P. Osipova, and J. R. Petit
The Cryosphere, 8, 931–939, https://doi.org/10.5194/tc-8-931-2014,https://doi.org/10.5194/tc-8-931-2014, 2014
22 May 2014
Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region
A. J. Wiltshire
The Cryosphere, 8, 941–958, https://doi.org/10.5194/tc-8-941-2014,https://doi.org/10.5194/tc-8-941-2014, 2014
22 May 2014
Oscillatory subglacial drainage in the absence of surface melt
C. Schoof, C. A Rada, N. J. Wilson, G. E. Flowers, and M. Haseloff
The Cryosphere, 8, 959–976, https://doi.org/10.5194/tc-8-959-2014,https://doi.org/10.5194/tc-8-959-2014, 2014
23 May 2014
Glacier changes in the Karakoram region mapped by multimission satellite imagery
M. Rankl, C. Kienholz, and M. Braun
The Cryosphere, 8, 977–989, https://doi.org/10.5194/tc-8-977-2014,https://doi.org/10.5194/tc-8-977-2014, 2014
26 May 2014
Brief communication: Light-absorbing impurities can reduce the density of melting snow
O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta
The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014,https://doi.org/10.5194/tc-8-991-2014, 2014
27 May 2014
SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification
X. Tian-Kunze, L. Kaleschke, N. Maaß, M. Mäkynen, N. Serra, M. Drusch, and T. Krumpen
The Cryosphere, 8, 997–1018, https://doi.org/10.5194/tc-8-997-2014,https://doi.org/10.5194/tc-8-997-2014, 2014
03 Jun 2014
Physical controls on the storage of methane in landfast sea ice
J. Zhou, J.-L. Tison, G. Carnat, N.-X. Geilfus, and B. Delille
The Cryosphere, 8, 1019–1029, https://doi.org/10.5194/tc-8-1019-2014,https://doi.org/10.5194/tc-8-1019-2014, 2014
11 Jun 2014
| Highlight paper
The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice
D. Price, W. Rack, P. J. Langhorne, C. Haas, G. Leonard, and K. Barnsdale
The Cryosphere, 8, 1031–1039, https://doi.org/10.5194/tc-8-1031-2014,https://doi.org/10.5194/tc-8-1031-2014, 2014
11 Jun 2014
Surface kinematics of periglacial sorted circles using structure-from-motion technology
A. Kääb, L. Girod, and I. Berthling
The Cryosphere, 8, 1041–1056, https://doi.org/10.5194/tc-8-1041-2014,https://doi.org/10.5194/tc-8-1041-2014, 2014
18 Jun 2014
Modelling the response of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries
Y. Gong, S. L. Cornford, and A. J. Payne
The Cryosphere, 8, 1057–1068, https://doi.org/10.5194/tc-8-1057-2014,https://doi.org/10.5194/tc-8-1057-2014, 2014
23 Jun 2014
Albedo over rough snow and ice surfaces
S. Lhermitte, J. Abermann, and C. Kinnard
The Cryosphere, 8, 1069–1086, https://doi.org/10.5194/tc-8-1069-2014,https://doi.org/10.5194/tc-8-1069-2014, 2014
23 Jun 2014
The effect of climate forcing on numerical simulations of the Cordilleran ice sheet at the Last Glacial Maximum
J. Seguinot, C. Khroulev, I. Rogozhina, A. P. Stroeven, and Q. Zhang
The Cryosphere, 8, 1087–1103, https://doi.org/10.5194/tc-8-1087-2014,https://doi.org/10.5194/tc-8-1087-2014, 2014
24 Jun 2014
Influence of meter-scale wind-formed features on the variability of the microwave brightness temperature around Dome C in Antarctica
G. Picard, A. Royer, L. Arnaud, and M. Fily
The Cryosphere, 8, 1105–1119, https://doi.org/10.5194/tc-8-1105-2014,https://doi.org/10.5194/tc-8-1105-2014, 2014
27 Jun 2014
How old is the ice beneath Dome A, Antarctica?
B. Sun, J. C. Moore, T. Zwinger, L. Zhao, D. Steinhage, X. Tang, D. Zhang, X. Cui, and C. Martín
The Cryosphere, 8, 1121–1128, https://doi.org/10.5194/tc-8-1121-2014,https://doi.org/10.5194/tc-8-1121-2014, 2014
01 Jul 2014
Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores
M. Montagnat, N. Azuma, D. Dahl-Jensen, J. Eichler, S. Fujita, F. Gillet-Chaulet, S. Kipfstuhl, D. Samyn, A. Svensson, and I. Weikusat
The Cryosphere, 8, 1129–1138, https://doi.org/10.5194/tc-8-1129-2014,https://doi.org/10.5194/tc-8-1129-2014, 2014
03 Jul 2014
Measuring the specific surface area of wet snow using 1310 nm reflectance
J.-C. Gallet, F. Domine, and M. Dumont
The Cryosphere, 8, 1139–1148, https://doi.org/10.5194/tc-8-1139-2014,https://doi.org/10.5194/tc-8-1139-2014, 2014
04 Jul 2014
High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet
N. S. Arnold, A. F. Banwell, and I. C. Willis
The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014,https://doi.org/10.5194/tc-8-1149-2014, 2014
04 Jul 2014
MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords
B. Hudson, I. Overeem, D. McGrath, J. P. M. Syvitski, A. Mikkelsen, and B. Hasholt
The Cryosphere, 8, 1161–1176, https://doi.org/10.5194/tc-8-1161-2014,https://doi.org/10.5194/tc-8-1161-2014, 2014
11 Jul 2014
Thermokarst lake waters across the permafrost zones of western Siberia
R. M. Manasypov, O. S. Pokrovsky, S. N. Kirpotin, and L. S. Shirokova
The Cryosphere, 8, 1177–1193, https://doi.org/10.5194/tc-8-1177-2014,https://doi.org/10.5194/tc-8-1177-2014, 2014
11 Jul 2014
| Highlight paper
Modeled Arctic sea ice evolution through 2300 in CMIP5 extended RCPs
P. J. Hezel, T. Fichefet, and F. Massonnet
The Cryosphere, 8, 1195–1204, https://doi.org/10.5194/tc-8-1195-2014,https://doi.org/10.5194/tc-8-1195-2014, 2014
14 Jul 2014
The growth of sublimation crystals and surface hoar on the Antarctic plateau
J.-C. Gallet, F. Domine, J. Savarino, M. Dumont, and E. Brun
The Cryosphere, 8, 1205–1215, https://doi.org/10.5194/tc-8-1205-2014,https://doi.org/10.5194/tc-8-1205-2014, 2014
15 Jul 2014
An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting
N. T. Kurtz, N. Galin, and M. Studinger
The Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014,https://doi.org/10.5194/tc-8-1217-2014, 2014
18 Jul 2014
Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model
G. R. Leguy, X. S. Asay-Davis, and W. H. Lipscomb
The Cryosphere, 8, 1239–1259, https://doi.org/10.5194/tc-8-1239-2014,https://doi.org/10.5194/tc-8-1239-2014, 2014
18 Jul 2014
| Highlight paper
A high-resolution bedrock map for the Antarctic Peninsula
M. Huss and D. Farinotti
The Cryosphere, 8, 1261–1273, https://doi.org/10.5194/tc-8-1261-2014,https://doi.org/10.5194/tc-8-1261-2014, 2014
22 Jul 2014
Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS)
P. Vallelonga, K. Christianson, R. B. Alley, S. Anandakrishnan, J. E. M. Christian, D. Dahl-Jensen, V. Gkinis, C. Holme, R. W. Jacobel, N. B. Karlsson, B. A. Keisling, S. Kipfstuhl, H. A. Kjær, M. E. L. Kristensen, A. Muto, L. E. Peters, T. Popp, K. L. Riverman, A. M. Svensson, C. Tibuleac, B. M. Vinther, Y. Weng, and M. Winstrup
The Cryosphere, 8, 1275–1287, https://doi.org/10.5194/tc-8-1275-2014,https://doi.org/10.5194/tc-8-1275-2014, 2014
22 Jul 2014
| Highlight paper
A spurious jump in the satellite record: has Antarctic sea ice expansion been overestimated?
I. Eisenman, W. N. Meier, and J. R. Norris
The Cryosphere, 8, 1289–1296, https://doi.org/10.5194/tc-8-1289-2014,https://doi.org/10.5194/tc-8-1289-2014, 2014
22 Jul 2014
Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery
S. Thakuri, F. Salerno, C. Smiraglia, T. Bolch, C. D'Agata, G. Viviano, and G. Tartari
The Cryosphere, 8, 1297–1315, https://doi.org/10.5194/tc-8-1297-2014,https://doi.org/10.5194/tc-8-1297-2014, 2014
23 Jul 2014
Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model
D. R. Rounce and D. C. McKinney
The Cryosphere, 8, 1317–1329, https://doi.org/10.5194/tc-8-1317-2014,https://doi.org/10.5194/tc-8-1317-2014, 2014
24 Jul 2014
Two independent methods for mapping the grounding line of an outlet glacier – an example from the Astrolabe Glacier, Terre Adélie, Antarctica
E. Le Meur, M. Sacchettini, S. Garambois, E. Berthier, A. S. Drouet, G. Durand, D. Young, J. S. Greenbaum, J. W. Holt, D. D. Blankenship, E. Rignot, J. Mouginot, Y. Gim, D. Kirchner, B. de Fleurian, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 8, 1331–1346, https://doi.org/10.5194/tc-8-1331-2014,https://doi.org/10.5194/tc-8-1331-2014, 2014
30 Jul 2014
Modelling the evolution of the Antarctic ice sheet since the last interglacial
M. N. A. Maris, B. de Boer, S. R. M. Ligtenberg, M. Crucifix, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 8, 1347–1360, https://doi.org/10.5194/tc-8-1347-2014,https://doi.org/10.5194/tc-8-1347-2014, 2014
31 Jul 2014
Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica
H. Fréville, E. Brun, G. Picard, N. Tatarinova, L. Arnaud, C. Lanconelli, C. Reijmer, and M. van den Broeke
The Cryosphere, 8, 1361–1373, https://doi.org/10.5194/tc-8-1361-2014,https://doi.org/10.5194/tc-8-1361-2014, 2014
31 Jul 2014
Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014,https://doi.org/10.5194/tc-8-1375-2014, 2014
04 Aug 2014
Importance of basal processes in simulations of a surging Svalbard outlet glacier
R. Gladstone, M. Schäfer, T. Zwinger, Y. Gong, T. Strozzi, R. Mottram, F. Boberg, and J. C. Moore
The Cryosphere, 8, 1393–1405, https://doi.org/10.5194/tc-8-1393-2014,https://doi.org/10.5194/tc-8-1393-2014, 2014
05 Aug 2014
The influence of edge effects on crack propagation in snow stability tests
E. H. Bair, R. Simenhois, A. van Herwijnen, and K. Birkeland
The Cryosphere, 8, 1407–1418, https://doi.org/10.5194/tc-8-1407-2014,https://doi.org/10.5194/tc-8-1407-2014, 2014
05 Aug 2014
The importance of insolation changes for paleo ice sheet modeling
A. Robinson and H. Goelzer
The Cryosphere, 8, 1419–1428, https://doi.org/10.5194/tc-8-1419-2014,https://doi.org/10.5194/tc-8-1419-2014, 2014
05 Aug 2014
Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach
E. Collier, L. I. Nicholson, B. W. Brock, F. Maussion, R. Essery, and A. B. G. Bush
The Cryosphere, 8, 1429–1444, https://doi.org/10.5194/tc-8-1429-2014,https://doi.org/10.5194/tc-8-1429-2014, 2014
06 Aug 2014
Recent ice dynamic and surface mass balance of Union Glacier in the West Antarctic Ice Sheet
A. Rivera, R. Zamora, J. A. Uribe, R. Jaña, and J. Oberreuter
The Cryosphere, 8, 1445–1456, https://doi.org/10.5194/tc-8-1445-2014,https://doi.org/10.5194/tc-8-1445-2014, 2014
08 Aug 2014
| Highlight paper
Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers
N. Chauché, A. Hubbard, J.-C. Gascard, J. E. Box, R. Bates, M. Koppes, A. Sole, P. Christoffersen, and H. Patton
The Cryosphere, 8, 1457–1468, https://doi.org/10.5194/tc-8-1457-2014,https://doi.org/10.5194/tc-8-1457-2014, 2014
08 Aug 2014
Temporal dynamics of ikaite in experimental sea ice
S. Rysgaard, F. Wang, R. J. Galley, R. Grimm, D. Notz, M. Lemes, N.-X. Geilfus, A. Chaulk, A. A. Hare, O. Crabeck, B. G. T. Else, K. Campbell, L. L. Sørensen, J. Sievers, and T. Papakyriakou
The Cryosphere, 8, 1469–1478, https://doi.org/10.5194/tc-8-1469-2014,https://doi.org/10.5194/tc-8-1469-2014, 2014
14 Aug 2014
A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers
P. Ginot, M. Dumont, S. Lim, N. Patris, J.-D. Taupin, P. Wagnon, A. Gilbert, Y. Arnaud, A. Marinoni, P. Bonasoni, and P. Laj
The Cryosphere, 8, 1479–1496, https://doi.org/10.5194/tc-8-1479-2014,https://doi.org/10.5194/tc-8-1479-2014, 2014
18 Aug 2014
Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age
S. A. Khan, K. K. Kjeldsen, K. H. Kjær, S. Bevan, A. Luckman, A. Aschwanden, A. A. Bjørk, N. J. Korsgaard, J. E. Box, M. van den Broeke, T. M. van Dam, and A. Fitzner
The Cryosphere, 8, 1497–1507, https://doi.org/10.5194/tc-8-1497-2014,https://doi.org/10.5194/tc-8-1497-2014, 2014
19 Aug 2014
The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets
I. M. Howat, A. Negrete, and B. E. Smith
The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014,https://doi.org/10.5194/tc-8-1509-2014, 2014
20 Aug 2014
Surface energy budget on Larsen and Wilkins ice shelves in the Antarctic Peninsula: results based on reanalyses in 1989–2010
I. Välisuo, T. Vihma, and J. C. King
The Cryosphere, 8, 1519–1538, https://doi.org/10.5194/tc-8-1519-2014,https://doi.org/10.5194/tc-8-1519-2014, 2014
20 Aug 2014
| Highlight paper
Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2
V. Helm, A. Humbert, and H. Miller
The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014,https://doi.org/10.5194/tc-8-1539-2014, 2014
21 Aug 2014
Dynamic response of Antarctic ice shelves to bedrock uncertainty
S. Sun, S. L. Cornford, Y. Liu, and J. C. Moore
The Cryosphere, 8, 1561–1576, https://doi.org/10.5194/tc-8-1561-2014,https://doi.org/10.5194/tc-8-1561-2014, 2014
22 Aug 2014
How much snow falls on the Antarctic ice sheet?
C. Palerme, J. E. Kay, C. Genthon, T. L'Ecuyer, N. B. Wood, and C. Claud
The Cryosphere, 8, 1577–1587, https://doi.org/10.5194/tc-8-1577-2014,https://doi.org/10.5194/tc-8-1577-2014, 2014
28 Aug 2014
Sensitivity of lake ice regimes to climate change in the Nordic region
S. Gebre, T. Boissy, and K. Alfredsen
The Cryosphere, 8, 1589–1605, https://doi.org/10.5194/tc-8-1589-2014,https://doi.org/10.5194/tc-8-1589-2014, 2014
28 Aug 2014
Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation
R. Ricker, S. Hendricks, V. Helm, H. Skourup, and M. Davidson
The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014,https://doi.org/10.5194/tc-8-1607-2014, 2014
28 Aug 2014
Corrigendum to "Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica" published in The Cryosphere, 8, 1361–1373, 2014
H. Fréville, E. Brun, G. Picard, N. Tatarinova, L. Arnaud, C. Lanconelli, C. Reijmer, and M. van den Broeke
The Cryosphere, 8, 1623–1623, https://doi.org/10.5194/tc-8-1623-2014,https://doi.org/10.5194/tc-8-1623-2014, 2014
03 Sep 2014
The effect of snow/sea ice type on the response of albedo and light penetration depth (e-folding depth) to increasing black carbon
A. A. Marks and M. D. King
The Cryosphere, 8, 1625–1638, https://doi.org/10.5194/tc-8-1625-2014,https://doi.org/10.5194/tc-8-1625-2014, 2014
05 Sep 2014
A sea ice concentration estimation algorithm utilizing radiometer and SAR data
J. Karvonen
The Cryosphere, 8, 1639–1650, https://doi.org/10.5194/tc-8-1639-2014,https://doi.org/10.5194/tc-8-1639-2014, 2014
09 Sep 2014
Healing of snow surface-to-surface contacts by isothermal sintering
E. A. Podolskiy, M. Barbero, F. Barpi, G. Chambon, M. Borri-Brunetto, O. Pallara, B. Frigo, B. Chiaia, and M. Naaim
The Cryosphere, 8, 1651–1659, https://doi.org/10.5194/tc-8-1651-2014,https://doi.org/10.5194/tc-8-1651-2014, 2014
12 Sep 2014
Changes in Imja Tsho in the Mount Everest region of Nepal
M. A. Somos-Valenzuela, D. C. McKinney, D. R. Rounce, and A. C. Byers
The Cryosphere, 8, 1661–1671, https://doi.org/10.5194/tc-8-1661-2014,https://doi.org/10.5194/tc-8-1661-2014, 2014
15 Sep 2014
Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020–2050 and 2070–2100 periods
H. Castebrunet, N. Eckert, G. Giraud, Y. Durand, and S. Morin
The Cryosphere, 8, 1673–1697, https://doi.org/10.5194/tc-8-1673-2014,https://doi.org/10.5194/tc-8-1673-2014, 2014
17 Sep 2014
| Highlight paper
Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years
H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour, M. Schodlok, and A. Khazendar
The Cryosphere, 8, 1699–1710, https://doi.org/10.5194/tc-8-1699-2014,https://doi.org/10.5194/tc-8-1699-2014, 2014
17 Sep 2014
Present and future variations in Antarctic firn air content
S. R. M. Ligtenberg, P. Kuipers Munneke, and M. R. van den Broeke
The Cryosphere, 8, 1711–1723, https://doi.org/10.5194/tc-8-1711-2014,https://doi.org/10.5194/tc-8-1711-2014, 2014
17 Sep 2014
Time-evolving mass loss of the Greenland Ice Sheet from satellite altimetry
R. T. W. L. Hurkmans, J. L. Bamber, C. H. Davis, I. R. Joughin, K. S. Khvorostovsky, B. S. Smith, and N. Schoen
The Cryosphere, 8, 1725–1740, https://doi.org/10.5194/tc-8-1725-2014,https://doi.org/10.5194/tc-8-1725-2014, 2014
19 Sep 2014
| Highlight paper
The length of the world's glaciers – a new approach for the global calculation of center lines
H. Machguth and M. Huss
The Cryosphere, 8, 1741–1755, https://doi.org/10.5194/tc-8-1741-2014,https://doi.org/10.5194/tc-8-1741-2014, 2014
25 Sep 2014
Brief Communication: Trends in sea ice extent north of Svalbard and its impact on cold air outbreaks as observed in spring 2013
A. Tetzlaff, C. Lüpkes, G. Birnbaum, J. Hartmann, T. Nygård, and T. Vihma
The Cryosphere, 8, 1757–1762, https://doi.org/10.5194/tc-8-1757-2014,https://doi.org/10.5194/tc-8-1757-2014, 2014
25 Sep 2014
Insights into ice stream dynamics through modelling their response to tidal forcing
S. H. R. Rosier, G. H. Gudmundsson, and J. A. M. Green
The Cryosphere, 8, 1763–1775, https://doi.org/10.5194/tc-8-1763-2014,https://doi.org/10.5194/tc-8-1763-2014, 2014
26 Sep 2014
| Highlight paper
The effect of changing sea ice on the physical vulnerability of Arctic coasts
K. R. Barnhart, I. Overeem, and R. S. Anderson
The Cryosphere, 8, 1777–1799, https://doi.org/10.5194/tc-8-1777-2014,https://doi.org/10.5194/tc-8-1777-2014, 2014
01 Oct 2014
The impact of ice layers on gas transport through firn at the North Greenland Eemian Ice Drilling (NEEM) site, Greenland
K. Keegan, M. R. Albert, and I. Baker
The Cryosphere, 8, 1801–1806, https://doi.org/10.5194/tc-8-1801-2014,https://doi.org/10.5194/tc-8-1801-2014, 2014
08 Oct 2014
Surface velocity and mass balance of Livingston Island ice cap, Antarctica
B. Osmanoglu, F. J. Navarro, R. Hock, M. Braun, and M. I. Corcuera
The Cryosphere, 8, 1807–1823, https://doi.org/10.5194/tc-8-1807-2014,https://doi.org/10.5194/tc-8-1807-2014, 2014
09 Oct 2014
Influence of stress, temperature and crystal morphology on isothermal densification and specific surface area decrease of new snow
S. Schleef, H. Löwe, and M. Schneebeli
The Cryosphere, 8, 1825–1838, https://doi.org/10.5194/tc-8-1825-2014,https://doi.org/10.5194/tc-8-1825-2014, 2014
10 Oct 2014
Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness
J. Stroeve, A. Barrett, M. Serreze, and A. Schweiger
The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014,https://doi.org/10.5194/tc-8-1839-2014, 2014
16 Oct 2014
Representativeness and seasonality of major ion records derived from NEEM firn cores
G. Gfeller, H. Fischer, M. Bigler, S. Schüpbach, D. Leuenberger, and O. Mini
The Cryosphere, 8, 1855–1870, https://doi.org/10.5194/tc-8-1855-2014,https://doi.org/10.5194/tc-8-1855-2014, 2014
20 Oct 2014
Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR
B. Noël, X. Fettweis, W. J. van de Berg, M. R. van den Broeke, and M. Erpicum
The Cryosphere, 8, 1871–1883, https://doi.org/10.5194/tc-8-1871-2014,https://doi.org/10.5194/tc-8-1871-2014, 2014
20 Oct 2014
Glacier area and length changes in Norway from repeat inventories
S. H. Winsvold, L. M. Andreassen, and C. Kienholz
The Cryosphere, 8, 1885–1903, https://doi.org/10.5194/tc-8-1885-2014,https://doi.org/10.5194/tc-8-1885-2014, 2014
22 Oct 2014
Blowing snow in coastal Adélie Land, Antarctica: three atmospheric-moisture issues
H. Barral, C. Genthon, A. Trouvilliez, C. Brun, and C. Amory
The Cryosphere, 8, 1905–1919, https://doi.org/10.5194/tc-8-1905-2014,https://doi.org/10.5194/tc-8-1905-2014, 2014
22 Oct 2014
Using daily air temperature thresholds to evaluate snow melting occurrence and amount on Alpine glaciers by T-index models: the case study of the Forni Glacier (Italy)
A. Senese, M. Maugeri, E. Vuillermoz, C. Smiraglia, and G. Diolaiuti
The Cryosphere, 8, 1921–1933, https://doi.org/10.5194/tc-8-1921-2014,https://doi.org/10.5194/tc-8-1921-2014, 2014
23 Oct 2014
Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0)
S. Karra, S. L. Painter, and P. C. Lichtner
The Cryosphere, 8, 1935–1950, https://doi.org/10.5194/tc-8-1935-2014,https://doi.org/10.5194/tc-8-1935-2014, 2014
27 Oct 2014
Assessment of heat sources on the control of fast flow of Vestfonna ice cap, Svalbard
M. Schäfer, F. Gillet-Chaulet, R. Gladstone, R. Pettersson, V. A. Pohjola, T. Strozzi, and T. Zwinger
The Cryosphere, 8, 1951–1973, https://doi.org/10.5194/tc-8-1951-2014,https://doi.org/10.5194/tc-8-1951-2014, 2014
27 Oct 2014
1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model
X. V. Phan, L. Ferro-Famil, M. Gay, Y. Durand, M. Dumont, S. Morin, S. Allain, G. D'Urso, and A. Girard
The Cryosphere, 8, 1975–1987, https://doi.org/10.5194/tc-8-1975-2014,https://doi.org/10.5194/tc-8-1975-2014, 2014
28 Oct 2014
Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence
J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano
The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014,https://doi.org/10.5194/tc-8-1989-2014, 2014
05 Nov 2014
Modeling the elastic transmission of tidal stresses to great distances inland in channelized ice streams
J. Thompson, M. Simons, and V. C. Tsai
The Cryosphere, 8, 2007–2029, https://doi.org/10.5194/tc-8-2007-2014,https://doi.org/10.5194/tc-8-2007-2014, 2014
05 Nov 2014
Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata Sermia, 1859–present
J. M. Lea, D. W. F. Mair, F. M. Nick, B. R. Rea, D. van As, M. Morlighem, P. W. Nienow, and A. Weidick
The Cryosphere, 8, 2031–2045, https://doi.org/10.5194/tc-8-2031-2014,https://doi.org/10.5194/tc-8-2031-2014, 2014
05 Nov 2014
Glacier-like forms on Mars
B. Hubbard, C. Souness, and S. Brough
The Cryosphere, 8, 2047–2061, https://doi.org/10.5194/tc-8-2047-2014,https://doi.org/10.5194/tc-8-2047-2014, 2014
Short summary
14 Nov 2014
A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover
K. Gisnås, S. Westermann, T. V. Schuler, T. Litherland, K. Isaksen, J. Boike, and B. Etzelmüller
The Cryosphere, 8, 2063–2074, https://doi.org/10.5194/tc-8-2063-2014,https://doi.org/10.5194/tc-8-2063-2014, 2014
17 Nov 2014
Hydrostatic grounding line parameterization in ice sheet models
H. Seroussi, M. Morlighem, E. Larour, E. Rignot, and A. Khazendar
The Cryosphere, 8, 2075–2087, https://doi.org/10.5194/tc-8-2075-2014,https://doi.org/10.5194/tc-8-2075-2014, 2014
20 Nov 2014
Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012
A. C. Bliss and M. R. Anderson
The Cryosphere, 8, 2089–2100, https://doi.org/10.5194/tc-8-2089-2014,https://doi.org/10.5194/tc-8-2089-2014, 2014
Short summary
20 Nov 2014
Combining damage and fracture mechanics to model calving
J. Krug, J. Weiss, O. Gagliardini, and G. Durand
The Cryosphere, 8, 2101–2117, https://doi.org/10.5194/tc-8-2101-2014,https://doi.org/10.5194/tc-8-2101-2014, 2014
24 Nov 2014
Sensitivity of the Weddell Sea sector ice streams to sub-shelf melting and surface accumulation
A. P. Wright, A. M. Le Brocq, S. L. Cornford, R. G. Bingham, H. F. J. Corr, F. Ferraccioli, T. A. Jordan, A. J. Payne, D. M. Rippin, N. Ross, and M. J. Siegert
The Cryosphere, 8, 2119–2134, https://doi.org/10.5194/tc-8-2119-2014,https://doi.org/10.5194/tc-8-2119-2014, 2014
24 Nov 2014
| Highlight paper
Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats
T. A. Scambos, E. Berthier, T. Haran, C. A. Shuman, A. J. Cook, S. R. M. Ligtenberg, and J. Bohlander
The Cryosphere, 8, 2135–2145, https://doi.org/10.5194/tc-8-2135-2014,https://doi.org/10.5194/tc-8-2135-2014, 2014
Short summary
25 Nov 2014
First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR – Part 1: In situ observations
R. K. Scharien, J. Landy, and D. G. Barber
The Cryosphere, 8, 2147–2162, https://doi.org/10.5194/tc-8-2147-2014,https://doi.org/10.5194/tc-8-2147-2014, 2014
25 Nov 2014
First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR – Part 2: Scaling in situ to Radarsat-2
R. K. Scharien, K. Hochheim, J. Landy, and D. G. Barber
The Cryosphere, 8, 2163–2176, https://doi.org/10.5194/tc-8-2163-2014,https://doi.org/10.5194/tc-8-2163-2014, 2014
27 Nov 2014
A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections
Y. Zhang, I. Olthof, R. Fraser, and S. A. Wolfe
The Cryosphere, 8, 2177–2194, https://doi.org/10.5194/tc-8-2177-2014,https://doi.org/10.5194/tc-8-2177-2014, 2014
27 Nov 2014
Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements
M. F. Azam, P. Wagnon, C. Vincent, AL. Ramanathan, V. Favier, A. Mandal, and J. G. Pottakkal
The Cryosphere, 8, 2195–2217, https://doi.org/10.5194/tc-8-2195-2014,https://doi.org/10.5194/tc-8-2195-2014, 2014
Short summary
28 Nov 2014
Seasonal cycle and long-term trend of solar energy fluxes through Arctic sea ice
S. Arndt and M. Nicolaus
The Cryosphere, 8, 2219–2233, https://doi.org/10.5194/tc-8-2219-2014,https://doi.org/10.5194/tc-8-2219-2014, 2014
02 Dec 2014
Post-LIA glacier changes along a latitudinal transect in the Central Italian Alps
R. Scotti, F. Brardinoni, and G. B. Crosta
The Cryosphere, 8, 2235–2252, https://doi.org/10.5194/tc-8-2235-2014,https://doi.org/10.5194/tc-8-2235-2014, 2014
Short summary
03 Dec 2014
Corrigendum to "A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections" published in The Cryosphere, 8, 2177–2194, 2014
Y. Zhang, I. Olthof, R. Fraser, and S. A. Wolfe
The Cryosphere, 8, 2253–2253, https://doi.org/10.5194/tc-8-2253-2014,https://doi.org/10.5194/tc-8-2253-2014, 2014
05 Dec 2014
Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy
N. Calonne, F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat
The Cryosphere, 8, 2255–2274, https://doi.org/10.5194/tc-8-2255-2014,https://doi.org/10.5194/tc-8-2255-2014, 2014
10 Dec 2014
Glacier topography and elevation changes derived from Pléiades sub-meter stereo images
E. Berthier, C. Vincent, E. Magnússon, Á. Þ. Gunnlaugsson, P. Pitte, E. Le Meur, M. Masiokas, L. Ruiz, F. Pálsson, J. M. C. Belart, and P. Wagnon
The Cryosphere, 8, 2275–2291, https://doi.org/10.5194/tc-8-2275-2014,https://doi.org/10.5194/tc-8-2275-2014, 2014
Short summary
11 Dec 2014
Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013)
P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke
The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014,https://doi.org/10.5194/tc-8-2293-2014, 2014
12 Dec 2014
| Highlight paper
Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014,https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
15 Dec 2014
Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet System Model)
E. Larour, J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morlighem, E. Rignot, N. Schlegel, and A. Khazendar
The Cryosphere, 8, 2335–2351, https://doi.org/10.5194/tc-8-2335-2014,https://doi.org/10.5194/tc-8-2335-2014, 2014
Short summary
16 Dec 2014
Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland
J. Todd and P. Christoffersen
The Cryosphere, 8, 2353–2365, https://doi.org/10.5194/tc-8-2353-2014,https://doi.org/10.5194/tc-8-2353-2014, 2014
Short summary
16 Dec 2014
Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography
M. Shahgedanova, G. Nosenko, S. Kutuzov, O. Rototaeva, and T. Khromova
The Cryosphere, 8, 2367–2379, https://doi.org/10.5194/tc-8-2367-2014,https://doi.org/10.5194/tc-8-2367-2014, 2014
Short summary
20 Dec 2014
Elevation dependency of mountain snow depth
T. Grünewald, Y. Bühler, and M. Lehning
The Cryosphere, 8, 2381–2394, https://doi.org/10.5194/tc-8-2381-2014,https://doi.org/10.5194/tc-8-2381-2014, 2014
Short summary
20 Dec 2014
Sea ice pCO2 dynamics and air–ice CO2 fluxes during the Sea Ice Mass Balance in the Antarctic (SIMBA) experiment – Bellingshausen Sea, Antarctica
N.-X. Geilfus, J.-L. Tison, S. F. Ackley, R. J. Galley, S. Rysgaard, L. A. Miller, and B. Delille
The Cryosphere, 8, 2395–2407, https://doi.org/10.5194/tc-8-2395-2014,https://doi.org/10.5194/tc-8-2395-2014, 2014
Short summary
23 Dec 2014
Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea
U. Löptien and L. Axell
The Cryosphere, 8, 2409–2418, https://doi.org/10.5194/tc-8-2409-2014,https://doi.org/10.5194/tc-8-2409-2014, 2014
Short summary
CC BY 4.0