Evaluating path diversity in the Internet: from an AS-level to a PoP-level granularity

Evaluation de la diversité de chemins sur Internet: d'une granularité au niveau des AS à une vision au niveau des points de présence

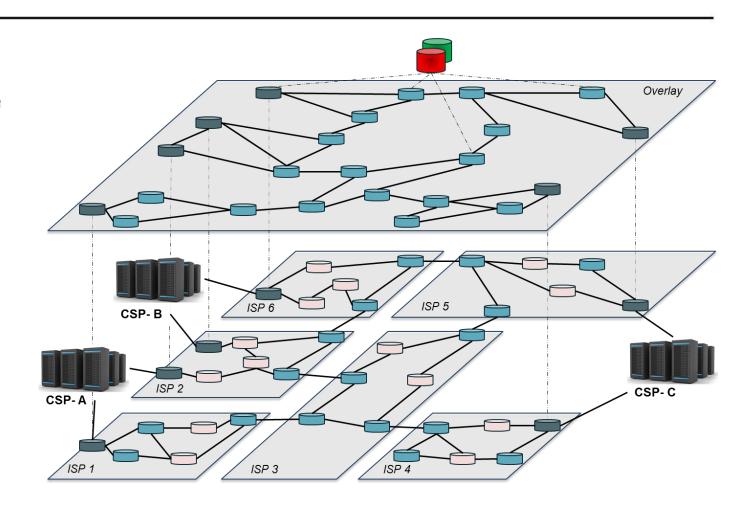
A.Fressancourt, C. Pelsser, M. Gagnaire

Journées non thématiques RESCOM

12-01-2016

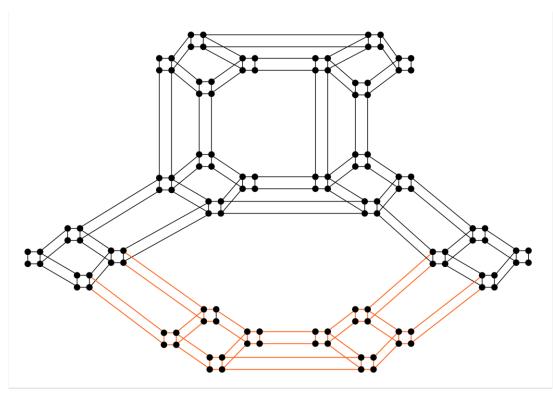
•••••

Context



The Kumori architecture

- Architecture aiming at enhancing the resiliency of inter-DC communication
- Use of overlay of nodes located at IXPs
- Resiliency by routing around failure through IXP nodes



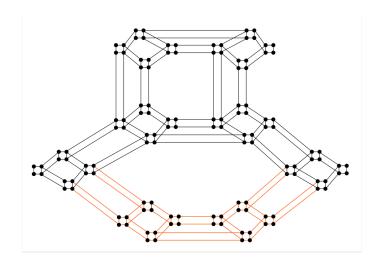
Initial evaluation of the Kumori architecture

► Goal:

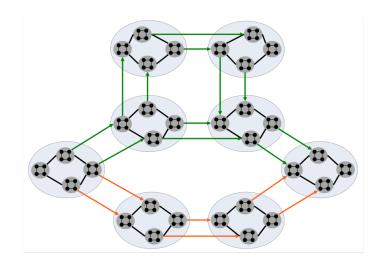
- Comparison with RON (Andersen et al., Resilient Overlay Networks, SOSP 2001)
- Evaluation of path diversity and path length
- ▶ iPlane measurement dataset
 - → Router-level measurements of latency and packet loss on paths
 - Traceroutes between multiple vantage points in the Internet
- Undirected graph built
 - → But the Internet is a directed graph

Madhyastha, Isdal et al., iPlane: An Information Plane for Distributed Services, OSDI 2006, November 2006

Building a PoP-level model of the Internet



Goal


Build a realistic graph model of the Internet at PoP level

Build a directed graph to render the client-provider relationships in the Internet

Locate IXPs in the topology

Share the topology with the research community

Data sources used

iPlane dataset:

- Madhyastha, Isdal et al., iPlane: An Information Plane for Distributed Services, OSDI 2006, November 2006
- Latency and packet loss measurements between routers
- → Inter router, inter-PoP, inter AS links measurements, IP addresses of routers

CAIDA topology variant:

- Sobrinho, Vanbever et al., Distributed Route Aggregation on the Global Network, ACM CoNEXT 2014, December 2014
- Client Provider hierarchy between AS
- → Inter-AS link characterization

PeeringDB:

- http://www.peeringdb.com
- Provides information on IXP membership
- → IXP IP addresses range, IXP membership

The iPlane dataset

- Dataset characteristics
 - Summary of traceroutes done between the 13th of June and the 14th of July
 - We identified:
 - 417 638 routers
 - 7 687 300 directed edges between those routers

- Some errors
 - The « AS 3303 » issue
 - AS 3303 → Swisscom
 - Roughly 8% of the routers in iPlane → mistake
 - AS / router association from accurate data (iPlane's corrected association + Hurricane Electric)
 - Some AS-prefix associations were unclear → Use of Hurricane Electric's data on those specific prefixes

Step 1: Extracting relevant data from our sources

▶ Goal:

Build easily exploitable data structures for the next steps

Work done:

- Fix IP prefixes / AS matching relationship using Hurricane Electric's data
- Build the router / AS association dictionary
- Derive edges between routers
- Using data provided by PeeringDB, associate routers with IXPs, and retrieve AS membership from router's presence at IXPs
- → Data mixing iPlane and PeeringDB about relationship between routers
- → Incomplete information on router's presence at each IXP.

Step 2: Inferring router IXP membership

Goal:

- Associate routers with IXPs
- Build missing inter-AS links at IXP according to *Anatomy of a Large* European IXP (Ager et al.)

Work done:

- First knowledge of router presence at IXP provided by PeeringDB
- We first look at routers which are linked with a router at an IXP and that belong to a missing member AS
- Then, for each IXP, we look at the missing Ases and we compare those AS' routers location with IXP locations using MaxMind's GeoIP database.
- → Enhanced router / IXP association dictionary
- → AS policy dictionary

Step 3: Building router clusters

Goal:

Reduce the size of the directed graph built from iPlane's view of the Internet

Work done:

- Clustering based on edge betweenness > Very lengthy computations
- We compared several methods to cluster routers together
 - Comparison with 2 ground truths: GEANT (30 PoPs) and Amazon (53 PoPs)
 - 2 algorithms give results that are close to the ground truth:
 - Infomap: Rosvall et al., Maps of information flow reveal community structure in complex networks, 2008
 - Walktrap: Pons et al., Computing communities in large networks using random walks, 2005

Result:

- 417 638 routers **→ 148823 PoPs**
- 7 687 300 directed edges > 1 040 740 directed edges

Step 4: Building a cluster-level directed graph

▶ Goal:

 Building a graph allowing us to evaluate path diversity between PoPs in the Internet

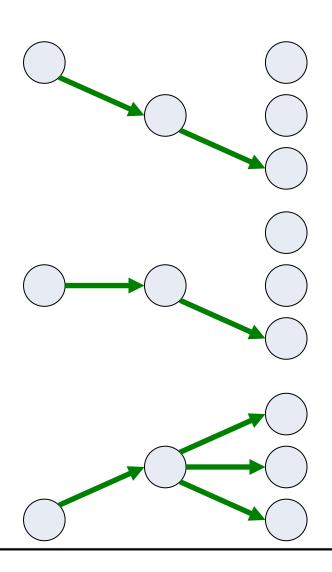

Work done:

We retrieved AS relationships from the DRAGON topology

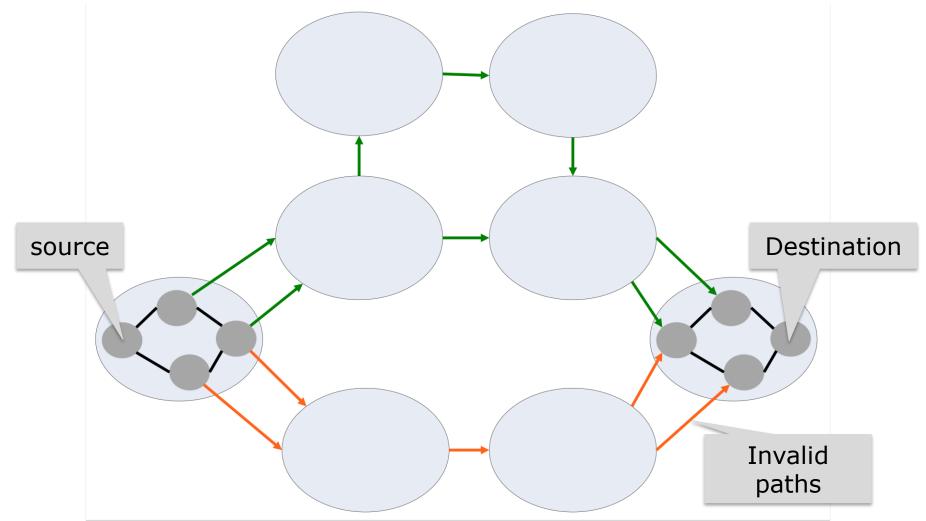
From the router links data file, we build inter-cluster directed links, and

associate them with mean latency.

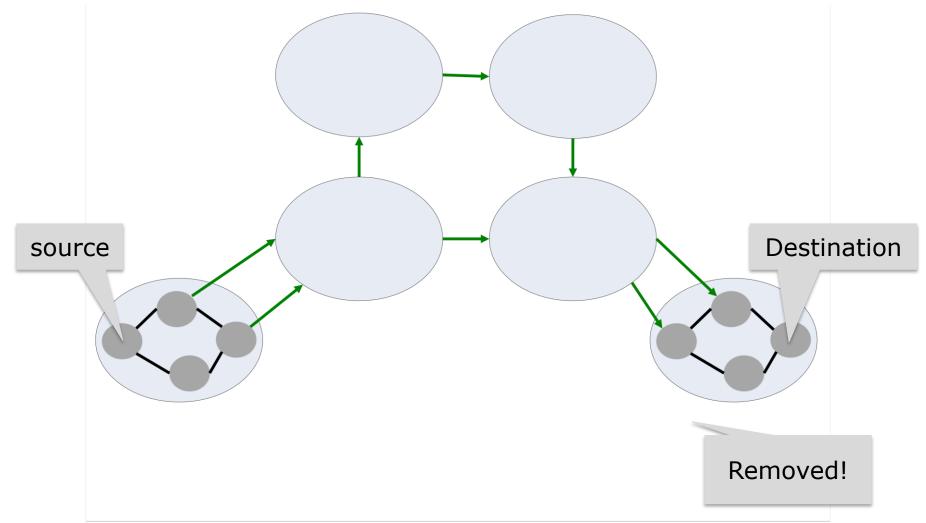
→ Cluster-level directed graph



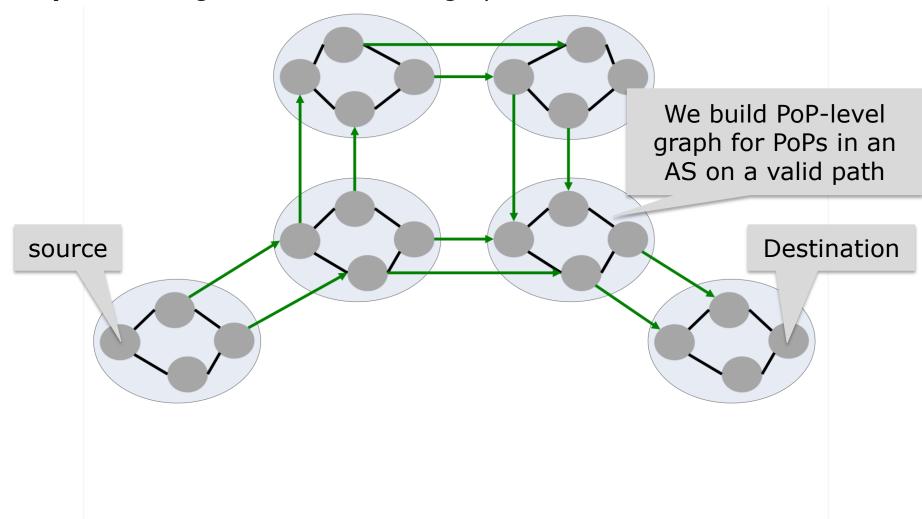
Customer / provider routing policy


- For a packet to go from one Autonomous System (AS) to another, the later AS has to announce his prefixes to the first AS
- ► Gao and Rexford → Basic prefix advertisment policy (sometimes inaccurate)
 - Customers announce their prefixes, and their customers' prefixes to their providers and peers.
 - Peers announce their prefixes and their customer's prefixes to one another.
 - Providers announce all the prefixes they know to their customer

Step 1: Evaluating AS-level path diversity for CSP cluster



Step 1: Evaluating AS-level path diversity for CSP PoPs



Step 2: Building PoP-level directed graph for valid ASes

Future works and studies

Future work and studies

iPlane dataset

- What have we done yet?
 - We have built a PoP-level topology representing the Internet based on three datasets:
 - iPlane
 - DRAGON Topology
 - PeeringDB
 - We have gathered information about router presence at IXPs to help us evaluate the Intercloud architecture
- We will follow the evaluation of the Kumori architecture

Thank you

Antoine Fressancourt

antoine.fressancourt@worldline.com antoine.fressancourt@telecom-paristech.fr

12-01-2016

