

Network Monitoring using MMT:

An application based on the User-Agent field in HTTP headers

Vinh Hoa LA [†]
Raul FUENTES [†]

PhD Student

Prof. Ana CAVALLI 11

Supervisor

¹ Telecom SudParis, IMT

^T Montimage France

IDOLE project

IDOLE:

- 3-year French project on "Investigation and Operated Detection in Large Scale"
- Passive tools of detection, high-speed correlation, and investigation after incidents.
- Started since late 2014

- **Motivation**
- **Network Monitoring**
 - Montimage Monitoring Tool (MMT)
- User-Agent field case study
 - Problem statement
 - Methodology
- **Experimental results**
- Discussions
- Conclusion & perspectives

Motivation

- Network monitoring by examining metadata
 - Metadata: data about data, an abstract (structural/descriptive) of data, a piece of data...
 - Example: A book ~ data

A library ~ data

The position of the book in the library (which room, which shelf) ~ metadata

- IMT's role in IDOLE project: Advanced monitoring techniques for detection and investigation using metadata.
- Why metadata?
 - Velocity
- First step: Monitoring using User- Agent Field in HTTP's headers?

Network Monitoring

- The range of Network Monitoring:
- Full Packet Capture: ←→→
 - Capture "everything" that goes across the network
 - Typically used on a single network
 - Example: PCAP
- Meta Data Capture: ←→→
 - Capture data associated with a particular network activity
 - Typically in the form of logs
 - Examples:
 - For email traffic capture: from, to, subject, date, attachments
 - For web traffic capture: Source IP, destination IP, URL, User Agent String
- NetFlow:
 - NetFlow aggregates related packets into unidirectional flows
 - The flow records are collected and stored for later analysis
 - Examples: SiLK, Argus

Network Monitoring Using MMT (Montimage Monitoring Tool)

MMT-Extract

- C library.
- Enable the extraction of wanted-attributes (protocol fields, application exchanged messages or logs...).

MMT-Sec

- Security rules written in XML referring to both expected and unexpected behaviors.

MMT-Operator

- Allow a customizable graphical user interface to display the result (still under development)

MMT is a DPI tool able to run in real time or with traces files.

Network Monitoring Using MMT (Montimage Monitoring Tool)

MMT's position to listen to live traffic

- **☐** What is "user agent field"?
- Statistical purposes
- The tracing of protocol violations
- Automated recognition of user agents for the sake of tailoring responses.
- ☐ Example of a HTTP header:


```
GET / HTTP/1.1
Accept: image/jpeg, application/x-ms-application, image/gif, application/xaml+xml, image/pjpeg, application/x-ms-xbap, application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, */*
Accept-Language: en-US
USER-AGENT: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; Infopath.3)
Accept-Encoding; gzip, deflate
Host: www.sans.edu
Connection: Keep-Alive
```

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/4.0;

SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center

PC 6.0; InfoPath.3)

Stored and Reflected XSS (cross-site scripting)

3)Web server stores user-agent strings

2) Hacker connects to the Web server.

Web Server

1) Hacker modifies the User-Agent with an evil script.

User-agent: Mozilla/5.0 → <script>alert('XSS Example');(</script><!—

4) Admin opens internet browser and views user agent section.

Web Server

5) Server returns the evil script to the admin. The script is executed by the admin's browser.

Stored XSS

Stored and Reflected XSS (cross-site scripting)

2) Malware on victim changes browser settings to use hacker proxy agent and user agent.

Reflected XSS

SQL injection via user agent field

Example 1

server

3) Database reads user agent data and executes SQL injection.

Web analytics collects user agent fields for marketing.

Example 2

1) Hacker modifies user agent to include an SQL query, ""

2) Server returns an SQL error in its response page.

User-Agent field case study: Methodology

Experiments with offline traffic:

- Input: PCAP files
- Ex1 (Tab.I): Rather small traffic.
 - PCAP files contain different malware traffic within normal one (214 036 HTTP GET packets).

	MMT	SNORT
Number of packets	214036	214036
Number of extractions	213978	213794
Packet loss rate	0.03%	0.11%
Number of detections	83209	585

Table I MMT AND SNORT IN CASE OF OFFLINE TRAFFIC

- The packet loss rate is calculated as follow: $packet_loss_rate = \frac{number_of_packets_lost}{number_of_packets_sent}$
- We noticed not only the deficiencies of SNORT in terms of detection but also a slight dominance of MMT regarding extraction issue.
- Reason: SNORT utilizes only rules identifying blacklisted User-Agent strings, in other words, only a signature-based technique. Therefore, SNORT is incapable against new abnormal behavior.

Experiments with offline traffic:

- Ex2 (Tab.II): Huge traffic
 - Input: a data-set consists of 80 files PCAP containing 83,850,638 packets with total volume of 39.2 GB.
 - Only read and extract
 - In the first five tests, we ran MMT, SNORT

 TCPDUMP IN READING PCAP FILES
 and TCPdump all alone (limited in maximum parallel programs that could consume
 CPU/RAM resource or network bandwidth)
 - In later five tests, we ran several applications at the same time.

MMT [s]	SNORT [s]	TCPdump [s]
807	1010	858
835	1004	862
743	1219	862
783	1006	860
720	1003	863
739	1005	2181
758	1143	2227
730	1283	2013
740	1307	2574
807	1212	2304
766.2	1119.2	1638.4
419	287	196
	807 835 743 783 720 739 758 730 740 807	807 1010 835 1004 743 1219 783 1006 720 1003 739 1005 758 1143 730 1283 740 1307 807 1212 766.2 1119.2

Table II

EXECUTION TIME AND PROCESSING RATE OF MMT, SNORT AND

Experiments with offline traffic:

• Ex2 (cont):

	MMT	SNORT	TCPdump
CPU usage	3.4%	4.5%	6%
Memory consumption	12.8%	13.3%	13%

Table III
AVERAGE RESOURCE CONSUMPTION OF MMT, SNORT AND TCPDUMP

Execution time of MMT, SNORT and TCPdump in function of traffic volume

Experiments with live traffic:

- Ex3 (Tab.IV): Automatically
 - A simple C application that enables reading normal/abnormal User-Agent strings prepared in a text file and passing the HTTP requests containing them to a web-server.

Test	SQL i	njection	Г	DoS	Rand	om UA	Known m	alicious UA
N^0	MMT [ms]	SNORT [ms]						
Test 1	0.901	_	0.735	_	0.868	_	0.776	0.920
Test 2	0.790	_	0.655	_	0.773	_	0.938	0.939
Test 3	0.700	-	0.555	_	0.704	_	0.881	0.942
Test 4	0.590	-	0.443	_	0.645	_	1.118	0.967
Test 5	0.482	-	0.192	_	0.988	_	1.116	_
Test 6	0.334	ı	0.109	_	0.934	_	1.117	0.927
Test 7	0.167	1	0.978	_	0.870	_	1.052	0.959
Test 8	1.002	-	0.874	_	1.109	_	0.851	0.989
Test 9	0.895	-	0.783	_	1.136	_	0.944	0.993
Test 10	0.810	ı	0.695	_	1.142	_	0.906	-
Average	0.667	-	0.602	_	0.917	_	0.970	0.955

DETECTION LATENCY OF MMT AND SNORT

Experiments with live traffic:

- Ex4 (Tab.V): Manually
 - Mozilla Firefox's Add-on named TAMPER DATA is used to edit manually the User-Agent field and thus, to generate malicious HTTP requests.

	MMT	SNORT
Number of extractions	212	212
Number of detections	40	8
False positive	0	0
False negative	0	32

Table V False positive and false negative of our solution and SNORT

MMT's strength:

- Heterogeneous intrusion detection approach
- High-speed extraction and real-time detection
- Attribute extraction and legal problems

MMT is more than a network security monitor:

 In the presented case study, we concentrate only on security issues. In practice, MMT can also monitor user activities and troubleshoot the network.

User	Service	Traffic volume (GB)	Percentage (%)
User 1	Finance	3.4	6
User 2	Human Resources	2.7	5
User 3	Marketing	5.8	11
User 4	IT	15.2	30
User 5 Engineering		14.5	28
User 6	Student Labs	8.6	17

MMT is an extensible and flexible monitoring tool:

- Applicable as a real-time automated detection of malicious User-Agent strings
- Applicable for large scale networks, not limited in security but even for other network issues.

Our detection approach covers two kinds of threats:

- attacks in which attackers modify intentionally the User-Agent field in order to perform their evil intention (e.g., SQL injection, Stored and Reflected XSS, and DoS)
- malicious traffic corresponding to suspicious threats (e.g., malware, botnets or virus) generated intentionally or unintentionally by infected users or proxies.

Margine 1 Conclusion & perspectives

- Detecting a malicious User-Agent string is NOT ENOUGH to determine a harmful user agent.
 - A good starting point of network traffic inspection.
 - The related IP address and/or domain, payload data sent and received by this host and other correlated hosts should be investigated.

Perspectives:

- Broaden our research over total HTTP headers including other field (e.g., cookies) as well as other network protocols (e.g., SMTP).
- Correlate different rules and extractions in order to detect more complicated intrusions or attacks (e.g., heart-bleed bug, botnets, etc.)

Thank you!

