ISSN: (Print) 2159-2535 (Online) Journal homepage: http://www.tandfonline.com/loi/kbim20 Highly p... more ISSN: (Print) 2159-2535 (Online) Journal homepage: http://www.tandfonline.com/loi/kbim20 Highly porous drug-eluting structures Jonathan J. Elsner, Amir Kraitzer, Orly Grinberg & Meital Zilberman To cite this article: Jonathan J. Elsner, Amir Kraitzer, Orly Grinberg & Meital Zilberman (2012) Highly porous drug-eluting structures, Biomatter, 2:4, 239-270, DOI: 10.4161/biom.22838 To link to this article: http://dx.doi.org/10.4161/biom.22838
Drug-eluting medical implants are actually active implants that induce healing effects, in additi... more Drug-eluting medical implants are actually active implants that induce healing effects, in addition to their regular task of support. This effect is achieved by controlled release of active pharmaceutical ingredients (API) into the surrounding tissue. In this chapter we focus on three types of drug-eluting devices: drug-eluting vascular stents, drug-eluting wound dressings and protein-eluting scaffolds for tissue regeneration, thus describing both internal and external implants. Each of these drug-eluting devices also presents an approach for solving the drug release issue. Most drug-eluting vascular stents are loaded with water-insoluble antiproliferative agents, and their diffusion from the device to the surrounding tissue is relatively slow. In contrast, most drug-eluting wound dressings are loaded with highly water-soluble antibacterial agents and the issue of fast release must therefore be addressed. Growth factor release from scaffolds for tissue regeneration offers a new approach of incorporating high-molecular-weight bioactive agents which are very sensitive to process conditions and preserve their activity during the preparation stage. The drug-eluting medical implants are described here in terms of matrix formats and polymers, incorporated drugs and their release profiles from the implants, and implant functioning. Basic elements, such as new composite core/shell fibers and structured films, can be used to build new antibiotic-eluting devices. As presented in this chapter, the effect of the processing parameters on the microstructure and the resulting drug release profiles, mechanical and physical properties, and other relevant properties, must be elucidated in order to achieve the desired properties. Newly developed implants and novel modifications of previously developed approaches have enhanced the tools available for creating clinically important biomedical applications.
Farnesylthiosalicylate (FTS) is a new specific nontoxic drug with a mild hydrophobic nature, whic... more Farnesylthiosalicylate (FTS) is a new specific nontoxic drug with a mild hydrophobic nature, which acts as a Ras antagonist and can therefore be used for stent applications as well as for local cancer treatment. FTS-loaded bioresorbable core/shell fiber structures were developed and studied in order to investigate the FTS release mechanism. These structures were composed of a polyglyconate core and a porous poly(d,l-lactic-glycolic acid) shell loaded with FTS, prepared using freeze drying of inverted emulsions. The effects of the emulsion's composition (formulation) and process kinetics on the FTS release from the coatings were studied with reference to the shell morphology and degradation profile. The FTS release profiles exhibited a burst effect accompanied by a release rate which decreased with time and lasted for 15-40 days. The process was found to affect the drug release profile via two routes: (1) Direct, through water uptake and swelling of the structure, leading to a FTS burst release. Degradation of the host polymer affects the FTS release rate at a later stage. (2) Indirect effect of the microstructure on the release profile, which occurs via an emulsion stability mechanism. The copolymer composition is the most important parameter affecting the release behavior in our system. Other parameters, including polymer content, O:A phase ratio and homogenization rate exhibited only minor effects on the FTS release profile. The controlled release of the new drug FTS is reported here for the first time.
Paclitaxel-eluting bioresorbable core/shell fiber structures for stent applications and local can... more Paclitaxel-eluting bioresorbable core/shell fiber structures for stent applications and local cancer treatment were developed and studied. These structures were composed of a polyglyconate core and a porous PDLGA shell loaded with the anti-proliferative agent paclitaxel, prepared using freeze drying of inverted emulsions. The investigation of these new composite fibers focused on the effects of the emulsion's composition (formulation) and process kinetics on the long-term drug release from the fibers, in light of the shell's morphology and degradation profile. Paclitaxel release from the porous shell was relatively slow due to its extremely hydrophobic nature. It exhibited three phases of release, which corresponded to the degradation profile of the host PDLGA. We found that the effect of the emulsion formulation on the release profile is more significant than the effect of the process kinetics. The copolymer composition had the most dominant effect on the drug release profile from the composite fibers. The polymer content also affected the release profile, whereas the drug content and the organic:aqueous phase ratio resulted in minor effects. Emulsions with a less hydrophobic nature are favorable for effective controlled release of the hydrophobic paclitaxel from the porous shell.
ISSN: (Print) 2159-2535 (Online) Journal homepage: http://www.tandfonline.com/loi/kbim20 Highly p... more ISSN: (Print) 2159-2535 (Online) Journal homepage: http://www.tandfonline.com/loi/kbim20 Highly porous drug-eluting structures Jonathan J. Elsner, Amir Kraitzer, Orly Grinberg & Meital Zilberman To cite this article: Jonathan J. Elsner, Amir Kraitzer, Orly Grinberg & Meital Zilberman (2012) Highly porous drug-eluting structures, Biomatter, 2:4, 239-270, DOI: 10.4161/biom.22838 To link to this article: http://dx.doi.org/10.4161/biom.22838
Drug-eluting medical implants are actually active implants that induce healing effects, in additi... more Drug-eluting medical implants are actually active implants that induce healing effects, in addition to their regular task of support. This effect is achieved by controlled release of active pharmaceutical ingredients (API) into the surrounding tissue. In this chapter we focus on three types of drug-eluting devices: drug-eluting vascular stents, drug-eluting wound dressings and protein-eluting scaffolds for tissue regeneration, thus describing both internal and external implants. Each of these drug-eluting devices also presents an approach for solving the drug release issue. Most drug-eluting vascular stents are loaded with water-insoluble antiproliferative agents, and their diffusion from the device to the surrounding tissue is relatively slow. In contrast, most drug-eluting wound dressings are loaded with highly water-soluble antibacterial agents and the issue of fast release must therefore be addressed. Growth factor release from scaffolds for tissue regeneration offers a new approach of incorporating high-molecular-weight bioactive agents which are very sensitive to process conditions and preserve their activity during the preparation stage. The drug-eluting medical implants are described here in terms of matrix formats and polymers, incorporated drugs and their release profiles from the implants, and implant functioning. Basic elements, such as new composite core/shell fibers and structured films, can be used to build new antibiotic-eluting devices. As presented in this chapter, the effect of the processing parameters on the microstructure and the resulting drug release profiles, mechanical and physical properties, and other relevant properties, must be elucidated in order to achieve the desired properties. Newly developed implants and novel modifications of previously developed approaches have enhanced the tools available for creating clinically important biomedical applications.
Farnesylthiosalicylate (FTS) is a new specific nontoxic drug with a mild hydrophobic nature, whic... more Farnesylthiosalicylate (FTS) is a new specific nontoxic drug with a mild hydrophobic nature, which acts as a Ras antagonist and can therefore be used for stent applications as well as for local cancer treatment. FTS-loaded bioresorbable core/shell fiber structures were developed and studied in order to investigate the FTS release mechanism. These structures were composed of a polyglyconate core and a porous poly(d,l-lactic-glycolic acid) shell loaded with FTS, prepared using freeze drying of inverted emulsions. The effects of the emulsion's composition (formulation) and process kinetics on the FTS release from the coatings were studied with reference to the shell morphology and degradation profile. The FTS release profiles exhibited a burst effect accompanied by a release rate which decreased with time and lasted for 15-40 days. The process was found to affect the drug release profile via two routes: (1) Direct, through water uptake and swelling of the structure, leading to a FTS burst release. Degradation of the host polymer affects the FTS release rate at a later stage. (2) Indirect effect of the microstructure on the release profile, which occurs via an emulsion stability mechanism. The copolymer composition is the most important parameter affecting the release behavior in our system. Other parameters, including polymer content, O:A phase ratio and homogenization rate exhibited only minor effects on the FTS release profile. The controlled release of the new drug FTS is reported here for the first time.
Paclitaxel-eluting bioresorbable core/shell fiber structures for stent applications and local can... more Paclitaxel-eluting bioresorbable core/shell fiber structures for stent applications and local cancer treatment were developed and studied. These structures were composed of a polyglyconate core and a porous PDLGA shell loaded with the anti-proliferative agent paclitaxel, prepared using freeze drying of inverted emulsions. The investigation of these new composite fibers focused on the effects of the emulsion's composition (formulation) and process kinetics on the long-term drug release from the fibers, in light of the shell's morphology and degradation profile. Paclitaxel release from the porous shell was relatively slow due to its extremely hydrophobic nature. It exhibited three phases of release, which corresponded to the degradation profile of the host PDLGA. We found that the effect of the emulsion formulation on the release profile is more significant than the effect of the process kinetics. The copolymer composition had the most dominant effect on the drug release profile from the composite fibers. The polymer content also affected the release profile, whereas the drug content and the organic:aqueous phase ratio resulted in minor effects. Emulsions with a less hydrophobic nature are favorable for effective controlled release of the hydrophobic paclitaxel from the porous shell.
Uploads
Papers by Amir Kraitzer