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Abstract

Data has become a fundamental element of our society in conjunction with the
increasing adoption of automation software in a variety of organizational and produc-
tion processes, and especially of automated decision-making (ADM) systems, which
may affect multiple aspects of our lives. Indeed, when software makes decisions
that allocate resources or opportunities, might disparately impact people based on
personal traits (for example, gender, ethnic group, etc.) and thus might systematically
(dis)advantage certain social groups; for these reasons, bias in software systems is
a serious threat to human rights. One of the potential causes of unfairness lies in
the quality of the data used to train ADM systems. In particular, bias in input data
is a relevant socio-technical issue that emerged in recent years, and it still lacks
a commonly accepted solution: the “bias in-bias out” problem is one of the most
significant risks of discrimination, which encompasses technical fields, as well as
ethical and social perspectives. Among the causes of bias, one of the most relevant
issues is represented by data imbalance, that is, an unequal distribution of data
between the classes of an attribute.

We enrich the current body of research on this topic by proposing a risk assess-
ment approach based on the measurement of data imbalance, which is derived from
the principles outlined in ISO standards for software quality and risk management.
We look at data imbalance in a given dataset as a potential risk factor for detecting
discrimination caused by ADM systems: specifically, we aim to evaluate whether
it is possible to identify the risk of bias in a classification output by measuring the
level of (im)balance of protected attributes in training data. After that, we investigate
the issue of data imbalance more and more thoroughly: we define a methodology to
identify imbalance thresholds in input data to achieve desired levels of algorithmic
fairness; then, we study imbalance on intersectional protected attributes and on the
combination of the target variable with protected attributes.
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To conduct our studies, we selected a set of indexes of balance (Gini, Simpson,
Shannon, Imbalance ratio) and we first assess their capability to detect (im)balance
in synthetic attributes. Then, we tested their ability to identify unfair classification
outcomes in large datasets belonging to different application domains, that is, their
capacity to foresee a certain level of discrimination risk –which depends on the
context, the dataset’s domain, and the choice of the measures. Specifically, we
applied the indexes of balance to protected attributes in the training sets, while we
computed the unfairness by applying different fairness criteria to the same protected
attributes in the test sets. In subsequent studies we tested our approach on a large
number of data mutations with different classification tasks and on a variety of
combinations of balance-unfairness-algorithm in order to identify specific imbalance
thresholds. Lastly, we investigated whether measures of balance on intersectional
attributes are helpful to detect unfairness in classification outcomes, and whether
the computation of balance on the combination of a target variable with protected
attributes improves the detection of unfairness.

The results show that our approach is suitable for the proposed goal, thus the
balance measures can properly detect unfairness of software output. Indeed, a
negative correlation holds between balance and unfairness measures, as low levels
of balance in protected attributes are related to high levels of unfairness in the
output; in addition, we found that measures of balance on intersectional protected
attributes are helpful to detect unfairness in classification outcomes. However,
the choice of the index has a relevant impact on the detection of discriminatory
outcomes, and thus on the threshold to consider as risky. Overall, to increase the
generalizability of our findings, it would be recommended to extend our studies on a
wider number of datasets as well as indexes of balance, for instance by considering
measures for non-categorical attributes. Given the different behaviors of the balance
measures in detecting possible unfairness risks, we elaborated specific pragmatic
recommendations for their application.

We believe that our approach for assessing the risk of discrimination should
encourage to take more conscious and appropriate actions, as well as to prevent
adverse effects caused by the “bias in-bias out” problem. Especially, we hope that
our findings on data imbalance will improve the identification and assessment of
discrimination risks in ADM systems.



Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Evidence of Discrimination by ADM Systems . . . . . . . . . . . . 5

1.2 Logical Framework and Research Questions . . . . . . . . . . . . . 8

2 Background and Experimental Design Fundamentals 12

2.1 A Risk Assessment Approach Based on Data Imbalance . . . . . . . 12

2.2 Experimental Design Fundamentals . . . . . . . . . . . . . . . . . 16

2.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Balance Measures . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Fairness Criteria . . . . . . . . . . . . . . . . . . . . . . . 22

3 Related Work 25

4 Identifying Imbalance in Datasets with Balance Measures 30

4.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Synthetic Attributes . . . . . . . . . . . . . . . . . . . . . 31

4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



viii Contents

4.4 Research Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Balance Measures as Risk Indicators 38

5.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Research Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Detecting the Risk of Bias in Classification Outcomes 49

6.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.2 Mutation Techniques . . . . . . . . . . . . . . . . . . . . . 53

6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Multiclass case . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.2 Binary case . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Research Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Identifying Imbalance Thresholds to Forecast Algorithmic Fairness 69

7.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1.2 Mutation techniques . . . . . . . . . . . . . . . . . . . . . 74

7.1.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 76

7.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4 Research Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Contents ix

8 Imbalance of Intersectional Protected Attributes and Target Variable 89

8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.3.2 Mutation Techniques . . . . . . . . . . . . . . . . . . . . . 95

8.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 97

8.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.6 Research Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9 Practical Implications and Future Work 110

9.1 Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10 Conclusions 115

References 120

Appendix A Thresholds of Balance to Forecast Algorithmic Fairness 129

A.1 Configurations of the Thresholds . . . . . . . . . . . . . . . . . . . 129

A.2 Final Thresholds and Evaluation Metrics . . . . . . . . . . . . . . . 133

Appendix B Imbalance of Intersectional Protected Attributes and Target
Variable 142

Appendix C Publication List 146



List of Figures

2.1 The proposed approach in relation to ISO standards adopted as
reference frameworks. . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Investigative approach for RQ1. . . . . . . . . . . . . . . . . . . . 31

4.2 Summary of the synthetic exemplar distributions with the relative
balance level expected by the authors. . . . . . . . . . . . . . . . . 33

4.3 Classification of the synthetic attributes based on the balance measures. 36

4.4 Ability of the balance measures to detect imbalance. . . . . . . . . . 37

5.1 Method of analysis used for RQ2. . . . . . . . . . . . . . . . . . . 39

5.2 Boxplot of unfairness measures versus balance classification, for
different balance measures. . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Distributions of the balance measures with respect to mutations. . . 59

6.2 Distributions of the unfairness measures with respect to mutations. . 60

6.3 Trends of the Fairness criteria in response to the Balance measures
with respect to the different mutations. . . . . . . . . . . . . . . . . 63

6.4 Values of balance measures versus mutation parameter p. . . . . . . 64

6.5 Trends of the fairness criteria as a response to the balance measures. 68

7.1 Numerical example of the procedure for the identification of the
thresholds s and f, for the combination Gini-Sep_TP-logit. . . . . . 73



List of Figures xi

7.2 Confusion matrix of the statistical classification based on the differ-
ent levels of balance/unfairness. . . . . . . . . . . . . . . . . . . . 77

7.3 Boxplot of the evaluation metrics in the binary case. . . . . . . . . . 80

7.4 Boxplot of the evaluation metrics in the multiclass case. . . . . . . . 81

7.5 Boxplot of the thresholds’ Accuracy with respect to the balance
measures in the binary case. . . . . . . . . . . . . . . . . . . . . . 82

7.6 Boxplot of the thresholds’ Accuracy with respect to the fairness
criteria in the binary case. . . . . . . . . . . . . . . . . . . . . . . 83

7.7 Boxplot of the thresholds’ Accuracy with respect to the algorithms
in the binary case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.8 Boxplot of the thresholds’ Accuracy with respect to the balance
measures in the multiclass case. . . . . . . . . . . . . . . . . . . . 85

7.9 Boxplot of the thresholds’ Accuracy with respect to the fairness
criteria in the multiclass case. . . . . . . . . . . . . . . . . . . . . 86

7.10 Boxplot of the thresholds’ Accuracy with respect to the algorithms
in the multiclass case. . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.1 Trends of the fairness criteria as a response to the balance measures
for the intersectional protected attribute sex_education. . . . . . . . 102

8.2 Balance measures of protected attributes combined with the target
variable versus protected attributes without target. . . . . . . . . . . 104

8.3 Correlation Balance-Unfairness for protected attributes combined
with the target variable and without target. . . . . . . . . . . . . . . 105

A.1 Thresholds Configuration 1. . . . . . . . . . . . . . . . . . . . . . 130

A.2 Thresholds Configuration 2. . . . . . . . . . . . . . . . . . . . . . 131

A.3 Thresholds Configuration 3. . . . . . . . . . . . . . . . . . . . . . 131

A.4 Thresholds Configuration 4. . . . . . . . . . . . . . . . . . . . . . 132

A.5 Thresholds Configuration 5. . . . . . . . . . . . . . . . . . . . . . 132



List of Tables

2.1 Complete list of the datasets and their main characteristics. . . . . . 19

2.2 Complete list of the datasets and their source links. . . . . . . . . . 20

5.1 Complete list of the datasets with the analyzed attributes. . . . . . . 42

5.2 Values of balance measures and unfairness measures. . . . . . . . . 45

5.3 Correlation between balance measures and unfairness measures. . . 46

6.1 Correlation between balance measures and unfairness measures. . . 62

7.1 List of the datasets with the analyzed attributes. . . . . . . . . . . . 74

7.2 The evaluation metrics with the respective formula. . . . . . . . . . 77

7.3 Correlation between balance measures and fairness criteria for the
binary case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4 Correlation between balance measures and fairness criteria for the
multiclass case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.1 Balance measurements with the respective unfairness measurements
for each protected attribute. . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Balance measures: evaluation of the linear regression model B(sex_education)=
csex ·B(sex)+ ceducation ·B(education)+ c0. . . . . . . . . . . . . . 99

8.3 Unfairness measures: evaluation of the linear regression model
U(sex_education) = csex ·U(sex)+ ceducation ·U(education)+ c0. . . 100



List of Tables xiii

8.4 Correlation between balance and unfairness for the intersectionl
attribute sex_education: B(sex_education) ∼ U(sex_education). . . 101

A.1 Thresholds and evaluation metrics for the combination Gini-Independence
in the case of binary attributes. . . . . . . . . . . . . . . . . . . . . 133

A.2 Thresholds and evaluation metrics for the combination Gini-Sep_TP
in the case of binary attributes. . . . . . . . . . . . . . . . . . . . . 133

A.3 Thresholds and evaluation metrics for the combination Gini-Sep_FP
in the case of binary attributes. . . . . . . . . . . . . . . . . . . . . 134

A.4 Thresholds and evaluation metrics for the combination Gini-Suf_PP
in the case of binary attributes. . . . . . . . . . . . . . . . . . . . . 134

A.5 Thresholds and evaluation metrics for the combination Gini-Suf_PN
in the case of binary attributes. . . . . . . . . . . . . . . . . . . . . 134

A.6 Thresholds and evaluation metrics for the combination Shannon-
Independence in the case of binary attributes. . . . . . . . . . . . . 134

A.7 Thresholds and evaluation metrics for the combination Shannon-
Sep_TP in the case of binary attributes. . . . . . . . . . . . . . . . 134

A.8 Thresholds and evaluation metrics for the combination Shannon-
Sep_FP in the case of binary attributes. . . . . . . . . . . . . . . . . 135

A.9 Thresholds and evaluation metrics for the combination Shannon-
Suf_PP in the case of binary attributes. . . . . . . . . . . . . . . . . 135

A.10 Thresholds and evaluation metrics for the combination Shannon-
Suf_PN in the case of binary attributes. . . . . . . . . . . . . . . . 135

A.11 Thresholds and evaluation metrics for the combination Simpson-
Independence in the case of binary attributes. . . . . . . . . . . . . 135

A.12 Thresholds and evaluation metrics for the combination Simpson-
Sep_TP in the case of binary attributes. . . . . . . . . . . . . . . . 135

A.13 Thresholds and evaluation metrics for the combination Simpson-
Sep_FP in the case of binary attributes. . . . . . . . . . . . . . . . . 136

A.14 Thresholds and evaluation metrics for the combination Simpson-
Suf_PP in the case of binary attributes. . . . . . . . . . . . . . . . . 136



xiv List of Tables

A.15 Thresholds and evaluation metrics for the combination Simpson-
Suf_PN in the case of binary attributes. . . . . . . . . . . . . . . . 136

A.16 Thresholds and evaluation metrics for the combination IR-Independence
in the case of binary attributes. . . . . . . . . . . . . . . . . . . . . 136

A.17 Thresholds and evaluation metrics for the combination IR-Sep_TP
in the case of binary attributes. . . . . . . . . . . . . . . . . . . . . 136

A.18 Thresholds and evaluation metrics for the combination IR-Sep_FP
in the case of binary attributes. . . . . . . . . . . . . . . . . . . . . 137

A.19 Thresholds and evaluation metrics for the combination IR-Suf_PP in
the case of binary attributes. . . . . . . . . . . . . . . . . . . . . . 137

A.20 Thresholds and evaluation metrics for the combination IR-Suf_PN
in the case of binary attributes. . . . . . . . . . . . . . . . . . . . . 137

A.21 Thresholds and evaluation metrics for the combination Gini-Independence
in the case of multiclass attributes. . . . . . . . . . . . . . . . . . . 137

A.22 Thresholds and evaluation metrics for the combination Gini-Sep_TP
in the case of multiclass attributes. . . . . . . . . . . . . . . . . . . 138

A.23 Thresholds and evaluation metrics for the combination Gini-Sep_FP
in the case of multiclass attributes. . . . . . . . . . . . . . . . . . . 138

A.24 Thresholds and evaluation metrics for the combination Gini-Suf_PP
in the case of multiclass attributes. . . . . . . . . . . . . . . . . . . 138

A.25 Thresholds and evaluation metrics for the combination Gini-Suf_PN
in the case of multiclass attributes. . . . . . . . . . . . . . . . . . . 138

A.26 Thresholds and evaluation metrics for the combination Shannon-
Independence in the case of multiclass attributes. . . . . . . . . . . 138

A.27 Thresholds and evaluation metrics for the combination Shannon-
Sep_TP in the case of multiclass attributes. . . . . . . . . . . . . . 139

A.28 Thresholds and evaluation metrics for the combination Shannon-
Sep_FP in the case of multiclass attributes. . . . . . . . . . . . . . . 139

A.29 Thresholds and evaluation metrics for the combination Shannon-
Suf_PP in the case of multiclass attributes. . . . . . . . . . . . . . . 139



List of Tables xv

A.30 Thresholds and evaluation metrics for the combination Shannon-
Suf_PN in the case of multiclass attributes. . . . . . . . . . . . . . 139

A.31 Thresholds and evaluation metrics for the combination Simpson-
Independence in the case of multiclass attributes. . . . . . . . . . . 139

A.32 Thresholds and evaluation metrics for the combination Simpson-
Sep_TP in the case of multiclass attributes. . . . . . . . . . . . . . 140

A.33 Thresholds and evaluation metrics for the combination Simpson-
Sep_FP in the case of multiclass attributes. . . . . . . . . . . . . . . 140

A.34 Thresholds and evaluation metrics for the combination Simpson-
Suf_PP in the case of multiclass attributes. . . . . . . . . . . . . . . 140

A.35 Thresholds and evaluation metrics for the combination Simpson-
Suf_PN in the case of multiclass attributes. . . . . . . . . . . . . . 140

A.36 Thresholds and evaluation metrics for the combination IR-Independence
in the case of multiclass attributes. . . . . . . . . . . . . . . . . . . 140

A.37 Thresholds and evaluation metrics for the combination IR-Sep_TP
in the case of multiclass attributes. . . . . . . . . . . . . . . . . . . 141

A.38 Thresholds and evaluation metrics for the combination IR-Sep_FP
in the case of multiclass attributes. . . . . . . . . . . . . . . . . . . 141

A.39 Thresholds and evaluation metrics for the combination IR-Suf_PP in
the case of multiclass attributes. . . . . . . . . . . . . . . . . . . . 141

A.40 Thresholds and evaluation metrics for the combination IR-Suf_PN
in the case of multiclass attributes. . . . . . . . . . . . . . . . . . . 141

B.1 Correlation between balance and unfairness measures for the primary
attribute sex: B(sex) ∼ U(sex). . . . . . . . . . . . . . . . . . . . . 143

B.2 Correlation between balance and unfairness measures for the at-
tribute sex_target: B(sex_target) ∼ U(sex). . . . . . . . . . . . . . 143

B.3 Difference between the correlation tables B.1 and B.2: diffsex =
cor(sex) – cor(sex_target). . . . . . . . . . . . . . . . . . . . . . . 143

B.4 Correlation between balance and unfairness measures for the primary
attribute education: B(education) ∼ U(education). . . . . . . . . . 144



xvi List of Tables

B.5 Correlation between balance and unfairness measures for the at-
tribute education_target: B(education_target) ∼ U(education). . . . 144

B.6 Difference between the correlation tables B.4 and B.5: diffeducation

= cor(education) – cor(education_target). . . . . . . . . . . . . . . 144

B.7 Correlation between balance and unfairness measures for the inter-
sectionl attribute sex_education: B(sex_education)∼U(sex_education).145

B.8 Correlation between balance and unfairness measures for the at-
tribute sex_education_target: B(sex_education_target)∼U(sex_education).145

B.9 Difference between the correlation tables B.7 and B.8: diffsex_education

= cor(sex_education) – cor(sex_education_target). . . . . . . . . . 145



Chapter 1

Introduction

The implementation and development of automated decision-making (ADM) systems
have a significant impact on several aspects of our daily life [1]. Indeed, as a conse-
quence of the general phenomenon of the digitization of organizational processes
in our societies [2][3], the automation of decision processes is speedily expanding
[4][5]. Initially, this trend was made possible by the computerization of our physical
environment and the widespread use of internet connectivity, and more recently by
the large availability of data and the development of technical tools for their analysis.
The creation of predictive, classification, and ranking models, which form the basis
of automated decision-making (ADM) systems, laid the groundwork for the rapid
adoption of data-driven decision-making processes [6]. In our studies, we rely on
the definition of Automated Decision-Making given by Algorithm Watch [4]:

Systems of automated decision-making (ADM systems) are always a
combination of different social and technological parts: i) a decision-
making model; ii) algorithms that make this model applicable in the
form of software code; iii) data sets that are entered into this software,
be it for the purpose of training via Machine learning or for analysis by
the software; iv) the whole of the political and economic ecosystems that
ADM systems are embedded in (elements of these ecosystems include:
the development of ADM systems by public authorities or commercial
actors, the procurement of ADM systems, and their specific use).

ADM systems are employed to categorize people and predict their behaviors
based on patterns extracted from data gathered on them or other individuals. Thus,



2 Introduction

decisions can be based upon software-generated recommendations or even entirely
automated: the most commonly adopted technical approaches range from simple
tools –such as macros or scripts that compute and sort data according to predefined
sets of rules or parameters [7]–, to more sophisticated neural networks [5].

ADM systems are used in a wide variety of tasks, including predicting debt
repayment capacity [8], selecting the top job candidates [9], identifying social
welfare frauds [10], and advising on which university to attend [11], to name but a
few. On one hand, the benefits of using these systems range from the scalability of
the operations and ensuing economic efficiency, to the removal of public servants’
discretion [12] [13] [14]. On the other hand, the advantages only become apparent
if the underlying data is of high quality, otherwise errors may result in significant
additional costs [15] and also give rise to serious ethical issues. The problem of
bias in information systems, although present in the scientific literature of software
systems during the past quarter century –for example, see the pioneering work
proposed in [16]– got wider attention only in the mid 2010s, in connection with the
large investments in Artificial Intelligence (AI) / Machine Learning (ML), digital
automation of organizational processes and, in general, automated decision-making
(ADM) systems. Indeed, according to a substantial body of evidence found in
both scientific literature [17] and journalistic essays [18] –especially the influential
book by O’Neil (2017) [19]– ADM systems might replicate the same bias of our
societies, systematically discriminating against the weakest people and escalating
existing inequalities. The topic is so important that it has drawn in experts from both
information technology and social sciences, and it has been acknowledged by the
institutions [20] as well. Indeed, as affirmed by Margrethe Vestager (2020), who has
been the Executive Vice President of the European Commission for A Europe Fit for
the Digital Age since December 2019 and European Commissioner for Competition
since 2014, automating decisions using historical data is a two-edged sword [21]:

“If they’re trained on biased data then they can learn to repeat those
same biases. Sadly, our societies have such a history of prejudice that
you need to work very hard to get that bias out. And if we don’t know
how they’re making their decisions, we can’t be sure that those choices
aren’t based on harmful stereotypes – and to challenge those decisions,
if they’re unfair.”
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From a data engineering view, biased data means imbalanced input dataset [22]:
indeed, often the cause for the software-biased impact lies in the imbalance of
training data [23]. Specifically, data imbalance is an unequal distribution of data
between the classes of a given attribute (such as gender, education, country of origin,
age category, etc.) [24], a condition that happens when there are large disparities in
the number of data points between the classes. As acknowledged in the excerpt from
Vestager’s speech, imbalances can be caused by mistakes or constraints in the design
and operations of the data collection process, or merely by inequities in the current
reality that the data itself reproduce, where there might be imbalanced with respect to
certain characteristics. Indeed, data imbalance skews the performances of classifiers,
leading to varying accuracy among the classes of given attributes in the data. This
consequence has been documented in a variety of domains and technologies, for
example, male dominance in training data can perpetuate such bias in the output
of automatic generation of images [25], while geographic imbalance in the content
production that feeds recommender systems can generate (dis)advantage toward
a specific group [26] or, again, gender imbalance in data about nurses is a rather
common occurrence.
In particular, imbalance is defined as between-class when only two classes are
considered and one class is over-represented relative to the other, or multiclass when
imbalances occur between multiple classes. Herein we deal with the more general
case, represented by the multiclass imbalance.

For a long time, imbalanced data has been recognized as a problematic matter in
the field of machine learning [24] [27], and it is still relevant [22] [28], particularly
because it can impair the performance of supervised learning algorithms in terms
of very heterogeneous accuracy across the classes of data. When people are the
subject of an automated decision, the algorithm’s inconsistent outcomes actually
represent a systematic form of discrimination that can be generally described as the
following [16]:

“unjustified distinction of individuals based on their membership, or
perceived membership, in a certain group or category”.

Thus, a biased software can be described as one that “systematically and unfairly
discriminates against certain individuals or groups of individuals in favor of others
[by denying] an opportunity for a good or [assigning] an undesirable outcome to an
individual or groups of individuals on grounds that are unreasonable or inappropri-
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ate” [16], or alternatively, as one that exposes a group (for example, a member of an
ethnic minority or a certain class of worker) to unfair treatment [29], that is, as an
algorithm that –often in order to achieve its optimization purposes– may discriminate
and filter between people into account, with the result being a disparate impact on
different population groups. Biased software is a significant socio-technical issue
because it frequently arises when people are the target of predictions or classifica-
tions, casing a disparate impact on particular social groups as a result. A social
group is recognized as a collection of people who have similar physical, cultural,
or identitarian characteristics. When these traits are noted in datasets, those groups
correspond to individuals who have the same value for a particular protected attribute.
Specifically, we define as protected attributes –also said sensitive attributes– and
thus, as social groups of category object of possible discrimination, those attributes
identified by the characteristics provided in “Article 21 - Non- discrimination” of the
EU Charter of Fundamental Rights [30]:

1. Any discrimination based on any ground such as sex, race, colour,
ethnic or social origin, genetic features, language, religion or belief, po-
litical or any other opinion, membership of a national minority, property,
birth, disability, age or sexual orientation shall be prohibited.

2. Within the scope of application of the Treaties and without prejudice
to any of their specific provisions, any discrimination on grounds of
nationality shall be prohibited.

Following the line of reasoning exposed above, it is possible to detect the risk of
bias in the classification output by measuring the level of (im)balance of the protected
attributes in a dataset. Specifically, we propose a risk assessment approach based
on quantitative measures to evaluate imbalance in the input datasets of automated
decision-making systems, with a view to foreseeing a potential risk of discriminatory
outcomes by revealing the presence of imbalances in training data.

Advancement with respect to the state of the art. Our proposal differentiates
from the reference literature (exposed in Chapter 3) for two main reasons: in the
first place, it is built upon a series of international standards that incorporate by
design a multi-stakeholder perspective –we refer to Chapter 2 for an exhaustive
explanation of the theoretical foundations of our approach. In the second place, we
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look at data imbalance as a risk factor and not as a technical fix: we believe that a
risk approach creates space for active human considerations and interventions, rather
than delegating the mitigation of the problem to yet another algorithm, with a very
low probability of success. Indeed, given the socio-technical nature of the problem,
we firmly believe that a risk approach is preferable because it keeps the ultimate
responsibility in the realm of human agency.

1.1 Evidence of Discrimination by ADM Systems

Recently, both scientific literature and investigative reporting have gathered a signifi-
cant body of evidence of discrimination by ADM systems. Hereafter, we highlight a
few instances of automated discrimination brought on by ADM systems; we do not
provide a comprehensive review of the literature on automated discrimination, but
rather aim to emphasize how these systems affect people’s lives.

The creation of a software system by Amazon [31] with a view to evaluating
resumes of potential employees obtained from the internet is a well-known illustration
of the aforementioned problem. The project, which had been started in 2014 with
the intention of predicting successful future employees using word patterns extracted
from CVs from the previous ten years, was discontinued in 2017 because, according
to the news agency report, female profiles were systematically devalued. Given
that men make up the majority of employees in the technology sector, the problem
stemmed from the fact that training data was primarily composed of males.

Similar to the previous example, unfair treatment due to gender imbalance in the
input data was shown by a scientific experiment on the search engine Common Crawl
[32]. Through the comparison of three machine learning techniques for occupational
classification with nearly 400.000 biographies, it was revealed that in each of the
three cases, the rate of correct classifications reflected the existing gender imbalances
of the occupational groups, even without explicitly adopting gender indicators.

Another case is provided by the “Black box Schufa” [33]. The most well-known
credit bureau in Germany, Schufa, claims to have data on over 67 million consumers
and to generate scores for each of them. These scores are used by retailers, telecom
companies as well as banks to support them run their businesses, for instance, to
choose which customers might be approved for a loan or which users are allowed to
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see a particular advertisement. Researchers reverse-engineered how Schufa functions
and discovered that younger people are frequently evaluated worse than older people
thanks to a crowdsourcing project that involved 2800 volunteers who requested their
free personal credit reports. Similarly, males are ranked lower than females. Age
and gender are legally but unfairly included in the score because the General Equal
Treatment Act, which was created to shield consumers from discrimination based on
gender and age, is ineffective with regard to credit bureaus.

According to a different study [34], Facebook job advertisements were signif-
icantly biased toward specific gender and ethnic group, which resulted in unequal
job opportunities and ongoing discrimination throughout the duration of an adver-
tisement. Contrary to what is stated in the Art. 21 of the EU Charter of human
rights [30], people are denied opportunities based on personal characteristics as a
result of such a conservative mechanism. The Department of Housing and Urban
Development of the United States sued Facebook in March 2019 for violating the
Fair Housing Act due to the discriminatory impact of its advertisements, which were
disproportionately targeted with respect to different personal traits, such as gender
and race [35].

Another reference example can be found in the research area of image classifi-
cation, specifically facial recognition systems, which have drawn a lot of criticism
for both the issue of discrimination and the technology itself. The case involves
commercial gender classification: in [36], the authors showed how performance
disparity in gender and race have an impact on automated facial image analysis:
specifically, the gender classification on female faces performs noticeably worse than
classification on male faces, and higher performances are reached on lighter skin
tones than darker ones.

If these issues happen in the justice or medical fields, where the combined use of
ADM systems and historical data is rapidly expanding, negative consequences could
become even worse and life-altering for certain individuals. The most well-known
case in the criminal justice system is represented by the investigation conducted
by the no-profit organization Pro-Publica on the COMPAS algorithm (Correctional
Offender Management Profiling for Alternative Sanctions) [37], adopted by judges
to assess the probability of recidivism of defendants. Pro Publica revealed that the
COMPAS algorithm was distorted against black defendants: indeed, black defendants
who were not rearrested had nearly twice the likelihood of being incorrectly classified
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as higher risk (false positive) than white defendants. Contrarily, white defendants
who actually got rearrested were nearly twice as likely to be misclassified as low-risk
than black defendants. The root cause of this distorted effect was that there were
significantly fewer records in the dataset pertaining to white defendants than there
were to black defendants.

In a recent study of risk assessment for juvenile justice conducted in Catalonia
[38], male defendants and members of a particular national group were more fre-
quently marked as recidivists than other groups. Researchers developed a method to
evaluate fairness and predictive performance of machine learning algorithms used to
predict juvenile recidivism based on this problem of discrimination. Then, the results
were compared to SAVRY (Structured Assessment of Violence Risk in Youth), a
widely used risk assessment tool used to estimate the risk of violence in juvenile
justice. Demographic parity and error rate balance were proposed by researchers as
two metrics for measuring fairness. In practise, they found that machine learning al-
gorithms become discriminatory when using SAVRY demographic features: indeed,
foreigners were more likely to be classified as high risk and male defendants were
more likely to be labelled as recidivists even though they were non-recidivists.

In the medical industry, a study conducted recently [39] reported the case of
a widely-used commercial system for selecting which patients should be admitted
to an intensive care program: practically, an algorithm was trained on historical
information about medical spending and health-service utilization in order to generate
risk scores subsequently used by medical doctors. According to research, white
patients had a markedly higher likelihood than black patients of being assigned to the
intensive care program in situations where their health status was equivalent. In this
instance, as well, the system was impacted by ethnicity-based discrimination because
the risk score reflected the expected treatment costs – which was heavily correlated
with the patients’ economic well-being – more than actual health conditions.

Finally, it is important to bring up the “Report of the Special rapporteur on
extreme poverty and human rights” [40], which was published by the United Nations
and expressly criticizes the way governments are automating welfare management.
According to the evidence gathered, these systems routinely discriminate against the
most vulnerable individuals of society and worsen already existing inequalities.

The examples mentioned above succinctly illustrate how an imbalance in data can
spread and manifest itself in the output of ADM systems, becoming a socio-technical
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issue of paramount importance to public sector services, where high stakes decisions
are always more frequently delegated to automated decision-making, in whole or in
part, with grave consequences for people.

1.2 Logical Framework and Research Questions

We conducted several studies in order to delve into all the main aspects regarding
data imbalance, specifically with a view to deeply understanding how to use metrics
of balance on input data to forecast bias and fairness in classification outcomes.
More formally, we answer six main research questions derived from the necessity to
comprehend the abstract construct of imbalance and how we can identify it in data,
followed by in-depth studies on the proposed risk assessment approach based on
quantitative measures to assess imbalance in the input datasets of ADM systems in
order to foresee a potential risk of discriminatory automated decisions.

RQ 1. How are existing measures able to detect imbalance among the classes of a
given attribute in a dataset?

To explain the abstract construct of imbalance, a number of measures have
been put forth in the literature; in Chapter 4 we select a set of indexes of
balance with the goal to understand how these indexes represent our subjective
–and probably limited– perception of imbalance. The related study has been
published in the journal article entitled “A Data Quality Approach to the
Identification of Discrimination Risk in Automated Decision-Making Systems”
(2021) [41].

RQ 2. Are existing balance measures able to reveal a discrimination risk when an
ADM system is trained with such data?

A substantial body of research from both scientific literature and journalistic
essays demonstrates that biased data can cause discriminatory behavior when
used to train an ADM system (see Section 1.1). The aim of the analysis
presented in Chapter 5 is to determine whether the data imbalance, measured
through the indexes analyzed in the previous study, may indicate a risk of
discrimination in the ADM system. This research question has been addressed
first in an exploratory study published in the conference paper “Identifying
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Risks in Datasets for Automated Decision–Making” (2020) [42], and then
in the more extensive journal article “A Data Quality Approach to the Iden-
tification of Discrimination Risk in Automated Decision-Making Systems”
(2021) [41].

RQ 3. Is it possible to measure the risk of bias in a classification output by measuring
the level of (im)balance in the protected attributes of the training set?

The goal of the study reported in Chapter 6 is to understand how the balance
characteristics of protected attributes in training data can be used to evalu-
ate –and thus, to forecast– the risk of algorithmic unfairness in subsequent
classification tasks. In this analysis we examine how well the balance mea-
sures (previously analyzed) applied to a specific protected attribute reflect a
discrimination risk, separately in the case of a binary protected attribute and
in the case of a multiclass one. Particularly, the characteristic element of this
study is represented by the adoption of specific pre-processing methods as
mutation techniques in order to vary the level of (im)balance of the protected
attributes in analysis. Moreover, differently from the previous research ques-
tion, we conducted two separate studies which are reported in the following
publications:

• “Detecting Discrimination Risk in Automated Decision-Making Systems
with Balance Measures on Input Data” (2021) [43], a conference paper in
which we analyzed the behaviour of the balance measures when applied
to multiclass protected attributes;

• “Detecting Risk of Biased Output with Balance Measures” (2022) [44], a
journal article in which we focus on binary protected attributes.

RQ 4. Is it possible to identify a threshold s (for balance measures) such that if
the balance of the training set is greater than s, then the unfairness of the
classification on the test set is expected to be less than a threshold f?

In Chapter 7 we focus on the construction of risk thresholds for balance
measures, and the respective thresholds for fairness criteria, in order to better
understand how the balance of protected attributes in training data can be used
to assess the risk of algorithmic unfairness; we propose a specific procedure for
identifying risk thresholds and we test it on several datasets. The findings of
this study are published in the conference paper titled “Identifying Imbalance
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Thresholds in Input Data to Achieve Desired Levels of Algorithmic Fairness”
(2022) [45].

RQ 5. Is it possible to identify the risk of biased output by detecting the level of
(im)balance in intersectional protected attributes?

One more key point to investigate concerns intersectional classes due to the
fundamental role they play in understanding risks of discrimination and in-
equalities that result from the intersection of particular social identities and
are even amplified in correspondence of such intersections. To this end, we
formulated two research questions that will drive the investigation reported in
Chapter 8:

RQ 5.1. How do intersectional attributes relate to the corresponding primary
attributes, in terms of balance and fairness?

First of all, it is of paramount importance to extend our knowledge on
how the imbalance of the primary attributes (binary or multiclass) affects
the imbalance of the intersectional attribute, in addition to understand
how the fairness with respect to an intersectional attribute relates to the
fairness with respect to the primary attributes.

RQ 5.2. Can the measure of balance on intersectional attributes detect unfairness
risks?

From the studies conducted to answer the previous research questions,
there is proof that when working at the level of protected primary at-
tributes, the balance of the classes of a given attribute can detect the risk
of unfair classifications with regard to such attribute; here we want to
ascertain whether this capability also applies to intersectional attributes.

These research questions have been addressed in the journal article titled
“Measuring Imbalance on Intersectional Protected Attributes and on Target
Variable to Forecast Unfair Classifications” (2023) [46].

RQ 6. Does the combination of the target variable with protected attributes improve
the detection of unfair classification risks?

Finally, in Chapter 8 we investigate the contribution of the target variable
to the unfairness detection: the level of (im)balance of a target variable can
be examined by taking into account its combination with protected attributes
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(both primary and intersectional), and evaluating whether the risk of unfair
classification can be identified through the measurement of the balance of the
combined attribute. Keep in mind that attributes given by the combination
of the target variable with protected attributes (primary or intersectional) are
referred to as combined attributes hereinafter. This study has been published
in the journal article entitled “Measuring Imbalance on Intersectional Pro-
tected Attributes and on Target Variable to Forecast Unfair Classifications”
(2023) [46].

All the aforementioned study have been conducted through RStudio – an in-
tegrated development environment for R, a programming language for statistical
computing and graphics. The dissertation is organized as follows: first of all, in
this Chapter we outlined motivations and research context of the Ph.D. program; in
Chapter 2 we introduce a Data Imbalance-based Risk Assessment Approach and
discuss the theoretical foundations of our proposal, while in Chapter 3 we position
our work in relation to the body of literature by demonstrating how it is connected
to several existing research strands. Then, starting from Chapter 4 through Chapter
8 we addressed all the research questions listed above. Particularly, in Chapter 4
we investigate how to identify imbalance in datasets using metrics of balance, and
subsequently in Chapter 5 we analyze data imbalance as a risk indicator. In Chapter
6 we move our investigation forward by detecting the risk of bias in classification
outcomes by specifically analyzing the use of the balance measures on binary and
multiclass protected attributes, where the (im)balance of the attributes has been
varied through the application of different mutation techniques. In Chapter 7 we
set up a procedure to identify imbalance thresholds to achieve desired levels of
algorithmic fairness and we apply the methodology to different datasets. In Chapter
8 we address a different aspect of the data imbalance issue by measuring imbalance
on intersectional protected attributes and on target variables to foresee unfair classifi-
cations. Finally, in Chapter 9 we provide practical implications for the usage of the
indexes of balance, as well as discuss open issues and possible future works, while
in Chapter 10 we formulate the conclusions of our research activity.



Chapter 2

Background and Experimental Design
Fundamentals

Building on the line of thought exposed in the Introduction, we present the funda-
mental concepts that guide our perspective and proposals: identifying data imbalance
as a risk factor for systematic discrimination caused by ADM systems. The whole
approach stems from the principles outlined in ISO standards for software quality
and risk management, as analytically and thoroughly described in [47] that originated
the series of studies presented in this dissertation.

2.1 A Risk Assessment Approach Based on the
Measurement of Data Imbalance

The first foundational concept is the ISO/IEC 25000:2014 series of standards, referred
to as “Systems and Software engineering – Software product Quality Requirements
and Evaluation (SQuaRE)” [48]. SQuaRE outlines the quality modeling and assess-
ment of data, software services and software products. Note that a software product
is defined in ISO/IEC 12207:1998 as a “set of computer programs, procedures, and
possibly associated documentation and data”, and in SQuaRE standards, software
quality stands for software product quality. It defines quality with a set of measur-
able characteristics and sub-characteristics, and models data quality specifically in
ISO/IEC 25012:2008 with 15 quantifiable characteristics, such as recoverability,
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completeness and efficiency. These characteristics can be seen from two perspectives:
“inherent”, which depend solely on the data themselves, or “system dependent”, in-
fluenced by the hardware or software used to store, analyze, and retrieve the data.
Some characteristics can even fall under both viewpoints.

One example of a inherent characteristic is Completeness, which refers to the
extent to which all necessary data has been entered and stored in the computer system.
For instance, in a database of university students, all essential information about
each student should be present to meet the needs of users. To evaluate Completeness,
one metric used is “Record completeness” (Com-I-1), calculated as the ratio of data
items with non-null values in a record to the total number of data items in that record.
On the other hand, Availability is a system-dependent characteristic that refers to the
ability of data to be always accessible. A measure of this characteristic is “Probability
of data available” (Ava-D-2), which is the ratio of times that data is available to
the number of times it is requested in a given time period. Finally, Efficiency is a
characteristic that falls into both inherent and system-dependent categories: it is
defined as the ability of data to be processed (accessed, acquired, updated, etc.)
with appropriate levels of performance using the appropriate number and type of
resources under certain conditions. Efficiency has different measures for inherent
and system-dependent perspectives.

The ISO/IEC 25012:2008 standard does not mention data imbalance (nor its
dual concept of data balance) as part of its definition of data quality. However, the
SquaRE standard introduces a concept of paramount importance in our scenario,
that is, the chain of effects and dependencies. This principle states that improving
the quality of a product, service, or data will have a positive impact on the system’s
overall quality and ultimately benefit the software system’s users. Note that this
relationship holds also in the opposite way and among aspect pairs, for instance:
the quality in use is impacted by the product quality, which then affects the data
quality. The upper section of Figure 2.1 summarizes how this chain of effects is
formalized in SQuaRE. In the field of data quality, a simplified version of this idea
is the well-known GIGO principle, which stands for “garbage in, garbage out” and
states that the outcome of a software will be unreliable if the input data are outdated,
inaccurate, incomplete, or flawed.

Our argument is that the chain of effects is still applicable in the presence of data
imbalance, meaning that imbalanced data might lead to imbalanced software outputs,
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which in the context of ADM systems could result in differentiation of information,
products and services based on personal characteristics. As noted in Chapter 1, this
differentiation in areas such as employment, education, wages and social benefits
can lead to unjustified unequal treatment and potentially unlawful discrimination.
Hence, it is essential to consider data imbalance as a potential risk factor in all ADM
systems that use historical data and automate decisions impacting individuals’ rights
and freedoms: a particularly relevant case is exactly represented by ADM systems
utilized in public sector services.
In this context, data imbalance is viewed as a part of the data quality model outlined
in ISO/IEC 25012:2008. It is considered an inherent characteristic that will be
quantified using appropriate metrics, which are an extension of those defined in
ISO/IEC 25024:2015.

The second fundamental concept of our methodology is based on the ISO
31000:2018 standard for Risk management [49]. This standard provides the funda-
mental principles for risk management and establishes a framework for incorporating
it into organizational structures, as well as a process for managing risks at different
levels, such as the strategic, operational, program, or project levels. In regards
to our proposal, special attention is given to the risk management process, taking
into account both data imbalance and potential discrimination from ADM systems.
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Specifically, we propose to consider data imbalance as a risk factor in all those sys-
tems that –on the basis of historical data– automate decisions on important aspects of
people’s lives, impacting their rights and freedoms. A summary of the key elements
of the ISO 31000:2018 risk management approach can be seen in the bottom section
of Figure 2.1. In particular, we concentrate on the risk assessment stage, which
encompasses the identification, analysis, and evaluation of risks, as described below
in connection to our approach.

• Risk identification. It involves locating, recognizing, and describing potential
risks within a specific context and scope, using predetermined criteria. In
our scenario, making reference to the Article 21 “Non discrimination” of the
Charter of Fundamental Rights of the European Union [30], this stage can be
traced back to the statements of “unjustified distinction of individuals based
on their membership, or perceived membership, in a certain group or category”
[16], since ADM systems are adopted in areas affecting individuals’ rights and
freedoms.

• Risk analysis. The objective of risk analysis is to identify the features and
potential extent of risk. This stage assumes metrics of data imbalance as
indicators of discrimination risk because of the effects of the bias propagation
discussed previously. Different balance measures will be presented in Section
2.2.2 and they will be then applied to real datasets –described in Section 2.2.1–
throughout our studies, with the aim of detecting discrimination risk in case
an ADM system is trained using such data.

• Risk evaluation. This final stage involves determining the level of risk based
on the outcome of the analysis: the findings are used to determine if additional
analysis or risk management strategies are necessary, and who should imple-
ment them. In our case, the metrics of data imbalance should be examined
within the framework of the algorithms that handle such data; additionally, the
effects on end-users and the applicable legal regulations for the relevant field
should be taken into account. However, these aspects are beyond the scope of
this work and will be addressed later in Section 5.3.

In summary, making reference to the conceptual frameworks previously de-
scribed, we propose a metric-based approach to evaluate imbalance in a given dataset
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in order to foresee risks of biased output from ADM systems. Figure 2.1 displays a
comprehensive overview of the approach and its alignment with the internationally
recognized ISO/IEC standards. The top portion showcases the key components of
the SQuaRe series (2500n) that are relevant to our study. The bottom section displays
the central components of the risk management process of ISO 31000. Our proposed
approach is depicted in the center of the Figure, with emphasis placed on its links to
both the SQuaRe series and ISO 31000 elements.

2.2 Experimental Design Fundamentals

Hereinafter we present the fundamental elements that characterized each of the
experimental design that will be described in the following Chapters.

2.2.1 Datasets

In our studies, we looked for some variety in the data selection with a view to testing
the versatility of our approach in various application domains of ADM systems. Thus,
we analyzed eight datasets that belong to different fields of application: criminal
justice (including the juvenile justice system), financial services, as well as personal
earnings, drug consumption, medical diagnosis and education in social-related areas.
A summary of the key features of the selected datasets can be found in Table 2.1,
while the source links for each dataset are reported in Table 2.2.

COMPAS Recidivism racial bias dataset. This dataset includes variables used
by the homonymous COMPAS algorithm in scoring criminal defendants in Broward
County (Florida), in addition to their outputs within two years of the decision. The
original data consist of 28 variables, among which the target variable is identified by
two_year_recid, while the classifier is represented by risk score, which indicates a
“recidivism degree” with scores ranging from 1 to 10 and being considered high risk
if they are above 4, so as to be a binary classifier.
The COMPAS dataset has garnered attention in scientific communities for its poten-
tial biases, with a study by the U.S. non-profit organization ProPublica1 revealing

1https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing, last
visited on June 1, 2023

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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disparities in risk scores for white and black defendants. The analysis2 showed
that black defendants were more likely to be misclassified as high risk compared to
white defendants (false positive); conversely, white defendants who were actually
rearrested were nearly twice as likely to be misclassified as low risk than black
defendants (false negative). The main reason was that there were significantly more
black defendants’ records in the dataset than there were white defendants’ records,
and there were much more black recidivists than white recidivists as well.

Credit card default dataset. This dataset consists of credit card client informa-
tion from Taiwan spanning from April 2005 to September 2005. It includes data
on history of payment, credit data, bill statements, and demographic factors such
as education and sex. Particularly, the dataset comprises 25 variables, with de-
fault.payment.next.month as target variable. This particular dataset was selected due
to the significant impact of using ADM systems in this field. Moreover, at the time
of our researches it was –and it is still ranked that way– the fourth-most highly rated
credit card dataset on Kaggle3.

Drug consumption. This dataset is provided by the UCI Machine Learning Repos-
itory and holds information for 1885 individuals, including their personality traits
and demographic details. Participants were asked about their usage of 18 legal and
illegal drugs, plus a fictitious drug (Semeron) was included to identify over-claimers,
with the possibility to chose one of the following answers: never used, used over a
decade ago, or used in the last decade, year, month, week, or day. This dataset has
been used for two distinct classification tasks: predicting drug consumption based
on personality data, and predicting personality traits based on drug consumption. In
our study, these two scenarios are considered as separate datasets.

Heart disease. This data collection is retrieved from the UCI Machine Learning
Repository and covers a variety of heart-related conditions, including but not only
blood vessel illnesses (for example, coronary artery disease), heart rhythm issues,
and congenital heart defects. It is made up of 303 instances and 14 variables,
mostly consisting of medical information. Although the initial dataset consisted

2https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm, last vis-
ited on June 1, 2023

3https://www.kaggle.com/datasets?search=credit+card&sort=votes, last visited on June 1, 2023.

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.kaggle.com/datasets?search=credit+card&sort=votes
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of 76 variables, only the subset that was examined in our study is indicated in all
referenced reseach.

Income. These data, provided by the UCI Machine Learning Repository and also
referred to as the “Adult” or “Census Income” dataset, were obtained by Barry Becker
from the 1994 Census database and the aim was to predict a person’s yearly income
based on the records. The target variable, represented by test.income, can take on
two values of either <= 50K or > 50K and a regression model was constructed to
predict the respective score.

Juvenile justice. This collection of 4753 records presents the statistical details
and recidivism rates of minors and young adults who participated in an educational
program in Catalonia in 2010. The information provides an overview of their
profiles and their involvement with the juvenile justice system. The recidivism rate,
specific rates, profile of recidivists and recidivism are also included. Specifically, the
SAVRY variables indicate the risk of recidivism and the areas of risk and need for
these individuals, with the SAVRY_total_score serving as an indicator of the “total
recidivism degree” on a scale from 1 to 100. In order to consider it as a binary score
variable, we refer to the COMPAS dataset where the total percentage of moderate
and high recidivism risk is around 45%, thus we select the same percentage of data
in the Juvenile dataset as moderate-high risk: we considered a score –of the variable
SAVRY_total_score– above 15 as an affirmative (estimated) risk of recidivism. In
addition, the target variable reincidencia_2013 represents the recidivity by the end
of 2013.

Statlog. This dataset, obtained from the UCI Machine Learning Repository, was
contributed by German professor Hans Hofmann as part of a collection of datasets
from an European project “Statlog”[50]. The data are a stratified sample of 1000
credits, 700 of which are considered good and 300 bad, and were gathered from a
large regional bank with about 500 branches, both urban and rural ones, in Southern
Germany between 1973 and 1975. The bad credits were oversampled to provide
sufficient information for differentiation from good credits [51]. Each record in
the dataset represents an individual who applied for a credit by a bank and is
characterized by 20 categorical attributes. The goal is to determine the credit risk,
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classified as good or bad, based on these attributes. As specified with the Statlog data
(whose source link is provided in Table 2.2), one may analyze the misclassification
cost: indeed, the cost of misclassifying a bad risk as good is assumed to be five times
higher than the cost of misclassifying a good risk as bad [51], thus the cost_matrix
variable, with a value of either 0 or 1, is used as target variable.

Student. These two collection of data were built with school reports and question-
naires gathered in 2014 and provide information on the academic performance of
secondary school students in two Portuguese schools. Two datasets were retrieved
from the UCI Machine Learning Repository and they include the students’ grades,
as well as various demographic, social, and school-related characteristics. In par-
ticular, the data relate to the performance of different students in Mathematics and
Portuguese language. In our studies, we analyze both the datasets and used the
variable G3 as the target variable, which represents the final year grade ranging from
1 to 20, and is considered positive if it is above 9, or negative otherwise[52].

Table 2.1 Complete list of the datasets and their main characteristics.

Dataset Domain Size Target variable Score

COMPAS Justice 6172×13 recidivism risk COMPAS_risk_score

Default of credit cards
clients (Dccc)

Financial 30000×25 default payment
next month

missing

Drug (Cannabis) Welfare 1885×32 cannabis con-
sumption

missing

Drug (Impulsive) Welfare 1885×32 impulsiveness missing

Heart disease Welfare 303×14 diagnosis missing

Income Welfare 32561×15 income bracket missing

Juvenile justice Justice 4753×132 recidivism risk SAVRY_total_score

Statlog Financial 1000×21 creditworthiness missing

Student (Mathematics) Welfare 395×33 final grade missing

Student (Portuguese) Welfare 649×33 final grade missing
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Table 2.2 Complete list of the datasets and their source links.

Dataset Source link

COMPAS https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv

Default of credit card
clients (Dccc)

https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset

Drug (Cannabis and
Impulsive)

https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified%29

Heart disease https://archive.ics.uci.edu/ml/datasets/heart+disease

Income https://archive.ics.uci.edu/ml/datasets/adult

Juvenile justice http://cejfe.gencat.cat/en/recerca/opendata/jjuvenil/reincidencia-justicia-menors/index.html

Statlog https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

Student (Mathematics
and Portuguese)

https://archive.ics.uci.edu/ml/datasets/Student+Performance

2.2.2 Balance Measures

In our studies we focused on categorical attributes and chose four indexes of data
balance that are commonly referenced in the literature of various fields of research.
Note that to assess the balance in data, we will refer to balance measures, metrics of
balance as well as indexes of balance interchangeably.

The measures were normalized to satisfy two standards:

i) range in the interval [0,1];

ii) share the same interpretation: the closer the metric is to 1 and the more
balanced the distribution of categories is, meaning that the frequencies of
each category are similar; on the contrary, values closer to 0 show that there
is a higher concentration of frequencies in a smaller number of categories,
resulting in an imbalanced distribution.

Gini index. This index, which is described in the literature as a measure of hetero-
geneity, is widely used across many fields of study and referred to with various terms
such as political polarization, market competition, ecological diversity, and racial
discrimination. The index reflects the degree of diversity, or the extent to which
different types (such as protected groups) are represented. In statistical analysis, the
heterogeneity of a discrete random variable, which has m categories and frequen-
cies fi (with i = 1, ...,m), can range from a minimum value (degenerate case) to a

https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset
https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified%29
https://archive.ics.uci.edu/ml/datasets/heart+disease
https://archive.ics.uci.edu/ml/datasets/adult
http://cejfe.gencat.cat/en/recerca/opendata/jjuvenil/reincidencia-justicia-menors/index.html
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://archive.ics.uci.edu/ml/datasets/Student+Performance
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maximum value (equiprobable case), where all categories are equally represented.
In other words, for a given m, heterogeneity increases as the probabilities become
more equal, meaning that the different protected groups are represented in similar
numbers. The Gini index is calculated as follows:

G =
m

m−1
·

(
1−

m

∑
i=1

f 2
i

)

Shannon index. Diversity indexes are a valuable method for assessing imbalances
in a community by considering the proportion of various species or classes. One
of the most commonly used indexes in biology, ecology, and phylogenetics is the
Shannon Index. This index measures the diversity of species in a community by
determining the relative abundance of each species. First, the proportion of species
i, represented as fi and relative to the total number of species, is considered; then,
the natural logarithm of this proportion (ln fi) is taken and multiplied by fi. This
calculation is performed for each species and the results are summed and multiplied
by −1. The final formula for the Shannon Index is the following:

S =−
(

1
lnm

) m

∑
i=1

fi ln fi

Simpson index. It is a metric used to quantify diversity by determining the chance
of two randomly selected individuals belonging to the same species or category.
It is utilized in fields such as social and economic sciences for evaluating wealth,
uniformity, and equity, as well as in ecology for examining the diversity of living
organisms in a specific area. The metric is based on a discrete random variable, which
has m categories and frequency fi where i = 1, ...,m. This frequency represents the
proportion of species i out of the total number of species. The calculation of the
Simpson index is performed as follows:

D =
1

m−1
·
(

1
∑

m
i=1 f 2

i
−1
)

Imbalance Ratio index. The IR index is a frequently utilized indicator that is
computed as the ratio of the highest frequency to the lowest frequency. To standardize
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it to a range of [0,1] and make it a metrics of balance comparable to the previous
measures, the inverse is taken. The formula applied is as follows:

IR =
min({ f1,...,m})
max({ f1,...,m})

2.2.3 Fairness Criteria

We evaluated the unfairness of automated classification outcomes by means of
three criteria formalized by [53] in Chapter 3 “Classification”. Bear in mind that
hereinafter we will refer to fairness criteria and unfairness measures analogously, as
we assume the following Fairness criteria as indicators to evaluate the unfairness of
a classification output.
First of all, to assess the unfairness we take into account a categorical protected
attribute A that can assume various values {a1,a2, ...}, a binary target variable Y (that
is, Y = 0 or Y = 1) and a predicted class (or score) R; being Y binary, R is binary as
well (that is, R = 0 or R = 1).
Practically, we aim at measuring to what extent an ADM system behaved fairly with
respect to the different values of a protected attribute when determining a predicted
class.

Independence criterion. According to this criterion, in order to assess whether
the acceptance rate is the same across all groups, we adopt the concept of statistical
parity or demographic parity, which requires the probability of acceptance (that is,
R = 1) to be equivalent for all groups. In other words, the independence criterion
is satisfied if all groups have equal rate of selection. In terms of probability, it is
expressed through the following condition:

P(R = 1 | A = a) = P(R = 1 | A = b) = ...

If A is binary (that is, A = a1 or a2), then we can compute the Independence
criterion as:

UInd(a1,a2) = |P(R = 1 | A = a1)−P(R = 1 | A = a2)|
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Separation criterion. In plain words, when the protected characteristic is associ-
ated with the target variable –as it happens in various circumstances– the Separation
criterion permits a correlation between the score and the sensitive attribute as long
as it is justified by the target variable. Indeed, this criterion is also referred to as
equalized odds, equality of opportunity, or even conditional procedure accuracy. This
means that for each level of the protected attribute being evaluated, the true positive
rate and false positive rate must match in order to satisfy the separation criterion:

P(R = 1 | Y = 1,A = a1) = P(R = 1 | Y = 1,A = a2) = ...

P(R = 1 | Y = 0,A = a1) = P(R = 1 | Y = 0,A = a2) = ...

Hence, if A is binary we can calculate two Separation unfairness measures (U) in
the following ways:

USep_T P(a1,a2) = |P(R = 1 | Y = 1,A = a1)−P(R = 1 | Y = 1,A = a2)|

USep_FP(a1,a2) = |P(R = 1 | Y = 0,A = a1)−P(R = 1 | Y = 0,A = a2)|

Sufficiency criterion. This criterion assumes the calibration of the model for the
various categories of a given protected attribute, that is, Parity of Positive/Negative
Predictive Values (respectively R=1 or 0) for each level of the protected attribute
taken into consideration:

P(Y = 1 | R = 1,A = a1) = P(Y = 1 | R = 1,A = a2) = ...

P(Y = 1 | R = 0,A = a1) = P(Y = 1 | R = 0,A = a2) = ...

As previously indicated, if A is binary we can compute two Sufficiency unfairness
measures (U) as follows:

USu f _PP(a1,a2) = |P(Y = 1 | R = 1∧A = a1)−P(Y = 1 | R = 1∧A = a2)|

USu f _PN(a1,a2) = |P(Y = 1 | R = 0∧A = a1)−P(Y = 1 | R = 0∧A = a2)|

When dealing with non-binary attributes, that is m > 2 (where m indicates the
number of categories of a given attribute), all the definitions above can be extended
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by considering the mean of indexes can be computed by taking all the possible pairs
of levels in A:

All of the definitions above can be expanded when dealing with multiclass
attributes, that is m > 2, by considering the mean of the measures calculated by
taking into account all the possible pairs of levels in A.

U(a1, ...,am) =
2

m(m−1)

m−1

∑
i=1

m

∑
j=i+1

U(ai,a j)

Finally, we remind that all the fairness criteria previously introduced range in
the interval [0,1]: the higher the values, the greater the unfairness; therefore, values
equal to zero denote an entirely fair classification, whereas values close to 1 indicate
unfair behavior.



Chapter 3

Related Work

In recent years, substantial effort has been made to enhance and introduce new
methods and strategies to promote fairness in ADM systems. The main corpus
of researches has centered on identifying and mitigating systematic discrimination
through different definitions of unfairness. Among several notable works that provide
a comprehensive overview on fairness in machine learning, we mention the ongoing
study by Barocas et al. (2019) [53], which served as the basis for the unfairness
measures used our studies, the survey on bias and fairness in machine learning by
Mehrabi et al. (2019) [54], as well as the review of discrimination measures for
algorithm decision making by Žliobaitė (2017) [55]. A significant challenge in
defining software outputs as fair or not lies in the mathematical difficulty of meeting
multiple definitions of fairness simultaneously [56] [57], giving rise to an ontological
limitation: indeed, in order to define a “fair impact” it would be necessary –and
essential– to include several political, economic and cultural aspects [58], therefore a
universally accepted notion of fairness can not exist. The swiftly achieved relevance
of this issue contributed to the birth of a new field of research, whose main forum
today is the ACM Conference on Fairness, Accountability, and Transparency 1,
which has been designed and promoted not only for computer scientists working
in this field, but also for scholars and practitioners from “law, social sciences, and
humanities to investigate and tackle issues in this emerging area”. The topic has
become relevant for policymakers as well: for example, avoidance of unfair bias is
one of the key requirements listed in the Ethics Guidelines for Trustworthy AI [59],

1ACM FAccT, https://facctconference.org, previously named ACM FAT, founded in 2018
https://facctconference.org/2018/index.html

https://facctconference.org
https://facctconference.org/2018/index.html
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a foundational document for the European efforts to regulate AI, currently going
through the last steps of the European legislative process. In the meantime, the major
institutions for technology standardization are also devoting special attention to the
topic: in 2022, the US National Institute of Standards and Technology has published
the draft of the future Standard for Identifying and Managing Bias in Artificial
Intelligence [60]. This initiative follows the publication of the Technical Report
“Bias in AI systems and AI aided decision making" by the International Standard
Organization [61]. The potential danger to fundamental human rights that is posed
by AI and, more in general, by data-driven technologies –as highlighted by several
jurists such as in [62] and[63]– is the main driver of many initiatives in the field
of ethics and governance of AI, of which those mentioned above are only a small
fraction. As a matter of fact, consider the dozens of principles and guidelines for
ethical artificial intelligence (AI) issued by private companies, research institutions
and public sector organizations [64].

Our approach fits within the realm of interdisciplinary discussions and adds to
the existing body of research on algorithmic bias and fairness. Rather than just
examining the results of automated decision-making systems, we shift the focus to
their inputs, whose investigation is necessary according to several recent studies [65]:

“There is a need to consider social-minded measures along the whole data pipeline”
[66] and “Returning to the idea of unfairness suggests several new areas of inquiry
[. . . ] a shift in focus from outcomes to inputs and processes“ [67].

Our proposal differentiates from the reference literature for two additional prop-
erties: i) it is built upon a series of international standards, which incorporate by
design a multi-stakeholder perspective; ii) we look at data imbalance as a risk factor
and not as a technical fix: we believe that a risk approach creates space for active
human considerations and interventions, rather than delegating the mitigation of the
problem to yet another algorithm, with very low probability of success. Indeed, given
the socio-technical nature of the problem, we firmly believe that a risk approach is
preferable because it keeps the ultimate responsibility in the realm of human agency.
Therefore, the proposed methodology address the need to better document the AI
pipeline, particularly relevant in the algorithmic fairness community as shown in
the exhaustive work of Fabris et al. [68]. Reporting imbalances in a synthetic
and meaningful way is part of the necessary further efforts of the AI/ML commu-
nity in devoting more attention to the dataset documentation, as acknowledged by
Königstorfer and Thalmann: “one should also record whether there were imbalances
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in the training data with regards to the target categories or how these imbalances
were corrected” [69].

An approach similar to ours but wider in scope is the work of Takashi Matsumoto
and Arisa Ema (2020) [70], who proposed a risk chain model for risk reduction in
Artificial Intelligence (AI) services, named RCM. By applying RCM in a given risk
scenario, it was proven that a propagation occurs from the technical components of
AI systems (data and model) up to the user’s understanding, behavior, and usage
environment, passing through the service operation management and aspects related
to the code of conduct of the service provider as well as the communication with
users. The authors consider both data quality and data imbalance as risk factors
–without indicating specific measures– and they stress the importance of visualizing
the relations between risk factors for the purpose of a better planned risk control.
While our work is smaller in scope, we think that it can be easily plugged into
the RCM framework, due to the fact that we offer a quantitative way to measure
balance, backed by a structural relation to the ISO/IEC standards on software quality
requirements and risk management. Furthermore, given that data quality metrics are
well-established in SQuaRE, we specify that we did not address data quality as a risk
factor. However, we recognize that specific studies should be conducted for selecting
the most suitable and accurate measures for data quality in the management of ADM
system risks.

Other approaches which can be related to ours are in the direction of labeling
datasets. “The Dataset Nutrition Label Project” 2 [71] has been an inspiring work
for us. Similar to nutrition labels on food, this initiative aims to identify the “key
ingredients” in a dataset such as provenance, population, missing data. The label
takes the form of an interactive visualization that allows for exploring the previously
mentioned aspects. The ultimate goal is to prevent flawed, incomplete, skewed
or problematic data from having a negative impact on automated decision-making
systems and to foster the creation of more inclusive algorithms.
A similar goal was proposed in the work “Ethically and socially-aware labeling”
(EASAL) [72], where authors propose a conceptual and operational framework to
label datasets and identify possible risks of discriminatory output when used in
decision making or decision support systems. Thus, it aims to plan and develop
datasets metadata to help software engineers to be aware of the risks of discrimination.

2It is the result of a joint initiative of MIT Media Lab and Berkman Klein Center at Harvard
University: https://datanutrition.org/

https://datanutrition.org/
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Particularly, the authors identified three types of data input properties that could
lead to downstream potential risks of discrimination: data quality, correlations
and collinearity, and disproportions in datasets. The last property coincides with
imbalanced data. Indeed, the same authors then published a data annotation and
visualization schema based on Bayesian statistical inference [73], always for the
purpose of warning about the risk of discriminatory outcomes of a given dataset.
Yet another labelling approach is proposed by Gebru et al., “Datasheets for Datasets”
[74]: with respect to the previous proposals, this research work consists of more
discursive technical sheets for the purpose of encouraging an increasingly clear and
comprehensive communication between users of a dataset and its creators.
Another noteworthy work is “DataTags – Share Sensitive Data with Confidence” [75],
a project conducted by members of the Privacy Tools project in collaboration with
the IQSS Dataverse team. The goal of DataTags is to support researchers who are
not legal or technical experts in investigating considerations about proper handling
of human subjects data, and make informed decisions when collecting, storing, and
sharing sensitive data.

Finally, it is important to mention the development of tools: in the recent years
researches both in the profit sector and in universities developed toolkits for bias
detection and mitigation [76]. For example:

• the AI Fairness 360 Open Source Toolkit [77], an open source library de-
veloped by IBM and designed to examine and mitigate bias in the output of
machine learning models; it provides several metrics to analyze the unfairness
of the models, as well as pre-processing algorithms to transform the dataset;

• the What-If Tool [78] developed by Google, which can be used to analyze the
characteristics of a dataset and of the models derived from it; the unfairness
of these models can be analyzed with respect to various measures, and an
interactive graphical user interface let the user perform a sensitivity analysis
by shifting classification thresholds for the selected features;

• Aequitas is an open source bias audit toolkit [79] designed by the Center for
Data Science and Public Policy at the University of Chicago: it allows to
generate a bias report that includes multiple unfairness measures based on the
user’s selection of reference groups;
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• the Themis software [80] developed by the University of Massachusetts
Amherst differentiates from the previous tools because it is based on the
concept of causal discrimination: a test suite captures the causal relationships
between inputs and outputs, providing a causal discrimination score for a
particular set of characteristics.

• The FairMask algorithm proposed in [81] is a model-based extrapolation
method that is capable of both mitigating bias and explaining the cause; the
authors aim to offset the biased predictions of the classification model by
rebalancing the distribution of protected attributes, with a view to better detect-
ing and mitigating algorithmic discrimination in machine learning software
problems.

These and other fairness toolkits do not consider measures of balance in the
input datasets: again, we emphasize the complementarity of our work with existing
approaches and potential future integration.

In summary, in this dissertation we study how an imbalance in the input data
of an ADM system can be used as an indicator of potential unfair software output,
combining concepts from data quality measurement and risk management. The
proposed approach has been tested first in [41] on a few hypothetical exemplar
distributions and then on several real datasets. Then, we ran more exhaustive
studies by applying two different mutation techniques to generate a number of
derived synthetic datasets having different levels of balance, in one case to multiclass
attributes [43] and in the other case to binary attributes [44]. After that, we define
a methodology for identifying thresholds of balance to forecast a defined level of
algorithmic fairness [45]. Finally, we move our investigation on data imbalance
forward by analyzing intersectionality among the classes of protected attributes, and
the impact of an imbalanced distribution in the target variable [46].
Particularly, there are two fundamental recurring elements between these studies:

• the experimental procedure, as we will see in the following chapters, the
method that we adopted to collect synthetic data remains substantially un-
changed;

• the computation of the relationship between balance and unfairness measures,
in accordance with the usage of balance measures as indicators of the risk of
systematic discrimination.



Chapter 4

Identifying Imbalance in Datasets
with Balance Measures

Several measures have been proposed in the literature in order to explain the abstract
construct of imbalance; in this Chapter we aim at understanding how these indexes
reflect our subjective, and probably limited, perception of imbalance. Particularly,
we formulated the following research question:

RQ 1. How are existing measures able to detect imbalance among the classes
of a given attribute in a dataset?

Hereinafter we report the very first study conducted during my Ph.D. journey and
published as “A Data Quality Approach to the Identification of Discrimination Risk
in Automated Decision-Making Systems” (2021) [41], a journal article in which
we analyzed both Research Question 1 and Research Question 2 proposed in this
dissertation.

4.1 Experimental Design

In order to address the first research question, we assess a set of measures that are
able to measure balance in the data –and consequently its absence, that is, imbalance.
As shown in Figure 4.1, we defined a set of synthetic attributes with a known and
simple exemplar distribution whose balance can be judged; then we asses the values



4.1 Experimental Design 31

Synthetic
Attributes …

0 33 66 100
Balance measure

RQ1

U

Attr.

Balance
Measurement
Function

UnknownImbalanced

I

Attr.

B

Attr.

Balanced

I

Attr.

Fig. 4.1 Investigative approach for RQ1.

of the balance measures against the human assessment. More in detail, we followed
this procedure:

• we defined a set of synthetic attributes with a simple description of the distri-
bution between the classes and our expectation in broad terms;

• we attributed to each synthetic attribute of a specific balance judgement;

• we applied the balance measures described in Section 2.2.2 on this set of
synthetic attributes;

• we compared measures versus expectations in order to assess the performance
of each index.

In simple terms, we examined the behaviour of the balance measures by analyzing
different cases of distribution of the occurrences between the classes of certain
synthetic attributes.

4.1.1 Synthetic Attributes

We identified six synthetic attributes, each with a certain exemplar distribution of the
occurrences between the classes:

1. Max Balance: the perfect uniform distribution, we expect the measures to
indicate the highest level of balance;
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2. Max Imbalance: all classes are empty (zero occurrences) but one, we expect
the measures to indicate the highest level of imbalance;

3. Quasi Balance: half of the classes are 10% higher with respect to max balance
and the other half is 10% lower, we expect overall high value measures;

4. One off : occurrences are equally distributed between all the classes except for
one, which is empty;

5. Half high: occurrences are distributed mostly among half of the classes while
the remaining have a very low frequency, we opted for a ratio of 1:9 for the
frequencies of the two halves;

6. Power 2: occurrences are distributed according to a power law with base 2,
that is, distributions among the classes increase like the powers of 2.

For each of the above seven cases of distribution, we built different synthetic
datasets with number of classes m = 2,3,5,8. The cardinalities of the classes have
been chosen according to the Fibonacci series to have enough diversity. For instance,
in the One off case for m = 5 we have classes with frequencies

(
1
4
,
1
4
,
1
4
,
1
4
,0
)

Furthermore, note that in this experiment we deal with empty classes, that is,
classes that exist (potentially there could be occurrences) but are not represented in
the given synthetic attribute: indeed, trying to simulate a real scenario, a dataset that
contains no instance of a given class –for example, all males and zero females– is
imbalanced.

Figure 4.2 summarizes all the exemplars of synthetic distributions. Overall we
defined 24 distributions (6 cases of distribution × 4 cases of number of classes), but
the cases Max Imbalance and One Off for m = 2 are identical, leading to 23 unique
distributions.

To formalize our expectations and to better judge the balance of the synthetic
attributes, we defined three classes and the related associated thresholds:

• I = imbalanced if we expect the measure to be lower than 33%,
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To compare the performance of the di�erent balance measures we compute the accuracy in predicting
imbalanced distribution. We perform two type of assessment:

• overall accuracy: that is the proportion of distributions that can be classified correctly using the defined
thresholds,

• imbalance classification performance: we consider the ability to correctly classify the Imbalance class,
for this purpose we compute Precision, Recall, and F-score.

3

Fig. 4.2 Summary of the synthetic exemplar distributions with the relative balance level
expected by the authors, where I indicates imbalance, B stands for balance, and U for
uncertain.
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• B = balanced if we expect the measure to be greater than 67%,

• U = uncertain if we expect a value between the two above thresholds.

We chose those thresholds because all the measures are defined to range in the
interval [0,1] where 1 corresponds to the perfect balance and 0 means most extreme
imbalance. In terms of understandability –that is, the capability for a human reader
to look at a measure and understand its meaning– we assume the lowest values
correspond to imbalance, the highest values to balance and the intermediate ones to
an uncertain region.

The classification was performed collectively by the authors: each author pro-
posed a class and a convergence to a common class was achieved after internal
discussion. The final results of this process are reported in Figure 4.2 as colored
background –red for imbalance, gray for undecided, and blue for balanced– and with
a label with the initial of the assigned class.

The goal is to assess the performance in terms of consistency of balance predic-
tion with human judgments for the different balance measures described in Section
2.2.2. To compare the performance of the different balance measures we compute
the accuracy in predicting imbalanced distribution. We assess the accuracy in terms
of Accuracy and F-score as they are common metrics used in classifier evaluation.

4.2 Results and Discussion

As detailed in Section 4.1, we applied the indexes of balance to the attributes created
ad-hoc in order to test their behaviour in presence of different distributions of the
occurrences between the classes of a certain attribute.

Results are reported in Figure 4.3, which reports each synthetic attribute as a
rectangle whose border color encodes the expected class: blue means balanced, red
imbalanced, and gray undecided. For each combination of synthetic attribute and
balance measure, the Figure reports the result of the classification as a colored tile
using the above encoding, along with the value of the measure.

We can observe that for the first three groups of synthetic distributions –Max
Imbalance, Max Balance, and Quasi Balance– all the balance measures provide an
accurate identification of the class.
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Concerning the remaining cases: Gini and Shannon provided the right class in
just 2 cases out of 12, Simpson detected correctly 4 classes, Imbalance Ratio was
accurate in detecting 9 classes. The same results can be read from the perspective of
these three latter distributions (that is, those in the second row of Figure 4.3): One
Off is the distribution where the indexes performed better, with 8 correct cases out
of 16 (mostly in correspondence of m = 2 and m = 8), two correct cases for each
index; in Half high, we observe 5 correct cases out of 16, of which 4 are from the
Imbalance Ratio index, and the last one being Simpson index with m = 2; in Power
2 distributions, only 4 cases out of 16 were correctly detected by the indexes: 3 for
Imbalance Ratio index in correspondence of m = 2;5;8 and 1 for Simpson index
with m = 8.
Also, we observe that 13 out of the possible 32 cases of imbalance were detected
(40%), 3 out of 4 of balance, and only 1 of the 12 classes of the undecided category.
From the point of view of the number of classes, we cannot derive a clear tendency: in
fact, 7 correct classifications are in correspondence of m = 2, 6 correct classifications
are in correspondence of m = 8, and 2 classifications are in correspondence of both
m = 3 and m = 5.

By looking more in details at the values of the measures, we can observe that
Imbalance Ratio has the lowest values: this can be explained by looking at its
definition that takes the ratio of the two extreme frequencies. The highest values are
those computed using the Gini and Shannon indexes, while the Simpson index has
intermediate values.

Finally, the capability of the indexes to detect imbalance can be summarized in
terms of the overall accuracy of the classification: the values corresponding to the
four balance measures are reported in Figure 4.4.

In general, we observe that all indexes have some drawbacks. We ought to
emphasize that this experiment was an exploratory study based on a limited number
of synthetic attributes, whose goal is to provide an understanding of the balance
measures and our perception of (im)balance.
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Fig. 4.3 Classification of the synthetic attributes based on the balance measures, where the
colored tile along with the value of the measure indicates the level of balance (blue means
balanced, red imbalanced, and gray uncertain), while the border color represents the expected
class using the same encoding above.

4.3 Limitations

The results are highly dependent on the judgements of the authors (construct validity)
and on the choice of the exemplar distributions (conclusion validity). Given the
exploratory nature of the work, we aimed at simplicity and not at an exhaustive test
of the possible levels of imbalance, which are infinite from a prospective of marginal
increments. However, a higher number of notable distributions and a larger pool
of judgements (for instance, via crowd-voting) would be necessary conditions to
increase the validity of the findings.
Finally, a sensitivity analyses on the thresholds used to define the three classes
Imbalanced/Balanced/Uncertain should improve the reliability of the results.
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Fig. 4.4 Ability of the balance measures to detect imbalance.

4.4 Research Outcomes

Overall we can conclude that the Imbalance Ratio index is the most precise measure
for detecting imbalance among the classes of a given attribute, according to the
exemplar distributions chosen. However, the index is very sensitive when classes
have 0 occurrences: indeed, when just one class is empty, the index drops to 0. An
intermediate result is achieved by the Simpson index, while the Gini and Shannon
indexes exhibit the lowest performances, as they generally present higher values than
the former two for the same distributions. Thus, it may be necessary to study how
the indexes behave with the application of different thresholds.
Moreover, we did not observe any specific trend associated with the number of
classes.

As a further observation, we highlight that we decided to analyze a synthetic
attribute with a power law with base 2 distribution since power law distributions are
very common in several real cases (for example, income): we noted that the indexes
achieved the worst performances exactly in this case, therefore a more in-depth
analysis should be conducted in order to understand how to adequately deal with this
family of distributions.

In general, these findings are encouraging enough to continue the exploration of
data imbalance identified through the application of balance measures.



Chapter 5

Balance Measures as Risk Indicators

A large corpus of scientific and journalistic evidence show that imbalanced data,
when used to train an ADM system, may trigger a discriminatory behavior (see
Section 1.1). The ultimate focus of this study consists in assessing whether the
imbalance in data, measured by means of the selected indexes of balance, may signal
a discrimination risk in the ADM system. Specifically, we aim at answering the
following research question:

RQ 2. Are existing balance measures able to reveal a discrimination risk when
an ADM system is trained with such data?

To answer RQ2, we first conducted an exploratory analysis of data imbalance
on two datasets with only two balance measures, published as a conference paper
titled “Identifying Risks in Datasets for Automated Decision–Making” (2020) [42].
This first study laid the basis of our proposal –that is, a risk assessment approach
based on quantitative measures to evaluate imbalance in the input datasets of ADM
systems–, which was subsequently tested in detail in the journal article entitled “A
Data Quality Approach to the Identification of Discrimination Risk in Automated
Decision-Making Systems” (2021) [41], where we extended the quantitative analysis
with more balance measures and datasets. Hereinafter we report the research work
published in these articles.
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Fig. 5.1 Method of analysis used for RQ2.

The approach we adopted to investigate the research question above is summa-
rized in Figure 5.1: given a dataset, its non-sensitive attributes and a target variable
can be used to train an ADM system that performs a classification task. The unfair-
ness of the classification with respect to a certain sensitive attribute can be evaluated
considering the target class and the predicted class. The balance of the sensitive
attributes can be quantified by applying any of the indexes described in Section 2.2.2,
in order to understand the ability of such balance measures to reveal a potential
discrimination risk –that is, un-fairness. Specifically, we followed this procedure:

• we selected seven large datasets from different domains (see Subsection 5.1.1);
some datasets include both the target variable and the score variable that
correspond to the actual ADM-predicted class; other datasets include the
target variable but not the result of an ADM classification, so we trained a
simple ADM system and complemented the original datasets with the score
variable;

• we identified the protected attributes in the selected datasets; the identification
was performed taking as reference the definition provided in “Article 21 -
Non-discrimination” of the EU Charter of Fundamental Rights[30], already
reported in Chapter 1;
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• we evaluated the balance of the protected attributes using the measures de-
scribed in 2.2.2; in order to assess the risk more in detail, we classified the
protected attributes into Higher risk and Lower risk based on the value of the
balance measures, using the threshold of 33%;

• we assessed the unfairness of the predictions with respect to the sensitive
attributes; we computed the unfairness measures (U) related to the Separation
and the Independence criteria described in Section 2.2.3;

• we analyzed the relationship between the balance measures and the fairness cri-
teria: we observed the unfairness versus the balance induced risk. Specifically,
we compare the values of the unfairness measures related to the protected
attributes classified as Higher risk versus the values related to those classified
as Lower risk. The risk induced by imbalance in the protected attributes can
be confirmed if we can observe higher unfairness relative to those classified as
Higher risk.

As a further assessment step, we computed the correlation coefficient between
balance and unfairness measures. For this purpose we selected the Spearman correla-
tion coefficient since we are not expecting anything like a simple linear correlation,
but rather we aim to check if a looser – rank-based – relation holds.

Finally, in Algorithm 1 we present the pseudocode for the measurements of both
balance B and unfairness U for each protected attribute in the selected datasets.

5.1.1 Datasets

In Table 5.1 we report both the datasets analyzed in this study, whose complete
description and characteristics are provided in Section 2.2.1, and the related protected
attributes.
Note that for the datasets that do not contain a pre-computed classification, we built a
binomial logistic regression model in order to predict the score variable: in particular,
we trained a binary classifier on a training set composed by the 70% (randomly
selected) of the original dataset and we ran it on the remaining 30%, which represents
the test set.
Furthermore, bearing in mind the indications provided in Chapter 1, it is important



5.2 Results and Discussion 41

Algorithm 1: Measurements of balance B and unfairness U for RQ2.
Require: categorical protected attributes Ai, each with number of categories m > 0;

balance measures B= Gini, Shannon, Simpson or IR;
unfairness measures U= USep_T P,USep_FP or UInd .
Input :Dataset D j with j = 1, ...,7
Output :Balance measures B, Unfairness measures U

1: for all D j ∈ {D1, . . . ,D7} do
2: identification of protected attributes A j,i
3: if the score variable exists then
4: B j,i←B(A j,i)
5: U j,i← U(A j,i)
6: else if the score variable is missing then
7: randomly data splitting of 70%-30% into training-test sets
8: prediction of the score variable with a classification model
9: B j,i←B(A j,i) ∈ training set

10: U j,i← U(A j,i) ∈ test set
11: end if
12: end for
13: return B j,i, U j,i

to underline that protected attributes are never taken into account in classification
models.

In this study we deal with empty classes, that is, classes that exist (potentially
there could be occurrences) but are not represented in the dataset. Indeed, in our
view a dataset that contains no instance of a given class –for example, all males or all
whites– is imbalanced with respect to that protected attribute; therefore, we decided
to take into consideration all the classes of each protected attribute identified in the
datasets, including classes with zero occurrences.
Finally, note that in real datasets we can often find missing values (NA), so we
decided not to exclude missing values from the analysis and to consider them as a
separate “NA” category.
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Table 5.1 Complete list of the datasets with the analyzed attributes.

Dataset Domain Protected attributes

COMPAS Justice ethnicity, sex, age category

Default of credit cards
clients (Dccc)

Financial sex, education

Income Welfare education, race, sex, native country

Juvenile justice Justice sex, stranger, country of origin, area of origin, age category, age

Statlog Financial status, sex, foreign worker

Student (Mathematics) Welfare sex, age, mother’s job, father’s job, mother’s education, father’s education

Student (Portuguese) Welfare sex, age, mother’s job, father’s job, mother’s education, father’s education

5.2 Results and Discussion

We report results of applying balance measures on the protected attributes of the
datasets indicated in Section 5.1.1, as well as the unfairness measures computed with
respect to such attributes.

For each combination of balance and unfairness measures, Figure 5.2 reports a
boxplot that shows the distribution of the unfairness values for higher risk attributes
versus lower risk attributes: we remind from Section 5.1 that we adopted a threshold
of 33% such that “imbalanced” corresponds to higher risk, while “unknown” +
“balanced” corresponds to lower risk. The more a boxplot leans to the right, the more
unfair the treatment of those attributes, and vice-versa: the more a boxplot is close to
the left (that is zero) the more the relative attributes are treated fairly. As a general
rule, if the boxes of the riskier attributes (colored red) and the one for the less riskier
(colored yellow) are not overlapping, then the imbalance-based approach to risk
identification is able to discriminate between actually fair and unfair classifications.
We observe that:

• Gini index has a good discrimination ability for the true positive rates of
the Separation criterion and essentially no discrimination for the other two
unfairness measures;

• Imbalance Ratio has a good discrimination ability for both the indicators of
the Separation criterion, and a limited ability for the Independence criterion;



5.2 Results and Discussion 43

←  fair unfair →

←  fair unfair →

←  fair unfair →

←  fair unfair →

←  fair unfair →

←  fair unfair →

←  fair unfair →

←  fair unfair →

←  fair unfair →

←  fair unfair →

←  fair unfair →

←  fair unfair →

Independence Separation (TPR) Separation (FPR)

Gini

Imbalance
Ratio

Shannon

Simpson

0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4

Higher risk

Lower risk

Higher risk

Lower risk

Higher risk

Lower risk

Higher risk

Lower risk

Unfairness index value

Risk class

Fig. 5.2 Boxplot of unfairness measures versus balance classification, for different balance
measures: the more a boxplot leans to the right, the more unfair the treatment of those
attributes; vice-versa, the more a boxplot is close to the left, the more the relative attributes
are treated fairly.

• Shannon index has a good discrimination for the Independence criterion,
excellent for the true positives rates of the Separation criterion, and no discrim-
ination for the false positive rates of the Separation criterion;

• the Simpson index has a limited capability on the Independence criterion, and
no discrimination for the Separation criterion.

According to this analysis, we can summarise that all indexes but Simpson were
able to detect discrimination in terms of substantial difference of true positives; the
indexes are moderately able to detect discrimination in terms of different acceptance
rates; all indexes, with the notable exception of Imbalance Ratio, are not able to
anticipate discrimination in terms of substantial difference of false positives.

The values that have been summarized in Figure 5.2 are reported in detail in
Table 5.2: for each dataset we show all the protected attributes with the related
balance measurements –of the Gini, Shannon, Simpson and Imbalance Ratio indexes–
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and the corresponding unfairness values relating to the Independence and Separation
criteria.

Following the line of reasoning explained above, for high level of unfairness we
expect low-value balance indexes, which reveal imbalanced data. Looking at the
single attributes starting from the COMPAS dataset, previous studies [37] showed that
the data are imbalanced in favor of white people, as the highest levels of reoffending
are observed in black individuals. Indeed, as regards “ethnicity” about 34% of the
dataset’s observations refer to white people, while 51.4% refer to black people,
indicating that there may be an overestimation of the race attribute –against black
people– which would contribute to the estimation of recidivism. In confirmation of
this observation, both the fairness criteria reveal high level of unfairness; at the same
time, the balance measures confirm the presence of data imbalance, with low and
medium values for the Imbalance Ratio and Simpson indexes, and just a relatively
high value for the Gini and Shannon indexes. A similar relation between balance and
unfairness measures can be observed, for instance, for the attribute “country of origin”
in the Juvenile justice dataset, but also for “foreign worker” in Statlog or “native
country” in the Income dataset. Vice versa, correspondingly to low unfairness values
we note overall high balance indexes, denoting a negative correlation with unfairness
measures also in this case. For example, for the sensitive attributes “stranger” in the
Juvenile justice dataset, “sex” in the Credit card default dataset, “sex” in Statlog,
“sex” in both the Student-Mathematics and Student-Portuguese datasets, we found
low unfairness levels, which are reflected by very high and similar balance measures
–the Gini, Shannon and Simpson indexes above all. But this trend does not held for all
the attributes: for instance, with respect to “age category” in COMPAS, the fairness
tests reveal high level of unfairness, but the balance measures tend to be higher than
expected, with values between 0.36 and 0.89. Also for “status” in Statlog we note
medium and high unfairness values in correspondence of high balance measures,
as well as for the attributes “education” and “sex” in Income, “age” and “mother’s
education” in Student-Mathematics, or “age” in Student-Portuguese.

Therefore, we integrate the analysis with the computation of the Spearman
correlation coefficient between balance and unfairness measures, as reported in
Table 5.3. Specifically, we expect the coefficient to be negative: the stronger the
negative correlation, the stronger is the relationship between unfairness and balance
measures, as we expect the measures to be high (meaning low imbalance) if the
unfairness values are low (indicating higher fairness). Hence, in terms of correlation,
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Table 5.2 Values of balance measures and unfairness measures.

Separation
Dataset Attribute m Gini Shannon Simpson IR Independence (TPR) (FPR)

COMPAS
Ethnicity 6 0.73 0.62 0.31 0 0.25 0.29 0.20
Sex 2 0.61 0.70 0.44 0.05 0.23 0.02 0.00
Age category 3 0.87 0.89 0.69 0.36 0.28 0.21 0.27

Juvenile justice
Sex 2 0.44 0.54 0.28 0.14 0.02 0.12 0.05
Stranger 2 0.94 0.96 0.90 0.63 0.03 0.04 0.03
Country of origin 35 0.61 0.44 0.04 0 0.41 0.43 0.42
Area of origin 5 0.70 0.67 0.32 0.02 0.13 0.06 0.14
Age category 3 0.66 0.59 0.39 0 0.06 0.41 0.02
Age 5 0.89 0.83 0.63 0.01 0.05 0.31 0.07

Credit card default
Sex 2 0.95 0.96 0.91 0.65 0.02 0.01 0.02
Education 6 0.75 0.60 0.33 0 0.06 0.16 0.03

Statlog
Status 4 0.93 0.91 0.77 0.18 0.15 0.40 0.10
Sex 2 0.85 0.89 0.75 0.45 0.01 0.02 0.06
Foreign worker 2 0.17 0.26 0.09 0.04 0.37 0.53 0.37

Income
Education 16 0.86 0.73 0.28 0 0.29 0.41 0.16
Race 5 0.32 0.34 0.08 0 0.11 0.13 0.04
Sex 2 0.88 0.91 0.79 0.49 0.17 0.08 0.07
Native country 42 0.20 0.17 0 0 0.19 0.45 0.12

Student - Mathematics target
Sex 2 0.99 0.99 0.99 0.95 0.03 0 0.02
Age 8 0.89 0.77 0.51 0.01 0.46 0.44 0.40
Mother’s job 5 0.94 0.93 0.77 0.23 0.10 0.07 0.22
Father’s job 5 0.78 0.74 0.42 0.07 0.23 0.23 0.33
Mother’s education 5 0.91 0.86 0.69 0.03 0.46 0.41 0.44
Father’s education 5 0.93 0.87 0.74 0.01 0.17 0.09 0.38

Student - Portuguese target
Sex 2 0.97 0.97 0.94 0.70 0.01 0.03 0.04
Age 8 0.87 0.74 0.47 0 0.35 0.29 0.48
Mother’s job 5 0.93 0.92 0.74 0.21 0.11 0.05 0.54
Father’s job 5 0.75 0.72 0.38 0.06 0.06 0.02 0.53
Mother’s education 5 0.93 0.86 0.72 0.02 0.11 0.04 0.51
Father’s education 5 0.93 0.86 0.72 0.02 0.07 0.04 0.32
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the best balance measure is the Imbalance Ratio index as it always presents a strong
negative correlation –meaning that the higher the indexes, the lower the unfairness
measures– followed by the Simpson and the Shannon indexes respectively. The
less accurate measure is the Gini index, with two negative correlation values, but
weaker than the correlation values of the previous indexes, and a weak positive
correlation for the FP rates of the Separation criterion. The correlation analysis
confirm that false positive differences are the most difficult to detect with the four
balance indexes, while results are encouraging for the Independence criterion and
for the discrimination with respect to true positives rates.

Table 5.3 Correlation between balance measures and unfairness measures.

Fairness criteria
Balance Measures Gini Shannon Simpson Imbalance

Index

Independence -0.278 -0.352 -0.435 -0.514
Separation (TPR) -0.474 -0.575 -0.604 -0.667

(FPR) 0.012 -0.085 -0.181 -0.288

5.3 Limitations

As limitations of our approach, first of all we remind that for the datasets where a
classification score was present, we have no knowledge about the type of classifi-
cation model used on those datasets, thus we do not know whether the observed
relationship is exclusively connected to the imbalance in the data: confounding
factors may be present and affect the internal validity. However, it has been widely
acknowledged in the literature that the imbalance in the input data plays a significant
role in the observed discrimination in the controversial COMPAS case.
On the contrary, we obtained much more control over the datasets for which we
ran a classification model, the binomial logistic regression specifically. In all these
cases the limitations of the algorithm hold, most notably the assumption of linearity
between the dependent variable and the independent variables, as well as the assump-
tion of limited or no multi-collinearity between independent variables.
Applying more classification algorithms (each with different parameters) would be
necessary not only to improve the reliability of the relationship found between bal-
ance and unfairness, but also to increase the generalizability of the results (external
validity): it will help to identify how the different types of classification algorithms
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propagate the imbalance. Further possible extensions regard the usage of other
unfairness measures, for example the sufficiency criterion [53].
In addition, as already stated in the Limitations 4.3 of RQ1, an in-depth sensitivity
analyses on the thresholds used for the balance and unfairness measures should
improve the reliability and generalizability of the overall results.

Overall, it is important to stress again that our study focused on the level of
risk analysis, while risk evaluation (that is, which criteria should activate which
actions) has been left out of the scope of our research. In order to understand how
to manage the discrimination risk, the literature on machine learning and big data
[82] [83] is a useful resource to select and test imbalance mitigation techniques,
that are usually classified according to the different phases of the machine learning
pipeline: pre-processing techniques aim at re-balancing the training data, thus mostly
operating at data level; in-processing techniques are applied at the training phase,
operating both at algorithm level and at data level; post-processing methods mitigate
bias on the already predicted scores (data level). It should be observed that these data-
engineering aspects are still object of research because of inconsistent and conflicting
results [82], and they should be combined with other perspectives that factor in the
socio-technical nature of the problem: for example, both ethical considerations and
legal requirements shall be included to find meaningful thresholds of risks in relation
to the context of use and the severity of the impact on individuals.

5.4 Research Outcomes

In this Chapter we proposed and tested a metric-based approach to evaluate imbalance
in a given dataset as a potential risk factor for discriminatory outcomes of ADM
systems. We analyzed four widely used indexes of balance (Gini, Simpson, Shannon,
Imbalance Ratio) and tested their ability to detect discrimination occurring in the
classification outcomes of ADM systems trained with seven large datasets. We
observed that the balance measures performed differently with respect to different
fairness criteria: as a general consideration, evidence suggests that a combined
usage is preferable to detect possible discrimination risks, since there is no single
balance measure providing the basis for an ideal risk identification across all datasets
analyzed. Similarly to the previous research question (whose research outcomes
are reported in Section 4.4), the Imbalance Ratio foresees discrimination better than
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other indexes, although the correlation analysis showed that all indexes are able to
detect both the Independence criterion and the Separation criterion with respect to
the true positive rate. Instead, discrimination due to the Separation criterion for the
false positive rate is much more difficult to be detected, especially for the Gini index.

It is important to emphasize that we performed our risk classification using a
unique 33% threshold on all the measures; however, as we observed in the analysis
of RQ 1 reported in Section 4.2, the balance measures taken into account can assume
quite different values depending on the level of data imbalance.



Chapter 6

Detecting the Risk of Bias in
Classification Outcomes with Balance
Measures

In this Chapter we investigate to which extent it is possible to assess the risk of unfair-
ness in classification outcomes by measuring the imbalance of protected attributes
in training data. Differently from the previous study, in this Chapter we examine
how well the balance measures applied to a specific protected attribute reflect a
discrimination risk, where the (im)balance of the attributes has been varied through
different mutation techniques. This study has been conducted in detail separately for
binary and multiclass protected attributes. In particular, we formulated the following
research question:

RQ 3. Is it possible to measure the risk of bias in a classification output by
measuring the level of (im)balance in the protected attributes of the
training set?

The cornerstone of our approach remains unchanged: by measuring the level of
(im)balance of specific attributes in a dataset, it is possible to detect the risk of bias in
the classification output from ADM systems. However, as mentioned above, in this
study we introduce a mutation technique to generate a number of derived synthetic
datasets having different levels of balance; moreover, we add the computation of the
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Sufficiency criterion of fairness, in addition to Independence and Separation already
taken into account in Chapter 5.

Particularly, to answer RQ 3, we conducted two different studies, one for multi-
class attributes and one specific for binary attributes. Hereinafter we will present and
discuss these works in chronological order of publication:

• “Detecting Discrimination Risk in Automated Decision-Making Systems with
Balance Measures on Input Data” (2021) [43], a conference paper in which
we analyzed the behaviour of the balance measures when applied to multiclass
protected attributes;

• “Detecting Risk of Biased Output with Balance Measures” (2022) [44], a
journal article in which we focus on binary protected attributes.

6.1 Experimental Design

For the purpose of understanding how the balance of protected attributes in training
data can be used to assess the risk of algorithmic unfairness in subsequent classifica-
tion tasks, we selected a set of indexes that are able to measure balance in the data
–and thus its absence, that is imbalance–, and we assessed how well such balance
measures applied to a given dataset reflect a discrimination risk. Specifically, we
followed the following procedure, separately for multiclass and binary protected
attributes:

1. we selected one large dataset in the multiclass case, and a multiclass protected
attribute with cardinality “m”; whereas, we chose five large datasets in the
binary case, each with the binary protected attribute “sex” (see Section 6.1.1);

2. using two distinct mutation techniques, one for multiclass attributes and one
for binary attributes, we generated a number of derived synthetic datasets
having different levels of balance (see Section 6.1.2); specifically, we adopted
a pre-processing method as mutation technique and we mutate the distribution
of the occurrences between the classes of a certain attribute by adjusting a
certain parameter: C.perc in the multiclass case and p in the binary case;
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3. we implemented a binomial logistic regression model in order to predict the
score variable for each synthetic dataset; particularly, we trained a binary
classifier on a training set composed by the 70% (randomly selected) of the
data and we ran it on the remaining 30%, which represents the test set;

4. we measured the level of (im)balance of the protected attribute in the train-
ing set through four different widely used balance measures (described in
Section 2.2.2);

5. we applied two distinct fairness criteria in the multiclass case (precisely, the
Independence and Separation criteria) to the protected attribute in the test set
–that is, to the classifications obtained from the model– for a total of three
unfairness measures on each output, whereas we applied three fairness criteria
in the binary case (that is, Independence, Separation and Sufficiency criteria)
for a total of five unfairness measures on each output (see Section 2.2.3);

6. we assessed the relationship between balance measures and fairness criteria by
checking whether a negative correlation holds, that is, whether a lower level of
balance corresponds to a higher level of unfairness, and vice-versa.

Finally, note that in the Algorithms 3 and 2 we present the pseudocode for the
measurements of balance B and unfairness U, separately in the case of binary and
multiclass protected attributes.

6.1.1 Datasets

First of all, note that both in the multiclass and in the binary case, we decided to
include missing values in the analysis by treating them as a separate category “NA”
given that in real datasets we can often find missing values.

Moreover, since the selected datasets do not contain a pre-computed classification,
for each of them we built a binomial logistic regression model in order to predict the
score variable: in particular, we trained a binary classifier on a training set composed
by the 70% (randomly selected) of the original dataset and we ran it on the remaining
30%, which represents the test set.
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Algorithm 2: Measurements of balance B and unfairness U for RQ3 in the
case of multiclass protected attributes.

Require: categorical protected attribute A, with number of categories m > 2;
mutation technique M = SmoteClassif (for multiclass attributes);
exemplar distributions E = {Balance, QuasiBalance, OneOff, HalfHigh,
Power2};
balance measures B= {Gini, Shannon, Simpson, IR};
unfairness measures U= {USep_T P,USep_FP,UInd}.
Input :Dataset D
Output :Balance measures B, Unfairness measures U

1: identification of a multiclass protected attribute A in D
2: for all e ∈ E do
3: application of the mutation technique SmoteClassif Me←M(A)
4: randomly data splitting of 70%-30% into training-test sets
5: prediction of the score variable with a classification model
6: Be←B(Me) ∈ training set
7: Ue← U(Me) ∈ test set
8: end for
9: return Be, Ue

Multiclass case. With a view to exploring the potential of our approach in one
of the prominent application domain of ADM systems, we examined a dataset
belonging to the field of financial services: Default of Credit Card Clients (Dccc),
whose properties have been summarized in Table 2.1.
Among the protected attributes present in Dccc, we chose the multiclass attribute
“education” with number of categories m = 6; indeed, as a consequence of our
decision to include missing values in the analysis and count them as a separate
category, this attribute consists of six classes: “NA”, “graduate school", “university",
“high school", “others", “unknown".

Binary case. We examined five datasets belonging to two different application
domains, welfare and financial; the descriptions of the datasets are provided in
Section 2.2.1 and their main properties are summarized in Table 2.1, while here we
present only the list of the selected datasets with the related domain:

• Financial: Default of credit cards clients (Dccc) and Statlog;

• Welfare: Income, Student-Mathematics and Student-Portuguese.
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Algorithm 3: Measurements of balance B and unfairness U for RQ3 in the
case of binary protected attributes.

Require: categorical protected attribute A with number of categories m = 2;
mutation technique M = ovun.sample (for binary attributes);
mutation parameter P = {0.01,0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5};
balance measures B= {Gini, Shannon, Simpson, IR};
unfairness measures U= {USep_T P,USep_FP,USu f _PP,USu f _PN ,UInd}.
Input :Dataset D j with j = 1, ...,5
Output :Balance measures B, Unfairness measures U

1: for all D j ∈ {D1, . . . ,D5} do
2: identification of a binary protected attribute A j
3: for all p ∈ P do
4: application of the mutation technique ovun.sample M j,p←M(A j,p)
5: randomly data splitting of 70%-30% into training-test sets
6: prediction of the score variable with a classification model
7: B j,p←B(M j,p) ∈ training set
8: U j,p← U(M j,p) ∈ test set
9: end for

10: end for
11: return B j,p, U j,p

For all these datasets, we decided to examine the binary protected attribute “sex”
–with the two classes “Male” and “Female”–, as it is one of the most common sources
of imbalance and consequent discrimination [19].

6.1.2 Mutation Techniques

We adopted two specific pre-processing methods as mutation techniques in order to
generate a large number of variations of the distribution of the occurrences between
the classes of a given protected attribute.

Multiclass case. We used the UBL-package provided by RDocumentation 1:

“The package provides a diversity of pre-processing functions to deal with both
classification (binary and multi-class) and regression problems that encompass
non-uniform costs and/or benefits.”

1https://rdocumentation.org/packages/UBL/versions/0.0.6/topics/UBL-package, last visited on
June 1, 2023

https://rdocumentation.org/packages/UBL/versions/0.0.6/topics/UBL-package
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In particular, we chose the SmoteClassif function 2 as mutation technique:

“This function handles unbalanced classification problems using the SMOTE
method. Namely, it can generate a new ‘SMOTEd’ data set that addresses the class
unbalance problem.”

This method has been applied with the following settings:

• “education∼” is the multi-class protected attribute chosen as formula.

• “C.perc” is a list containing the percentages of under-sampling or/and over-
sampling to apply to each class of the protected attribute in the formula: an
over-sampling percentage is a number above 1, while an under-sampling per-
centage should be a number below 1; in particular, a class remains unchanged
if the number 1 is provided for that class; note that there exists an infinite num-
ber of possible combinations of the percentages of the classes. Alternatively,
C.perc may be set to the two values “balance" (the default) or “extreme",
cases where the sampling percentages are automatically estimated either to bal-
ance the examples between the minority and majority classes, or to invert the
distribution of examples across the existing classes transforming the majority
classes into the minority, and vice-versa.

• “repl=FALSE” is a boolean value controlling the possibility of having (or not,
as in this case) repetition of examples when performing under-sampling by
selecting among the majority class(es) examples.

In our study we decided to examine five different cases for the parameter C.perc:
first, we set the parameter to the pre-established value “balance" –which is the
perfect uniform distribution, with all the occurrences equally distributed between
the classes–, then we assigned four different lists of percentages for the classes
of the protected attribute, corresponding to the exemplar distributions “Power2",
“HalfHigh", “OneOff" and “QuasiBalance" already analyzed in Chapter 4 (where we
discussed the experiment published in [41]). Briefly, these exemplar distributions
are described as follows:

- Power 2: occurrences are distributed according to a power-law with base 2,
that is, distributions among the classes increase like the powers of 2;

2https://www.rdocumentation.org/packages/UBL/versions/0.0.6/topics/SmoteClassif, last visited
on June 1, 2023

https://www.rdocumentation.org/packages/UBL/versions/0.0.6/topics/SmoteClassif
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- Half High: occurrences are distributed mostly among half of the classes while
the remaining have a very low frequency –specifically, a ratio of 1:9 has been
chosen for the frequencies of the two halves;

- One Off : occurrences are distributed among all classes but one;

- Quasi Balance: half of the classes are 10% higher with respect to max balance
and the other half is 10% lower.

In addition, for each exemplar distribution we considered 6 permutations of
the values of the percentages assigned to the different classes of the protected
attribute. This means that, for instance, in the One Off configuration the four
different permutations have each a different class with zero occurrences.
Finally, in order to increase the variability –and thus the reliability– of our method,
we decided to vary a seed (an integer recommended for reproducibility purposes to
keep track of the samples) by setting 100 randomly sampled values between 1 and
1000.

Therefore, for the discussion of the results in the multiclass case we kept
track of the outcomes for each value of the seed in the case of the mutation with
C.perc=“balance", for a total of 1×100=100 values for each measurement –both
balance measures and fairness criteria–; whereas in the case of the mutations corre-
sponding to the four different lists of percentages, we collected a total of
4 (exemplar distributions) × 6 (permutations) × 100 (seed) = 2400 values for each
measurement, leading to a grand total of 100+2400=2500 values for each balance
measure and 2500 values for each unfairness measure.

Binary case. In order to generate a variant of an original dataset with respect
to the protected attribute “sex”, we adopted the ROSE-package3 [84] provided by
RDocumentation:

“Functions to deal with binary classification problems in the presence of im-
balanced classes. Synthetic balanced samples are generated according to ROSE
(Menardi and Torelli, 2014).”

3https://www.rdocumentation.org/packages/ROSE/versions/0.0-4/topics/ROSE-package, last vis-
ited on June 1, 2023

https://www.rdocumentation.org/packages/ROSE/versions/0.0-4/topics/ROSE-package
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Specifically, we applied the ovun.sample function 4 as mutation technique:

“Creates possibly balanced samples by random over-sampling minority examples,
under-sampling majority examples or combination of over- and under-sampling.”

This technique was implemented with the following settings:

• “sex∼” is the binary protected attribute chosen as formula, since it is one of
the most common sources of imbalance and consequent discrimination;

• “both” as method, which indicates a combination of over-sampling minor-
ity examples and under-sampling majority examples to perform the random
sampling;

• “N” equal to the same number of rows of the dataset under analysis as desired
sample size of the resulting dataset;

• “p” represents “the probability of resampling from the rare class” and it has
been set to 9 different values in order to vary as much as possible the distribu-
tion of the occurrences between the two categories of the attribute “sex”: 0.01
(corresponding to the case of minimum balance), 0.025, 0.05, 0.075, 0.1, 0.2,
0.3, 0.4, 0.5 (maximum balance). When the value of p is set to 0.5, it means
aiming for the most balance distribution between the two classes, whereas
lower values correspond to less balanced distribution;

• “seed” is “a single value, interpreted as an integer, recommended to specify
seeds and keep track of the sample”, therefore we decided to vary such value
by randomly selecting 50 values between 1 and 1000, in order to enhance the
variability and consequently the reliability of our approach.

In order to increase the variability and the reliability of our method, given the
random nature of the resampling, we generated 100 different mutations (for each
value of p) using distinct seeds. Overall we applied this technique to the five datasets
listed in Table 6.1.1:
5 datasets × 9 levels of p × 100 seeds = 4500 synthetically mutated datasets.

4https://www.rdocumentation.org/packages/ROSE/versions/0.0-4/topics/ovun.sample, last visited
on June 1, 2023

https://www.rdocumentation.org/packages/ROSE/versions/0.0-4/topics/ovun.sample
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Finally, note that in both cases –multiclass attributes and binary attributes– the
generated mutated datasets have the same number of rows as the original ones, while
the distribution of the other variables in the dataset remains unchanged.

6.2 Results and Discussion

First of all, note that hereinafter the values of both balance measures and fairness
criteria are multiplied by 100, so that all measures range in the interval [0,100],
in order to simplify the readability of the results. For the interpretability of the
measures, we remind that:

• in the case of balance measures, values close to 0 indicate a high imbalance,
vice-versa the closer the measure to 100 and the higher the balance;

• in the case of unfairness measures, values close to 0 reveal a fair classification,
on the contrary, high values indicate unfair behavior.

6.2.1 Multiclass case

Before addressing the research question, we observe the behavior of both balance
measures and fairness criteria as the permutation of a specific mutation varies –for
each of the four mutations corresponding to the exemplar distributions.
Given a certain mutation, we note that the values of the balance measures remain
substantially unchanged for all six permutations, suggesting that permutations have
a very weak effect or no effect at all on the balance measures.
On the contrary, regarding the fairness criteria, we observe an irregular behavior par-
ticularly in the case of mutations that lead to more imbalanced distributions –Power2,
HalfHigh and OneOff–, while the values tend to be more stable for QuasiBalance;
thus, permutations result to have some effect on the measures of unfairness.

After this preliminary check, we analyzed first the behavior of both balance and
unfairness measures in response to mutations, and then we examined the relationship
between balance measures and fairness criteria by checking whether a negative
correlation holds, that is, whether a lower level of balance corresponds to a higher
level of unfairness, and vice-versa.
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a) Analysis of the balance measures in response to mutations

With a view to analyzing more in-depth the behavior of the indexes, we report
in Figure 6.1 the box plots of the whole distributions for each balance measure
with respect to mutations. Specifically, we expect balance measures to increase as
the mutation tends to be increasingly balanced: keeping in mind the description
of the exemplar distributions in Section 6.1.2, the most imbalanced distribution is
represented by Power2, followed by HalfHigh (which is slightly more balanced
with respect to Power2), OneOff (slightly more balanced again), QuasiBalance and
Balance –which is the best case, with all the occurrences equally distributed between
the classes. Indeed, we note an overall absence of variance and we observe that
balance measures increase as the mutations become increasingly balanced, with
the lowest values in correspondence of the case Power2, respectively followed by
HalfHigh (which presents higher values with respect to the previous, indicating
a more balanced distribution) and OneOff (with even higher values); then, we
observe the highest outcomes corresponding to the cases QuasiBalance and Balance,
confirming our general expectations.

Looking at the individual measures, Gini and Shannon indexes present a similar
behavior, with values in the range between 75 and 100, and apparently no difference
in detecting QuasiBalance and Balance, both with values close to 100. The Simpson
index covers a larger range, about 38-100, with a slight difference between the cases
QuasiBalance and Balance. Finally, the IR index appears to be spanned over the
whole range [0,100], with well distinct values for the two most balanced cases, and
the uncommon presence of zero values in correspondence of the mutation OneOff:
indeed, by definition of IR, in the special case of one or more empty classes5 the
value of the IR index results to be zero, that is the reason for which we observe null
values in the case of OneOff.

b) Analysis of the fairness criteria in response to mutations

An analogous analysis has been performed for the unfairness measures and is reported
in Figure 6.2, which presents the box plots of the whole distributions for each fairness

5We remind from Chapter 4 that we defined as empty class a class with null frequency as there are
no occurrences, that is, a class that exists because potentially there could be occurrences, but is not
represented in the dataset.
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Fig. 6.1 Distributions of the balance measures with respect to mutations.

criterion in correspondence of the five mutations. First of all, we observe that the
variance decreases as the mutations tend to be more and more balanced, with a very
large variance in the cases Power2 and HalfHigh; then, the variance tends to drop
in the intermediate case OneOff, and becomes much smaller for QuasiBalance and
Balance. Such variance trend is substantially the same for all the unfairness measures,
but looking at the individual measures, we observe that the Separation criterion in the
case of TP rate assumes values in the range [0,23], while it assumes values between
0 and 4 in the case of FP rate; finally, we observe that the Independence criterion
ranges in the interval [0,7].

Despite the different ranges of values, we note that all the unfairness measures
present overall very similar distributions with respect to mutations: we observe
the highest values in correspondence of Power2 (thus indicating the most unfair
classification output), followed by HalfHigh, OneOff, QuasiBalance and Balance
which all present lower values compared to the case Power2, revealing a fairer
classification output, but substantially no difference between the mean values.

c) Analysis of the fairness criteria in response to the balance measures

In the subsequent analysis we examine the trends of the fairness criteria in response
to the balance measures with respect to the different mutations, by considering (for
each mutation) first the mean value of Unfairness, as reported in Figure 6.3 (a), and
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Fig. 6.2 Distributions of the unfairness measures with respect to mutations.

then the maximum value, which is represented in Figure 6.3 (b). Particularly, we
aggregate data for mutation and we plot the distributions of the three fairness criteria
(Y axis) with respect to the increase of the balance measures (X axis); therefore,
the dashed lines trace the trend of the unfairness measures as the balance measures
increase. We also specify that regarding the balance measures we always consider
the mean values for each mutation (as in the previous analysis of Figure 6.1 we
observed an absence of variance); whereas, concerning the unfairness measures,
after aggregating data for mutation, we first compute the mean values (“Mean case")
and then we take the maximum values (“Worst case", which corresponds to the most
unfair output for that given mutation), since we previously observed in Figure 6.2
a large variance, above all in correspondence of highly imbalanced distributions.
Overall, we observe a decrease in the unfairness measures as the balance measures
increase.

This trend is confirmed in both the Mean and the Worst cases, but looking
at the individual indexes of balance we observe an irregular behavior for the IR
index: indeed, we already explained the special case of one or more classes with
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null frequency that make the IR index drop to zero, therefore in correspondence
of the mutation OneOff the IR index results to be zero, while the unfairness level
assumes an intermediate value between the mutation HalfHigh and QuasiBalance,
thus reflecting the same order of the unfairness levels in response to the other
balance measures. In turn, we observe that the unfairness measures decrease –thus
indicating an increasingly fair classification– as the mutations tend to be increasingly
balanced, with the highest values in the case of Power2, respectively followed by
HalfHigh (which presents lower values compared to the previous, revealing a fairer
classification output) and OneOff (with even lower values); then, the lowest values
are obtained in the cases QuasiBalance and Balance, thus indicating the fairest
output.

To analyze results more in depth, we integrate our study with the computation
of the Spearman correlation coefficient between balance and unfairness measures.
Specifically, we expect the coefficient to be negative, as we expect the balance mea-
sures to be high (meaning low imbalance) if the unfairness values are low (indicating
higher fairness). Thus, the stronger the negative correlation, the stronger is the
relationship between balance and unfairness measures.
As we can observe from Table 6.1, all the balance measures present a negative
correlation with the fairness criteria, meaning that the higher the indexes of balance,
the lower the unfairness measures; in addition, the computations reveal that such
values are all significant (p-value<0.05) except for the IR index in correspondence
of Separation TPR. More in detail, we notice that the Imbalance Ratio index always
presents a weaker negative correlation (between -0.018 and -0.049) with respect to
the other three balance measures, which seem to reflect very similarly the different
unfairness measures; specifically, the more accurate balance measure is the Shannon
index, followed by Gini and Simpson indexes respectively, each one with correlation
values between -0.08 and -0.1.
From the perspective of the unfairness measures, the Separation criterion in the case
of True Positive rate results to be the most difficult to detect (with correlation values
around -0.08, and even -0.018 in correspondence of the IR index), followed by the
Independence criterion –which presents a slightly stronger negative correlation–,
while the Separation criterion in the case of False Positive rate appears to be the best
to detect, showing a stronger negative correlation above all with the Gini, Shannon
and Simpson indexes (with correlation values around -0.1).
Although correlations are weak, they are always negative and significant, that is
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p-value<0.05 (except for IR with respect to Separation TPR), thus the correlation
analysis do not reject the hypothesis that the balance measures are capable of reveal-
ing unfairness of software output, with some variation among the balance measures
(for example, we observed halved correlation values in correspondence of the IR
index, which is highly sensitive to extreme values of balance and imbalance).

Table 6.1 Correlation between balance measures and unfairness measures.

Fairness criteria
Balance Measures Gini Shannon Simpson Imbalance

Ratio

Independence -0.088 -0.089 -0.087 -0.046
Separation (TPR) -0.083 -0.084 -0.082 -0.018

(FPR) -0.102 -0.103 -0.100 -0.049

In conclusion, on the basis of all the highlighted observations and within the
limits of this study, we positively answer our initial research question: it is possible
to identify the risk of unfairness in a classification output by detecting the level of
(im)balance in the input data.
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Fig. 6.3 Trends of the fairness criteria in response to the balance measures with respect to
the different mutations, by considering for each mutation (a) the Mean value of unfairness,
and (b) the maximum value, that is, the Worst case of unfairness corresponding to the most
unfair output.
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6.2.2 Binary case

Before addressing the main research question, we performed a sanity check by
observing the behavior of the balance measures as the mutation parameter p varies.
Figure 6.4 reports the average values for different balance measures and datasets.
We observe an increasing trend of all the balance measures with respect to increasing
p, in all training sets and test sets. More in detail, Gini and Shannon indexes have
a super-linear increase; Simpson index is closer to a linear trend; finally, IR index
has a sub-linear increase until 2/3 of the course and then it turns to have a slight
super-linear increase. This observation confirms the ability of the mutation approach
to generate synthetic datasets that spread the whole range of conventional balance
measures.

Figure 6.5 reports the variation of the five fairness criteria (Y axis) with respect
to the increase of balance measures (X axis). The lines are smoothed regression
of the individual mutations. For sake of legibility, we omitted Gini since it is very
similar to Shannon. We can observe from the curves that very low levels of balance
–roughly in the range [0 ,15] and up to 50 in a few cases– correspond to higher
levels of unfairness. As shown in the preliminary results, the indexes react slightly
differently to different levels of balance: as a consequence, the distinct unfairness
criteria reflect different levels of balance in a slightly different way. By looking at the
single fairness criteria, as well as at the specific trend lines in figure 6.5, we observe
that:

• the trend of unfairness with respect to IR is often not monotonic: Indepen-
dence, Separation-TP and Sufficiency-PP, after an initial decreasing phase, they
slightly increase within the range [15 ,25] before stabilizing; Separation-FP
slightly increases in the range [50 ,100] for Student_port; Sufficiency-PN is
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much less regular among datasets, and the correlation between high unfairness
and low balance holds only partially;

• modest final surges in correspondence of maximum levels of the balance
– around the range [90 ,100] – are observable above all for Separation-FP,
Sufficiency-PP and Sufficiency-PN;

• overall, the datasets Dccc and Income have lower levels of unfairness even
with an extremely low balance, therefore the correlation high unfairness–low
balance is much less pronounced for Separation-TP and Sufficiency-PP, and
absent for Indepencence, Separation-FP and Sufficiency-PN;

• in general, Sufficiency-PN presents the most irregular trends especially in
the dataset Student_port: it increases within [0 ,20], then it decreases till
around 80 and it surges again in the final range; a similar behavior can be
observed for Sufficiency-PN in Student_math. However, a follow-up analysis
on Sufficiency-PN with respect to p showed that Sufficiency-PN tends to
slightly decrease as p increases (that is, as balance increases): the reason for
such irregular behavior should be further investigated and we cannot rely on
the current results of Sufficiency-PN.

6.3 Limitations

As limitations of our approach, first of all we highlight that the binomial logistic
regression used for the classification task assumes linearity between the dependent
variable and the independent variables, and limited or no multi-collinearity between
independent variables. These requirements were not taken into account and verified
in our analyses.
In addition, applying more classification algorithms (each with different parameters)
would improve the external validity of the relationship we found between balance and
unfairness in the classification output, and would help to identify how the different
types of classification algorithms propagate the imbalance from the training set to
the output.
Eventually, other types of mutation techniques should be taken into account, for
instance by adopting different pre-processing methods to reproduce several distribu-
tions of the occurrences between the classes of the protected attributes.
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Concerning the mutations of the datasets used, the set of values of parameter p could
be enriched with further entries, to track the relationship with unfairness in a more
granular way.
Finally, as the choice of the balance measure has a relevant impact on the threshold
to consider as risky, a thorough sensitivity analyses on the thresholds to be used
should improve the reliability of the findings exposed in this Chapter.

6.4 Research Outcomes

In this Chapter we assess the (im)balance in a given dataset as a potential risk
factor for detecting discrimination occurring in subsequent classification tasks, by
measuring the level of imbalance of specific protected attributes. We performed the
study separately for multiclass and binary protected attributes.

Multiclass case. Overall, the results reveal that our approach is suitable for the
proposed goal, however the choice of the balance measure has a relevant impact on
the detection of discriminatory output from ADM systems.

In particular, as regards the analysis of the balance measures in response to
mutations, we can confirm the ability of the mutation approach to generate syn-
thetic datasets that spread the whole range of conventional balance measures, which
increase as the mutations become increasingly balanced.

Concerning the analysis of the fairness criteria in response to mutations, overall
we note that the unfairness measures present very similar distributions with respect to
mutations, with higher values of unfairness (indicating unfair classification outcomes)
in correspondence of the mutations that presented higher values of imbalance, and
vice-versa. However, as the imbalance of the mutations decrease, we observe
substantially no difference between the mean values of the unfairness measures.
Thus, only on condition of considering the highest extreme values of unfairness for
each mutation, the general trend of the unfairness measures seems to decrease (thus
indicating an increasingly fair classification) as the mutations tend to be increasingly
balanced.

Then, regarding the analysis of the fairness criteria in response to the balance
measures, overall the unfairness measures decrease as the balance measures increase.
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Indeed, the correlation analysis confirmed that the balance measures are capable of
predicting unfairness of software output, with some variation among the balance
measures as they assume different behaviors in reflecting the level of (im)balance:
particularly, the IR index is highly sensitive to extreme values of balance/imbalance.

Binary case. Also in this case, on the basis of the discussion provided in Section
6.2.2 we positively answer our initial research question. In addition, we can iden-
tify tentative thresholds of balance measures and formulate the following practical
recommendation:

values of indexes Shannon < 0.5, Gini < 0.4, Simpson < 0.3 and IR<
0.15 indicate a relevant risk of unfairness – which increases as the values
of the balance measures decrease till 0 – in terms of Independence,
Separation and Sufficiency-PP.

In conclusion, overall the results showed that our approach is suitable for the
proposed goal, however the choice of the balance measure has a relevant impact on
the threshold to consider as risky.
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Chapter 7

Identifying Imbalance Thresholds in
Input Data to Achieve Desired Levels
of Algorithmic Fairness

Given that the choice of the balance measure has a relevant impact on the threshold
to consider as risky –as concluded in the previous Chapter– herein we focus on
the construction of risk thresholds for balance measures in order to achieve desired
levels of algorithmic unfairness. Specifically, we formulated the following research
question:

RQ 4. Is it possible to identify a threshold s (for balance measures) such that
if the balance of the training set is greater than s, then the unfairness of
the classification on the test set is expected to be less than a threshold f ?

Since in our previous studies we successfully tested the reliability of the balance
measures as risk indicators, in this Chapter we move forward by defining specific risk
thresholds for balance measures and for fairness criteria, such that if the balance of
the training set is greater than a threshold s, then the unfairness of the classification
on the test set is expected to be less than a threshold f. Other novelties of this work are
given by the analysis of much more datasets and protected attributes (both binary and
multiclass), as well as the application of two mutation techniques simultaneously on
different protected attributes of a given dataset; moreover, we adopted four different
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algorithms to simulate different classification tasks in order to increase the variability
of the output and the generalizability of the results.

The findings of this study are published in the conference paper titled “Identifying
Imbalance Thresholds in Input Data to Achieve Desired Levels of Algorithmic
Fairness” (2022) [45].

7.1 Experimental Design

To answer the above research question, we set up the following procedure that was
applied to the binary case and the multiclass case separately:

1. we collected seven different datasets and, for each dataset, we selected both a
binary and a multiclass protected attribute;

2. using two specific mutation techniques (one for the binary case and one for
the multiclass case) we generated a large number of synthetic datasets with
different levels of balance;

3. we assumed four classification algorithms, then, for each algorithm and for
each synthetic dataset, we performed a classification with training-test sets
randomly split of 70%-30%;

4. we computed the balance of the protected attributes in the training set with the
four balance measures analyzed so far;

5. we applied three different unfairness measures (the Independence, Separation
and Sufficiency criteria) to the protected attributes in the test set –that is, to the
classifications obtained from the model– for a total of five unfairness measures
on each protected attribute;

6. we built the thresholds s (for balance measures) and f (for unfairness measures)
using the first collection of data by following the procedure specified below;

7. we generated a new collection of data by repeating steps 2 and 3;

8. using the second collection of data, we assessed and analyzed the performances
of the thresholds previously defined through different evaluation metrics.
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In Algorithm 4 we present the pseudocode for the measurements of both balance
B and unfairness U for each protected attribute in the selected datasets.

Algorithm 4: Measurements of balance B and unfairness U for RQ4.
Require: categorical protected attributes Ai, each with number of categories m > 0;

mutation technique M = · ovun.sample (for binary attributes) or
· SmoteClassif (for multiclass attributes);

exemplar distributions E = {Balance, QuasiBalance, OneOff, HalfHigh,
Power2};
mutation parameter P = {0.01,0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5};
classifier C = {logit, svm, rF,K-nn};
balance measures B= {Gini, Shannon, Simpson,IR};
unfairness measures U= {USep_T P,USep_FP,USu f _PP,USu f _PN ,UInd}.
Input :Dataset D j with j = 1, ...,8
Output :Balance measures B, Unfairness measures U

1: for all D j ∈ {D1, . . . ,D8} do
2: identification of a multiclass protected attribute Am, j and a binary protected

attribute Ab, j
3: for all e ∈ E: application of the mutation technique SmoteClassif:

Mm, j←MSmoteClassi f (Am, j)
4: for all p ∈ P: application of the mutation technique ovun.sample:

Mb, j←Movun.sample(Ab, j)
5: randomly data splitting of 70%-30% into training-test sets
6: for all c ∈C do
7: prediction of the score variable with classifier c
8: Bb, j,c←B(Mb, j) ∈ training set
9: Bm, j,c←B(Mm, j) ∈ training set

10: Ub, j,c← U(Mb, j) ∈ test set
11: Um, j,c← U(Mm, j) ∈ test set
12: end for
13: end for
14: return Bb, j,c,Bm, j,c, Ub, j,c, Um, j,c

The method for identifying risk thresholds (at step 5 of the procedure above)
relies on the first collection of data to identify the thresholds f and s: it is necessary
to empirically observe the distribution of the unfairness to understand where the
unfairness thresholds could be reasonably placed. We built five different configura-
tions1 in which f is placed differently relative to the distribution of the unfairness

1The five configurations with all the specifications on their construction can be found in the
Appendix A.1
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and, associating to each f the corresponding thresholds of balance s, we got five
potential sets of thresholds; among them, we select the one that presented the highest
accuracy.

We followed this procedure for each combination of balance measures, unfairness
measures, and algorithms, basically filtering the collection of data with respect to
these factors. In Figure 7.1 we report a numerical example of this procedure, which
is described as follows:

1. we define 2 theoretical values of unfairness thresholds, f1_base and f2_base,
which identify the following brackets (where u = unfairness):

• u≤ f 1_base−→ low unfairness

• f 1_base < u≤ f 2_base−→ medium unfairness

• u > f 2_base−→ high unfairness

2. in the first collection of data, we select the values of unfairness that are nearest
to f1_base and f2_base, and define them as f1 and f2;

3. as for each unfairness value there exists a corresponding value of balance, and
vice versa, we identify the two values of balance corresponding to f1 and f2
–that is, the values in correspondence of f1 and f2 in the data– and define them
as s1 and s2. If more than one balance value is found corresponding to f1 or
f2, we take their mean (for example, if we find 2 values equal to f1, we can
find two different values for the corresponding s1, thus we assume as s1 the
mean of the two values);

4. we define the threshold of unfairness f as the mean between f1 and f2, and the
threshold of balance s as the mean between s1 and s2.

A possible variation of this procedure consists in defining only one value of the
unfairness f_base at step 1, instead of two different values. In this case, there is only
one value for f and s at step 2-3, and it is possible to define the two thresholds at
step 4 without computing a mean. The reason for these choices is to distribute the
values of f evenly in the desired range, which is –based on the initial observation
of the distribution of the unfairness– where we observed the highest concentration
of unfairness values, approximately between the minimum and the mean of the
distribution.
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Fig. 7.1 Numerical example of the procedure for the identification of the thresholds s and f,
for the combination Gini-Sep_TP-logit.

Note that for generating each of the two collections of data we varied a seed by
setting 50 randomly sampled values between 1 and 1000, in order to keep track of
both the samples and the mutations for reproducibility purposes, and with a view to
increasing the variability –and thus the reliability– of our method.

7.1.1 Datasets

To conduct this study we selected a range of datasets reported in Table 7.1; exhaustive
descriptions and specific characteristics of all datasets are provided in Section 2.2.1.

Note that each of them includes a binomial target variable that we predict through
different classification tasks: specifically, we trained each classifier on a training
set composed of 70% of the original dataset (randomly selected) and we used the
remaining 30% as the test set.

To be consistent with our previous works, also in this study we treated empty
classes, that is, classes that exist (potentially there could be occurrences) but are not
represented in the dataset, as in our view a dataset that contains no instance of a
given class –for example, all males or all whites– is imbalanced with respect to that
protected attribute; thus, we included missing values in the analysis by considering
them as a separate category “NA”.

Finally, for each selected dataset we identified both a multiclass protected at-
tribute (with a number of categories m > 2) and a binary protected attribute (m = 2).
For the choice of the multiclass attribute we looked for some variety among the
different domains and datasets, while we set “sex” as a binary protected attribute
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for all the datasets, as it is a highly common source of imbalance and consequent
discrimination [19].

Table 7.1 List of the datasets with the analyzed attributes.

Dataset Domain
Binary
Protected attribute

Multiclass
Protected attribute

m

Default of credit cards
clients (Dccc)

Financial sex education 6

Drug (Cannabis) Social sex ethnicity 7

Drug (Impulsive) Social sex ethnicity 7

Heart disease Welfare sex age category 5

Income Welfare sex race 5

Statlog Financial sex age category 5

Student (Mathematics) Welfare sex father’s education 5

Student (Portuguese) Welfare sex father’s job 5

7.1.2 Mutation techniques

We used two specific pre-processing methods as mutation techniques, one for multi-
class attributes and one for binary attributes, in order to generate synthetic datasets
with different levels of balance. In both cases, the generated mutated datasets have
the same number of rows as the original ones and, as the mutation technique applies
to a single attribute at a time, the distribution of the other variables in the dataset
remains unchanged. Particularly, we applied the two methods previously adopted in
Chapter 6, which we briefly describe again.

Multiclass case. For multiclass attributes we used the function SmoteClassif2

from the R UBL-package. The relevant parameter is C.perc, a list containing the
percentages of under-sampling or/and over-sampling to apply to each class of the
sensitive attribute. We examined five different configurations for this parameter: the
default configuration “balance” (namely, the perfect uniform distribution, with all the
occurrences equally distributed among the different classes), and four additional con-
figurations corresponding to the four exemplar distributions “Power2”, “HalfHigh”,

2https://www.rdocumentation.org/packages/UBL/versions/0.0.6/topics/SmoteClassif, last visited
on June 1, 2023

https://www.rdocumentation.org/packages/UBL/versions/0.0.6/topics/SmoteClassif
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“OneOff” and “QuasiBalance” already used to test this mutation technique in Chapter
6. For the exhaustive description of the exemplar distribution, we refer to Section
4.1.1 of Chapter 4.

In this study, for each exemplar distribution we considered 4 permutations of
the percentages assigned to the different classes. For example, in the One Off
configuration the four different permutations have each a different class with zero
occurrences.
Moreover, in order to increase variability and reliability of our results, we varied
a seed (an integer recommended for reproducibility purposes to keep track of the
samples) by setting 50 randomly sampled values between 1 and 1000.
If we multiply by 8 datasets, we obtain 8×50×(4×4+1) = 6800 synthetic datasets.
Considering that each dataset is processed by 4 different algorithms, we reach a total
of 6800×4 = 27200 classifications.

Binary case. For binary attributes we applied the function ovun.sample3 from the
R ROSE-package. The relevant parameter of this mutation is p, which determines
the probability of resampling from the minority class. We set 9 values for p, ranging
from 0.01 (high imbalance) to 0.5 (perfect balance):
p = {0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5}.
If we multiply by 8 datasets and 50 seeds, we obtain 8×50×9 = 3600 synthetic
datasets. Since each dataset is processed by 4 different algorithms, we have a total of
3600×4 = 14400 classifications.

7.1.3 Algorithms

In our analysis, we adopted four different algorithms in order to simulate different
classification tasks. We highlight that we searched for possible significant differences
when establishing the thresholds with respect to the different algorithms in order to
generalize our findings, but we were not interested in the specific performance of
each algorithm; for this reason, we did not perform hyper-parameters tuning and we
kept the default parameters. Specifically, we selected the following algorithms:

3https://www.rdocumentation.org/packages/ROSE/versions/0.0-4/topics/ovun.sample, last visited
on June 1, 2023

https://www.rdocumentation.org/packages/ROSE/versions/0.0-4/topics/ovun.sample
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• logistic regression (logit): function glm, with argument family=binomial(link=“logit”),
from the package stat 4;

• support vector machine (svm): function svm from the package e1071 5;

• random forest (rF): function randomForest from the package randomForest 6;

• K-nearest neighbors (K-nn): function knn from the package class 7.

7.1.4 Evaluation Metrics

We assumed different evaluation metrics to assess the reliability of the thresholds.
First, we remind that the first collection of data has been used to build the thresholds,
whereas the second has been used to evaluate them: in simple words, we evaluate
whether a classification (obtained with the second collection of data) respects or
not the conditions on balance and unfairness measures defined through the first
collection. Given the two thresholds s and f (for balance measures and unfairness
measures respectively), when the balance of the training set is over s, we expect
the unfairness of the classification to be under f ; if this happens, we have a positive
instance, otherwise we have a negative instance. Hence, we define the following
instances related to the confusion matrix in Figure 7.2:

• if balance< s & unfairness> f −→ True Positive (TP)

• if balance< s & unfairness< f −→ False Positive (FP)

• if balance> s & unfairness< f −→ True Negative (TN)

• if balance> s & unfairness> f −→ False Negative (FN)

In particular, we adopted the five evaluation metrics reported in Table 7.2, whose
values range in the interval [0, 1]: Accuracy evaluates the percentage of correctly
classified values, while Precision (also called Positive Predictive Value) represents
the fraction of positive instances correctly identified with respect to all the positive

4https://www.rdocumentation.org/packages/stats/versions/3.6.2, last visited on June 1, 2023
5https://www.rdocumentation.org/packages/e1071/versions/1.7-13, last visited on June 1, 2023
6https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.1, last visited on June 1,

2023
7https://www.rdocumentation.org/packages/class/versions/7.3-22, last visited on June 1, 2023

https://www.rdocumentation.org/packages/stats/versions/3.6.2
https://www.rdocumentation.org/packages/e1071/versions/1.7-13
https://www.rdocumentation.org/packages/randomForest/versions/4.7-1.1
https://www.rdocumentation.org/packages/class/versions/7.3-22
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Fig. 7.2 Confusion matrix of the statistical classification based on the different levels of
balance/unfairness.

predicted instances; Sensitivity, also called Recall,indicates how many positive
instances are correctly detected (TP) among those that actually present the condition;
instead, Specificity represents how many negative instances are correctly identified
(TN) among all those that do not present the condition; finally, F1-score is the
harmonic mean of precision and sensitivity.

Table 7.2 The evaluation metrics with the respective formula.

Accuracy T P+T N
T P+T N+FP+FN

Precision T P
T P+FP

Sensitivity T P
T P+FN

Specificity T N
T N+FP

F1-score 2T P
2T P+FP+FN

7.2 Results and Discussion

Before addressing the research question of this study, we report a preliminary analysis
of the correlation between fairness criteria and balance measures; after that, we show
the overall results for thresholds and evaluation metrics, and finally we assess the
goodness of our findings by aggregating with respect to balance measures, fairness
criteria and algorithms, in order to better understand how the different factors affect
the goodness of the outcomes.
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a) Analysis of the correlation between balance measures and fair-
ness criteria

First of all, we assessed the correlation between balance and unfairness measures
in order to verify whether the negative correlation holds (the higher the balance,
the lower the unfairness). Indeed, compared to our previous works [41][43][44]
reported in Chapters 5 and 6, in this analysis we introduced much more datasets
and algorithms to classify data, so as to increasingly thoroughly assess the balance
measures as risk indicators.
To understand the values, we remind from the findings of our previous studies that we
expect the correlation between balance measures and fairness criteria to be negative,
as we expect the balance measures to be high (indicating low imbalance) if the
unfairness values are low (that is, higher fairness). Thus, the stronger the negative
correlation, the stronger the relationship between balance and unfairness measures.

Table 7.3 Correlation between balance measures and fairness criteria for the binary case.

Fairness criteria
Balance Measures Gini Shannon Simpson IR

Independence 0.008 0.008 0.008 0.006
Separation – TP -0.393 -0.396 -0.379 -0.341
Separation – FP -0.073 -0.074 -0.071 -0.063
Sufficiency – PP -0.400 -0.407 -0.382 -0.345
Sufficiency – PN -0.115 -0.116 -0.110 -0.097

Table 7.4 Correlation between balance measures and fairness criteria for the multiclass case.

Fairness criteria
Balance Measures Gini Shannon Simpson IR

Independence 0.133 0.111 0.100 0.081
Separation – TP -0.028 -0.022 -0.032 -0.008
Separation – FP 0.032 0.014 0.012 -0.011
Sufficiency – PP -0.039 -0.036 -0.045 -0.016
Sufficiency – PN -0.019 -0.032 -0.034 -0.017

As we can observe from Table 7.3 and 7.4, most of the balance measures present
a moderate or low negative correlation with the fairness criteria, above all in the
case of binary attributes, meaning that the higher the indexes of balance, the lower
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the unfairness measures. Note that the computations reveal that such values are all
significant, with a p-value<0.05.

More in detail, for the binary case we observe correlation values between -
0.063 and -0.407 for all the fairness criteria except for the Independence criterion,
which presents no correlation (around 0.008) indicating that this criterion is the most
difficult to detect; whereas the Sep_TP and the Suf_PP criteria present the stronger
negative correlation values, between -0.341 and -0.407.

Specifically for multiclass attributes, instead, we note a weak negative correlation
in correspondence of the Sep_TP, Suf_PP and Suf_PN criteria, between -0.008 and
-0.045, and a weak positive correlation in the range 0.012–0.133 for the Independence
and the Sep_FP criteria, meaning that overall the level of unfairness in the case of
multiclass attributes is more difficult to detect.

In general, we observe that the balance measures respond very similarly to the
different fairness criteria, therefore we deduce that the negative correlation depends
mostly on the unfairness measures, rather than on the specific balance measure.

b) Assessment of the thresholds through evaluation metrics

To define the thresholds s (for balance measures) and f (for fairness criteria), for each
combination of balance-unfairness-algorithm we selected the configuration that has
the highest accuracy. We chose the accuracy as a discriminant for the identification
of the thresholds s and f because it showed the smallest interquartile range (or IQR,
which graphically corresponds to the height of the box) indicating that the accuracy
index is the one with the lowest variability among the selected evaluation metrics
(see Figure 7.3 and Figure 7.4). The complete results are reported in Appendix
A.2 in separate Tables for the binary and the multiclass cases, ordered by balance
measure (Gini, Shannon, Simpson, and IR indexes), for each combination of balance-
unfairness-algorithm. For sake of legibility, we report values for the thresholds of
both fairness criteria and balance measures multiplied by 100, that is on a scale
[0,100]. Hereinafter, we show the aggregated and overall results for thresholds and
evaluation metrics. We remind that the aim of this study is to define two thresholds s
(for balance measures) and f (for unfairness measures) such that if the balance of the
training set is greater than s, then the unfairness of the classification on the test set is
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expected to be less than f. As before, we examine results separately for binary and
multiclass attributes.

Fig. 7.3 Boxplot of the evaluation metrics in the binary case.

Binary case. Overall the thresholds assume values close to the extremes of the
range, with the thresholds for the fairness criteria being between 0 and 10, and the
thresholds for the balance measures being between 80 and 100 except for the IR
index, which presents lower balance threshold values, around 60 (we can retrieve
such data from Appendix A.2). Looking at Figure 7.3, we observe that the Accuracy
is on average 0.7, but among all the evaluation metrics the Precision index is the
one that presents the highest values, around 0.85 on average, indicating a high
fraction of positive instances correctly identified with respect to all the positive
predicted instances. Instead, the Sensitivity –or Recall– is on average around 0.75,
meaning that the number of instances misclassified as negatives (FN) is higher than
the number of instances misclassified as positives (FP); in terms of thresholds, it
means that the number of instances in which values of balance are over s (indicating
high balance) and the unfairness is over f (indicating high unfairness) differently
from the expectation to find low unfairness, is higher than the number of instances
in which values of balance are under s (indicating low balance) and the unfairness
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Fig. 7.4 Boxplot of the evaluation metrics in the multiclass case.

is under f (indicating low unfairness) differently from the expectation to find high
unfairness. Considering the F1-score, which represents the harmonic mean between
Precision and Sensitivity, it assumes values around 0.8 on average. Finally, the worst
performances are identified through the Specificity index, with significantly lower
values (around 0.3 on average) with respect to the other indexes, indicating that
the number of true negative instances is very small with respect to the number of
false positives, that is, when evaluating the thresholds we obtain a high number of
instances in which values of balance are under s (indicating low balance) but the
unfairness is under f (indicating low unfairness) differently from the expectation to
find high unfairness.

Multiclass case. In Appendix A.2 we can observe that overall the thresholds for
the balance measures are between 70 and 100 except for the IR index, which presents
much lower balance threshold values of around 30, while the thresholds for the
fairness criteria are in the range 0 and 15. Looking at Figure 7.4 we note that overall
the evaluation metrics assume lower values with respect to the binary case: Accuracy
decrease to around 0.55, Precision is around 0.8 and Sensitivity is around 0.6 on
average, with F1-score around 0.7; on the contrary, Specificity slightly increase to
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around 0.35 on average. Thus, according to the evaluation metrics taken into account,
the identified thresholds perform better in the binary case than in the multiclass case.

Overall, we deduce that the thresholds are responsive to risk, that is, values of
balance under s indicate levels of unfairness over f, but they even tend to overestimate
the risk (as we can infer from the low Specificity caused by the high number of false
positives).

c) Assessments of the thresholds’ goodness with respect to balance
measures, fairness criteria and algorithms

As we defined the thresholds for each combination of balance-unfairness-algorithm,
hereinafter we assess the thresholds’ accuracy with respect to the different balance
measures, fairness criteria and algorithms involved in the study, in order to understand
how and to which extent each factor affects the performances of the thresholds.

Fig. 7.5 Boxplot of the thresholds’ Accuracy with respect to the balance measures in the
binary case.

Binary case. Looking at Figure 7.5 we observe that the thresholds’ accuracy with
respect to the four balance measures is around 0.67 overall, with the IR index
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Fig. 7.6 Boxplot of the thresholds’ Accuracy with respect to the fairness criteria in the binary
case.

slightly higher than the other measures, but with no significant differences between
the indexes.

Conversely, from Figure 7.6 we note that the thresholds perform very differently
with respect to the different fairness criteria: particularly, the Sep_TP criterion
presents the highest values of thresholds’ accuracy, around 0.75 on average, with the
largest interquartile range (or IQR, which graphically corresponds to the height of
the box) indicating that the Sep_TP measure is the one with the largest variability of
the accuracy values; then we find the two Sufficiency conditions, with thresholds’
accuracy respectively around 0.72 for Suf_PN and 0.66 for Suf_PP, and the Indepen-
dence criterion, always with an accuracy around 0.66 on average; the lowest values
of the thresholds’ accuracy are found in correspondence of Sep_FP, around 0.62.

Looking at Figure 7.7 on the thresholds’ accuracy with respect to the algorithms,
we note that the best performances are reached with the K-nn classifier, with ac-
curacy values around 0.70 on average; the logit and the svm algorithms present
similar accuracy values around 0.67 on average, while the worst performances of
the thresholds correspond to the random forest classifier with values around 0.67
on average; the random forest also presents the largest variability, with the highest
values close to the ones of K-nn.
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Fig. 7.7 Boxplot of the thresholds’ Accuracy with respect to the algorithms in the binary
case.

Multiclass case. From Figure 7.8 we note that the thresholds perform differently
with respect to the different balance measures –contrary to the binary case–. Specif-
ically, the IR index presents the highest accuracy values, around 0.63 on average,
while the values decrease to around 0.55, 0.54 and 0.5 for the Shannon, Simpson
and Gini indexes respectively.

Then, looking at Figure 7.9 on the thresholds’ accuracy with respect to the
fairness criteria, we observe the same pattern as in the binary case, but with lower
values and greater variability for all the measures: the highest accuracy values are
in correspondence of the Sep_TP condition and decrease to around 0.6 on average,
followed by Suf_PN and Suf_PP (around 0.57), and by Independence and Sep_FP
around 0.52 on average.

Finally, about the thresholds’ accuracy with respect to the algorithms represented
in Figure 7.10, we note a completely different pattern with respect to the binary
case: the accuracy in correspondence of the random forest remains stable at around
0.6 with a wide variability and it presents the best accuracy value among the other
algorithms (contrary to the binary case); indeed, the thresholds’ accuracy decrease
on average to around 0.58, 0.54 and 0.51 respectively for the svm, K-nn and the logit
classifiers.
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Fig. 7.8 Boxplot of the thresholds’ Accuracy with respect to the balance measures in the
multiclass case.

7.3 Limitations

As limitations of this study, first of all we highlight that we did not perform the
hyper-parameters tuning of the algorithms involved in our study as we were not
interested in a specific algorithms performance analysis, but rather in varying the
classifier in order to increase the variability of the output and the generalizability of
the results; nevertheless, a better fitting of the data could reveal more meaningful
differences among the different algorithms.
We also remark that we chose the accuracy as a discriminant for the identification of
the thresholds, but an analogous study can be conducted by considering a different
evaluation metric as a reference and identifying the thresholds according to the
performances based on such metric.
Finally, other kinds of mutation techniques could be considered by adopting different
pre-processing methods in order to extend the variability and reliability of our results.
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Fig. 7.9 Boxplot of the thresholds’ Accuracy with respect to the fairness criteria in the
multiclass case.

7.4 Research Outcomes

In this study we defined and tested a methodology to identify thresholds of balance
such that the unfairness of the classification is expected to be less than a certain
desired level. To conduct this analysis, we adopted a previously defined metric-based
approach to assess imbalance in a given dataset as a risk indicator of discriminatory
classification outcomes of automated decision-making systems[41], and we built the
thresholds s and f –for balance and unfairness measures respectively– by following
a specific procedure, separately for binary and multiclass attributes. Specifically, for
each combination of balance-unfairness-algorithm we selected the configuration of
thresholds that presented the highest accuracy.

As regards the initial analysis of the correlation between balance and unfairness
measures, overall we observed that the balance measures respond very similarly to
the different fairness criteria, thus we deduce that the negative correlation depends
mostly on the unfairness measures, rather than on the specific balance measure;
indeed, given a certain fairness criterion, all the balance measures behave similarly
with respect to such criterion.
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Fig. 7.10 Boxplot of the thresholds’ Accuracy with respect to the algorithms in the multiclass
case.

Then, the assessment of the thresholds through the different evaluation metrics
revealed that the values of balance under s indicate levels of unfairness over f,
but they even tend to overestimate the risk. In both the binary and the multiclass
cases, the Precision index –which indicates the Positive Predictive value– is the
one that presents the highest values among all the evaluation metrics, while the
worst performances are given by the Specificity index (due to a high number of false
positives), suggesting that the thresholds tend to overestimate the risk. Overall, we
also noted that the identified thresholds perform better in the binary case than in the
multiclass case.

Lastly, also regarding the evaluation of the thresholds’ accuracy with respect to
balance-unfairness-algorithm, the thresholds perform better in the binary case than
in the multiclass case, with higher accuracy values overall.
Specifically, the balance measures seem to have a slight impact only in the multiclass
case; indeed, overall there is no significant difference between the different indexes
of balance, except for the IR index, which presents the highest accuracy values in
both the binary and the multiclass cases.
Conversely, the thresholds perform very differently with respect to the different
fairness criteria, and overall, for the multiclass case we observe the same pattern as
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in the binary case, but with lower values and greater variability for all the fairness
criteria.
For the thresholds’ accuracy with respect to the different algorithms, we found
completely different values between the binary and the multiclass case, thus the
algorithms have an impact on the performances of the thresholds, but in this study
we could not identify a specific pattern.



Chapter 8

Measuring Imbalance on
Intersectional Protected Attributes
and on Target Variable to Forecast
Unfair Classifications

Briefly summarizing, our previous studies tested the reliability of the balance mea-
sures as risk indicators only when applied to single protected attributes: in Chapters
4 and 5 we first tested the measures on a few hypothetical exemplar distributions and
then on a variety of protected attributes selected from datasets belonging to several
application domains of automated decision-making systems [41]. After that, in
Chapter 6 we conducted more exhaustive analyses by applying mutation techniques
to generate a number of derived synthetic datasets having different levels of balance,
in one case to multiclass attributes [43] and in the other case to binary attributes [44],
while in Chapter 7 we identified imbalance thresholds to foresee unfair classification
outcomes (separately for binary and multiclass protected attributes) [45].
The novelties of the study reported in this Chapter are given by:

i) the integration of the concept of intersectionality among the classes of two or
more single protected attributes;

ii) the impact of an imbalanced distribution of the target variable as well as the
contribution of the target variable to the unfairness detection.
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Particularly, we put forward the research questions below.

RQ 5. Is it possible to identify the risk of biased output by detecting the level
of (im)balance in intersectional protected attributes?

Indeed, intersectional classes play a crucial role in understanding the risks of
discrimination and inequalities that are even exacerbated in correspondence of the
intersection of certain social identities. Therefore, we believe that it is fundamental
to analyze the nature of intersectional classes; to this end, we formulated two more
specific research questions:

RQ 5.1. How do intersectional attributes relate to the corresponding primary attributes,
in terms of balance and fairness?

It is of paramount importance to understand to what extent the imbalance of
the primary attributes (binary or multiclass) affects the imbalance of the inter-
sectional attribute, as well as how the fairness with respect to an intersectional
attribute is linked to the fairness with respect to the primary attributes.

RQ 5.2. Can the measure of balance on intersectional attributes detect unfairness
risks?

From the studies conducted to answer the previous research questions, there is
evidence that working at the level of protected primary attributes, the balance
of their classes can reveal the risk of classification unfairness with respect
to such attributes; our goal here is to understand whether this capability also
extends to intersectional attributes.

Finally, in this Chapter we investigate the contribution of the target variable to the
unfairness detection: specifically, the imbalanced distribution of target classes can
be taken into consideration by looking at their combination with protected attributes
(both primary and intersectional) and assessing whether the measurement of the
balance of the combined attribute can detect the risk of unfair classification. In
particular, we aim at answering the following research question:

RQ 6. Does the combination of the target variable with protected attributes
improve the detection of unfair classification risks?
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Note that in the following we call combined attributes those attributes given
by the combination of the target variable with protected attributes (primary or
intersectional).

The work carried out to analyze the research questions formulated above with all
the related results is reported in the journal article entitled “Measuring Imbalance
on Intersectional Protected Attributes and on Target Variable to Forecast Unfair
Classifications” (2023) [46].

8.1 Background

As stated above, our previous studies showed that lower levels of balance in protected
attributes are related to higher levels of unfairness in the output [41, 43–45]. In this
work, we investigate other two relevant aspects for the assessment of the balance
measures as risk indicators of systematic discrimination.
First, the intersectionality among the classes of protected attributes, which is of
paramount importance since social identities and inequality are interdependent for
groups –for instance, black women– and not mutually exclusive [85].
Second, the contribution of the target variable to the unfairness detection, which
is recognized as a challenge in a variety of domains, for example, fraud detection,
network intrusion detection, medical diagnostics, and a number of other fields [86].
Indeed, positively labeled instances are often lower than negatively labeled instances,
but the former are associated with the most significant events for end users (for
example, a fraud).

To our knowledge, none of the current approaches to intersectionality and to the
target variable combined with protected attributes (and to their effects on classifi-
cations) use specific metrics for measuring data (im)balance. This integration and
related analysis represent the main contribution to the state of the art.

8.2 Related Work

Intersectionality was introduced in the late 80s in the Black Feminist literature in
relation to the intersection of gender and race [87] and it has been successively
extended to embrace other traits such as disability status, socioeconomic class,



92 Imbalance of Intersectional Protected Attributes and Target Variable

sexual orientation, etc. The concept has recently appeared in the context of fairness
and machine learning, related to issues of intersectional discrimination in different
domains: Buolamwini and Gebru (2018) studied the impact of the intersection of
gender and skin color on computer vision performance [36]; Holman et al. (2020)
explored intersectionality in the medical field [88]; whereas Subramanian et al.
(2021) advocated for the use of intersectional groups in the validation of NLP models
to better intercepts the social and cultural biases reflected in the corpus of training
data [89]; other works present attempts of introducing intersectionality in fairness
measures [90] and in causal models [91]. However, up to our knowledge, none of
these studies and others in the AI/ML fairness literature constructed and applied
synthetic measures of (im)balance to intersectional protected attributes.

Concerning the imbalance of the target variable, a comprehensive survey has
been conducted by Branco et al. (2016), who collected existing techniques for
handling the problem for both classification and regression tasks [86]. The same
authors examined more in-depth the context of regression tasks [92], where the target
variable is continuous: they presented three new pre-processing approaches to tackle
the problem of forecasting rare values of a continuous target variable. Other works
concern the mitigation of the imbalance issue of the target variable, and they have
been developed with the aim of improving the predictive accuracy of rare cases in
forecasting tasks through the adoption of different resampling methods –for instance,
see [93, 94].
The closest work to ours is the one by Thabtah et al. (2020) [95], who studied
the impact of varying class imbalance ratios on classifier accuracy: they identify
nine different imbalance ratios (from 10%:90% to 90%:10%, with steps of 10%
increase/decrease) and compute their effect on standard measures of classifier per-
formance (error rate, predictive accuracy, recall and precision). Thus, they focus
on the nature of the relationship between the degree of class imbalance and the
corresponding classifier performance, but they neither use specific and synthetic
measures of balance nor consider multilevel attributes. The same consideration
applies to the other studies mentioned above.
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8.3 Experimental Design

With the goal of investigating the research questions outlined above, we generated a
number of synthetic datasets by aggregating sensitive attributes (also with the target
variable) and mutating the distributions of the occurrences between their classes.
Then, we evaluated data (im)balance through the four balance measures analyzed
so far, as well as the fairness occurring in classification outcomes by means of
three fairness criteria. After that, we assessed whether the balance/unfairness of
intersectional attributes can be inferred from the balance/unfairness of the primary
attributes, and finally, whether the combination of a protected attribute with the target
variable improves identifying the unfairness.

First of all, we define an intersectional attribute as a multiclass attribute whose
classes are given by the combination –in all the possible ways– of the classes of
(single) primary attributes that can be either binary or multiclass. Similarly to the
definition of imbalance already stated in Chapter 1, intersectionality is between-
attributes when only two attributes are taken into consideration, or multiattribute
when the intersectionality involves multiple attributes. In this work, we will explore
the concept of multi attributes intersectionality in greater detail.

Secondly, as regards the analysis of the target variable, in general data are
imbalanced with respect to the target if at least one of its values has a significantly
smaller number of instances when compared to the other values. In this study we
focus on binomial target variables, namely, target variables that can assume two
possible values, positive (equal to 1) or negative (associated with 0).

Specifically, we set up the following procedure:

1. we chose a sizable dataset (as described in Section 8.3.1) that includes two
protected attributes: the multiclass attribute “education” with cardinality m=4,
and the binary attribute “sex” (with m=2);

2. we generated several derived synthetic datasets with different levels of balance
by means of two suitable mutation techniques: specifically, we adopted two
processing methods, one specific for multiclass attributes and one for binary
attributes; we adjusted the parameters of the two methods to alter the distribu-
tion of occurrences among the classes –and consequently the balance– of the
two protected attributes under analysis (see Section 8.3.2);
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Table 8.1 Balance measurements with the respective unfairness measurements for each
protected attribute.

Balance measurement Unfairness measurement

B(sex) U(sex)
B(education) U(education)
B(sex_education) U(sex_education)
B(sex_target) U(sex)
B(education_target) U(education)
B(sex_education_target) U(sex_education)

3. we aggregate the two primary protected attributes in one intersectional attribute
“sex_education” by combining the classes in all the possible ways, thus creating
an intersectional multiclass attribute of cardinality m equal to 8 (= 2 “sex” × 4
“education”); likewise we aggregate the three previous attributes with the target
variable, obtaining three combined multiclass attributes, namely “sex_target”
(m=4), “education_target” (m=8) and “sex_education_target” (m=16);

4. we used four different balance measures B (described in Section 2.2.2) to
compute the level of (im)balance of both the primary protected attributes and
the intersectional attribute in the training set;

5. we built a binomial logistic regression model in order to forecast the score
variable for each synthetic dataset: we trained a binary classifier on a training
set composed of the 70% (chosen randomly) of the data, and then tested it on
the remaining 30% (which represents the test set);

6. we applied three different fairness criteria U (see Section 2.2.3) to both the
primary protected attributes and the intersectional attribute in the test set –that
is, to the classifications obtained from the model– for a total of five distinct
unfairness measures, following the pattern described in Table 8.1; note that
for the protected attributes combined with the target variable we compute the
unfairness on the corresponding protected attribute without target in the test
set;

7. we analyzed the collected results in order to answer the research questions.
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In Algorithm 5 we present the pseudocode for the generation of the synthetic
attributes –first mutated, and subsequently intersected and/or combined with the
target variable– and for measuring the balance B and the unfairness U of each
protected attribute under analysis.

8.3.1 Dataset

We selected a dataset from the financial services context, as it is one of the most
considerable application domains of ADM systems: Default of Credit Card Clients
(Dccc), whose main properties are summarized in Table 2.1, while a complete de-
scription can be found in Section 2.2.1.
In particular, we took into account two protected attributes: the first one is “educa-
tion”, which is composed of six classes in the original dataset, but two of the classes
–NA and unknown– do not represent an actual category of individuals, therefore we
exclude such unknown and missing values (NA) from the analysis; thus, the resulting
dataset is composed of 29655 rows, where the classes of the protected attribute
“education” are composed as follows: 10585 graduate school, 14030 university, 4917
high school and 123 others.
The second protected attribute is the binary attribute “sex”, which is composed of
11760 instances of the class male and 17895 instances of the class female.

In addition, note that this dataset does not contain a pre-computed classification,
thus we implemented a binomial logistic regression model in order to foresee the
score variable: specifically, we trained a binary classifier on a training set represented
by the 70% (randomly selected) of the original dataset and we ran it on the test set,
composed of the remaining 30% of the data. Finally, we highlight again that we
choose to keep out missing values (NA) from the analysis as we were interested in
examining existing intersectional classes of protected attributes.

8.3.2 Mutation Techniques

Two distinct pre-processing methods were employed as mutation techniques, one
for multiclass attributes and one for binary attributes, in order to generate multiple
variations of the distribution of the occurrences between the classes of the protected
attributes taken into account. Specifically, we applied the two methods previously
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adopted both in Chapter 6 and in Chapter 7, which we briefly describe in the
following.

Multiclass case. To mutate the classes of the multiclass protected attribute “edu-
cation”, we employed the function SmoteClassif1 from the R UBL-package. The
relevant parameter is C.perc, a list that holds the percentages of under-sampling
or/and over-sampling to apply to each class of the protected attribute. We analyzed
five different configurations for this parameter: the default configuration “balance”
(which represents the case where the sampling percentages are automatically esti-
mated to balance the samples between the minority and majority classes, that is, the
perfect uniform distribution) plus four additional configurations corresponding to the
four exemplar distributions “QuasiBalance”, “OneOff”, “HalfHigh” and “Power2”
already used to test this mutation technique in Chapter 6. For the exhaustive descrip-
tion of the exemplar distribution, we refer to Section 4.1.1 of Chapter 4.
For each exemplar distribution we looked at 4 different permutations of the values
of the percentages assigned to the various classes of the protected attribute. For
instance, in the One Off configuration the four different permutations have each a
different class with zero occurrences.

Binary case. For binary attributes we applied the function ovun.sample2 from the
R ROSE-package. The relevant parameter of this mutation is p, which represents the
probability of resampling from the rare class and it has been set to 17 different values
in order to vary as much as possible the distribution of the occurrences between the
two categories of the attribute “sex”: 0.01 (corresponding to the case of minimum
balance), 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5 (maximum balance), 0.6, 0.7, 0.8,
0.9, 0.925, 0.95, 0.975, 0.99. When the value of p is set to 0.5, it indicates aiming
for the most even distribution between the two classes; lower values of p will result
in a less balanced distribution, while increasing the value from 0.5 to 1 will lead to a
more balanced distribution, but with inverted proportions.

1https://www.rdocumentation.org/packages/UBL/versions/0.0.6/topics/SmoteClassif, last visited
on June 1, 2023

2https://www.rdocumentation.org/packages/ROSE/versions/0.0-4/topics/ovun.sample, last visited
on June 1, 2023

https://www.rdocumentation.org/packages/UBL/versions/0.0.6/topics/SmoteClassif
https://www.rdocumentation.org/packages/ROSE/versions/0.0-4/topics/ovun.sample


8.4 Results and Discussion 97

Note that in both cases –multiclass attributes and binary attributes– the gener-
ated mutated datasets have the same number of rows as the original ones, and the
distribution of the other variables in the dataset remains unchanged.

Finally, with a view to increasing the variability and the reliability of our ap-
proach, given the random nature of the resampling we decided to vary a seed (an
integer value used to ensure reproducibility and keep track of the samples) by ran-
domly generating 50 different values between 1 and 1000.
This means that for the analysis and discussion of the results we always kept track of
the outputs for each value of the seed and for each value of the parameter p, then:
for the mutations obtained by setting C.perc=“balance” we collected a total of
6 (attributes) × 50 (seed) × 17 (levels of p) = 5100 values for the balance measures
and 5100 values for the fairness criteria.
Instead, for the mutations obtained through the four different lists of percentages,
we gathered a total of 6 (attributes) × 50 (seed) × 17 (levels of p) × 4 (exemplar
distributions) × 4 (permutations) = 81600 values for both the balance measures and
the fairness criteria.
The sum of all these elements adds up to 5100 + 81600 = 86700 values for the
balance measures and 86700 values for the unfairness measures. Note that the 6
attributes considered in these computations, are those summarized in the left column
of Table 8.1.

8.4 Results and Discussion

In this Section we examine and discuss the results of our investigation, according to
the research questions stated at the beginning of this Chapter.

RQ 5.1 - Intersectional versus Primary attributes

Method

In order to investigate the relationship between intersectional and primary attributes,
we observe the results of an ANOVA on two linear regression models, one for balance
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measures and one for fairness criteria:

B(sex_education) = csex ·B(sex)+ ceducation ·B(education)+ c0

U(sex_education) = csex ·U(sex)+ ceducation ·U(education)+ c0

The first model was applied with all the four distinct balance measures reported
in Section 2.2.2, while the second model was evaluated using all the five unfairness
measures described in Section 2.2.3. To answer RQ 5.1, we look at two results from
the analysis: adjusted R2 and p-value. The adjusted R2 is a goodness-of-fit measure
for linear models and it is an indicator of the model accuracy, as it identifies the
percentage of variance in the output variable that is explained by the input variables.
In fact, R2 tends to optimistically estimate the fit of the linear regression: a value of
1 indicates a model that perfectly predicts dependent values, whereas a value closer
to 0 means that the model has no predictive capability. Thus, in our specific case,
values of R2 close to 1 mean that the measure related to the intersectional attribute
can be explained by those related to the primary attributes. Smaller values indicate
that the intersectional attribute cannot be explained by primary attributes alone. To
assess the statistical significance of the results, we observe the p-value and consider
significant the relationships whose p-value is lower than 5%. In addition, looking at
the coefficients csex and ceducation, we evaluate whether the two primary attributes
provide an equal contribution.

a) Balance

The results of the regression for the balance measures are reported in Table 8.2. We
observe that in the cases of the Gini index the R2 is very close to 1 (0.941), and for
the Shannon and Simpson indexes the R2 is around 0.86; while it is much smaller
(0.540) for the Imbalance Ratio index. For all the cases the p-value is < 2.2 ·10−16,
indicating statistically significant results. This means that in three cases out of
four, the balance measures related to the intersectional attribute can be explained
by those related to the primary attributes, thus we can accurately infer the balance
of the multiclass intersectional attribute from the balance of the primary attributes
which compose the intersectional attribute itself; in the case of IR we have a smaller
correlation, probably due to the fact that for many data points the IR assumes values
close to zero more frequently than the other measures.
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In addition, we computed the regression coefficients, reported in the three rightmost
columns of Table 8.2. Indeed, looking at the coefficients csex and ceducation, we
observed that overall the balance measurements of the primary attributes have a high
positive correlation with the intersectional attribute: in particular, such a positive cor-
relation is higher in correspondence of the primary multiclass attribute “education”,
except for the IR index, which presents a coefficient ceducation much smaller with
respect to the other coefficients.

Table 8.2 Balance measures: evaluation of the linear regression model
B(sex_education) = csex ·B(sex)+ ceducation ·B(education)+ c0.

Balance Coefficients
measure Adjusted R2 p-value c0 csex ceducation

Gini 0.941 < 2.2·10−16 17.308 0.195 0.671
IR 0.540 < 2.2·10−16 -2.908 0.475 0.107
Shannon 0.877 < 2.2·10−16 13.296 0.345 0.533
Simpson 0.850 < 2.2·10−16 -6.652 0.476 0.564

b) Unfairness

The results of the regression for the unfairness measures are reported in Table 8.3.
Differently from the balance measures, for the fairness criteria we observe overall
lower values of the adjusted R2: in particular, we found values of R2 around 0.6 for
the independence, separation-TP and sufficiency-PN criteria, and even lower values
– around 0.4 – in the case of the separation-FP and sufficiency-PP criteria. For all
the cases the p-value is <2.2·10−16, indicating statistically significant results. In
addition, we computed the regression coefficients reported in the three rightmost
columns of Table 8.3. As before for the balance measures, overall the unfairness
measurements of the primary attributes have a positive correlation with the inter-
sectional attribute: specifically, the coefficient ceducation –which is between 0.430
and 0.622– assumes higher values than the coefficient csex for all the fairness criteria
except for the separation-FP criterion, indicating overall a higher positive correlation
in correspondence of the primary multiclass attribute “education”. Overall –in four
cases out of five– there exists a higher positive correlation between the unfairness
measurements of the intersectional attribute and those of the primary attribute “edu-
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cation”, with respect to the correlation between the intersectional attribute and the
primary attribute “sex”.

Table 8.3 Unfairness measures: evaluation of the linear regression model
U(sex_education) = csex ·U(sex)+ ceducation ·U(education)+ c0.

Unfairness Coefficients
measure Adjusted R2 p-value c0 csex ceducation

Independence 0.624 < 2.2·10−16 0.858 0.395 0.567
Separation – TP 0.625 < 2.2·10−16 1.971 0.472 0.622
Separation – FP 0.395 < 2.2·10−16 0.525 0.610 0.547
Sufficiency – PP 0.393 < 2.2·10−16 5.432 0.285 0.430
Sufficiency – PN 0.549 < 2.2·10−16 1.896 0.249 0.646

RQ 5.2 - Balance as intersectional unfairness predictor

Method

In order to answer RQ 5.2, we analyze the relationships between balance measures
and fairness criteria for the intersectional multiclass attribute sex_education. We
compute the correlation between the balance and the unfairness measures, for each
index of balance and each fairness criterion. We use the Spearman correlation
coefficient since we do not expect a linear relationship. A negative and statisti-
cally significant correlation coefficient –that is, low balance corresponding to high
unfairness– suggests a positive answer to the research question.

We remind from our previous studies on primary protected attributes [41, 43–45]
that the balance measures properly detect unfairness of software output, but their
effectiveness in identifying unfairness is dependent on the selected metric of balance,
which has a relevant impact on the threshold to consider as risky, and thus on the
detection of discriminatory outcomes. As we are investigating the balance measures
as unfairness predictors when specifically applied to intersectional attributes, we plot
LOESS curve to better understand the relationship between balance and unfairness
in the case of intersectional protected attributes.
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a) Correlation

The correlation coefficients are reported in Table 8.4. We observe that they are all
negative and the corresponding p-values are all smaller than 2.2·10−16. Thus, we
can answer the research question positively.

Table 8.4 Correlation between balance and unfairness for the intersectionl attribute
sex_education: B(sex_education) ∼ U(sex_education).

Fairness criteria
Balance Measures

Gini Shannon Simpson
Imbalance

Ratio

Independence -0.1614 -0.1652 -0.1687 -0.1706
Separation – TP -0.2583 -0.2799 -0.2696 -0.2902
Separation – FP -0.2130 -0.2244 -0.2203 -0.2340
Sufficiency – PP -0.1836 -0.1842 -0.1905 -0.1862
Sufficiency – PN -0.1487 -0.1654 -0.1425 -0.1631

b) Relationship

Figure 8.1 reports the trend lines –as smoothed regression– of the five fairness criteria
(along the Y-axis) with respect to the increase in balance measures (along the X-axis),
in percentage values. It has to be noted that maximum levels of unfairness are higher
for Sufficiency (PP and PN) and Separation-TP (more than 10% in correspondence of
the lowest values of balance) and less than 5% in the other cases. Overall we observe
decreasing trends, in accordance with negative correlation values, however often
not monotonic, which explains why correlation values were not high. In general the
trends are consistent with our previous studies on primary protected attributes, with
most irregular patterns related to Sufficiency. Since the specific unfairness criteria
reflect different levels of balance in slightly different ways, we recommend choosing
distinct thresholds of risks for the four balance measures: the specific application
context might suggest using more sensitive balance measures – IR and Simpson –
for cases where unfairness tolerance is low, and the less sensitive Gini and Shannon
when higher levels of unfairness can be socially accepted.
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Fig. 8.1 Trends of the fairness criteria as a response to the balance measures for the
intersectional protected attribute sex_education.

RQ 6 - Contribution of combined target

Method

Before looking into the contribution of the target variable combined with protected
attributes to the detection of unfairness, we consider the relationship between the
balance values of the protected attributes (primary or intersectional) by themselves
and when considered in combination with the target variable.
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To answer the research question 6, we computed the Spearman correlation
coefficients of unfairness measures versus balance measures, and compared the
coefficients for the attributes with and without the combination with the target
variable, with a view to investigating whether the combination of a protected attribute
with the target variable improves the detection of the unfairness. Then, to examine
in-detail our findings, we computed the difference between the correlation of a
protected attribute (primary or intersectional) and the correlation of the same attribute
combined with the target, for three different cases:

• diffsex = cor(sex) – cor(sex_target)

• diffeducation = cor(education) – cor(education_target)

• diffsex_education = cor(sex_education) – cor(sex_education_target)

where the expression “cor(protected attribute)” indicates the correlation between
balance and unfairness measures for a given protected attribute (primary or intersec-
tional). We remind that we expect the correlations to be negative, which would mean
that high balance is associated with low unfairness values, and vice-versa.

a) Combination with target variable

Figure 8.2 reports the scatter plot of the corresponding values with a smoothed
interpolation curve. We can observe very different patterns. The “sex” primary
attribute shows a relationship to its combination with the target that is close to linear
for all the balance measures. As far as the “education” attribute is concerned, we
observe an irregular relationship that changes among the different balance measures.
The intersectional attribute encompassing both the former attributes exhibits a close
to linear relationship for three balance measures except for the IR index, which
presents a different more irregular pattern.

b) Differences in correlation

We report all the numerical results in Appendix B, while here we provide only a
synthetic and more readable overview in Figure 8.3, where we report the correlation
values for all combinations of balance and unfairness measures divided by attribute.
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Fig. 8.2 Balance measures of protected attributes combined with the target variable versus
protected attributes without target.
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Fig. 8.3 Correlation Balance-Unfairness for protected attributes combined with the target
variable and without target, for different fairness criteria and balance measures. The farther
left to the zero the points, the better they are; if the circle marker is left of the triangle, then
the combination with the target variable improves the unfairness detection.

The diagram can be interpreted as follows: the farther left to the zero (represented
by the dashed black line) the points, the better they are; if the circle marker is left of
the triangle then the combination with the target variable improves the correlation,
that is the capability of detecting unfairness risk.

As concerns the binary attribute “sex”, we observe that all the correlation values
are negative (the data points are to the left of the dashed line), but we note a
small improvement of the correlation only for the sufficiency criterion –both for
Parity of Positives and Parity of Negatives–, whereas we observe a worsening in
correspondence of the independence and separation criteria.

A similar pattern can be observed for the multiclass attribute “education”, al-
though with much larger differences. In particular, the deterioration of the indepen-
dence and the separation criteria is so significant that the combination with the target
variable makes all correlations positive, indicating that the combination of the target
with multiclass protected attributes worsens the unfairness detection even more than
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binary attributes. Conversely, in the case of the sufficiency criterion, the combined
attributes improve the identification of the unfairness to a greater extent with respect
to the previous case of the binary attribute.

Finally, for the intersectional protected attribute “sex_education” we notice the
same strengthening/weakening pattern, but with the notable exception of the Imbal-
ance Ratio index for which we find exactly the opposite pattern for all the fairness
criteria. Hence, combining the target variable with the intersectional protected at-
tribute improves the identification of the unfairness assessed through the sufficiency
criterion with respect to the Gini, Shannon and Simpson indexes, but not to the IR
index –which by contrast worsens in correspondence of the sufficiency criterion, and
improves according to the independence and separation criteria.

As a further observation, we note that given the nature of the fairness criteria
–whose definitions are based on the target variable, score and protected attributes– and
the two mutation techniques that we applied –which leave the distribution of the other
variables unchanged, and thus also the distribution of the target variable remains
unchanged– the level of balance of the target variable in the original dataset certainly
plays a role in the final interpretation of our results. Indeed in our dataset, where
the frequency of the positive target is much lower than the negative target (in the
original dataset, only 6636 instances out of 30.000 belong to the positive class, which
corresponds to 22% of the occurrences), the combination of protected attributes with
the target variable improves identifying a discrimination risk when we apply the
sufficiency criterion (except for the Imbalance Ratio index applied to intersectional
protected attributes); in fact, the sufficiency criterion implies the calibration of the
model for the different groups as it requires the conditional probability of the target
variable to be equal to 1.

8.5 Limitations

As concerns the limitations of our study, we highlight that an investigation of more
datasets and protected attributes would extend the analysis to a wider range of
intersectional classes and combinations with target variables belonging to different
domains of interest in the large landscape of automated decision-making systems.
Moreover, we remark that in our dataset the predicted class was not present, therefore
we ran a binomial logistic regression in order to build a classification label, but all
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the limitations of the algorithm hold: most notably, the assumption of limited or
no multi-collinearity between independent variables, as well as the assumption of
linearity between the dependent variable and the independent variables.
Applying more classification algorithms (each with different parameters) would
increase the generalizability of the results, by helping to identify how the different
types of classification algorithms propagate the imbalance from the training set to
the output. In addition, other kinds of mutation techniques could be considered
by adopting different pre-processing methods in order to extend the variability and
reliability of our results.
Finally, a more in-depth analysis is also necessary to better understand the relation
between the level of imbalance of the target variable in the dataset and the application
of a specific fairness criterion, for instance by applying a mutation technique to the
target variable and examining the behavior of the fairness criteria as a response to the
balance measures, in order to better understand which fairness criterion to choose to
assess the risk of discrimination; it is important to highlight that the choice of the
fairness criterion should also depend on the domain and context of use.

8.6 Research Outcomes

In this work we move forward on the assessment of balance measures as risk indica-
tors of systematic discrimination by including two more aspects: i) intersectionality
among the classes of protected attributes, and ii) the impact of imbalanced distribu-
tions in target variables.

RQ 5.1. First of all, we investigated how intersectional attributes relate to the
corresponding primary attributes in terms of balance and fairness. Concerning
the investigation of the balance measures, we found that the measures of the Gini,
Shannon and Simpson indexes related to the intersectional attribute can be explained
by those related to the primary attributes; while the measure of the IR index related
to the intersectional attribute is explained by the measures of the IR index related to
primary attributes alone to a smaller extent with respect to other indexes.
As regards the analysis of the fairness criteria, we made the following observations:
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• there exists a correlation between the unfairness measurements of the inter-
sectional attribute and the primary attributes, but the former is only partly
determined by the latter;

• the unfairness measures related to the intersectional attribute can be explained
by those related to the primary attributes, but to a lower extent with respect to
the balance measures.

RQ 5.2. Secondly, we analyzed whether the measure of balance on intersectional
attributes can detect unfairness risks: we observe a moderate negative correlation be-
tween balance measures and fairness criteria, indicating that intersectional protected
attributes can be taken into account to identify unfairness risks.
Indeed, the behavior of the fairness criteria in response to the balance measures
presents a decreasing trend, even though the distinct fairness criteria reflect different
levels of balance in slightly different ways.

RQ 6. Finally, we investigated whether the combination of the target variable
with protected attributes improves the detection of the risk of unfair classification
outcomes. From our findings we can conclude as follows:

• the combination of primary protected attributes (binary or multiclass) with
the target variable improves the detection of the unfairness measured through
the sufficiency criterion (both Parity of Positives and Parity of Negatives), but
worsens the detection of the unfairness measured through the independence or
the separation criteria;

• the combination of intersectional protected attributes with the target variable
improves the identification of the unfairness measured through the sufficiency
criterion in the cases of the Gini, Shannon and Simpson indexes, but not in the
case of the Imbalance Ratio index, for which the detection of the unfairness is
improved when measured through the independence or the separation criteria.
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Algorithm 5: Measurements of balance B and unfairness U for RQ5.
Require: categorical protected attributes Ai, each with number of categories m > 0;
• mutation technique M = · ovun.sample (for binary attributes) or

· SmoteClassif (for multiclass attributes);
• exemplar distributions E = {Balance, QuasiBalance, OneOff, HalfHigh,
Power2};
• mutation parameter P =
{0.01,0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.925,0.95,0.975,0.99};
• balance measures B= {Gini, Shannon, Simpson,IR};
• unfairness measures U= {USep_T P,USep_FP,USu f _PP,USu f _PN ,UInd}.
Input :Dataset D
Output :Balance measures B, Unfairness measures U

1: identification of a multiclass protected attribute Am and a binary protected
attribute Ab in D

2: for all e ∈ E do
3: application of the mutation technique SmoteClassif: Mm,e←M(Am)
4: for all p ∈ P do
5: application of the mutation technique ovun.sample: Mb,p←M(Ab)
6: intersection of mutated protected attributes and combination with target

variable:
· intersection of Mb,p and Mm,e: Mbm,p,e = Mb,p +Mm,e
· combination of Mb,p and target variable: Mb,p,target = Mb,p + target
· combination of Mm,e and target variable: Mm,e,target = Mm,e + target
· combination of Mbm,p,e and target variable:
Mbm,p,e,target = Mbm,p,e + target

7: randomly data splitting of 70%-30% into training-test sets
8: prediction of the score variable with a classification model
9: application of balance and unfairness measures according to Table 8.1:

Bb,p←B(Mb,p) ∈ training set
Bm,e←B(Mm,e) ∈ training set
Bbm,p,e←B(Mbm,p,e) ∈ training set
Bb,p,target ←B(Mb,p,target) ∈ training set
Bm,e,target ←B(Mm,e,target) ∈ training set
Bbm,p,e,target ←B(Mbm,p,e,target) ∈ training set
Ub,p← U(Mb,p) ∈ test set
Um,e← U(Mm,e) ∈ test set
Ubm,p,e← U(Mbm,p,e) ∈ test set

10: end for
11: end for
12: return Bb,p,Bm,e,Bbm,p,e,Bb,p,target ,Bm,e,target ,Bbm,p,e,target ,

Ub,p,Um,e,Ubm,p,e



Chapter 9

Practical Implications and
Future Work

We propose a risk assessment approach based on quantitative measures to evaluate
imbalance in the input datasets of automated decision-making systems, and we aim to
highlight a potential risk of discriminatory outcomes by revealing these imbalances
in training data. For this purpose, we built an open and extensible benchmark of
balance measures, so as to attract further contributions in this direction. Specifically,
we measured the imbalance of the protected attributes in the input data while we
evaluated the unfairness of classification outcomes through different fairness criteria.

9.1 Practical Implications

On the basis of the studies conducted in this dissertation, we provide several recom-
mendations for the usage of the balance measures as indicators of potential unfairness
in the output. For this purpose, we will make use of the following two examples
(formalized by keeping in mind the different behaviors of the indexes of balance that
we observed overall in our studies).

Given a certain protected attribute in a dataset, suppose to obtain a value around
0.3 for the IR and Simpson indexes and a value around 0.5 for the Gini and Shannon
indexes. If we define a single threshold of balance valid for all indexes such that a
value below the threshold identifies imbalance, whereas a value above the threshold



9.1 Practical Implications 111

indicates balance, and we set this threshold at 0.4, then the IR and Simpson indexes
reveal imbalance and, consequently, a higher risk of unfairness, while the Gini and
Shannon indexes –being above the threshold– indicate the absence of imbalance
and therefore a lower risk of unfairness. Now, suppose to have a threshold of
unfairness equal to 0.2 such that a value higher than the threshold identifies the
presence of unfairness, then, according to the IR and Simpson indexes we expect
a value of unfairness greater than 0.2; on the contrary, according to the Gini and
Shannon indexes we expect an unfairness value lower than 0.2 (that is, the absence of
unfairness). If we have an actual case of unfairness (that is, the unfairness is higher
than 0.2), then we have True Positives in the case of the IR and Simpson indexes (as
they correctly anticipated the presence of unfairness), while we have False Negatives
in the case of the Gini and Shannon indexes (as they revealed a balance situation,
and consequently the absence of unfairness). Thus, we should increase the threshold
of balance, for instance at 0.6, in order to have all the indexes correctly revealing
unfairness. The presence of False Negatives is a significant issue, for instance in
the medical field, where it can lead to missed healthcare and to the loss of effective
treatments.
Now suppose a different situation in which we have a single threshold of balance set
at 0.8 and the actual unfairness is lower than 0.2 (which means, an actual case of
fairness). Suppose to obtain a value around 0.9 for the Gini/Shannon indexes and a
value around 0.7 for the IR/Simpson indexes: the first two indexes correctly predict a
low risk of unfairness; the second two indexes, on the other hand, although assuming
a rather high value, indicate imbalance and consequently a high risk of unfairness in
the output, thus representing a False Positive. In this case, we should decrease the
threshold of balance, for instance at 0.6, in order to have all the indexes correctly
indicating a low risk of unfairness, thus avoiding the presence of False Positives.

As it clearly emerges from these two simple examples, the choice of the metric
has a relevant impact on the threshold to consider as risky, therefore, it is advisable
to consider different thresholds (instead of a single one as in the examples above)
depending on the context and dataset’s domain, as well as on the choice of the
fairness criterion.

Specifically, we recommend taking the following aspects into account when using
the indexes of balance to foresee unfairness risks measured through the Independence,
Separation or Sufficiency criteria:



112 Practical Implications and Future Work

• the Gini and Shannon indexes are able to detect discrimination, but overall
they tend to assume higher values with respect to the Simpson and Imbalance
Ratio indexes; for this reason, we recommend using the Gini and Shannon
indexes with higher thresholds (with respect to those adopted for the other
two indexes given a specific context) in order to avoid losing relevant cases of
imbalance and, consequently, of unfairness;

• the Imbalance Ratio index has a good capacity to detect imbalance in datasets
and to reveal discrimination risks, but it shall not be used in presence of empty
classes, as it drops to 0 in presence of at least one class with zero occurrences,
and tend to assumes very low values when very few classes compared to the
total number of classes are empty;

• the Simpson index has a good ability to detect imbalance and identify discrim-
ination risks; we recommend using it in combination with Imbalance Ratio
for a preliminary analysis of the possible cases of discrimination since it is
not affected by the presence of empty classes and presents correlations values
comparable to those of the Imbalance Ratio index.

Furthermore, we provide specific recommendations derived from our studies
on intersectional attributes and combinations of protected attributes with the target
variable. From the investigation on intersectional attributes, we found that balance
measures are suitable for identifying the unfairness risk in classification outcomes,
however, due to some variance in the observed trends, we strongly recommend first
selecting a single fairness criterion of interest, and then choosing the balance measure
that is more appropriate to the application case:

• the Simpson and Imbalance Ratio indexes are recommended for rapid re-
action to unfairness, in all those cases in which slight deviations of fairness
correspond to severe damages to people’s lives;

• the Gini and Shannon indexes are suitable in all other cases because they
have a smoother response to unfairness risks and the cost of a wrong fairness
detection can be minimized.

Concerning the combination of the target variable with protected attributes, we
recommend using the Gini, Shannon or Simpson indexes when the sufficiency
criterion of fairness is preferable, otherwise the Imbalance Ratio index.
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9.2 Future Work

In order to increase the generalizability of our findings and to better assess the
reliability of the balance measures as risk indicators for a potential emergence of
discriminatory behavior by automated decision-making systems, first of all it would
be recommended to extend our studies on a wider number of datasets with all the
concerning information. We are confident that investigating on a wider amount of
data could help to interpret more profoundly the suitability of the adopted indexes.

In the second place, for the purpose of improving our approach based on quanti-
tative measures, it would be advantageous to take into account other kinds of metrics,
examining and comparing their performance with the Gini/Shannon/Simpson/IR in-
dexes. In particular, this research could be expanded by including balance measures
for non-categorical attributes and additional unfairness measures.

In addition, the application of different mutation techniques could further enrich
this research, as well as the study of a larger number of exemplar distributions, both
in the initial phase of our analysis and when they are taken into account for the
application of the mutation techniques.
Moreover, in order to better generalize our investigation on risk thresholds and
to thoroughly assess their reliability, an analogous study could be conducted by
considering other evaluation metrics (different from the accuracy) as a discriminant
to define the best thresholds for each combination of balance-unfairness-algorithm,
and also performing the hyper-parameters tuning for each classifier.

Further work shall be devoted to testing in more detail our approach through
the adoption of other classification and prediction algorithms. In particular, the
generalizability of our results would certainly benefit from the confirmation of the
study through the application of more complex deep learning systems. Given that we
deeply demonstrated the strength of our results by applying the proposed approach
to a huge amount of data having different levels of balance, including extreme cases
(for example, the presence of categories with zero occurrences), we expect the results
to hold even for more sophisticated systems, as their complexity due to a large
number of parameters does not minimize the problem of data imbalance, which
indeed represents an important socio-technical issue that needs to be addressed –we
remind of the examples exposed in Chapter 1, where we illustrated how an imbalance
in data can spread and manifest itself in the output of different ADM systems. As
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a further strength of our approach, we highlight the following point: although the
application of deep learning methods could certainly enrich this research work from
an exploratory point of view, we should keep in mind that these methods require
a much larger amount of data than those used in our study, therefore they will not
necessarily lead to an improvement in terms of details in the research.

Finally, potential mitigation strategies and actions should be examined, that
encompass both data engineering aspects and procedural or organizational aspects
that reflect the social dimension of the problem: for example, the severity of the
impact on disadvantaged users, in combination with the legal and ethical issues
related to specific application domains.



Chapter 10

Conclusions

In this study we proposed and tested a metric-based approach to evaluate imbalance
in a given dataset as a potential risk factor for discriminatory outcomes of automated
decision-making systems.
The rationale of our approach is founded on two conceptual frameworks: the first
one is the ISO/IEC 25000:2014 series of standards [48], also known as SQuadRE, in
which a chain of quality effects is described: in the field of data quality, a simplified
version of this standard series is the well-known GIGO principle, which stands for
“garbage in, garbage out” and states that a software outcome will be unreliable if
the input data are outdated, inaccurate, incomplete, or flawed. Following this line
of reasoning, our hypothesis is that bias on input data will probably cause biased
output data: in terms of automated decision systems, this would lead to potential
discriminatory outputs. The second fundamental concept of our methodology is
based on the ISO 31000:2018 standard for Risk management [49]; taking into
account both data imbalance and potential discrimination from ADM systems, we
focus on the risk assessment stage, and particularly on the first two phases: i) risk
identification, in order to recognize and describe potential risks within a specific
context and scope, and ii) risk analysis, which consists in identifying the features
and potential extent of risk, and assumes metrics of data imbalance as indicators of
discrimination risk.

In the following we summarize our findings for each research question.
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RQ1. How are existing measures able to detect imbalance among the classes of a
given attribute in a dataset?

In our very first investigation, we selected four widely used indexes of data
balance (the Gini, Shannon, Simpson and Imbalance Ratio indexes), normalized
them to share the same range of values and semantics, and tested their ability to
detect different levels of imbalance in synthetic attributes. According to the exemplar
distributions chosen, the best result is achieved by the Imbalance Ratio index, even
though it is very sensitive in presence of classes with 0 occurrences: for its definition,
the index drops to 0 when at least one class is empty. An intermediate result is
achieved using the Simpson index, while the Gini and Shannon indexes showed the
lowest performances as they constantly assume higher values (suggesting balanced
data), therefore they should be further investigated, for example using different
thresholds. As a further observation, we did not find any specific trend associated
with the number of classes.

RQ2. Are existing balance measures able to reveal a discrimination risk when an
ADM system is trained with such data?

In this study, we aim at assessing the reliability of the balance measures as
risk indicators of biased decisions or distorted recommendations in the context of
automated decision-making systems. Thus, we tested the capabilities of the balance
measures to reveal discrimination occurring in the classification output of ADM
systems trained with several large datasets belonging to different application domains.
Overall, the results indicate that the approach is suitable for the proposed goal, even
though the balance measures performed differently with respect to different fairness
criteria and can be ranked similarly as for the previous study: the IR index achieved
the best performances, followed by the Simpson index and the Gini/Shannon indexes.
As a general indication, evidence suggests that a combined usage of the indexes of
balance is preferable in order to detect possible discrimination risks –as indicated in
the pragmatic recommendations provided in the previous Chapter.
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RQ3. Is it possible to measure the risk of bias in a classification output by measur-
ing the level of (im)balance in the protected attributes of the training set?

With the third research question we evaluated how the balance of protected
attributes in training data can be used to assess the risk of algorithmic unfairness in
subsequent classification tasks, by using the set of balance measures previously ana-
lyzed. Differently from the previous study, we conducted the analysis separately for
multiclass and binary protected attributes, and we adopted a pre-processing method
as mutation technique in order to mutate the distribution of the occurrences between
the classes of a certain attribute so as to generate a number of derived synthetic
datasets having different levels of balance. Then, we assessed whether imbalanced
distributions of protected attributes in the training data can lead to discriminatory
output of ADM systems.
Both in the case of multiclass and binary protected attributes, our investigations
showed that overall the unfairness measures decrease as the balance measures in-
crease. Indeed, the correlation analysis confirmed that the balance measures are
capable of predicting unfairness of software output, with some differences between
the indexes: specifically, the IR index is highly sensitive to extreme values of bal-
ance/imbalance, while the Gini and Shannon indexes tend to assume higher values
overall. Thus, the choice of the balance measure has a relevant impact on the thresh-
old to consider as risky, and thus on the detection of discriminatory outcomes of
ADM systems.

RQ4. Is it possible to identify a threshold s (for balance measures) such that if the
balance of the training set is greater than s, then the unfairness of the classification
on the test set is expected to be less than a threshold f?

In this study we defined and tested a methodology to identify thresholds of
balance such that the unfairness of the classification is expected to be less than a
desired levels. To conduct this analysis, we adopted the metric-based approach
previously defined in order to evaluate imbalance in a given dataset as a risk indicator
of discriminatory classification outcomes. Thus, we generated a large number of
synthetic datasets and measured the different levels of imbalance in the training
sets by means of the balance measures previously analyzed, while we assessed the
discrimination occurring in the classification output through a set of fairness criteria.
After that, we built the thresholds s and f by following a specific procedure. Specif-
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ically, for each combination of balance-unfairness-algorithm we selected the con-
figuration of thresholds that presented the highest accuracy. We conducted the
experiment and analyzed the results separately for binary and multiclass attributes.

By assessing the thresholds through the evaluation metrics (Accuracy, Precision,
Sensitivity, Specificity and F1-score), we observed that the values of balance under s
indicate levels of unfairness over f, but they even tend to overestimate the risk (as
we can infer from the low values assumed by the Specificity index, which is caused
by a high number of false positives). We also noted that the identified thresholds
perform better in the binary case than in the multiclass case, with higher accuracy
values overall. Then, from the assessment of the thresholds’ accuracy with respect to
balance-unfairness-algorithm, we found that the balance measures seem to have an
impact only in the multiclass case, whereas the fairness criteria affect the thresholds’
accuracy in both cases following the same pattern; also the algorithms have an impact
–as they present different accuracy values– but without a precise trend.

RQ5. Is it possible to identify the risk of biased output by detecting the level of
(im)balance in intersectional protected attributes?

In this work we studied to which extent it is possible to rely on balance measures
as risk indicators of systematic discrimination when dealing with the intersection
of protected attributes. We conducted an empirical study to test whether: i) it is
possible to infer the balance of intersectional attributes from the balance of the
primary attributes, ii) measures of balance on intersectional protected attributes are
helpful to detect unfairness in classification outcomes.
Again, we selected four indexes of balance (Gini, Simpson, Shannon, Imbalance Ra-
tio), we generated a large number of synthetic datasets and measured different levels
of imbalance in the training sets, whereas we evaluated the discrimination occurring
in the classification outcome on the test sets. Overall, the results on intersectional
attributes show that balance measures are suitable for identifying unfairness risks
in a classification output. Indeed, we observe a moderate negative correlation be-
tween balance measures and fairness criteria, indicating that intersectional protected
attributes can be taken into account to identify unfairness risks, even though the
distinct fairness criteria reflect different levels of balance in slightly different ways.
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RQ6. Does the combination of the target variable with protected attributes improve
the detection of unfair classification risks?

In the last study we investigate the contribution of the target variable to the
unfairness detection. From our findings we conclude that the combination of the
target variable with protected attributes, both in the case of primary and intersectional
attributes, improves the detection of the unfairness depending on the choice of
the fairness criterion, and also on the selected index of balance in the case of
intersectional protected attributes.
Particularly, the combination of primary protected attributes (binary or multiclass)
with the target variable improves the detection of the unfairness depending on the
choice of the fairness criterion: the identification of discrimination risks improves if
the sufficiency criterion is chosen, while it is worsens through the independence or
the separation criteria.
As regards the combination of intersectional protected attributes with the target
variable, the detection of the unfairness is improved through the sufficiency criterion
only in the cases of the Gini, Shannon and Simpson indexes, but not in the case of
the Imbalance Ratio index, for which the identification of the unfairness is improved
when measured through the independence or the separation criteria.

We remark that we looked at data imbalance as a risk factor and not as a technical
fix, in order to create space for active human considerations and interventions, thus
entrusting the ultimate responsibility to human decisions: we strongly recommend
keeping in mind this important premise when applying our approach to real cases or
further scientific researches.
Indeed, we strongly believe that our results will encourage to take more aware and
appropriate actions, as well as to prevent adverse effects caused by the “bias in-bias
out” problem: we suggest getting the assistance of domain experts, professionals
from human and social science, and impacted stakeholders in selecting the most
appropriate balance measures and fairness criteria for the case at hand, in order to
fully understand and best address the socio-technical nature of the bias problem in
software systems and, particularly, in automated decision-making systems.
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Appendix A

Thresholds of Balance to Forecast
Algorithmic Fairness

A.1 Configurations of the Thresholds

In this Appendix we provide the five configurations of thresholds that we defined
during the procedure of identification of risk thresholds provided in Chapter 7. The
configurations have been built so as to distribute the values of f evenly in the range
with the highest concentration of unfairness values, which is approximately between
the minimum and the mean of the distribution (around the first quartile). Hence, for
each configuration we specify the two theoretical values of unfairness thresholds
that we chose a priori, f1_base and f2_base, or f_base if we are in the case of
only one threshold defined a priori. In the five figures, we report a violin plot that
represents the compact display of the (continuous) distribution of the values of the
Separation criterion in the case of the True Positive rate; indeed, this kind of plot
allows to show the probability density of the data at different values. Thus, we took
as reference the Sep_TP criterion as it is the one with the largest range of values with
respect to the other fairness criteria (which presented very high probability density
in correspondence of very low values). In the figures, we color f1_base and f2_base
with gray and highlight their mean f in red color (or f_base in the case of the definition
of only one threshold), in a way such that the red line is progressively moved to the
left (where we observe the highest concentration of unfairness values). In particular:
configurations 1, 2 and 4 belong to the general case of the two thresholds f1_base
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and f2_base defined a priori, whereas configurations 3 and 5 belong to the case with
only one f_base threshold.

Configuration 1

• f1_base: 1st quartile

• f2_base: mean

Fig. A.1 Thresholds Configuration 1.
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Configuration 2

• f1_base: mean between minimum and 1st quartile

• f2_base: mean between 1st quartile and mean

Fig. A.2 Thresholds Configuration 2.

Configuration 3

• f_base: 1st quartile

Fig. A.3 Thresholds Configuration 3.
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Configuration 4

• f1_base: mean between minimum and 1st quartile

• f2_base: 1st quartile

Fig. A.4 Thresholds Configuration 4.

Configuration 5

• f_base: mean between minimum and 1st quartile

Fig. A.5 Thresholds Configuration 5.
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A.2 Final Thresholds and Evaluation Metrics

In this Appendix, we report a set of tables concerning the research outcomes obtained
in Chapter 7. Particularly, for each combination of balance-unfairness-algorithm we
report the best thresholds selected by accuracy, the configuration they correspond
to (among the 5 options described in Appendix A.1), and all the evaluation metrics
related to those thresholds. For sake of legibility, we report values for the thresholds
of both fairness criteria and balance measures multiplied by 100, i.e. on a scale
[0,100]. Results are presented in separate tables for the binary and the multiclass
cases, grouped by balance measure (Gini, Shannon, Simpson, and IR indexes), and
ordered by unfairness measures (Independence, Separation_TP, Separation_FP, Suf-
ficiency_PP, and Sufficiency_PN criteria); then, in each table results vary according
to the algorithm used in the classification task (logistic regression, support vector
machine, random forest, k-nearest neighbors). Finally, we remind that the aim of
this study was to define two thresholds s (for balance measures) and f (for unfairness
measures) such that if the balance of the training set is greater than s, then the
unfairness of the classification on the test set is expected to be less than f.

Binary attributes

Gini index

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Gini Independence logit 3 97,62 3,20 0,68 0,75 0,21 0,84 0,79
Gini Independence svm 5 95,49 1,66 0,68 0,86 0,30 0,75 0,80
Gini Independence rf 3 80,59 4,01 0,54 0,76 0,41 0,58 0,66
Gini Independence knn 3 96,18 2,33 0,65 0,77 0,21 0,78 0,77

Table A.1 Thresholds and evaluation metrics for the combination Gini-Independence in the
case of binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Gini Sep_TP logit 3 94,55 4,72 0,67 0,80 0,33 0,76 0,78
Gini Sep_TP svm 3 79,29 3,99 0,63 0,86 0,56 0,64 0,73
Gini Sep_TP rf 5 99,99 3,31 0,85 0,88 0,07 0,96 0,92
Gini Sep_TP knn 5 99,96 2,06 0,80 0,85 0,11 0,93 0,89

Table A.2 Thresholds and evaluation metrics for the combination Gini-Sep_TP in the case of
binary attributes.
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Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Gini Sep_FP logit 3 84,68 2,89 0,61 0,76 0,42 0,68 0,72
Gini Sep_FP svm 1 38,44 6,77 0,49 0,48 0,58 0,40 0,44
Gini Sep_FP rf 1 54,58 7,875 0,61 0,55 0,64 0,59 0,57
Gini Sep_FP knn 5 91,50 0,91 0,90 0,74 0,35 0,69 0,81

Table A.3 Thresholds and evaluation metrics for the combination Gini-Sep_FP in the case of
binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Gini Suf_PP logit 5 72,02 2,50 0,58 0,89 0,50 0,59 0,71
Gini Suf_PP svm 5 85,00 2,16 0,67 0,91 0,46 0,70 0,79
Gini Suf_PP rf 4 96,53 4,46 0,74 0,82 0,29 0,86 0,84
Gini Suf_PP knn 3 96,27 6,10 0,66 0,71 0,26 0,85 0,77

Table A.4 Thresholds and evaluation metrics for the combination Gini-Suf_PP in the case of
binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Gini Suf_PN logit 5 95,77 2,17 0,71 0,88 0,21 0,78 0,82
Gini Suf_PN svm 5 95,80 1,92 0,72 0,88 0,25 0,79 0,83
Gini Suf_PN rf 1 67,60 7,84 0,62 0,60 0,53 0,71 0,65
Gini Suf_PN knn 5 96,41 2,47 0,73 0,85 0,25 0,82 0,84

Table A.5 Thresholds and evaluation metrics for the combination Gini-Suf_PN in the case of
binary attributes.

Shannon index

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Shannon Independence logit 3 98,28 3,20 0,68 0,75 0,21 0,84 0,79
Shannon Independence svm 5 96,72 1,66 0,68 0,86 0,30 0,75 0,80
Shannon Independence rf 3 85,51 4,01 0,54 0,76 0,41 0,58 0,66
Shannon Independence knn 3 97,232,33 2,33 0,65 0,77 0,21 0,78 0,77

Table A.6 Thresholds and evaluation metrics for the combination Shannon-Independence in
the case of binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Shannon Sep_TP logit 3 96,03 4,72 0,67 0,80 0,33 0,76 0,78
Shannon Sep_TP svm 3 83,03 3,99 0,62 0,87 0,58 0,63 0,73
Shannon Sep_TP rf 5 99,99 99,99 0,85 0,88 0,08 0,95 0,92
Shannon Sep_TP knn 5 99,97 2,06 0,80 0,85 0,12 0,93 0,89

Table A.7 Thresholds and evaluation metrics for the combination Shannon-Sep_TP in the
case of binary attributes.
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Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Shannon Sep_FP logit 3 88,65 2,89 0,61 0,76 0,41 0,68 0,72
Shannon Sep_FP svm 1 46,58 6,77 0,49 0,49 0,63 0,36 0,41
Shannon Sep_FP rf 1 63,19 7,88 0,61 0,55 0,64 0,58 0,57
Shannon Sep_FP knn 5 93,68 0,91 0,69 0,90 0,35 0,74 0,81

Table A.8 Thresholds and evaluation metrics for the combination Shannon-Sep_FP in the
case of binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Shannon Suf_PP logit 5 77,06 2,50 0,57 0,89 0,50 0,58 0,70
Shannon Suf_PP svm 5 88,89 2,16 0,67 0,91 0,45 0,910,69 0,79
Shannon Suf_PP rf 4 97,48 4,46 0,74 0,82 0,29 0,86 0,84
Shannon Suf_PP knn 3 97,30 6,10 0,66 0,71 0,26 0,84 0,77

Table A.9 Thresholds and evaluation metrics for the combination Shannon-Suf_PP in the
case of binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Shannon Suf_PN logit 5 96,93 2,17 0,71 0,88 0,21 0,78 0,82
Shannon Suf_PN svm 5 96,90 1,92 0,72 0,88 0,25 0,78 0,83
Shannon Suf_PN rf 1 73,07 7,84 0,62 0,61 0,56 0,68 0,64
Shannon Suf_PN knn 5 97,39 2,47 0,73 0,85 0,25 0,82 0,84

Table A.10 Thresholds and evaluation metrics for the combination Shannon-Suf_PN in the
case of binary attributes.

Simpson index

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Simpson Independence logit 3 95,35 3,20 0,68 0,75 0,21 0,84 0,79
Simpson Independence svm 5 91,37 1,66 0,68 0,86 0,30 0,75 0,80
Simpson Independence rf 3 67,50 4,01 0,54 0,76 0,41 0,58 0,66
Simpson Independence knn 3 92,65 2,33 0,65 0,77 0,21 0,770,78 0,77

Table A.11 Thresholds and evaluation metrics for the combination Simpson-Independence in
the case of binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Simpson Sep_TP logit 3 89,66 4,72 0,67 0,80 0,33 0,76 0,78
Simpson Sep_TP svm 3 73,11 3,99 0,65 0,85 0,47 0,70 0,77
Simpson Sep_TP rf 5 99,99 3,31 0,85 0,88 0,04 0,96 0,92
Simpson Sep_TP knn 5 99,93 2,06 0,80 0,85 0,11 0,93 0,89

Table A.12 Thresholds and evaluation metrics for the combination Simpson-Sep_TP in the
case of binary attributes.
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Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Simpson Sep_FP logit 3 73,43 2,89 0,61 0,76 0,41 0,68 0,72
Simpson Sep_FP svm 1 29,43 6,77 0,49 0,49 0,56 0,43 0,46
Simpson Sep_FP rf 1 40,32 7,88 0,61 0,55 0,63 0,59 0,57
Simpson Sep_FP knn 5 85,47 0,91 0,70 0,90 0,35 0,74 0,81

Table A.13 Thresholds and evaluation metrics for the combination Simpson-Sep_FP in the
case of binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Simpson Suf_PP logit 5 63,82 2,50 0,58 0,89 0,48 0,60 0,72
Simpson Suf_PP svm 5 73,91 2,16 0,67 0,91 0,45 0,69 0,79
Simpson Suf_PP rf 4 93,36 4,46 0,74 0,82 0,29 0,86 0,84
Simpson Suf_PP knn 3 92,82 6,10 0,66 0,71 0,26 0,84 0,77

Table A.14 Thresholds and evaluation metrics for the combination Simpson-Suf_PP in the
case of binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Simpson Suf_PN logit 5 91,88 2,17 0,71 0,88 0,21 0,78 0,82
Simpson Suf_PN svm 5 92,54 1,92 0,74 0,88 0,23 0,81 0,84
Simpson Suf_PN rf 1 60,61 7,84 0,63 0,61 0,52 0,74 0,67
Simpson Suf_PN knn 5 93,07 2,47 0,73 0,85 0,25 0,82 0,84

Table A.15 Thresholds and evaluation metrics for the combination Simpson-Suf_PN in the
case of binary attributes.

Imbalance Ratio index

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

IR Independence logit 3 73,27 3,20 0,68 0,75 0,21 0,84 0,79
IR Independence svm 5 64,96 1,66 0,68 0,86 0,30 0,75 0,80
IR Independence rf 3 38,84 4,01 0,54 0,76 0,41 0,58 0,66
IR Independence knn 3 67,32 2,33 0,65 0,77 0,21 0,78 0,77

Table A.16 Thresholds and evaluation metrics for the combination IR-Independence in the
case of binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

IR Sep_TP logit 3 62,14 4,72 0,67 0,80 0,33 0,76 0,78
IR Sep_TP svm 4 51,20 3,00 0,70 0,89 0,43 0,74 0,81
IR Sep_TP rf 5 98,29 3,31 0,85 0,88 0,04 0,96 0,92
IR Sep_TP knn 5 96,28 2,06 0,80 0,85 0,11 0,93 0,89

Table A.17 Thresholds and evaluation metrics for the combination IR-Sep_TP in the case of
binary attributes.



A.2 Final Thresholds and Evaluation Metrics 137

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

IR Sep_FP logit 3 43,74 2,89 0,61 0,76 0,41 0,68 0,72
IR Sep_FP svm 1 19,31 6,77 0,49 0,49 0,56 0,43 0,46
IR Sep_FP rf 1 22,13 7,88 0,62 0,55 0,63 0,60 0,57
IR Sep_FP knn 5 70,24 0,91 0,76 0,89 0,19 0,84 0,86

Table A.18 Thresholds and evaluation metrics for the combination IR-Sep_FP in the case of
binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

IR Suf_PP logit 5 43,87 2,50 0,65 0,89 0,43 0,68 0,77
IR Suf_PP svm 5 44,16 2,16 0,67 0,91 0,45 0,69 0,79
IR Suf_PP rf 4 70,25 4,46 0,74 0,82 0,26 0,87 0,84
IR Suf_PP knn 3 67,64 6,10 0,66 0,71 0,26 0,84 0,77

Table A.19 Thresholds and evaluation metrics for the combination IR-Suf_PP in the case of
binary attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

IR Suf_PN logit 5 65,88 2,17 0,71 0,88 0,21 0,78 0,82
IR Suf_PN svm 5 82,40 1,92 0,78 0,88 0,16 0,87 0,88
IR Suf_PN rf 1 52,13 7,84 0,58 0,55 0,35 0,81 0,66
IR Suf_PN knn 5 8,13 2,47 0,73 0,85 0,25 0,82 0,84

Table A.20 Thresholds and evaluation metrics for the combination IR-Suf_PN in the case of
binary attributes.

Multiclass attributes

Gini index

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Gini Independence logit 1 88,54 8,45 0,44 0,43 0,55 0,33 0,38
Gini Independence svm 1 93,73 10,08 0,42 0,40 0,37 0,47 0,43
Gini Independence rf 5 91,09 3,61 0,47 0,92 0,50 0,47 0,62
Gini Independence knn 5 93,71 1,69 0,52 0,86 0,38 0,55 0,67

Table A.21 Thresholds and evaluation metrics for the combination Gini-Independence in the
case of multiclass attributes.
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Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Gini Sep_TP logit 1 92,23 10,04 0,51 0,65 0,54 0,49 0,56
Gini Sep_TP svm 2 94,64 8,21 0,56 0,80 0,44 0,59 0,68
Gini Sep_TP rf 5 99,83 4,55 0,77 0,89 0,14 0,84 0,87
Gini Sep_TP knn 1 93,50 9,98 0,53 0,64 0,55 0,52 0,57

Table A.22 Thresholds and evaluation metrics for the combination Gini-Sep_TP in the case
of multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Gini Sep_FP logit 1,00 87,58 8,32 0,43 0,53 0,56 0,34 0,41
Gini Sep_FP svm 5,00 92,02 1,46 0,48 0,96 0,51 0,48 0,63
Gini Sep_FP rf 1,00 91,96 9,55 0,48 0,55 0,50 0,47 0,51
Gini Sep_FP knn 1,00 94,10 8,79 0,47 0,49 0,35 0,58 0,53

Table A.23 Thresholds and evaluation metrics for the combination Gini-Sep_FP in the case
of multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Gini Suf_PP logit 1 87,96 13,29 0,48 0,56 0,59 0,40 0,46
Gini Suf_PP svm 1 89,61 11,99 0,47 0,57 0,56 0,41 0,47
Gini Suf_PP rf 5 95,16 4,85 0,59 0,93 0,34 0,61 0,73
Gini Suf_PP knn 1 86,83 12,88 0,55 0,60 0,72 0,39 0,47

Table A.24 Thresholds and evaluation metrics for the combination Gini-Suf_PP in the case
of multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Gini Suf_PN logit 1 86,67 12,04 0,48 0,53 0,69 0,30 0,38
Gini Suf_PN svm 3 98,92 7,60 0,59 0,80 0,31 0,66 0,72
Gini Suf_PN rf 2 94,68 7,72 0,52 0,76 0,35 0,57 0,65
Gini Suf_PN knn 2 93,05 8,58 0,53 0,87 0,62 0,51 0,64

Table A.25 Thresholds and evaluation metrics for the combination Gini-Suf_PN in the case
of multiclass attributes.

Shannon index

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Shannon Independence logit 3 84,89 5,19 0,48 0,76 0,54 0,46 0,57
Shannon Independence svm 3 85,52 6,54 0,43 0,68 0,42 0,44 0,53
Shannon Independence rf 5 87,27 3,61 0,55 0,90 0,27 0,58 0,70
Shannon Independence knn 5 86,10 1,69 0,53 0,86 0,36 0,55 0,67

Table A.26 Thresholds and evaluation metrics for the combination Shannon-Independence in
the case of multiclass attributes.
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Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Shannon Sep_TP logit 4 87,50 5,14 0,57 0,82 0,41 0,60 0,69
Shannon Sep_TP svm 2 93,80 8,21 0,60 0,79 0,35 0,66 0,72
Shannon Sep_TP rf 5 99,79 4,55 0,79 0,89 0,14 0,87 0,88
Shannon Sep_TP knn 1 92,80 9,98 0,54 0,61 0,33 0,67 0,64

Table A.27 Thresholds and evaluation metrics for the combination Shannon-Sep_TP in the
case of multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Shannon Sep_FP logit 1 83,97 8,32 0,47 0,57 0,51 0,44 0,49
Shannon Sep_FP svm 5 89,82 1,46 0,58 0,95 0,23 0,60 0,73
Shannon Sep_FP rf 3 86,44 4,36 0,52 0,74 0,33 0,58 0,65
Shannon Sep_FP knn 3 87,54 4,23 0,52 0,71 0,31 0,59 0,64

Table A.28 Thresholds and evaluation metrics for the combination Shannon-Sep_FP in the
case of multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Shannon Suf_PP logit 1 84,93 13,29 0,53 0,61 0,57 0,50 0,55
Shannon Suf_PP svm 2 84,67 8,20 0,52 0,81 0,58 0,50 0,62
Shannon Suf_PP rf 2 93,24 8,72 0,61 0,80 0,34 0,68 0,74
Shannon Suf_PP knn 1 82,46 12,88 0,56 0,60 0,65 0,48 0,53

Table A.29 Thresholds and evaluation metrics for the combination Shannon-Suf_PP in the
case of multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Shannon Suf_PN logit 1 81,04 12,04 0,46 0,50 0,64 0,31 0,38
Shannon Suf_PN svm 3 97,16 7,60 0,59 0,80 0,31 0,66 0,72
Shannon Suf_PN rf 2 94,02 7,72 0,59 0,79 0,34 0,66 0,72
Shannon Suf_PN knn 2 89,19 8,58 0,59 0,85 0,46 0,61 0,71

Table A.30 Thresholds and evaluation metrics for the combination Shannon-Suf_PN in the
case of multiclass attributes.

Simpson index

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Simpson Independence logit 1 62,19 8,45 0,50 0,51 0,54 0,47 0,49
Simpson Independence svm 3 66,97 6,54 0,43 0,68 0,42 0,44 0,53
Simpson Independence rf 4 66,00 5,42 0,47 0,85 0,50 0,47 0,60
Simpson Independence knn 5 74,88 1,69 0,53 0,86 0,36 0,55 0,67

Table A.31 Thresholds and evaluation metrics for the combination Simpson-Independence in
the case of multiclass attributes.



140 Thresholds of Balance to Forecast Algorithmic Fairness

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Simpson Sep_TP logit 3 77,24 6,85 0,55 0,76 0,39 0,60 0,67
Simpson Sep_TP svm 2 84,92 8,21 0,60 0,79 0,35 0,66 0,72
Simpson Sep_TP rf 5 99,14 4,55 0,79 0,89 0,15 0,87 0,88
Simpson Sep_TP knn 1 83,05 9,98 0,54 0,62 0,40 0,63 0,62

Table A.32 Thresholds and evaluation metrics for the combination Simpson-Sep_TP in the
case of multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Simpson Sep_FP logit 1 63,30 8,32 0,48 0,58 0,51 0,47 0,51
Simpson Sep_FP svm 5 76,82 1,46 0,58 0,95 0,23 0,59 0,73
Simpson Sep_FP rf 3 69,14 4,36 0,48 0,76 0,50 0,48 0,59
Simpson Sep_FP knn 3 73,71 4,23 0,48 0,73 0,48 0,48 0,58

Table A.33 Thresholds and evaluation metrics for the combination Simpson-Sep_FP in the
case of multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Simpson Suf_PP logit 1 64,35 13,29 0,53 0,61 0,57 0,51 0,55
Simpson Suf_PP svm 3 66,23 8,84 0,52 0,78 0,57 0,50 0,61
Simpson Suf_PP rf 2 87,44 8,72 0,61 0,80 0,34 0,68 0,74
Simpson Suf_PP knn 1 60,97 12,88 0,56 0,58 0,57 0,55 0,56

Table A.34 Thresholds and evaluation metrics for the combination Simpson-Suf_PP in the
case of multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

Simpson Suf_PN logit 1 53,71 12,04 0,47 0,51 0,71 0,27 0,35
Simpson Suf_PN svm 4 84,02 5,70 0,64 0,94 0,28 0,66 0,77
Simpson Suf_PN rf 2 85,30 7,72 0,59 0,79 0,34 0,66 0,72
Simpson Suf_PN knn 3 68,87 9,54 0,53 0,81 0,59 0,51 0,63

Table A.35 Thresholds and evaluation metrics for the combination Simpson-Suf_PN in the
case of multiclass attributes.

Imbalance Ratio index

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

IR Independence 3 18,61 5,19 0,59 0,76 0,35 0,67 0,71
IR Independence svm 4 10,92 4,91 0,56 0,83 0,27 0,61 0,70
IR Independence rf 5 32,69 3,61 0,63 0,91 0,27 0,66 0,77
IR Independence knn 4 12,08 2,54 0,57 0,77 0,30 0,64 0,70

Table A.36 Thresholds and evaluation metrics for the combination IR-Independence in the
case of multiclass attributes.
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Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

IR Sep_TP logit 5 24,12 3,42 0,65 0,89 0,41 0,68 0,77
IR Sep_TP svm 5 42,71 4,44 0,64 0,91 0,36 0,66 0,77
IR Sep_TP rf 5 80,85 4,55 0,80 0,89 0,13 0,88 0,89
IR Sep_TP knn 4 22,47 4,86 0,61 0,82 0,34 0,67 0,74

Table A.37 Thresholds and evaluation metrics for the combination IR-Sep_TP in the case of
multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

IR Sep_FP logit 2 16,07 4,83 0,56 0,68 0,32 0,67 0,67
IR Sep_FP svm 5 56,18 1,46 0,65 0,95 0,23 0,67 0,78
IR Sep_FP rf 4 20,81 3,27 0,64 0,88 0,34 0,68 0,77
IR Sep_FP knn 4 18,33 3,17 0,59 0,79 0,28 0,88 0,72

Table A.38 Thresholds and evaluation metrics for the combination IR-Sep_FP in the case of
multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

IR Suf_PP logit 1 30,65 13,29 0,54 0,58 0,35 0,68 0,63
IR Suf_PP svm 4 15,57 6,63 0,63 0,86 0,35 0,68 0,76
IR Suf_PP rf 5 18,36 4,85 0,66 0,94 0,34 0,68 0,79
IR Suf_PP knn 3 16,39 9,40 0,58 0,72 0,34 0,68 0,70

Table A.39 Thresholds and evaluation metrics for the combination IR-Suf_PP in the case of
multiclass attributes.

Balance Unfairness Algorithm Configuration s f Accuracy Precision Specificity Sensitivity F1-score

IR Suf_PN logit 2 17,71 8,11 0,59 0,79 0,30 0,66 0,72
IR Suf_PN svm 4 25,90 5,70 0,64 0,94 0,28 0,66 0,77
IR Suf_PN rf 5 46,74 4,11 0,65 0,95 0,31 0,66 0,78
IR Suf_PN knn 4 19,22 7,16 0,63 0,88 0,35 0,67 0,76

Table A.40 Thresholds and evaluation metrics for the combination IR-Suf_PN in the case of
multiclass attributes.



Appendix B

Imbalance of Intersectional Protected
Attributes and Target Variable

As a complement to the discussion of the research question RQ 6 presented in Section
8.4 of Chapter 8, in this Appendix we report the correlations between balance and
unfairness measures for both protected attributes combined with the target variable
and protected attributes without target (in Tables B.1, B.2, B.4, B.5, B.7, B.8). We
also report the differences between the aforementioned correlations, for the protected
attributes sex, education and sex_education (in Tables B.3, B.6, B.9). For the sake of
better interpretability of the numerical values in the tables, we make the following
specification: as we expect the correlation between balance measures and fairness
criteria to be negative for a given protected attribute, we assess the difference between
the correlation of a protected attribute (primary or intersectional) and the correlation
of the same attribute combined with the target. If this difference is positive, it means
that the correlation between balance measures and fairness criteria for that protected
attribute combined with the target variable is stronger than the correlation obtained
without combining the protected attribute with the target variable, thus adding the
target will improve the unfairness detection. On the contrary, if the difference is
negative, the combination of the protected attribute with the target variable does not
improve identifying the unfairness.
Indeed, the numerical results reflect all the observations about the plot in Figure 8.3:
as regards tables reporting the differences in correlation, we have a positive value
if combining the target with protected attributes improves detecting the unfairness,
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while we find a negative value if the combination of the target variable with protected
attributes worsens the identification of the unfairness.

Table B.1 Correlation between balance and unfairness measures for the primary attribute sex:
B(sex) ∼ U(sex).

Fairness criteria
Balance Measures

Gini Shannon Simpson
Imbalance

Ratio

Independence -0.1417 -0.1417 -0.1417 -0.1416
Separation – TP -0.4017 -0.4018 -0.4017 -0.4017
Separation – FP -0.1509 -0.1510 -0.1509 -0.1509
Sufficiency – PP -0.2801 -0.2802 -0.2802 -0.2801
Sufficiency – PN -0.0085 -0.0085 -0.0084 -0.0084

Table B.2 Correlation between balance and unfairness measures for the attribute sex_target:
B(sex_target) ∼ U(sex).

Fairness criteria
Balance Measures

Gini Shannon Simpson
Imbalance

Ratio

Independence -0.0388 -0.0665 -0.0388 -0.1056
Separation – TP -0.3119 -0.3513 -0.3119 -0.3999
Separation – FP -0.0035 -0.0420 -0.0035 -0.1024
Sufficiency – PP -0.3443 -0.3422 -0.3443 -0.3075
Sufficiency – PN -0.0664 -0.0609 -0.0664 -0.0527

Table B.3 Difference between the correlation tables B.1 and B.2:
diffsex = cor(sex) – cor(sex_target).

Fairness criteria
Balance Measures

Gini Shannon Simpson
Imbalance

Ratio

Independence -0.1029 -0.0752 -0.1029 -0.0360
Separation – TP -0.0898 -0.0504 -0.0898 -0.0018
Separation – FP -0.1474 -0.1089 -0.1474 -0.0485
Sufficiency – PP 0.0641 0.0620 0.0641 0.0274
Sufficiency – PN 0.0579 0.0525 0.0580 0.0444
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Table B.4 Correlation between balance and unfairness measures for the primary attribute
education: B(education) ∼ U(education).

Fairness criteria
Balance Measures

Gini Shannon Simpson
Imbalance

Ratio

Independence -0.0885 -0.0581 -0.0885 -0.0044
Separation – TP -0.0608 -0.0165 -0.0608 0.0411
Separation – FP -0.1013 -0.0637 -0.1014 -0.0106
Sufficiency – PP -0.1515 -0.0647 -0.1516 0.0462
Sufficiency – PN 0.0200 -0.0601 0.0201 -0.1049

Table B.5 Correlation between balance and unfairness measures for the attribute educa-
tion_target: B(education_target) ∼ U(education).

Fairness criteria
Balance Measures

Gini Shannon Simpson
Imbalance

Ratio

Independence 0.2358 0.2413 0.2762 0.1199
Separation – TP 0.2181 0.2244 0.2544 0.1018
Separation – FP 0.2348 0.2370 0.2753 0.0976
Sufficiency – PP -0.2679 -0.2882 -0.3065 -0.2103
Sufficiency – PN -0.2941 -0.3145 -0.3260 -0.1325

Table B.6 Difference between the correlation tables B.4 and B.5:
diffeducation = cor(education) – cor(education_target).

Fairness criteria
Balance Measures

Gini Shannon Simpson
Imbalance

Ratio

Independence -0.3243 -0.2994 -0.3647 -0.1243
Separation – TP -0.2789 -0.2409 -0.3152 -0.0607
Separation – FP -0.3361 -0.3008 -0.3767 -0.1082
Sufficiency – PP 0.1164 0.2235 0.1549 0.2565
Sufficiency – PN 0.3141 0.2544 0.3461 0.0276
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Table B.7 Correlation between balance and unfairness measures for the intersectionl attribute
sex_education: B(sex_education) ∼ U(sex_education).

Fairness criteria
Balance Measures

Gini Shannon Simpson
Imbalance

Ratio

Independence -0.1614 -0.1652 -0.1687 -0.1706
Separation – TP -0.2583 -0.2799 -0.2696 -0.2902
Separation – FP -0.2130 -0.2244 -0.2203 -0.2340
Sufficiency – PP -0.1836 -0.1842 -0.1905 -0.1862
Sufficiency – PN -0.1487 -0.1654 -0.1425 -0.1631

Table B.8 Correlation between balance and unfairness measures for the attribute
sex_education_target: B(sex_education_target) ∼ U(sex_education).

Fairness criteria
Balance Measures

Gini Shannon Simpson
Imbalance

Ratio

Independence 0.0103 -0.0275 0.0107 -0.2666
Separation – TP -0.0993 -0.1552 -0.1028 -0.3832
Separation – FP -0.0450 -0.0930 -0.0443 -0.3266
Sufficiency – PP -0.2559 -0.2441 -0.2706 -0.1100
Sufficiency – PN -0.3000 -0.2934 -0.2935 -0.1069

Table B.9 Difference between the correlation tables B.7 and B.8:
diffsex_education = cor(sex_education) – cor(sex_education_target).

Fairness criteria
Balance Measures

Gini Shannon Simpson
Imbalance

Ratio

Independence -0.1717 -0.1376 -0.1794 0.0960
Separation – TP -0.1590 -0.1247 -0.1667 0.0930
Separation – FP -0.1680 -0.1314 -0.1760 0.0926
Sufficiency – PP 0.0723 0.0600 0.0800 -0.0762
Sufficiency – PN 0.1513 0.1279 0.1510 -0.0562
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