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An application of the fractional Fourier transform for the multimedia copyright protection
is proposed in the paper. The watermark robustness as well as statistical performance are
considered.  2001 Academic Press

1. Introduction

Embedding of a watermark signal is an interesting research and application field
in the copyright protection of multimedia signals (images, sounds, movies) [1–4].
The goal is to embed the watermark that is imperceptible in the image, while
the copyright holder can detect its existence, by using proper private infor-
mation—key. Commonly used methods are based on embedding watermark
signals in the space or spatial-frequency domain [1]. Recently, watermarking
in the combined space/spatial-frequency domain has been defined [5]. In this
paper, we will consider image watermarking in the fractional Fourier transfor-
mation (FRFT) domain. This approach uses combination of the space and spa-
tial/frequency domains, without introducing the multidimensional Radon-Wigner
distribution [5].

The paper is organized as follows. The FRFT is described in Section 2.
Watermark embedding in the FRFT domain is considered in Section 3. Numerical
examples are given in Section 4.

2. The fractional Fourier transform

For the analysis of images one can use a two-dimensional FRFT, defined by:

Sax,ay .ux, uy/DFRFT
ty!uy
ay fFRFTtx!uxax

fs.tx, ty/gg .1/
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wheres.tx, ty/ is a 2D signal and.ax,ay/ are transformation angles. The symbol
FRFTt!ua denotes one-dimensional FRFT. It is defined as:

Xa.u/D
∫ 1
�1

x.t/Ka.u, t/dt, Xa.u/DFRFTt!ua fx.t/g .2/

where:

Ka.u, t/D


√

1�j cota

2p
ej.t

2Cu2/ cota/2�jut csca if a is not multiple ofp

d.t�u/ if a is multiple of 2p
d.tCu/ if aCp is multiple of 2p.

.3/
The FRFT can be understood as a rotation of the signal for an arbitrary anglea
in the time-frequency plain [6,7]. The inverse FRFT can be treated as a rotation
for angle�a: x.t/DFRFTu!t�a fXa.u/g. The FRFT is additive with respect to the
angle, i.e., the FRFT for angleb of Xa.u/ is equal toXaCb.u/. Note that the
Fourier transform (FT)X.!/ of a signalx.t/ is a special case of the FRFT for
aDp/2.

Obviously, the FRFT transformation domain is a combination of the time and
frequency domains. For anglesa close toaDp/2, for example for 3p/4½jaj½p/4,
we can consider the FRFT as the transformation being dominantly in the
frequency domain. On the other hand, for smalla, jaj<p/4, the FRFT is
dominantly in the time domain. For the watermarking proposed in this paper,
we will use the frequency domain dominant case. It must preserve the realness of
a signal after the watermark is embedded in the FRFT domain. For this reason,
when we embed a signalY.u/ into the FRFT with anglea, at the same time we
are to embed the signalYŁ.u/ into FRFT with angle�a.

Recently, numerical realization of the discrete FRFT has been a very intensively
studied research topic. An efficient numerical approach, presented in [8,9], is used
in this paper for watermark embedding.

3. Watermark embedding

For an images.nx, ny/ we find FRFT for angles.ax,ay/, followed by transforma-
tion coefficients reordering in nonincreasing sequenceSDfSijSi½Si�1g. The first
L coefficients are omitted and the watermark is embedded in the nextM transfor-
mation coefficients. If the watermark were embedded in the highest coefficients,
it could produce significant image deformation, while if it were embedded in the
lowest coefficients it could be cleaned by lossy image compression or lowpass
filtering, without significant image visual degradation. Therefore, watermark is
embedded as [3]:

Swi DSiCk0ijRefSigjCjk00i jImfSigj, iDLC1, LC2, . . . , LCM, .4/
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where .k0i, k00i /, iDLC1, . . . , LCM is a real-valued watermark key. Watermark
detection must be reliable if the watermark key and positions of transformation
coefficients are known. Let the watermark be a Gaussian white noise with variance
s2, i.e. variances ofk0i andk00i ares2/2. A watermark detection check is performed
comparing the detection value:

dD
LCM∑
iDLC1

[k0i�jk00i ]S.a/i .5/

with a chosen threshold. Here,S.a/i denotes the FRFT of the target image with a
possible attack.

In order to determine the statistical performance of the proposed algorithm, we
will first assume that the watermarked image is not changed by attacks (common
image processing algorithms) or communication channel noise. Then, the value
of d is equal to:

dD
LCM∑
iDLC1

[k0i�jk00i ][SiCk0ijRefSigjCjk00i jImfSigj]. .6/

Since the number of coefficients where the watermark is embedded (M) can be
high (for a 256ð256 image it can be a few thousand) then, for a watermark key
uncorrelated with image, the mean value ofd is given as:

EfdgD s2

2

LCM∑
iDLC1

[jRefSigjCjImfSigj]. .7/

If there is no watermark.k0i, k00i / in the image,EfdgD0. Variance ofd is the same
in both cases:

varfdgDs2
LCM∑
iDLC1

jSij2. .8/

Thus, the detection threshold should be chosen asEfdg/2, while the watermark
key variance is chosen by a trade-off between watermark imperceptiveness and
probability of false detection (false alarm). Because pirates can modify the image,
by using some common image processing transforms (attacks), a value higher than
varfdg can be used for calculation of the false alarm probability.

4. Examples

The algorithm is tested on various standard test images and attacks. In the
examples, standard test image Lena.256ð256/ is used [Fig. 1(a)]. Watermarked
image Lena (LD8000, MD8000, s2D0.04, a1Da2D0.375p) is shown in
Fig. 1(b). Detector responses in watermarked and non-watermarked images for
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Figure 1. Test image ‘Lena’: a) Original image, b) watermarked image.

1000 different watermark keys are shown in Fig. 2(a). Further, we have supposed
that a pirate knows watermark key and watermark key position, but that he doesn’t
know the transformation angles. Detector response over different transformation
angles is shown in Fig. 2(b). From this figure, it is clear that for watermark
detection it is necessary to know watermark angles as well. The watermark key
consists ofk0i andk00i , positions of embedded coefficients, and the angles.a1,a2/.
In this way, we can create more watermarks than in the FT or DCT domain, since
we can use different angles for watermark embedding. Calculation complexity
of the procedure for watermark embedding and detection is not significantly
increased, since there are standard fast algorithms for the FRFT calculation [8,9].

This watermarking approach is robust on some common attacks (geometrical
transform, filtering, histogram stretching, etc.). Watermarked image Lena embed-
ded with white Gaussian noise with variances2

GD6000 is shown in Fig. 3(a),
while the cropped watermarked image is shown in Fig. 3(b). Detection responses,
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Figure 2. a) Statistical analysis of detecting watermark signal in watermarked and nonwatermarked image,
b) detection of watermark signal using different transformation angles.
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Figure 3. a) Noisy image ‘Lena’, b) cropped image ‘Lena’, c) detection of watermark after embedding of
noise, d) detection of watermark after cropping.

in both cases, over 1000 different watermarks areshown in Fig. 3(c) and (d). Only
the true watermark no. 100. is detected.

5. Conclusion

TheFRFT transformation domain watermarking concept isproposed. It offers two
more degrees of freedom, resulting in the possibility to generate more watermarks
than in the FT and DCT domains. This watermarking is robust on some important
attacks that could be performed by a pirate.
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