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Abstract—Building footprint extraction is an essential process 
for various geospatial applications. The city management is 
entrusted with eliminating slums, which are increasing in rural 
areas. Compared with more traditional methods, several recent 
research investigations have revealed that creating footprints in 
dense areas is challenging and has a limited supply. Deep 
learning algorithms provide a significant improvement in the 
accuracy of the automated building footprint extraction using 
remote sensing data. The mask R-CNN object detection 
framework used to effectively extract building in dense areas 
sometimes fails to provide an adequate building boundary result 
due to urban edge intersections and unstructured buildings. 
Thus, we introduced a modified workflow to train ensemble of 
the mask R-CNN using two backbones ResNet (34, 101). 
Furthermore, the results were stacked to fine-grain the structure 
of building boundaries. The proposed workflow includes data 
preprocessing and deep learning, for instance, segmentation was 
introduced and applied to a light detecting and ranging (LiDAR) 
point cloud in a dense rural area. The outperformance of the 
proposed method produced better-regularized polygons that 
obtained results with an overall accuracy of 94.63%. 

Keywords—Deep learning; object detection; mask R-CNN; 
point cloud; light detecting and ranging (LiDAR) 

I. INTRODUCTION 
The identification and extraction of urban footprint has 

become an important research topic and tool in city planning, 
transportation planning, urban simulation, 3D city modelling, 
and building change detection [1-3]. Automatic building 
footprint extraction is needed to meet the rising demand for 
precise city building outlines. LiDAR data creates digital 
terrain and surface models [4]. Despite the benefits of using 
LiDAR to extract vegetation, essential infrastructure, and 
hydrography, building footprint extraction is desired for 
estimating population, energy demand, and quality of life 
[5].Several techniques have been introduced to extract building 
footprints using optical sensors. These techniques include 
image-based, LiDAR-based, and data fusion-based [6]. For 
instance, Image-based technique use spectral properties. 
Spectral ambiguities and shadow occlusions can lead to 
inaccurate building footprints. [7]. Nemours approaches used 
LiDAR intensity, echo, and geometric attributes, but fusing 
LiDAR and high-resolution images improves performance and 
robustness. 

Deep learning uses multilayer neural networks in many 
applications [8, 9] such as: object detection [10], image 
classification, image denoising [11], medical image 
segmentation [12], image super-resolution [13-15], and depth 

prediction in stereo and monocular images [16]. Recently, 
several researches have investigated deep learning algorithms 
to improve building footprint extraction [17-19] either using 
CNN or a fully convolutional neural network. 

CNN-based object detectors are single and two-stage. Fast 
R-CNN, faster R-CNN [20], and mask R-CNN are widely 
identified as two-stage detectors. Fast R-CNN doesn't allow 
end-to-end training since it uses a selective search to extract 
region proposals, which reduces the performance. Faster R-
CNN replaces Region Proposal Network (RPN) selections, 
allowing end-to-end training. However, multiscale and small 
objects are a challenge. Despite their high inference speed [21], 
YOLO [22], YOLOV2, YOLOV3, and Single Shot Detector 
SSD [23] are single-stage networks with low detection 
accuracy in dense and tiny objects. Building footprint 
extraction requires accuracy; hence a two-stage neural network 
is used. 

Mask R-CNN combines object detection and segmentation 
to improve overall accuracy and detect small and multiscale 
objects. But the detection speed is hardly real-time. 

Class imbalance is an issue in remote sensing. This occurs 
when one or more classes are underrepresented in a dataset [7]. 
Traditional learning algorithms assume a balanced training set, 
which leads to a bias toward the majority classes. 
Consequently, the built model predicts poorly since all objects 
are in the dominating class regardless of the feature vector 
value [24]. The majority class classification bias is worse for 
high-dimensional data when variables exceed samples. The 
problem of skewed class distribution caused by uneven data 
was ignored. Class imbalance techniques are divided into data 
and algorithmic techniques. Data level approaches include data 
sampling, random over sampling, random under sampling, and 
a hybrid between them and feature selection. Algorithmic 
approaches are cost-sensitive and hybrid/ensemble. these 
approaches perform better. 

In imbalanced datasets, ensemble classifiers improve single 
classifiers by merging them. Ensemble learning algorithms 
improve imbalanced data classification more than data 
sampling strategies. Due to precision-focused ensemble 
construction methods, the minority class is unrecognized. 
Developing ensemble learning algorithms must address class 
imbalances. Several approaches using ensemble learning and 
imbalanced learning have been reported [4]. Integrating 
ensemble-based techniques into an imbalanced dataset reduces 
overfitting and improves classification accuracy. 
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This paper used an ensemble of mask R-CNNs to 
effectively extract the building footprint using the LiDAR 
dataset in dense rural areas. The dense area in Maghagha city 
contains a skew distribution between structure and unstructured 
buildings. Datasets of GIS buildings were integrated with the 
collected LiDAR dataset to improve the building extraction 
results. The main contributions are summarized as follows: 

• The mask R-CNN framework was used to effectively 
extract building footprints in dense areas. 

• Different core mask R-CNN networks were adopted to 
benefit from transfer learning and different strategies 
(data augmentation and postprocessing). 

• Class imbalance was handled in building types using a 
weighted voting ensemble approach. 

The remainder of this work is structured as follows: 
Section 2 provides relevant work and a summary of point cloud 
classification methods. Section 3 introduces the proposed 
LiDAR building footprint extraction method from the point 
cloud. Section 4 summaries the results of several tests done to 
evaluate the efficiency of the proposed LiDAR classification 
method on real data for Maghagha area. Section 5 concluded 
the findings. 

II. RELATED WORK 
LiDAR is an effective remote sensing technology for 

precisely describing terrain geometry. Thus, it is a viable 
solution for mapping dense urban areas to support 
infrastructural reconstruction, maintenance, and visibility. 
LiDAR technology provides very precise spatial resolution and 
height information [25]. Many studies have outlined the 
benefits of applying LiDAR data in characterizing urban 
structures [26, 27]. LiDAR point cloud data segmentation for 
automatic building extraction improves building detection and 
surface extraction in urban scenes [28]. A point feature based 
on normal vector variance is presented to extract buildings 
from LiDAR point cloud data by merging point- and grid-
based features [29]. Building footprints using LiDAR data 
were needed to build a dataset for the open data portal and 
evaluate the minimal acceptable criteria for accurate building 
extraction [30]. Airborne laser scanning is a good choice in 
urban planning because of its capacity to determine building 
height, mobility, and rapid data acquisition [19, 31]. 

Morphology utilizes a filtering window to create an 
identical output image. A morphological operation compares a 
point's value to its neighbors. Dilation and erosion are 
morphological procedures that extend or diminish structures. 
Dilation adds border points, but erosion subtracts. The image 
structure dictates how many points are added or removed. The 
structuring element is a set of coordinates that determines the 
performance [1, 32]. 

Recently, machine learning algorithms in LiDAR have 
been generalized. Insufficient, complicated structure and large 
size limit the machine learning performance. In [4], The 
authors presented an effective method for combining point 
cloud and optical data. The method extracted points and super 
voxel features. The TraAdaboost algorithm with multi classes 
was utilised to improve LiDAR-based point cloud 

classification. The results demonstrated the improved 
classification performance compared with nonregistered 
LiDAR points. In [5] Integrated spectral signatures from 
diverse sensors into LiDAR point cloud classification utilizing 
multiple feature spaces using machine learning algorithms. 

Furthermore, several efforts were conducted [1, 4, 5] to 
assess LiDAR data in building footprint extraction, varying 
between semiautomatic to automatic. Extracting a building 
footprint can be divided into three phases: isolating nonground 
points, segmenting building points, and extracting the building 
outline from the building footprint segmentation, as shown in 
Fig. 1. 

 
Fig. 1. Typical Building Footprint Extraction from LiDAR Data. 

Different levels of filters, such as morphological filters [5, 
24, 33], progressive densification [34], surface-based filters 
[35], and segmentation-based filtering [36], can be applied in 
the isolation of nonground points phase. These filtering 
methods work well on flat ground but poorly on undulating 
terrain [37]. Another common approach was to employ a 
nonhierarchical classification to separate land-use types. Here, 
point cloud intensity was used to improve classification. 
However, roadways and parking lots have the same intensity 
values as building rooftops; including them does not improve 
results [38]. 

In the segmentation phase, trees, utilities, buildings, etc. are 
used as nonground points. A traditional method for separating 
these objects uses thresholds on a digital surface model (DSM) 
or a normalized DSM (difference between Digital Terrain 
Models DTM and DSM) [39]. This isn't always successful, as 
trees and buildings are often comparable heights and close 
together [40]. Other approaches for separating trees from 
building points include morphological filters, texture analysis, 
and plane fitting [41], and hierarchical object-oriented 
classification [42]. Notably, the acuracy depends on study area 
complexity [43]. SSD is considered simple compared with 
other approaches that use object proposals. SSD encapsulated 
proposal creation and feature resampling in a single network to 
simplify training [23]. Mask R-CNN can distinguish the 
adjacent objects and extract the outline of an object [44]. 
Finally, an extraction technique to construct a polygon or 
footprint from noisy and irregular boundaries is required. 
Examples of most common approaches include the least 
squares technique [45], nonlinear least squares [46], angle 
histogram of boundary points [47], weighted line segmentation 
[5], and invariant parameters using known roof types [48]. The 
quality of the building footprint depends on the various factors 
as point density, geometry, and building density [48]. In a fully 
convolutional network, a Spatial Residual Inception module 
termed (SRI-Net) was proposed to collect and combine 
multiscale multilevel features. SRI-Net can detect large 
buildings easily while preserving global and local details [49]. 
Due to land-cover changes and delayed geospatial data 
updates, some building annotations may be missing in the 
ground truth building mask., thereby leading to confusion in 
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CNN. To address this issue, the building footprints extraction 
problem was formulated as a long-tailed classification. Then, a 
three-term joint loss function was proposed: 1) logit adjusted 
cross-entropy, 2) weighted dice loss, and 3) boundary 
alignment loss. The obtained results indicate that the proposed 
loss function preserves the fine-grained structure of building 
boundaries, effectively discriminates between building and 
background pixels, and increases F1-scores [50]. 

III. PROPOSED METHOD 
An ensemble method for building footprint extraction was 

introduced that combines two mask R-CNNs working in 
tandem, followed by a postprocessing phase to enhance 
building footprint prediction. Two backbone architectures were 
adopted ResNet (101, 34). The input layer accepts images of 
dimensions 256 × 256 and 128 × 128 pixels, respectively. 
Furthermore, different augmentation approaches were adopted 
to enhance the results. Fig. 2 shows a graphical representation 
of the proposed approach. 

The mask R-CNN is a versatile model used in different 
fields [21] and comprises two phases: region proposals 
generation and classification [51]. This paper adopted the mask 
R-CNN as the benchmark model for detecting the footprints of 
rural buildings in dense areas. In the following subsection, data 
preparation, training, and detection phases were discussed in 
detail. 

A. Data Preparation 
Six-stage workflow in extracting the building footprint was 

adopted a. In the first stage, DSM for the study area was 
generated a using LiDAR ENVI software. To automatically 
define the building footprint, only points designated as 

buildings was filtered. The deep learning framework for the 
ArcGIS Pro software was incorporated in the preparation and 
labeling of the second stage. Thus, 150 sample buildings were 
chosen to serve as training data for the proposed neural 
network ensemble using “Label Object for Deep Learning.” In 
the third stage, to contain image chips and labels, the sample 
data were converted into training data using the “Export 
Training data for Deep Learning” tool. In the fourth stage, two 
mask R-CNN ResNet backbones (34, 101) were trained and 
generated models for each of them. In the fifth stage, the 
“Detecting Objects using Deep Learning” tool was used for 
testing and data inferencing. Finally, the regularization of the 
building footprint use was done in the sixth stage by simply 
removing artifacts and correcting distortions in the building 
footprint polygons generated using “Feature Extraction.” 

B. Backbone Initialization 
Image patches of size (256 × 256 and 128 × 128) were fed 

to ResNet-101 and ResNet-34 backbones in mask R-CNN, 
respectively to extract features. Table I shows a detailed 
description of both backbones. The residual family converges 
faster and achieves better training results compared with the 
shallow network. The image patches were fed to the backbone 
architecture to extract feature maps using transfer learning. 
These feature maps served as input for the next layer, after 
which the RPN was applied. This forecasts whether an object is 
present in that region. Here the regions obtained from RPN, 
which the model predicts, contain some objects and take 
various shapes. Hence, a pooling layer was applied to make the 
shape of all regions uniform. Next, these regions were fed to a 
fully connected network to forecast class labels and bounding 
boxes. 

 
Fig. 2. Workflow of Mask R‐CNN Ensemble Learning by using Two different Backbones Resnet 101 and 34. 
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C. The Ensemble Voting Schema 
Dense urban in the Maghagha study area is considered a 

mix of structured and unstructured building units. However, 
the skew class distribution between most of the unstructured 
and structured buildings introduced a bias in favor of the 
majority class. To address this problem, a hard-weighted 
voting scheme of the selected models was set ranging from 0 to 
1. For each roof type, each model has a class likelihood score. 
The scores were multiplied by the CNN weights. Then, the 
products for the weighting step were summed. The weights 
were chosen at random using the Bayesian optimization 
process. Finally, the output class was decided using the 
maximum probability index. With default parameter settings, 
the Bayesian optimization method was run 100 times. The 
weighted voting is given in Eq (1). 

weighted voting = w1 ∗ Model1 + ⋯ . +wn ∗ Modeln       (1) 

where n denotes the number of models and 𝑤1 and 𝑀𝑜𝑑𝑒𝑙1 
represent the weight and probability score of the selected Mask 
R-CNN model, respectively. Two models are considered in this 
work (n=2). 

TABLE I. RSNET-34 AND 101 ARCHITECTURES 

Layer 
name 

Output 
size ResNet-34 ResNet-101 

Conv1 112 × 
112 

7 × 7,64, stride 2 
3 × 3 max pool, stride 2 

Conv2.X 56 × 56 �3 × 3, 64
3 × 3, 64� × 3 �

1 × 1, 64
3 × 3, 64

1 × 1, 256
� × 3 

Conv3.X 28 × 28 �3 × 3, 128
3 × 3, 128� × 4 �

1 × 1, 128
3 × 3, 128
1 × 1, 512

� × 4 

Conv4.X 14 × 14 �3 × 3, 256
3 × 3, 256� × 6 �

1 × 1, 256
3 × 3, 256

1 × 1, 1024
� × 23 

Conv5.X 7 × 7 �3 × 3, 512
3 × 3, 512� × 3 �

1 × 1, 512
3 × 3, 512

1 × 1, 2048
� × 4 

 1 × 1 Average pool, SoftMax 

FLOPs  3.6 × 109 7.6 × 109 

IV. EXPERIMENTAL RESULTS 

A. Dataset 
Maghagha city is located in the north of El-Minya 

Governorate, Egypt. It is positioned between longitudes (30° 
30′: 31° E), and latitudes (28° 30′: 29° N), as shown in Fig. 3, 
and covers an area of approximately 2,700 km2 [52]. Trimble® 
AX60, a high-performance, adaptable, and fully integrated 
airborne LiDAR solution designed to fulfill most aerial survey 
needs were utilized. The AX60 is a complete system that 
provides optimum quality, operational flexibility and 
efficiency, and in-service reliability [53]. The dataset was 
acquired using an Airborne Beechcraft B200. Furthermore, 
another dataset of high-resolution optical data, Nikon IC65+ 
and 2D-RGB imagery, from the same aircraft with sensors 
being rigidly fixed to the same platform used. Table II shows 
the parameters of the system used. The collected dataset study 
area comprises 10 LAS files, each approximately 2.2 km in 

width and 18.5 km in length. Additionally, we collected 580 
TIF RGB images measuring 1.6 km in length and 1.2 km in 
width. Because of limited computation power, one LAS file 
was used to generate DSM and Digital Elevation Model DEM 
for the data object segmentation process. As a sample training 
set, only two roof types were considered: structured and 
unstructured, as shown in Fig. 4. 

B. Evaluation Matrics 
The proposed building footprint extraction workflow 

performance was evaluated using the overall accuracy (OA), 
precision, recall, and F-score. The precision computed by Eq. 
(2) shows the average of images that are correctly identified to 
the total number of structured and unstructured buildings that 
are correctly and non-correctly identified with the reference 
input. 

Precision (P) = Tp
Tp+Fp

             (2) 

where Tp and Fp  represent the true and false positives, 
respectively. 

TABLE II. THE PARAMETERS OF THE USED SYSTEM 

Trimble® AX60 System 

LiDAR point clouds 

Sensor model Trimble AC IQ180 

Laser wavelength Near-infrared 

Laser pulse repetition rate (PRR) 100–400 kHz 

Scanning mechanism Rotating polygon mirror 

Scan frequency (max.) 200 Hz 

Operating flight altitude 50–4700 m (164–15,500 ft) AGL 

Range measurement accuracy 2 cm 

Intensity capture 16-bit dynamic range for each echo 
  
Digital aerial camera 

Model Nikon IC 65+ 

Array size 80 MP 

Channels Three (RGB) 

Shutter type Electronically controlled leaf shutter 

Ground sample distance >5 cm 

Calibration Geometrically and radiometrically 

 
Fig. 3. Location Map of the Study Area (Maghagha, El-Minya Governorate, 

Egypt). 
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(a) 

 
(b) 

Fig. 4. Samples of Training Set Roofs, Structured and Nonstructured 
Covered (a) Point Clouds and (b) Very High-resolution RGB Image. 

Recall, Eq. (3) defines the average number of structured 
and nonstructured buildings that are correctly identified of the 
total number of buildings that are correctly and non-correctly 
identified. 

Recall (R) = Tp
Tp+FN

             (3) 

where FN represents the false negative. 

F-score is defined in Eq. (4). If the obtained value is 1, the 
object detection is best and is worst when at 0. 

F-score = 2PR
P+R

              (4) 

Finally, OA represents the ratio of correctly identified 
structured and nonstructured buildings to the total number of 
buildings. 

C. Experimental Setup 
The suggested building footprint detection model was 

tested using datasets from Maghagha areas. The chosen dataset 
contains a mix of urban variety, including both structured and 
unstructured roofs. Various roofing materials, shapes, widths, 
and heights were used on the buildings. The LiDAR data used 
were collected on March 25, 2015. The system had a 30° 
scanning angle and a ±15° camera angle. The LiDAR data 
have an average point density of 7 points/m2 and a point 
spacing of 0.38 m. Overall, the minimum and maximum 
elevations of the operating area were 46.83 and 90.5 m, 
respectively. In the working area, DSM varied from 47.15 to 
104.87 m. The raw LiDAR point clouds were used to create 
two separate products: DEM and DSM. Furthermore, the laser 

scanning equipment also captured RGB images along with the 
point clouds. The orthophotos collected had a spatial resolution 
of 20 cm. 

DSM was created using Inverse Distance Weighting IDW 
interpolation with a spatial resolution of 0.05 m. Meanwhile, 
DEM was created using the multiscale curvature classification 
filtering algorithm in ArcGIS (MCC) [20]. This solution has 
several advantages, including a built-in function in ArcGIS 
software that simplifies the deployment and allows integration 
into an automated processing workflow. With a mini-batch size 
of 2, the models were trained with 20 epochs and a learning 
rate of 0.0001. All tests were run on an Intel (R) Core i7 3.40 
GHz processor with an NVIDIA GeForce GTX 1080-Ti GPU. 
These parameters were chosen based on their experimentally 
high accuracy. Because of the limited computational resources, 
optimizing the training algorithm settings may enhance 
performance even further. 

D. Results and Discussion 
Experiments were conducted in several regions with 

varying numbers of buildings and roof shapes to demonstrate 
the detection accuracy of the framework. Fig. 5 shows the 
visual results. Despite the discontinuous and unclear borders in 
the DSM pictures, the suggested approach reliably identifies 
building footprints from highly populated locations. 
Furthermore, by overcoming the obstacles of location, form, 
and size, the mask R-CNN approach precisely partitioned the 
building footprints. 

Fig. 6 shows another visual result for building footprints. 
From the results, the proposed method can accurately localize 
and segment building footprints under several settings, due to 
the extraction of a representative set of features by ResNet-34 
and the segmentation capabilities of Mask R-CNN. Thus, the 
localization and segmentation ability may be slightly reduced 
for samples with large changes in size, particularly in dense 
regions. Fig. 7 shows a snapshot of results obtained from 
ResNet101, ResNet 34, and the proposed ensemble. One can 
observe the outperformance of the proposed ensemble results 
compared with the other two backbone architectures. 

The proposed approach can precisely identify varied shapes 
of the building footprint with an average accuracy of 0.9463 on 
the dataset. Furthermore, by overcoming the differences in 
position, size, and shape, the suggested method can precisely 
segment regular and nonregular roofs. Evaluation measures 
(OA, precision, recall, and F-score) were applied to better 
understand the performance of proposed strategy. Table III 
shows the outcomes of the proposed approach. The results 
obtained show average overall accuracy, precision, recall, and 
F-score of 94.63%, 82%, 97.60%, and 88.46%, respectively. 

TABLE III. OBTAINED ACCURACY, PRECISION, RECALL, AND F1- SCORE 
OF DIFFERENT BACKBONE COMPARED WITH THE PROPOSED 

 OA Precision Recall F-score 

ResNet34 81% 32.6% 33.18% 31.4% 

ResNet101 88.75% 72.19% 70.6% 71.4% 

Proposed 
ensemble 94.63% 82% 97.60% 88.46% 
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(a) 

     
(b) 

     
(c) 

Fig. 5. Visual Results via ResNet-101 Building Footprints Extraction. (a) Input Images. (b) Ground Truth Mask Images. (c) Mask Output Images. 

     
(a) 

     
(b) 

     
(c) 

Fig. 6. Visualization Results via ResNet-34 Building Footprint Extraction. (a) Input Images. (b) Ground Truth Mask Images. (c) Mask Output. 

351 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 6, 2022 

(a) (b) (c) 

Fig. 7. Visualization Results for Building Footprint Extraction via a) ResNet-101, (b) ResNet-34, (c) Proposed Ensemble (Green and Red Colors Indicate 
Regular and Nonregular Roofs, Respectively).

V. CONCLUSION 
Buildings are fundamental for urban planning and are 

essential in the development of a city. The extraction of precise 
building footprints from remote sensing data has been a topic 
of consideration. Recently, it has received much attention. 
Building data are useful in many geospatial applications, 
including urban planning, risk assessment, 3D city modeling, 
environmental sciences, and natural disaster damage 
assessment. Satellite photographs, aerial shots, radar scans, and 
laser scanning data can all be used to determine the footprint of 
a building. LiDAR provides a precise and efficient method of 
getting elevation data, which can be used to extract ground 
objects such as buildings. The ability to collect high-density 
point clouds quicker, great vertical precision, and low cost are 
all advantages of LiDAR over traditional photogrammetry. 
However, accurate extraction of buildings in urban dense areas 
with imprecise boundaries is difficult due to the presence of 
nearby objects. This paper proposed a building footprint 
extraction model tested using the LiDAR dataset. The study 
was chosen because the dense rural areas have a mix of urban 
elements, including both structured and unstructured roofs. 
Conclusively, the trained building footprint extraction model 
can detect all structured and unstructured buildings in the 
LiDAR data. The detected buildings could be saved as a 
feature layer and used for various data products to derive 
business value. 

REFERENCES 
[1] Guo, Liang, Xingdong Deng, Yang Liu, Huagui He, Hong Lin, 

Guangxin Qiu, and Weijun Yang. "Extraction of dense urban buildings 
from photogrammetric and LiDAR point clouds." IEEE Access 9 2021: 
111823-111832. 

[2] M. Khoshboresh-Masouleh, F. Alidoost, and H. Arefi, "Multiscale 
building segmentation based on deep learning for remote sensing RGB 
images from different sensors," Journal of Applied Remote Sensing, vol. 
14, no. 3, 2020, p. 034503. 

[3] A. S. Mahmoud, S. A. Mohamed, M. S. Moustafa, R. A. El-Khorib, H. 
M. Abdelsalam, and I. A. El-Khodary, "Training Compact Change 
Detection Network for Remote Sensing Imagery," IEEE Access, vol. 9, 
2021, pp. 90366-90378. 

[4] Khoshboresh-Masouleh M, Saradjian MR. Robust building footprint 
extraction from big multi-sensor data using deep competition network. 
arXiv preprint arXiv:2011.02879. 2020 Nov 4. 

[5] K. Zhang, J. Yan, and S.-C. Chen, "Automatic construction of building 
footprints from airborne LIDAR data," IEEE Transactions on 
Geoscience and Remote Sensing, vol. 44, no. 9,2006, pp. 2523-2533. 

[6] J. Zhang and X. Lin, "Advances in fusion of optical imagery and LiDAR 
point cloud applied to photogrammetry and remote sensing," 
International Journal of Image and Data Fusion, vol. 8, no. 1, 2017, pp. 
1-31. 

[7] K. R. Adeline, M. Chen, X. Briottet, S. Pang, and N. Paparoditis, 
"Shadow detection in very high spatial resolution aerial images: A 
comparative study," ISPRS Journal of Photogrammetry and Remote 
Sensing, vol. 80, 2013, pp. 21-38. 

[8] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely 
connected convolutional networks," in Proceedings of the IEEE 
conference on computer vision and pattern recognition, 2017, pp. 4700-
4708. 

[9] Donahue, Jeff, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, 
Eric Tzeng, and Trevor Darrell."Decaf: A deep convolutional activation 
feature for generic visual recognition," in International conference on 
machine learning, 2014, pp. 647-655: PMLR. 

[10] A. Mahmoud, S. Mohamed, R. El-Khoribi, and H. Abdelsalam, "Object 
detection using adaptive mask RCNN in optical remote sensing images," 
Int. J. Intell. Eng. Syst, vol. 13, no. 1, 2020, pp. 65-76. 

[11] Q. Shi, X. Tang, T. Yang, R. Liu, and L. Zhang, "Hyperspectral image 
denoising using a 3-D attention denoising network," IEEE Transactions 
on Geoscience and Remote Sensing, vol. 59, no. 12, 2021, pp. 10348-
10363. 

[12] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional 
networks for biomedical image segmentation," in International 
Conference on Medical image computing and computer-assisted 
intervention, 2015, pp. 234-241: Springer. 

[13] T. Tong, G. Li, X. Liu, and Q. Gao, "Image super-resolution using dense 
skip connections," in Proceedings of the IEEE international conference 
on computer vision, 2017, pp. 4799-4807. 

[14] M. S. Moustafa and S. A. Sayed, "Satellite Imagery Super-Resolution 
Using Squeeze-and-Excitation-Based GAN," International Journal of 
Aeronautical and Space Sciences, vol. 22, no. 6, 2021, pp. 1481-1492. 

[15] S. A. Mohamed, A. S. El-Sherbeny, A. H. Nasr, and A. K. Helmy, "A 
New Image Super-Resolution Restoration Algorithm," International 
Journal of Computer Applications, vol. 173, 2017, pp. 5-12. 

[16] D. Eigen and R. Fergus, "Predicting depth, surface normals and 
semantic labels with a common multi-scale convolutional architecture," 
in Proceedings of the IEEE international conference on computer vision, 
2015, pp. 2650-2658. 

[17] W. Li, C. He, J. Fang, J. Zheng, H. Fu, and L. Yu, "Semantic 
segmentation-based building footprint extraction using very high-
resolution satellite images and multi-source GIS data," Remote Sensing, 
vol. 11, no. 4, 2019, p. 403. 

[18] J. Xing, Z. Ruixi, R. Zen, D. M. S. Arsa, I. Khalil, and S. Bressan, 
"Building extraction from google earth images," in Proceedings of the 
21st International Conference on Information Integration and Web-
based Applications & Services, 2019, pp. 502-511. 

[19] D. He, Q. Shi, X. Liu, Y. Zhong, and L. Zhang, "Generating 2m fine-
scale urban tree cover product over 34 metropolises in China based on 
deep context-aware sub-pixel mapping network," International Journal 
of Applied Earth Observation and Geoinformation, vol. 106, 2022, p. 
102667. 

[20] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time 
object detection with region proposal networks," IEEE transactions on 
pattern analysis and machine intelligence, vol. 39, no. 6, 2016, pp. 1137-
1149. 

352 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 6, 2022 

[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask r-cnn," in 
Proceedings of the IEEE international conference on computer vision, 
2017, pp. 2961-2969. 

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look 
once: Unified, real-time object detection," in Proceedings of the IEEE 
conference on computer vision and pattern recognition, 2016, pp. 779-
788. 

[23] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott 
Reed, Cheng-Yang Fu, and Alexander C. Berg. "Ssd: Single shot 
multibox detector," in European conference on computer vision, 2016, 
pp. 21-37: Springer. 

[24] J. Kilian, N. Haala, and M. Englich, "Capture and evaluation of airborne 
laser scanner data," International Archives of Photogrammetry and 
Remote Sensing, vol. 31, 1996, pp. 383-388. 

[25] A. Novo, N. Fariñas-Álvarez, J. Martínez-Sánchez, H. González-Jorge, 
and H. Lorenzo, "Automatic processing of aerial LiDAR data to detect 
vegetation continuity in the surroundings of roads," Remote Sensing, 
vol. 12, no. 10, 2020, p. 1677. 

[26] W. Y. Yan, A. Shaker, and N. El-Ashmawy, "Urban land cover 
classification using airborne LiDAR data: A review," Remote Sensing of 
Environment, vol. 158, 2015, pp. 295-310. 

[27] I. Prieto, J. L. Izkara, and E. Usobiaga, "The application of lidar data for 
the solar potential analysis based on urban 3D model," Remote Sensing, 
vol. 11, no. 20, 2019, p. 2348. 

[28] Awrangjeb, Mohammad, Guojun Lu, and C. Fraser. "Automatic building 
extraction from LiDAR data covering complex urban scenes." The 
International Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences 40, no. 3, 2014, pp 25. 

[29] S. Du, Y. Zhang, Z. Zou, S. Xu, X. He, and S. Chen, "Automatic 
building extraction from LiDAR data fusion of point and grid-based 
features," ISPRS journal of photogrammetry and remote sensing, vol. 
130, 2017, pp. 294-307. 

[30] J.-S. Proulx-Bourque, H. McGrath, D. Bergeron, and C. Fortin, 
"Extraction of Building Footprints from LiDAR: An Assessment of 
Classification and Point Density Requirements," in Advances in Remote 
Sensing for Infrastructure Monitoring: Springer, 2021, pp. 259-271. 

[31] T. Tang and L. Dai, "Accuracy test of point-based and object-based 
urban building feature classification and extraction applying airborne 
LiDAR data," Geocarto international, vol. 29, no. 7, 2014, pp. 710-730. 

[32] S. Zhang, F. Han, and S. M. Bogus, "Building Footprint and Height 
Information Extraction from Airborne LiDAR and Aerial Imagery," in 
Construction Research Congress 2020: Computer Applications, 2020, 
pp. 326-335: American Society of Civil Engineers Reston, VA. 

[33] K. Zhang, S.-C. Chen, D. Whitman, M.-L. Shyu, J. Yan, and C. Zhang, 
"A progressive morphological filter for removing nonground 
measurements from airborne LIDAR data," IEEE transactions on 
geoscience and remote sensing, vol. 41, no. 4, 2003, pp. 872-882. 

[34] J. Pérez-García, J. Delgado, J. Cardenal, C. Colomo, and M. Ureña, 
"Progressive densification and region growing methods for LIDAR data 
classification," International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, vol. 39, no. B3, 2012, pp. 
155-160. 

[35] N. Pfeifer, S. O. Elberink, and S. Filin, "Automatic tie elements 
detection for laser scanner strip adjustment," International Archives of 
Photogrammetry and Remote Sensing, vol. 36, no. 3/W3, 2005, pp. 
1682-1750. 

[36] S. Filin and N. Pfeifer, "Segmentation of airborne laser scanning data 
using a slope adaptive neighborhood," ISPRS journal of 
Photogrammetry and Remote Sensing, vol. 60, no. 2, 2006, pp. 71-80. 

[37] A. L. Montealegre, M. T. Lamelas, and J. De La Riva, "A comparison of 
open-source LiDAR filtering algorithms in a Mediterranean forest 
environment," IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, vol. 8, no. 8, 2015, pp. 4072-4085. 

[38] M. Ghanea, P. Moallem, and M. Momeni, "Automatic building 
extraction in dense urban areas through GeoEye multispectral imagery," 
International journal of remote sensing, vol. 35, no. 13, 2014, pp. 5094-
5119. 

[39] C. Beumier and M. Idrissa, "Digital terrain models derived from digital 
surface model uniform regions in urban areas," International Journal of 
Remote Sensing, vol. 37, no. 15, 2016, pp. 3477-3493. 

[40] Q.-Y. Zhou and U. Neumann, "Complete residential urban area 
reconstruction from dense aerial LiDAR point clouds," Graphical 
Models, vol. 75, no. 3, 2013, pp. 118-125. 

[41] M. Awrangjeb and C. S. Fraser, "Automatic segmentation of raw 
LiDAR data for extraction of building roofs," Remote Sensing, vol. 6, 
no. 5, 2014, pp. 3716-3751. 

[42] M. Awrangjeb, C. S. Fraser, and G. Lu, "BUILDING CHANGE 
DETECTION FROM LIDAR POINT CLOUD DATA BASED ON 
CONNECTED COMPONENT ANALYSIS," ISPRS Annals of 
Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 
2, 2015. 

[43] X. Liu, H. Hu, and P. Hu, "Accuracy assessment of LiDAR-derived 
digital elevation models based on approximation theory," Remote 
Sensing, vol. 7, no. 6, 2015, pp. 7062-7079. 

[44] Fang, Weili, Lieyun Ding, Peter ED Love, Hanbin Luo, Heng Li, 
Feniosky Pena-Mora, Botao Zhong, and Cheng Zhou. "Computer vision 
applications in construction safety assurance," Automation in 
Construction, vol. 110, 2020, p. 103013. 

[45] A. Zarea, A. Mohammadzadeh, and M. Valadanzoej, "Extraction and 3D 
Reconstruction of Buildings Using LiDAR Data and Aerial Image," 
Journal of Geomatics Science and Technology, vol. 4, no. 3, 2015, pp. 
167-186. 

[46] I. Lokhat and G. Touya, "Enhancing building footprints with squaring 
operations," Journal of Spatial Information Science, vol. 2016, no. 13, 
2016, pp. 33-60. 

[47] S. G. Salve and K. C. Jondhale, "Shape matching and object recognition 
using shape contexts," in 2010 3rd International Conference on 
Computer Science and Information Technology, vol. 9, 2010, pp. 471-
474: IEEE. 

[48] H.-G. Maas and G. Vosselman, "Two algorithms for extracting building 
models from raw laser altimetry data," ISPRS Journal of 
photogrammetry and remote sensing, vol. 54, no. 2-3, 1999, pp. 153-
163. 

[49] Liu, Penghua, Xiaoping Liu, Mengxi Liu, Qian Shi, Jinxing Yang, 
Xiaocong Xu, and Yuanying Zhang."Building footprint extraction from 
high-resolution images via spatial residual inception convolutional 
neural network," Remote Sensing, vol. 11, no. 7, 2019, p. 830. 

[50] J. Kang, R. Fernandez-Beltran, X. Sun, J. Ni, and A. Plaza, "Deep 
Learning-Based Building Footprint Extraction With Missing 
Annotations," IEEE Geoscience and Remote Sensing Letters, 2021. 

[51] Wu, Q., Feng, D., Cao, C., Zeng, X., Feng, Z., Wu, J. and Huang, Z. 
"Improved Mask R-CNN for Aircraft Detection in Remote Sensing 
Images," Sensors, vol. 21, no. 8, 2021, p. 2618. 

[52] A. Faid and S. Mansour, "Management of Groundwater Reservoir in 
Maghagh Aquifer System Using Modeling and Remote Sensing 
Technique (Upper Egypt)," 2006. 

[53] E. van Rees, "Trimble's AX60i and AX80," GeoInformatics, vol. 17, no. 
5, 2014, p. 36. 

 

353 | P a g e  
www.ijacsa.thesai.org 


	I. Introduction
	II. Related Work
	III. Proposed Method
	A. Data Preparation
	B. Backbone Initialization
	C. The Ensemble Voting Schema

	IV. Experimental Results
	A. Dataset
	B. Evaluation Matrics
	C. Experimental Setup
	D. Results and Discussion

	V. Conclusion

