
HAL Id: tel-01428887
https://theses.hal.science/tel-01428887v1

Submitted on 6 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptation of SysML Blocks and Verification of
Temporal Properties

Hamida Bouaziz

To cite this version:
Hamida Bouaziz. Adaptation of SysML Blocks and Verification of Temporal Properties. Other [cs.OH].
Université de Franche-Comté, 2016. English. �NNT : 2016BESA2015�. �tel-01428887�

https://theses.hal.science/tel-01428887v1
https://hal.archives-ouvertes.fr

�����������������

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

�
 � � � � � � � � � � � � � �
 � � � � � � 	 � �

��

Adaptation of SysML Blocks and
Verification of Temporal Properties

Hamida Bouaziz

�����������������

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

�
 � � � � � � � � � � � � � �
 � � � � � � 	 � �

THÈSE présentée par

Hamida Bouaziz
pour obtenir le

Grade de Docteur de
l'Université de Franche-Comté

Spécialité : Informatique

Adaptation of SysML Blocks and Verification of
Temporal Properties

Soutenue publiquement le 03 novembre 2016 devant le Jury composé de :

YamineAIT AMEUR Rapporteur Professeur, IRIT, ENSEEIHT
Franck BARBIER Rapporteur Professeur, LIUPPA, Université de Pau
KhalilDRIRA Examinateur Directeur de Recherche CNRS, LAAS, Université de

Toulouse
Hassan Mountassir Directeur de thèse Professeur, DISC, Université de Franche-Comté
Samir Chouali Co-Directeur de thèse MCF, DISC, Université de Franche-Comté
AhmedHammad Co-Directeur de thèse MCF, DISC, Université de Franche-Comté

N◦ X X X

Contents

1 Introduction 1

1.1 Context and Challenges . 1

1.2 Contributions . 3

1.3 Publications . 5

1.4 Document Outline . 5

I Scientific Context and State of the Art 7

2 SE and SysML Language 9

2.1 SysML . 10

2.1.1 The Need of SE to SysML . 11

2.1.2 Who Created SysML? . 11

2.1.3 Principles of SYML . 11

2.2 Emergence of SysML . 12

2.3 SysML Diagrams . 13

2.3.1 Structural Diagrams . 14

2.3.2 Behavioural Diagrams . 16

2.3.3 Requirement Diagram . 17

2.4 Free Platforms for SysMLModelling . 18

2.4.1 TOPCASED . 18

2.4.2 Papyrus . 18

2.5 Conclusion . 18

3 Model-Driven Development andModels Transformation 19

3.1 Basic Concepts . 20

3.2 Model Transformations . 21

3.3 Transformation of SysML Diagrams . 23

3.4 Transformation of Sequence Diagram . 24

3.5 Interface Automata . 25

v

vi CONTENTS

3.5.1 Operations on interface automata 26

3.5.2 Refinement of interface automata 28

3.6 Coloured Petri Nets . 28

3.7 Conclusion . 29

4 CBSE and Component Adaptation 31

4.1 Component-Based Software Engineering 32

4.2 Definition of Software Component . 33

4.3 Abstraction of Components . 34

4.4 Component Interfaces . 35

4.5 Component Models . 35

4.6 Verification of Component Compatibility 36

4.7 Formal Analysis of Assembled Systems . 37

4.8 Components Adaptation . 38

4.8.1 Adaptation Taxonomy . 38

4.8.2 General Adaptation Process . 40

4.8.3 Principal Adaptation Approaches 41

Adaptation of π-calculus protocols 41

Adaptation based on LTSs and Petri nets 42

4.8.4 Other Approaches . 44

4.9 Conclusion . 47

II Contributions 49

5 Formalizing SysMLDiagrams 51

5.1 Requirement Diagram (RD) . 52

5.2 Block Definition Diagram (BDD) . 53

5.2.1 BDD Formal Definition . 53

5.2.2 Block . 53

5.2.3 Ports . 54

5.2.4 Parts . 55

5.2.5 References . 55

5.2.6 BDD Relations . 56

5.3 Internal Block Diagram (IBD) . 57

5.4 Sequence Diagram (SD) . 59

CONTENTS vii

5.5 Conclusion . 59

6 A SysMLModel Driven Approach to Verify Blocks Compatibility 61

6.1 OurMethodology . 62

6.2 Transforming SDs of Blocks into Interface Automata 62

6.2.1 Sequence DiagramMeta-Model . 63

6.2.2 Interface AutomataMeta-Model . 65

6.2.3 Basic Interaction Transformation Rules 65

6.2.4 ALT Combined Fragment Transformation Rules 68

6.3 Generation of Ptolemy Specification . 71

6.4 The Blocks Verification . 73

6.5 Case Study: CyCab . 74

6.6 Conclusion . 78

7 Exploiting TheHierarchy to Verify Blocks Compatibility 79

7.1 Hierarchical Protocol State Machine (HPSM) 80

7.2 Hierarchical Interface Automata with Inter-Level Transitions (HIA-ILT) . . 81

7.3 The Proposed Approach . 85

7.3.1 TheMapping Between HPSM and HIA-ILT 85

7.3.2 The Consistency Verification of Blocks 88

7.3.3 The Selection of Composite States to Flatten 88

7.3.4 The Compatibility Verification Between Blocks 89

7.4 Case Study . 89

7.5 Conclusion . 93

8 SysMLBlocks Adaptation 95

8.1 Our Incremental Approach for Adapting SysML Blocks 96

8.1.1 The First Phase: Defining a Specification for the Part to Develop . . 96

8.1.2 The Second Phase: The Selection of the Reused Blocks {Bi} 98

8.1.3 The Third Step: the Contract and the Reused Blocks Verification . . 99

8.1.4 The Fourth Step: Generating the Adapter 99

8.2 Case Study . 103

8.2.1 Generate the Adapters . 103

8.2.2 Deduce the BDD and the IBDs of the Composite Blocks 106

8.3 Conclusion . 107

viii CONTENTS

9 Incremental Verification of SystemRequirements 109

9.1 Our Approach . 110

9.1.1 Requirements Specification . 110

9.1.2 Problem definition . 111

9.1.3 The First Case : The Low Level Verification 111

9.1.4 The Second Case : The High Level Verification 114

9.1.5 The Verification Algorithm . 117

9.2 Case Study . 119

9.3 Conclusion . 123

10 Adaptation with Reordering of SysMLBlock Services 125

10.1 Our Adaptation Approach . 126

10.1.1 Computing the Global Interaction Protocol of the Reused Blocks GIR 127

10.1.2 Introducing the Specification of the Future Parent Block 130

10.1.3 Deduce the Adapter . 133

10.1.4 Tool Support . 135

10.2 Case Study . 137

10.3 Conclusion . 139

III Conclusion 143

11 Conclusion and Perspectives 145

11.1 Conclusion . 145

11.2 Perspectives . 147

List of Figures

1.1 Thesis contributions. 4

2.1 Relation between SysML and UML [OMG12a]. 10

2.2 SysML Diagrams . 14

2.3 A Block Definition Diagram (BDD) . 15

2.4 An Internal Block Diagram (IBD) . 15

2.5 Basic elements of a Sequence Diagram (SD) 16

2.6 Basic elements of a requirement diagram 17

3.1 The abstraction levels of modelling. 21

3.2 The basic concepts of models transformation [CH06]. 22

3.3 example of interface automata. 26

3.4 User ⊗ Comp. The illegal state of the product is depicted with dotted border. 26

3.5 User ∥ Comp. 26

4.1 The goal of software engineering. 32

4.2 The goals of CBSE. 33

4.3 Black-box component. 34

4.4 UML sub-meta-model of syntactic specification of a software component. . 35

4.5 User ⊗ Comp. The set of compatible states is not empty 36

4.6 The role of the adapters. 39

4.7 The adaptation contract. 41

4.8 Adaptation approach [CPS06a]. 42

4.9 The difference between our approach (iii) and the existing approaches (i, ii)
of adaptation. 46

6.1 OurMethodology. 63

6.2 PapyrusMeta-Model of SysML Sequence Diagram. 64

6.3 Sequence diagram elements. 64

6.4 Interface AutomataMeta-Model. 65

6.5 Generated Interface Automata Editor. 66

ix

x LIST OF FIGURES

6.6 Message transformation. 67

6.7 The transformation of loop and alt into interface automata 68

6.8 Alt transformations. 70

6.9 Block Definition Diagram of CyCab. 74

6.10 SD of Sensor. 75

6.11 SD of Computing-Unit . 75

6.12 IA of Sensor . 75

6.13 IA of Computing-Unit . 75

6.14 Parallel composition of Control Unit and Sensor. 77

7.1 Relation between SD and HPSM. 80

7.2 Example of abstract synchronous product. 84

7.3 Our approach of using hierarchy to verify blocks compatibility. 86

7.4 Correspondences between HPSM and HIA-ILT. 87

7.5 Meta-Model of HPSM. 87

7.6 Meta-Model of HIA-ILT. 87

7.7 Rules ATL. 88

7.8 Case Study. 90

7.9 IBD of assembling the receiver and roomba. 90

7.10 HPSM of the receiver and roomba. 91

7.11 HIA-ILT of the receiver and roomba. 92

7.12 HIA-ILT of roomba after flattening no-autonomous state. 93

7.13 HAreceiver ⊗a HAroomba. 94

8.1 The proposed approach. 97

8.2 Incremental approach. 97

8.3 The Robot. 104

8.4 The Controller and theMotor blocks. 104

8.5 The adapter ADContr↔Mot. 105

8.6 The station. 105

8.7 The adapter AdRob↔S ta. 106

8.8 The Block definition diagram of the system. 106

8.9 The internal block diagram. 107

9.1 The first case: the low level verification. 112

9.2 Incremental adaptation. 114

LIST OF FIGURES xi

9.3 The second case: The high level verification. 116

9.4 The basic requirements. 119

9.5 SPIN system for the adapter AdRob↔S ta and its environment. 120

9.6 π = AdRob↔S ta ⊗ AdContr↔Mot. 122

9.7 The requirement diagram of the system. 122

10.1 Our approach of adaptation with reordering. 126

10.2 Transformation SD→CPN. 128

10.3 Rules for synthesizing the reused blocks. 129

10.4 The correspondences of type one(parent)-to-one(child). 131

10.5 The correspondences of type one(parent)-to-many(child). 132

10.6 The correspondences of type one(child)-to-many(parent). 133

10.7 The specification of the robot . 137

10.8 The Controller . 137

10.9 Themoving system . 138

10.10Adaptation Contract modelled using our generated editor 139

10.11 CPNadapter . 140

10.12BDD of the Robot . 141

10.13IBD of the Robot . 141

1
Introduction

1.1/ Context and Challenges

At any time, the system can express new needs to new services. However, the fact of see-
ing and developing the system as one unit constitutes a barrier for its evolution, where it
will be very difficult to specify the parts of the systemwhich are altered by each evolution.
Also, the verification of the system aftermodification will bemore andmore complex. In
fact, the disadvantages of this approach have changed the manner of designing and de-
veloping these systems. That is what justifies the trend of the new approaches, such as
CBD (Component-Based Development) approach which takes the system as a set of com-
ponents. Developing systemsby reusingandadaptinga set of components constitutes the
central topic of component-based development. It allows tackling the problems of the old
approaches, but it also creates new challenges and criteria thatmust be taken into consid-
eration during the development.

When assembling separately designed components, there is a high probability of encoun-
tering the problem of mismatches between them. These mismatches can concern for ex-
ample the name of services, as well as the order in which the component asks (resp. of-
fers) for environment services (resp. its services). That is what justifies the introduction
of third entities or components which are used to solve these mismatches. This kind of
components are called "adapters". A big part of theworks done to adapt components start
from a formal specification of these components, which makes difficult the communi-
cation between the various stakeholder in CBD projects. This implies the introduction
of persons who are experts in the formal methods during the selection of the candidate
components to buy and thus to reuse.

To tackle this problem and to make the communication between stakeholders easier.
System engineering community proposes to use high level languages which adopts the
principle of using the component as the development unit. This appears clearly through
SysML [OMG12b], a language which is adopted by OMG, it is used to design systems that
include software and hardware. The SystemModelling Language (SysML), through its di-
agrams, fosters the view point that takes the system as a set of components. In SysML,
we call them 'blocks'. A block is a modular unit of the system description. It may include
both structural and behavioural features, such as properties and operations. To commu-
nicate with its environment, a block has a list of ports. These latter are characterised by
interfaces that present the offered and the required services of the block. The use of these
interfaces allows the preservation of the principle of black-box, where we can knowwhat
is the role of the componentwithout having a need to see its implementation. SysML also

1

2 CHAPTER 1. INTRODUCTION

offersmany diagrams to represent the behaviour of the blocks. It also puts at the disposal
of developers the requirement diagram that allows capturing the different requirements
and establishing the link between them and between the responsible blocks of their sat-
isfaction.

This privilege given to SysML doesn't mean that it will take the place of formal meth-
ods. But it replaces them at a level of system representation, where we need a heigh level
specification of the system, to allow a better communication between the CBD project
stakeholders. We must also mention that SysML lacks of formal semantic, which makes
very interesting the introduction of formalmethods in component adaptation domain to
compute the adapters and their behaviour semantics, and to verify the result of assem-
bling components after the insertion of these adapters. In this context, the use of formal
methods appears worthwhile because it allows to specify formally components interac-
tions and thus to ensure component-based systems reliability by verifying components
compatibility. Regarding the advantages and disadvantages of each of them, a combi-
nation of both in the same approach is the solution that will tackle the lack of each of
them. That's what Model Driven Engineering (MDE) tries to do through the introduction
of model transformation approaches.

In this context, we have identified these challenges:

• When assembling a set of components, it's very interesting to verify their compati-
bility. In this thesis, we are placed in the context of optimistic approach. According
to the optimistic approach, two components are incompatible if it doesn't exist any
environment to assemble them without leading their composition into a livelock
situation . The verification of compatibility depends on the models used to repre-
sent the structure and the behaviour of these components. In the case where the
components aremodelled using SysML, there is a big questionmark about theman-
ner according to which the compatibility verification of blocks will be performed,
could this verification be applicable directly on SysML models? or must we intro-
duce SysMLmodels into a transformation process to obtain their equivalents of for-
mal models which aremore suitable for a rigorous verification?

• Generally, the high level modelling languages as SysML, adopt some principles to
manage the complexity of system representation and development. In SysML, the
decomposition and the hierarchical organization constitute the major principles
used to handle complexity. The utility of the decomposition and the hierarchy ap-
pears clearly through the structural and the behavioural specification of the system.
Thus, an hierarchical representation of the blocks interactions, and a verification
based on the abstraction introduced by this hierarchy can widely help in reducing
the state spacewhenwe compose the interaction scenarios of blocks in order to ver-
ify the compatibility of these latter.

• The adaptation of components implies the introduction of a third entity called
adapter. The major difference between the existing adaptation approaches con-
cerns the detail given to generate the adapter. In [DBM14], the authors give only
an adaptation contract that is resumed in a specification of the correspondences be-
tween blocks services. This will have an impact on the generation of the adapter,
the adapter will contain all the possible interaction scenarios between the reused
components (it can contains scenarios that are not necessary for the cooperation of
the reused components). However, in [CPS06a, CPS08], the authors have increased

1.2. CONTRIBUTIONS 3

their adaptation contract by a specification of the adapter interactions by order-
ing the vectors of the adaptation contract using regular expressions. This requires
that the developer, beforemaking the specification of the adapter, must thoroughly
know the interaction of each componentwith its environment, andhemust have an
ideaabout the synchronousexecutionof the reusedcomponents. In this context,we
ask the question about the detail that will be enough to generate adapters tomake a
set of components cooperatewith respect of the intention behind their assembling?

• In the context of an incremental development of a system by reusing and adapting
components, the system, at each increment, will exposemore blocks, and generally
the verificationof the satisfactionof a requirement by the assembled system implies
the composition of scenarios of all components, which is considered as the source
of state explosion problem. In this context, a proposition of a method which takes
advantages from themediator role played by the adapters, to reduce the state space
during the verification of requirements satisfaction, appears very interesting.

1.2/ Contributions

In this section, we present a summary of the contributions proposed in this thesis de-
scribed in Figure 1.1:

• In the first contribution, we focus on verifying the compatibility of components
modelled with SysML diagrams. Thus, we model components interactions with
SysML sequence diagrams (SDs) and components architecture with SysML blocks.
TheSysMLSDs constitute a good start point for compatibility verification. However,
this verification is still inapplicable directly on SDs, because they are expressed in
informal language. Thus, to apply a verificationmethod, it is necessary to translate
the SDs into formal models, and then verify the wanted properties. In this thesis,
we propose a high-level model-driven approach which consists of an ATL grammar
that automatizes the transformation of SDs into interface automata. Also, to allow
an easy use of Ptolemy tool to verify compatibility of blocks basing on interface au-
tomata, we have proposed some Acceleo templates that generate the Ptolemy entry
specification.

• In SysML, the interactions between blocks are modelled with Interaction Block Di-
agram (IBD) and Sequence Diagram (SD). However, these interactions are modelled
by the IBDonly as architectural links. Inotherhand, a block canparticipate inmulti-
ple use cases, whichmakes its interaction protocol divided onto a set of sequence di-
agrams. For these reasons, there is a lack of a global viewon the interactionprotocol
related to agivenblock. Toallowahierarchical representationof blocks interactions
and to benefit from the abstraction introduced by this representation, we have pro-
posed HPSM (Hierarchical Protocol State Machine) diagram. In order to permit the
compatibility verification of blocks, we perform a translation of HPSMs into HIA-
ILTs (Hierarchical Interface Automata with Inter-Level Transitions), a variant of in-
terface automata (IA) which we propose for this purpose. Our major objective is to
benefit from the hierarchy which is present in HIA-ILTs. Thus, we have adapted the
existing approaches for compatibility verification based on IAs to be applicable on
theHIA-ILTs. However, in order to avoid the flattening of the entireHIA-ILT,we pro-

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Thesis contributions.

pose a preliminary phase that allows selecting the composite states to flatten. The
aim behind this is to alleviate the verification phase.

• In the third contribution, we propose a bottom-up approach to build systems, based
on their partial specifications. Theapproach is basedon reusingand formally adapt-
ing SysML blocks using converter-complement blocks. Our approach is completed
by a verification phase which allows the verification of SysML requirements, for-
mally expressed by temporal properties, on SySML blocks. In this phase, we exploit
our manner of defining the adapter, to avoid the verification of the initial require-
ments, satisfiedby the adapted blocks, on thewhole system, and thus,we reduce the
state space explosion problem.

• In the same context of the previous contribution, we have proposed a bottom-up
approach to adapt SysML blocks butwith different inputs and objectives. Themajor
difference resides on that the adapter as wewill define it in this case can solvemore
problems such as the reordering of services to eliminate livelock between blocks,
it can also solve more types of mismatches (’one-to-many’ rather than only ’one-to-
one’).

To generate the adapters, in our approach, we are focusing on an incremental ap-

1.3. PUBLICATIONS 5

proach to construct the system. Where, at each increment the developer gives a
specification of a part of the system that he want to build. This specification rep-
resents the interaction of the parent of the reused blockswith the rest of the system.
The generation of the adapter is based on refinement relation between this specifi-
cation and the specification of the reused blocks.

1.3/ Publications

In the following, we list the references for the published and submitted articles:

• Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. SysML
Blocks Adaptation. ICFEM'15, the 17th International Conference on Formal Engi-
neeringMethods, Springer, pages 417-433, Paris, France, 2015

• Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. A
Model-Driven Approach to Adapt SysML Blocks. ICIST, the 22nd International Con-
ference on Information and Software Technologies, Springer, pages *-*, Kaunas,
Lithuania, 2016 (To appear)

• Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. Com-
patibility Verification of SysMLBlocks UsingHierarchical InterfaceAutomata. ISPS
12th International Symposium on Programming and Systems, IEEE, pages 313--322,
Algiers, Algeria, 2015

• Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. Ex-
ploitation de la Hiérarchie pour la Vérification de la Compatibilité des Blocs SysML.
CAL 9ème conférence francophone sur les architectures logicielles, Hammamat,
Tunisie, 2015

• Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. Ex-
ploitation de la Hiérarchie pour la Vérification de la Compatibilité des Blocs SysML.
RNTI. Revue des Nouvelles Technologies de l'Information, Volume RNTI-L-8, 2016,
Pages : 99-118.

• Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. An In-
cremental Approach for Adapting and Verifying SysML Blocks. In SoSyM, Software
and SystemsModelling (Re-submitted after revisions)

• Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. On the
Use of Coloured Petri Nets to Adapt SysML Blocks. In JSS, Journal of Software and
Systems (submitted)

• Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. SysML
Model-Driven Approach to Verify Blocks Compatibility. In IJCAET. International
Journal of Computer Aided Engineering and Technology (submitted)

1.4/ DocumentOutline

In this sectionwegive a summary of the content of this thesis, which is structured in three
parts as follows: In Part I, we introduce the scientific context and the related work of this

6 CHAPTER 1. INTRODUCTION

work, there, we first give, in Chapter 2, an overview of SysML language and its diagrams
that allow to model the structure the behaviour and the requirements of systems. Then
in Chapter 3, we present the transformation of models and the key concepts to describe
them. We also introduce the concept of Interface Automata and Coloured Petri Nets,
which we will use later in our approach to formally represent the behaviour protocols of
SysML blocks and to verify component compatibility. Finally, in Chapter 4, we present the
component-based domain and exactly the adaptation of components track.

In Part II, we present the contributions of this thesis regrouped in six chapters. In Chapter
5, we give a formal definition of SysML diagrams that we will used in our approaches of
adaptation. In Chapter 6, we present our model-driven approach to verify blocks com-
patibility by transforming SysML sequence diagram into interface automata. Then, in
Chapter 7, we introduce the hierarchy to model the interaction protocols of blocks, and
we define our approach which takes advantage from the hierarchy to alleviate the com-
patibility verification of SysML blocks. Next, in Chapter 8, we explain our approach for
adaptation based on the refinement relation between the blocks. After that, in Chapter 9,
we focus on our adaptation manner to alleviate the verification of requirements initially
satisfied by the adapted blocks. Finally, in Chapter 10, we extend our previous approach
of adaptation to allow the reordering of requests for services, and to solve more type of
mismatches by allowing more types of correspondences between blocks' services rather
than only one-to-one correspondences.

In Part III, we conclude our work with Chapter 11, where we present the conclusions and
perspectives of this thesis.

I
Scientific Context and State of the Art

7

2
SE and SysML Language

The systems engineering (SE) is an approach that proposes a range of processes and
tools. This range allows controlling the development, the understanding and the

reusing of complex systems. Particularly, these processes offer for developers the steps
that they must follow to cover the different aspects related to the development of a given
system. Each step proposes the use of somemodels for a better representation of a system
aspect to which this step is dedicated.

The intention of creating a new community which focuses on the engineering of systems
saw the light in the great institutions ofAmerican defence. In fact, theNational Aeronau-
tics and Space Administration (NASA) and the United States Air Force (USAF) have tried,
in 1960s, tomakea frame for thedevelopmentofmilitary programsand space exploration
systems through more rational industrial approaches. This effort has led, in 1991, to the
creation of the International Council on Systems Engineering (INCOSE), the first world-
wide organism for system engineering [wik].

In the systems engineering domain, the system is seen not only as a set of software ele-
ments, but as a range of software and hardware elements which are in a constant inter-
action. In addition to the interactions inside the system, this last can interact with the
environment. This interaction can be a request or an offer of a software service, or it can
take the form of a signal or matter circulation. By intention to set up a language which

Contents
2.1 SysML . 10

2.1.1 The Need of SE to SysML . 11
2.1.2 Who Created SysML? . 11
2.1.3 Principles of SYML . 11

2.2 Emergence of SysML . 12
2.3 SysML Diagrams . 13

2.3.1 Structural Diagrams . 14
2.3.2 Behavioural Diagrams . 16
2.3.3 Requirement Diagram . 17

2.4 Free Platforms for SysML Modelling 18
2.4.1 TOPCASED . 18
2.4.2 Papyrus . 18

2.5 Conclusion . 18

9

10 CHAPTER 2. SE AND SYSML LANGUAGE

allows themodelling of all these aspects and sides of systems, OMGand INCOSEhave uni-
fied their effort to create this language and tomake it likewhatUMLbecomes for software
engineering. This language is called SystemModelling Language (SysML).

In the rest of this chapter, in section 2.1, we will define SysML, the need of system engi-
neering toSysML, and theprinciplesof this language. After that, in section2.2,wedemon-
strate the emergenceandwide spreadingof SysML throughacollectionofworks thathave
focused on SysML for modelling. Next, in section 2.3, we give a bref definition of SysML
diagrams by mentioning the aspect covered by each diagram. In section 2.4, we give the
example of some free platforms that allow to use SysML language for modelling. Finally,
in section 2.5, we conclude.

2.1/ SysML

SysML (System Modeling Language) is a modelling language that allows the representa-
tion of the system as a set of diagrams. The appearance of SysML has been motivated by
the intention of the systems engineering community to define a commonmodelling lan-
guage. In fact, after ten years of its appearance, SysML has succeeded to take a place in
the system engineering domain which is similar to that taken by the Unified Modelling
Language (UML) in the software engineering domain.

UML 2

SysML

UML not
required
by SysML

SysML
extensions
to UML

UML
reused
by SysML

Figure 2.1: Relation between SysML and UML [OMG12a].

SysML can be defined as an extension of a sub-set of UML diagrams (Figure 2.1). This ex-
tension was made through the use of the profiling mechanism which is defined by UML.
SysML allows the specification, analysis, design, verification and validation of a wide
range of systems. It allows also to model the different aspects related to a given system;
whether the requirement, the structural or the behavioural aspects. SysML is an open
source specification, it includes an open source licence for its distribution and its use, its
current version is 'OMG SysML v.1.3'.

2.1. SYSML 11

2.1.1/ TheNeed of SE to SysML

The systems engineering is interested by the different sides of complex systems, whether
the software or the hardware sides. However, the development of a system, which is char-
acterized by an order of complexity, is still not obvious if there is no suitable tools which
assist and guide its development. It was due to this need that the SysML language has
seen the light as a communication language between the different members of the de-
velopment teams. It allowed to unify the visual modelling principles using a small set of
diagrams, which makes it easy to learn and to use. The introduction of SysML in this do-
mainwas not only for simplifying themodelling and the communication but also to offer
thedevelopment community a goodpillar to analyse the requirements of the systemsince
the first steps of the development through amodel driven process.

2.1.2/ WhoCreated SysML?

Many parts have contributed to the creation of SysML, they are all united in one associa-
tion called 'The SysML Partners'. The goal behind this union was the creation of an UML
profile that will be more adapted for the system engineering domain. This association
that is created in 2003 under the leadership of Cris Kobryn, have defined SysML as an
open source specification. On november 2005, the association 'The SysML Partner' has
finished the draft copy of SysML specification v1.0. This specification has been revised
and adapted by ObjectManagement Group (OMG) on july 2006[sys]. Among the contrib-
utors to the creationand thepersistenceof SysML, there is for example: Gentleware [Gen],
Motorola [Mot], INCOSE [INC], etc.

2.1.3/ Principles of SYML

The development of SysML has beenmainly guided by these principles:

• Parsimony: SysML bases on a part of UML. This part is considered as the minimal
sub-set of UML diagrams that allows the satisfaction of the requirements of the sys-
tems engineering community. The other needed elements have been added in func-
tion of the new needs expressed by the systems engineering domain.

• Reuse: SysML reuses the concepts of UML. However, the additional requirements
have been satisfied by adding new concepts. This extension of SysML concepts has
always been guided by the principle of parsimony.

• Layering: This principle is used to organize the SysML profile in two ways. The first
way bases on the fact that SysML is defined as strict UML profile. Hence, all SysML
packages are considered as an extension layer of UML meta-model. However, the
second way concerns only the SysML constructs, where they are organized into two
levels of compliance, Basic andAdvanced, which constitutes an additional layering.

• Extensibility: SysML supports the same extension mechanisms provided by UML
(metaclasses, stereotypes, model libraries), therefore the language can be further
extended for specific systems engineering domains, such as automotive, aerospace,
manufacturing and communications.

12 CHAPTER 2. SE AND SYSML LANGUAGE

• Interoperability: SysML is aligned with the semantics of the ISO data interchange
standard to support interoperability among engineering tools. It inherits the XMI
interchange from UMLwhichmakes possible the use of generated models files of a
tool by other several tools.

2.2/ Emergence of SysML

The introduction of SysML into the systems engineering domain has opened the door
to many studies, which intend to evaluate its capacity to model the different aspects of
systems, with all necessary details, through industrial case studies [LdSdO06, PSTV13].
In [LdSdO06], a proposition ismade tomodel an experimental unit of a factory plant sys-
tem in Santa Catarina university. Also, the study, in [PSTV13], concerns the use of SysML
tomodel an industrial system,which is a part of a system that controls the power of a boil-
ing water reactor of a nuclear plant at Finland.

SysML, through its structural diagrams, tries to foster the view point that takes the sys-
tem as a set of components, where the component represents the basic unit of the devel-
opment. In [MTO+11], the authors try to benefit from the advantages of component-based
development to design a module-based software for a robot. This software must allow
for the robot to capture a target object using a camera, to move toward it, and to move it.
Regarding the compatibility between the component-based development approach and
the SysML language, the authors made their choice on SysML as language to model their
system. They have used the Internal Block Diagram (IBD) of SysML to represent the mul-
tilayer architecture of their system, where the blocks communicate using tasks, the tasks
take their entry data from the sensors, and they activate themovingmaterial parts.

The decomposition of the system on a set of blocks reinforces the reusing of its parts, and
facilitates its adaptation over time, which increases the life time of the system. These ad-
vantages are due mainly to the interfaces which are used by the blocks to communicate
with the rest of the system (encapsulation principle). These decomposition and encapsu-
lation principles of SysML offer a better control of the models size that are used to model
the system, they allow targeting the details of the system through a succession of steps
(from a high level of abstraction to a low level), which makes the diagrams that capture
the different aspects of the systemmore clear. In [LWMY11], the authors show the struc-
ture and the dynamic aspects of a maintenance assistance system of the military planes.
The system is exposed at high level of abstraction through a range of SysML diagrams,
they have used the Block Definition Diagram (BDD) and the Internal Block Diagram (IBD)
to represent the architectural part, and for modelling the dynamic part, they have based
on the activity and sequence diagrams.

In [GCRJ08], an automotive driver information system of 4*4 vehicle was modelled us-
ing SysML. The objective was to present, through a case study, the capacity of SysML di-
agrams to model the different aspects of electronic systems in automotive vehicles. This
study proved the distinction of SysML in termof the capacity tomodel the different struc-
tural and behavioural properties. Yue et Peter, in [GJ09] try to foster their view point
on SysML, by establishing an evaluation report of SysML, where they compare it with
Simulink/MATHLAB. Contrary to Simulink/MATHLAB, SysMLoffers amean to cover the
structural aspect. Concerning the functional aspect, SysML also offers more constructs
and diagrams to model this aspect (sequence diagram, activity diagram, state machine

2.3. SYSML DIAGRAMS 13

diagram) than Simulink/MATHLAB.

SysML could also take a place in the domain of physic, and exactly in the field of the devel-
opment of particle accelerators. In [GGA+08], the authors have presented a set of SysML
diagrams that allows representingapart of LLRF (LowLevelRadioFrequency) system. The
authors, through thisorientation, try toprove theutilityofusingamodel-driven language
as SysML instead of basing on documents of thousands lines that make the communica-
tion between teammembers difficult and slow.

There is also an attempt to integrate the reliability analysis of mechatronic systems tech-
niques into the approach of systems engineering, by focusing on the SysML models.
In [MCR+12], the authors present the utility of this integration. The idea can be resumed
on generating the failure possibilities that can arrive in a given system using structural
and behavioural models of SysML. The authors have used an electromechanical actuator
for aircraft ailerons to illustrate their approach. In [DIK09], the authors, through their ex-
perience of combining modelling languages and systems reliability analysis techniques,
have found that SysMLmodels are more suitable then those of UML to support the relia-
bility studyof systems. Theyhavedemonstrated this distinctionof SysML througha study
of a system that controls the level of a tank.

SysML was also introduced in the field of Radio frequency and microwave engineering.
In [LCKB08], the authors show how SysML diagrams (block definition diagram, internal
block diagram, requirement diagram) can be used to model a UMTS (Universal Mobile
Telecommunication Standard) transceiver system. SysML has also proved its capacity to
model the control software of complex systems, where a change in a requirementmay al-
ter all the system. In [JT13], an approachwasmade to regulate the development of control
systems. This approach can alleviate the effect of requirements evolution. The authors
have proposed the use of SysML models to represent the controls systems IEC 61131-3.
These models can be used, later, as the start point of an MDE (Model Driven Engineer-
ing) process to generate the code for an implementation in the standard IEC 61131-3 lan-
guages. The authors have presented their approach through a control system of a motor
and a pump.

2.3/ SysMLDiagrams

SysML has nine diagrams, where four diagrams (package, use case, sequence and state
machine diagrams) are directly copied from UML 2.0, three diagrams (activity, block def-
inition and internal block diagrams) are copied with some modifications, these modifi-
cations deal with the differences between the software engineering and the system engi-
neering. The last two diagrams are considered as new (parametric and requirement dia-
grams) (see Figure 2.2).

Another taxonomy decomposes the SysML diagrams on three sub-sets (see Figure 2.2). It
is based on the aspect to which each diagram is associated. It differentiates between the
structural, behavioural and requirement diagrams. In the following,wegive a description
of each sub-set, with a definition of each diagram. We focus more on the diagrams that
we will use in our work.

14 CHAPTER 2. SE AND SYSML LANGUAGE

SysML Diagrams

Structural Diagrams

Block Definition Diagram
≈

Internal Block Diagram
≈

Parametric Diagram
+

Package Diagram
=

Behavioural Diagrams

Use Case Diagram
=

Sequence Diagram
=

Activity Diagram
≈

State Machine Diagram
=

Requirement Diagram
+

= copied from UML ≈ copied from UML with change + new

Figure 2.2: SysML Diagrams

2.3.1/ Structural Diagrams

In SysML language, the block represents the basic unit used to build the system archi-
tecture. It can refer to a material part as well as a software part, it can also represent a
person which uses or interacts with this system. The system structure can be modelled
using a range of SysML diagrams, which includes the block definition diagrams, the in-
ternal block diagrams, the package diagrams and the parametric diagrams. This range
of diagrams allows the decomposition of the system into a set of blocks and organizing
them insidepackages, also it allows establishing the architectural links betweenblocs and
packages, and define the relations between their quantitative features. In the following,
we give a basic description of each architectural diagram by listing the basic constructs
of each diagram that we have used. Because SysML is a graphical language, we base on
graphical models to show the basic anatomy of these diagrams.

• The block Definition Diagram

The Block Definition Diagram (BDD), as it is captured in Figure 2.2, is a copied dia-
gram from UML with somemodifications. It bases on the UML class diagram, with
exclusion of some capabilities, such as some specialized forms of associations. On
the other hand, it has modified some concepts such as the notion of class was re-
placed by the notion of block. It added also new concepts such as the blocks ports.
The BDDs allow the modelling of the system parts using blocks and they offer the
possibility to visualize the dependences between these blocks and the existed hier-
archy. This hierarchy helps to identify two groups of blocks: Atomic and composite
blocks. It is possible to obtain a flatten BDD of the system, by replacing each com-
posite block by its sub-blocks.

Each block (as it is shown in Figure 2.3) has a name, a set of values, properties, ref-
erenced blocks, parts, operations and constraints expressed on its properties. To
interact with the rest of the system, the block uses the ports which are placed on its
sides.

2.3. SYSML DIAGRAMS 15

properties
values

re f erences
parts

operations

constraints

B1
<< block >>

p1

properties
values

re f erences
parts

operations

constraints

B2
<< block >>

p2p1

properties
values

re f erences
parts

operations

constraints

B
<< block >>

p2

bdd [B]
composite block

composition relation

atomic block

port

Figure 2.3: A Block Definition Diagram (BDD)

• The Internal Block Diagram
The Internal Block Diagram (IBD) is an adaptation of UML composite structure dia-
gram. It is used tomodel the internal structure of each composite block. This inter-
nal structure is resumed on the set of parts and connectors. The parts represent the
instances of blocks, each part has the same ports as the block that instantiates. The
connectors specify the topology of connecting parts, they link the ports of parts. If a
connector links a port of the father block and one port of its parts, it will be consid-
ered as a delegation connector (see Figure 2.4).

Part1 : B1 Part2 : B2

<< block >>
B

ibd B

p1 p1 p2

delegation connector

part

composite block

Figure 2.4: An Internal Block Diagram (IBD)

• The Parametric Diagram
The Parametric Diagram is a new diagram introduced in SysML. Its use is for ex-
pressing the constraints (equations) on the blocks properties. Thus, it constitutes a
goodmean to evaluate the system performance.

16 CHAPTER 2. SE AND SYSML LANGUAGE

• The package Diagram
The Package diagram is used to organize the global model of the system, where the
other SysML diagrams will be elements of the system packages. This organization
can be done in different ways by considering some different aspects. It can be done
by considering the system hierarchy (enterprise, system, design, .., verification). It
can also be guided by the domain (requirements, use cases, structure, behaviour,...)
or by the view points.

2.3.2/ Behavioural Diagrams

SysML offers four behavioural diagrams. They allow modelling the behaviour of blocks
using a set of steps (actions, states, ...) provided with a set of evolution rules. They take
generally the formof orientedgraphs. In the following,wegive a simple definitionof each
behavioural diagram, we will focusmore on the sequence diagram.

• The Use Case Diagram
The Use Case Diagram models the functionalities of the system that require an in-
teraction between the system and its users. Anything that users would to do with
the system has to bemade available as a use case or a part of a use case [GBB05].

• The Sequence Diagram
The Sequence diagram (SD) is a copied diagram from UML2.0. It represents the
interactions by focusing on the observable exchange of messages between blocks.
A sequence diagram has two dimensions, where the vertical dimension represents
time and the horizontal one represents the blocks which participate in the interac-
tion ([RJB04]).

B1 B2
msg1

msg2

msg3

alt

[cond]

[else]

sd ...

message

actor

combined fragment

operator

guard

operands

Figure 2.5: Basic elements of a Sequence Diagram (SD)

2.3. SYSML DIAGRAMS 17

It consists of a set of lifelines which represent the interacted blocks. The temporal
execution of interactions is shown as a succession of messages. A message takes
the form of an arrow originates at the sender and ends at the receiver. A SD can also
contain a set of combined fragments (CFs). CFs are used to express different types of
control flows, such as concurrency, choice and loop ([RJB04]). They are defined by
interactionoperators (Alt, Loop, Break, etc) andcorresponding interactionoperands
(see Figure 2.5).

• The Activity Diagram
An activity diagram illustrates one activity. It models its fundamental elements
which are the actions, the control elements (decision, division, merge,..) and the
inputs/outputs/control flows.

• The State Machine Diagram
The State Machine Diagram captures the different states of the block to which this
diagram is associated. The transitions between states are labelled by the actions ex-
ecuted by the block to change its state. The execution of a transition can imply some
modificationsof thevalues thatdescribe the last state. Statemachinediagramdidn't
know anymodification fromUML 2.0.

2.3.3/ Requirement Diagram

TheRequirementDiagram (RD) is anewdiagram inSysML. It specifies the systemrequire-
mentswhich are expected by the users. This diagramoffers away tomodel the functional
and no-functional requirements and the different links between them.

<< requirement >>
Req2

text=...
ID= R1.1

<< requirement >>
Req3

text=...
ID= R1.2

<< requirement >>
Req1

text=...
ID= R1

<< requirement >>
Req4

text=...
ID= R4

<< deriveReqt >>

<< veri f y >>

<< satis f y >><< block >>

B

<< testcase >>

TestCase

Figure 2.6: Basic elements of a requirement diagram

It is possible to represent the existed hierarchy between requirements using the compo-
sition and the derivation (<<deriveReqt>>) relations. It is also possible to link a block to

18 CHAPTER 2. SE AND SYSML LANGUAGE

a requirement using the satisfaction relation (<<satisfy>>), or to associate a requirement
with a test case using a verification relation (<<verify>>) (see Figure 2.6). Each require-
ment is defined by its name, its description and its own and unique identifier.

2.4/ Free Platforms for SysMLModelling

2.4.1/ TOPCASED

TOPCASED [top] is the acronym of Toolkit inOpen Source for CriticalApplications and
SystemsDevelopment. It is a free computer-aided engineering software. It bases on the
Eclipse development platform [wik].

The objective of TOPCASED is to cover the set of requirements for developing software
and systems (the descending branch of the V cycle), as well as the transversal needs such
as configuration management, change management and requirements engineering. Its
development is based on a MDE (Model Driven Engineering) approach. It is based on a
global ecore meta-model which includes all the classes of SysML diagrams elements. It
provides also the elements with their graphical notations which simplify the modelling.
Based essentially on standardized language for modelling software (UML, SysML, AADL,
etc.), TOPCASEDworks with XMI files.

2.4.2/ Papyrus

Papyrus [pap] is a set of eclipse plugin that belongs to the Eclipse Modelling Project. It
aims to offer an integrated environment which is dedicated for users. Thus, Papyrus is a
new environment for editing all sorts of EMFmodels (EclipseModelling Framework), and
to particularly support UML and its profiles such as SysML, MARTE, etc.

Thus, Papyrusoffers editors for diagramsof EMFbasedmodelling languages. It offers also
the glue for linking its editors and other tools. Its generation of XMI files, allows the use
of its models with other applications and tools. Papyrus is graphical but also textual tool.
Thus, it is possible to edit the models using textual editors which offer the assistance to
edit themodel content.

2.5/ Conclusion

In this chapter, we have presented SysML and its diagrams, by focusing more on those
that we will base our work on. SysML can be used to simplify the modelling of systems.
However, its graphical and high level aspect constitutes a barrier in front of its use for
verification, which makes the introduction of its diagrams into a transformation chain
veryessential. In thenext chapter,wewill present sometransformationworkswhichhave
targeted SysML diagrams to generate formal specifications.

3
Model-DrivenDevelopment and

Models Transformation

The model-driven development is centred on the use of models. It is a form of gen-
erative engineering that has its own processes, where all or a part of an application

is generated from models. It covers many approaches such as: Model-Driven Architec-
ture (MDA) [MDA, Dav03], Model-Integrated Computing (MIC) [SK97] and Software Fac-
tories [GS03]. The MDA is defined and supported by Object Management Group (OMG).
MDAchanged the softwaredevelopment style, it describes eachartefact as amodel,which
shifts the developers from code-oriented to model-oriented approach. It bases on three
major types of models: Computation Independent Model (CIM) involves specification of
system functionalities, Platform Independent Model (PIM), and Platform Specific Model
(PSM). MIC focuses on the formal representation, composition, analysis, and manipula-
tion of models during the design process. However, the software factories focus on the
product-line systems, where it tries to automatize the product development.

In the context ofmodel-drivendevelopment, thenotionofmodel transformations [CH06]
plays a fundamental role. This transformation can concern different kinds ofmodels (e.g.
formal or informal, graphical or textual, etc.), and it can be done for different purposes
(e.g. formalizing for verification objective, for generating application code, etc.)

In the remainder of this chapter, wewill give an overview of the transformation ofmodels
and its applicationonSysMLmodels,where in section3.1,wepresent thebasic conceptsof
model-driven development. In section 3.2, we summarize the different types of transfor-
mation. After that, in section 3.3, wepresent someworkswhichhave beendone onSysML

Contents
3.1 Basic Concepts . 20
3.2 Model Transformations . 21
3.3 Transformation of SysML Diagrams 23
3.4 Transformation of Sequence Diagram 24
3.5 Interface Automata . 25

3.5.1 Operations on interface automata 26
3.5.2 Refinement of interface automata 28

3.6 Coloured Petri Nets . 28
3.7 Conclusion . 29

19

20 CHAPTER 3. MODEL-DRIVEN DEVELOPMENT AND MODELS TRANSFORMATION

diagrams. However, in section 3.4, we focus on the transformationworks that targeted se-
quence diagram of SysML. In our contribution, we need to transform sequence diagrams
into interface automata and CPNs, that is why we reserve the section 3.5 and the section
3.6 to present the formal models: Interface automata and coloured Petri nets. Finally, in
section 3.7, we conclude.

3.1/ Basic Concepts

Themodel-driven development defines a toolbox that contains the necessary tools for ex-
pressing and structuring the different works in this field. These tools allow for architects
and developers to share the same vocabulary. In the following, we give an overview of the
basic notions and concepts used in this domain.

• Model andModelling:
A model is an abstract description of the real system, this description can be con-
sidered as a simplification and a restriction of the reality according to a given view-
point. This viewpoint is controlled by the needs and objectives behind the construc-
tion of the system. Generally, in addition to the textual annotations, the model in-
cludesmanymore of the graphical components.

Themodelling is the art of projecting the studied systemon conventional diagrams.
Datamodelling is anabstract representation,where the individual values of data are
ignored [wik].

• Model-driven
The model-driven approaches are based on the notion of model, they provide a set
ofmodels that help in understanding and steering the system design, construction,
deployment andmaintenance. In these approaches, themodels are seen as the base
of each activity.

• Meta-Model
A meta-model is the model that defines the expression language of other models
[OMG06] in a high level of abstraction. A meta-model has two principal features:
firstly, it must capture the essential features of the modelling language, and sec-
ondly, it must be able to depict the concrete syntax and semantic of this language.

• Meta-meta-model
Themeta-model is the model of a modelling language. Consequently, meta-model,
in turn, is expressed in a meta-modelling language specified by the meta-meta-
model.

All these concepts are represented in Figure 3.1:

• In the first level: There is the system to model with all its entities and all factors
around them.

• In the second level: There is the model which is created by projecting the system
on a given schema, and separating the elements of interest according to given ob-
jectives. It can be an UML class diagram, a conceptual model MERISE, or all other
schema that represents an abstract view of themodelled objects.

3.2. MODEL TRANSFORMATIONS 21

Figure 3.1: The abstraction levels of modelling.

• In the third level: There is themodelling language ormeta-model that specify the
classes of concepts used in the second level.

• In the fourth level: There is the meta-meta-model. It must be generic enough to
definemany other languages. Also, it must be precise to express the rules that each
languagemust respect.

3.2/ Model Transformations

Amodel transformation, regardless of each type it is, can be seen as a function that takes
asparameters (inputs) a set ofmodels andprovidesas results (outputs) another set ofmod-
els. The input and the outputmodels are structured according to their meta-models. The
implementation of a transformation between a set of models is possible if there exists se-
mantic correspondences between their meta-models. These correspondences are mate-
rialized using transformation rules which can be implemented in a given language (e.g.
ATL, ATOM3, XSLT, MTL,TGG, etc.).

Generally, a transformation may take multiple source and target models. Furthermore,
in some cases, this transformation may have the same source and target meta-model. In
this case, we talk about endogenous transformation. Otherwise, when the source and the
target meta-models are different, we talk about exogenous transformation. In literature,
it exists another classification, where a transformation belongs to one of these types:

22 CHAPTER 3. MODEL-DRIVEN DEVELOPMENT AND MODELS TRANSFORMATION

Source model Target modelTransformation engine

Source
meta-model

Target
meta-model

Transformation
Definition

conforms to conforms toexecutes

reads writes

refers to refers to

Figure 3.2: The basic concepts of models transformation [CH06].

• Vertical transformation: It is the type where the source and target models are de-
fined in different level of abstraction. There is two directions of transformation,
which decreases the level of abstraction (i.e. refinement) and the other which in-
creases it.

• Horizontal transformation: This trend aims to modify the presentation of the
source model with preserving the same level of abstraction. This modification can
concern for example an add or a deletion of some model elements, or merging two
sourcemodels.

• Oblique transformation: In this kind of transformation, we find a couple of the
vertical and horizontal transformations. It is used generally by compilers to gener-
ate the executable code after optimizing the source code.

In addition to the horizontal and vertical transformations, there is another classification,
which differentiates between the type of models. When the model takes the form of a
textual specification, it is called code rather than model. Thus, we can distinguish two
categories of transformation:

• TransformationsModel→ Code:

It consists in generating textual specifications from models. There are many lan-
guages and tools that allowus to implement this kindof transformation (i.e. AToM3,
Acceleo, etc.). AToM3 allows graphical transformation where the sourcemodel and
the transformation rules are specified graphically. Acceleo, the tool that we use in
our work, is the result of several man-years of R&D started in the French company
Obeo [obe]. Acceleo is a source code generator of the eclipse foundation that imple-
ments theMDA (Model driven architecture) approach to realize application starting
fromEMF (EclipseModelling Framework)models. Thus, Acceleo is an implementa-
tion of the norm of the Object Management Group (OMG) for transformingmodels
to text (M2T), where the transformations take the form of templates.

• TransformationsModel→Model:

3.3. TRANSFORMATION OF SYSML DIAGRAMS 23

In this kind, the targetmodel is not a text. Also, to perform this category of transfor-
mation, we find many languages and tools (i.e. AToM3, ATL, etc.). In this work, we
are interested to ATL (Atlas Transformation Language). ATL [atl] is a model trans-
formation language and toolkit. In the field of Model-Driven Engineering (MDE),
ATL provides a way to produce a number of targetmodels from a set of sourcemod-
els. An ATL transformation program is composed of rules that define how source
model elements are matched and navigated to create and initialize the elements of
the target models. These rules are based on a mixture of declarative and impera-
tive constructs. The set of the rules constitutes the ATL grammar. Each ATL rule is
characterized by twomandatory elements:

– from : A pattern on the sourcemodel with possible constraints.

– to : Oneormore elements of the targetmodel, it indicateshow target elements
must be initialized from the corresponding source elements.

In literature, the transformation is usually used to generate the source code of appli-
cations. Another use is for formalizing models of high level languages. Various re-
searchworks have beendone to transform informalmodels to formal ones [RC15] [AEC14]
[GCA13] [DHJ+10]. These transformations are generally implemented and offered as tools
which can assist architects during the verification of their systems. Many of these works
are dedicated to generate formal models from UML and SysML diagrams [RC15] [AEC14]
[RKBIH15], which are considered as informal models.

3.3/ Transformation of SysMLDiagrams

Manyworks (e.g. [Vas09], [GBHP15], [JKPB12]) have beendone to integrate the descriptive
power of SysMLmodels with the analytic and computational power of Modelica models.
This integration provides a capability that is significantly greater than provided by SysML
orModelica individually.

Amapping between SysML andModelica, considering a small subset of theModelica lan-
guage, has been proposed by Vasaiely [Vas09]. This work presents a mapping between
SysML parametric diagrams andModelica equations. A representation ofModelicamod-
els in SysML have also been processed by Johnson et al. in [JKPB12]. In this work, the au-
thors explore the definition of continuous dynamicmodels in SysML and the use of graph
grammar to maintain a bidirectional mapping between SysML and Modelica constructs.
In [GBHP15], Gautier et al. proposed a tooled MDE (Model Driven Engineering) approach
to validate requirements of complex systems at the earliest stages of design process. This
approach consists on generatingModelica simulation code from SysMLmodels.

In [GBHP13], Gauthier et al. presented their approach to verify the SysML models con-
sistency with the VHDL-AMS (e.g. the naming of a component with reserved words of
the VHDL-AMS language (syntactic error) or the connection of two ports with different
types (semantic error)). TheyhaveusedanATL transformation togenerateproblems from
SysMLmodels and after generating VHDL-AMS code. A test approach to validate model-
to-model transformation with EUnit [GDKR+11] has been presented there.

The authors, in [PBG14], showeda translationof SysML statemachinesmodels into a class
of non-autonomous Petri net models using ATL. The target formalism of the transforma-
tion is the class of Input-Output Place Transition Nets (IOPT), which extends the known

24 CHAPTER 3. MODEL-DRIVEN DEVELOPMENT AND MODELS TRANSFORMATION

low-level Petri net class of Place/Transition Petri nets with input and output signals and
events dependencies. In [RKBIH15], the authors present a transformation process from
SysML diagrams into another variant of Petri nets. They proposed an approachwhich de-
scribes a verificationmethodology of SysML activity diagrams based on their transforma-
tion into RECATNetmodel.

In [CLY+14], the authors used SysML and requirement elicitation templates to collect and
model user requirements, and then transformrequirement diagrams intoother SysMLdi-
agrams for design and analysis (use-case and activity diagrams) using the transformation
rules which are defined using ATLAS Transformation Language (ATL).

There is another trend to transform SysML specification into UML models. The work in-
troduced in [LBLP11] is in line with this trend that tries tomake possible to re-use the test
generation techniques initially developed for UML4MBT (restriction of UML for Model
Based Testing process). The introduction of SysML4MBT is justified by its capacity to
model more constructs and thus more reach semantic. The approach is a model-based
testing approach that takes as input a SysML specification of a system under test and au-
tomatically translates it into an equivalent behavioural UMLmodel. This generated UML
model is finally used to derive test cases and executable test scripts.

3.4/ Transformation of Sequence Diagram

The sequence diagram,which is a sharedmodel betweenUMLandSysML,was be themat-
ter of many transformation works. The most of the proposed approaches are based on
using transformation rules, and they essentially differ in the target model of transforma-
tion.

In [KBSB10], [RF06],wefindadescriptionof anautomated transformationmethod,which
allows transforming sequences diagrams into their equivalents of coloured Petri nets. In
[ES09], the authors proposed some correspondences to transform sequence and use case
diagrams to Petri Net. These correspondences formalize the interactions composed of
messages and combined fragments (alternative, optional and loop). Authors in [Mer14],
basing on Meta-modelling and ATL grammars, they defined a set of ATL rules to trans-
form SDs to Petri Nets. They proposed rules for the basic constructs of SDs and for a
sub-set of combined fragments kinds (Alt, Par). In [CESK09], a grammar, which based on
graph transformation, was proposed to transform the sequence diagram into ECATNets,
a variant of Petri Net. The authors used the AToM3 tool to implement themeta-models of
SDs and ECATNets, to generate themodelling tools and to implement the graph grammar
that performs the transformation. They are also someworks that have as target models a
textual specification. In [AYAM11], a graph grammar was used to generate Promela code
starting from SDs. The authors used also the tool AToM3 for meta-modelling and for im-
plementing the graph transformation grammar. In [MMSC13], The authors proposed a
grammar to transform the communication diagram, which has a near semantic to that of
SD, into Buchi automata.

In [CH11a], some correspondences between sequence diagramand interface automata are
given. This work was be the reference in [CCM12a] to prepare the sequence diagram of
SysML blocks for the compatibility verification phase. But, in [CCM12a], this transforma-
tion have donemanually, which can be considered as a source of user errors. That is why,
we propose, later in this thesis, the correspondences formore constructs, andwepropose,

3.5. INTERFACE AUTOMATA 25

also, a set of ATL rules to automatize this transformation. Contrary to the works men-
tioned before, which they don't take into consideration the case of nested combined frag-
ments, in our work, we explain the different cases, and howwe deal with them. Also, at a
stage of this thesis, we need to transform the sequence diagrams into coloured Petri nets.
This transformationwill be guided by our adaptation objective, and the generation of the
coloured Petri nets will be steered by the adaptation contract in a meta-model-driven ap-
proach. Thus, in the next two sections, we present the different possible operations on
Interface Automata (IAs) and Coloured Petri Nets (CPNs).

3.5/ Interface Automata

Interface automata [dAH01] were introduced by Alfaro and Henzinger to specify compo-
nent interfaces and also to verify component assembly based on their actions. The set
of actions is decomposed into three groups: input actions, output actions and internal
actions. Input actions allow to model the methods that the component exposes to its en-
vironment. These actions are labelled by the character '?'. The output actions model the
methods that the component needs to invoke from other components. These actions are
labelled by the character '!'. Internal actions aremethods that can be activated locally and
are labelled by the character ';'.

Definition 1: Interface Automaton
An interface automaton A is represented by the tuple

⟨ SA, IA, ΣI
A, ΣO

A, ΣH
A , δA ⟩

Where:

• S A is a finite set of states.

• IA ⊆ S A is a set of initial states.

• ΣI
A,Σ

O
A , and ΣH

A , respectively denote the sets of input, output, and internal
actions. The set of actions of A is denoted by ΣA.

• δA ⊆ S A × ΣA × S A is the set of transitions between states.

Example:

In Figure 3.3, we give the example of interface automata used in [dAH01] to model a soft-
ware component that implements a message-transmission service. The component has
a method msg, used to send messages. Whenever this method is called, the component
returns either ok or fail. To perform this service, the component relies on an interface
to a communication channel that indicates a successful transmission, and nack, which
indicates a failure. When the method msg is invoked, the component tries to send the
message, and resends it if the first transmission fails. If both transmissions fail, the com-
ponent reports failure; otherwise, it report success.

26 CHAPTER 3. MODEL-DRIVEN DEVELOPMENT AND MODELS TRANSFORMATION

0

1

ok
?

m
sg

!

msg

ok

f ail

(a) Interface automaton User

0 1 2 3 4

5

6

msg? send! nack? send!

ack?

ack?ok!

nack?f ail!

msg

ok

f ail

send

ack

nack

(b) Interface automaton Comp

Figure 3.3: example of interface automata.

0 1 2 3 4

5

6

msg; send! nack? send!

ack?

ack?ok;

nack?

send

ack

nack

Figure 3.4: User ⊗ Comp. The illegal state of the product is depicted with dotted border.

0 1 2 3 4

5

msg; send! nack? send!

ack?

ack?ok;

nack

ack

send

Figure 3.5: User ∥ Comp.

3.5.1/ Operations on interface automata

The synchronousproduct isused to capture theparallel executionof twocomponents rep-
resented by their interface automata. Before computing the global behaviour of the two
components, it is mandatory to verify if they can be assembled by testing their compos-
ability. Two interface automata A1 and A2 are composable if:

ΣI
A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
= ΣH

A1
∩ ΣA2 = ΣA1 ∩ ΣH

A2
= ∅.

3.5. INTERFACE AUTOMATA 27

Definition 2: Synchronous product
The synchronous product between two composable interface automata A1 and A2 is
defined as:

A1 ⊗ A2 = ⟨ SA1⊗A2, IA1⊗A2, Σ
I
A1⊗A2

, ΣO
A1⊗A2

, ΣH
A1⊗A2

, δA1⊗A2 ⟩

• S A1⊗A2 = S A1 × S A2 and IA1⊗A2 = IA1 × IA2 .

• ΣI
A1⊗A2

= (ΣI
A1
∪ ΣI

A2
) \ S hared(A1, A2).

• ΣO
A1⊗A2

= (ΣO
A1
∪ ΣO

A2
) \ S hared(A1, A2).

• ΣH
A1⊗A2

= ΣH
A1
∪ ΣH

A2
∪ S hared(A1, A2).

• ((s1, s2), a, (s′1, s
′
2)) ∈ δA1⊗A2 if

– a < S hared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ s2 = s′2
– a < S hared(A1, A2) ∧ (s2, a, s′2) ∈ δA2 ∧ s1 = s′1
– a ∈ S hared(A1, A2) ∧ (s1, a, s′1) ∈ δA1 ∧ (s2, a, s′2) ∈ δA2 .

We define by: Shared(A1,A2) = (ΣI
A1
∩ ΣO

A2
) ∪ (ΣO

A1
∩ ΣI

A2
), the set of shared actions between

A1 and A2.

The synchronous product of two interface automata may contain illegal states. This can
happen when, at a given state of the parallel execution a component is ready to send a
shared action, and the other component doesn't anticipate this, and it doesn't perform a
reception of this shared action.

Definition 3: Parallel composition
The composition of two interface automata A1 and A2 is denoted by A1 ∥ A2, it is
computed by eliminating from the product A1 ⊗ A2 the illegal states and all states
reached from these illegal states by enabling output and internal actions.
The set of illegal states of two interface automata A1, A2 is defined as :

Illegal(A1, A2)=

(s1, s2) ∈ S A1 × S A2 | ∃a ∈ S hared(A1, A2).

a ∈ ΣO

A1
(s1) ∧ a < ΣI

A2
(s2)

∨
a ∈ ΣO

A2
(s2) ∧ a < ΣI

A1
(s1)

WedefinebyΣI
A(s1) andΣO

A (s1), respectively, the set of input andoutput actions at the state
s1.

Definition 4: Compatibility
Two interface automata A1 and A2 are compatible iff A1∥A2 , ∅.

From the definition of compatibility, we can deduce that two interface automata are com-
patible if the result of their parallel composition contains at least one state.

28 CHAPTER 3. MODEL-DRIVEN DEVELOPMENT AND MODELS TRANSFORMATION

3.5.2/ Refinement of interface automata

The refinement relation can be defined as alternating simulation [dAH01]. An interface
automaton P refines an interface automaton Q, if all input steps of Q can be simulated by
P and all the output steps of P can be simulated by Q.We need some preliminary notions:

Given an interface automaton P and a state v ∈ SP, the set ε-closureP(v) is the smallest set
U ∈ SP such that:

• v ∈U and

• if u ∈U and (u, a, u') ∈ δP and a ∈ ΣH
P then u' ∈U.

The ε-closure of a state v consists of the set of states that can be reached from v by taking
only internal steps.

Consider an interface automaton P, and a state v ∈ SP. We let:

• ExtEnO
P (v)= { a | ∃u ∈ ε − closureP(v).a ∈ ΣO

Q(u) }, and

• ExtEnI
P(v)= { a | ∃u ∈ ε − closureP(v).a ∈ ΣI

P(u) }

be the sets of externally enabled output and input actions, respectively, at v.

Consider an interface automaton P and a state v ∈ SP. For all externally enabled input and
output actions a ∈ ExtEnO

P (v) ∪ ExtEnO
P (v), we let:

• ExtDestP(v, a)= {(u,a,u')∈ δP. u ∈ ε − closureP(v)}.

Using this notation, the alternating simulation on interface automata is defined as fol-
lows:

Definition 5: Alternating simulation
Consider two interface automata P and Q. A binary relation ≽⊆ S P × S Q is an
alternating simulation from Q to P if for all states v ∈ S P and u ∈ S Q such that
v ≽ u, the following conditions hold:

• ExtEnI
P(v) ⊆ ExtEnI

Q(u) and ExtEnO
P(u) ⊆ ExtEnO

P(v).

• For all actions a ∈ ExtEnI
P(v) ∪ ExtEnO

Q(u) and all states u′ ∈ ExtDestQ(u, a),
there is a state v′ ∈ ExtDestP(v, a) such that v′ ≽ u′.

Thus, we can define the refinement relation between interface automata as follows:

Definition 6: Refinement
There is a refinement relation between two interface automata P and Q, if there is
an alternating simulation between their initial states.

3.6/ Coloured Petri Nets

Coloured Petri Nets (CPNs) preserve useful properties of Petri nets and at the same time
extend initial formalism to allow the distinction between tokens [Jen96]. In CPNs, a token
has a data value attached to it. This attached data value is called token colour.

3.7. CONCLUSION 29

Definition 7: Coloured Petri Net
Formally, a CPN is defined as a tuple:

⟨ P, T, A, Σ, C, N, E, G, I ⟩

Where:

• P: is a set of places.

• T: is a set of transitions.

• A: is a set of arcs.

• Σ: is a set of colour sets defined within CPN model. This set contains all
possible colours, operations and functions used within CPN.

• C: is a colour function. It maps places in P into colours in Σ.

• N: is a node function. It maps A into (P x T)∪(T x P).

• E: is an arc expression function. It maps each arc a∈A into the expression e.

• G: is a guard function. It maps each transition t∈T into guard expression g.
The output of the guard expression should evaluate to Boolean value true or
false.

• I: is an initialization function. It maps each place p into an initialization ex-
pression i.

3.7/ Conclusion

In this chapter, we have presented the transformation of models, its types and its objec-
tives, wherewe have seen that themajor objective is to prepare systemmodels for a verifi-
cation phase. In ourwork, the transformation concerns SysMLmodels and exactly SysML
sequence diagram. In a stage of our work, we need to transform sequence diagrams into
interface automata, that is why we have reserved a section in this chapter to present the
different operations that can be done on interface automata. In another stage, we need to
transformour sequencediagrams intocolouredPetrinets. Becauseour resultedmodelsof
transformationwill be the input of an adaptation process, wewill give in the next chapter
an overview of component-based software engineering and the works have already been
done to adapt software components.

4
CBSE and Component Adaptation

The software engineering (SE) is interested especially by the working methods and the
systematic procedures that allow the development of large software, which respond

to customers expectations [MR07]. It searches for reliability and good performances of
software [Jal08], while respecting time limitation and cost constraints.

Thedevelopmentof large software requires a lot of effort andasks for cooperationofmany
entities, which makes crucial the decomposition of the development on several phases.
The organisation of these phases is guided by the chosen developmentmethod. The com-
mon phases between these methods are essentially the analysis, the design, the imple-
mentation and the test phases. The analysis allows capturing the different requirements,
without making reference to how these requirements will be satisfied. The design phase
defines how the requirement, specified in the last phase, will be achieved. A language
must be used (such as UML, SysML) to represent the different solutions. The implemen-
tationphase allows coding the different proposed solutions, and the test phase allows ver-
ifying that the specified requirements and the searched quality are respected by the final
product (see Figure 4.1).

Anotherway to organize thedevelopment is bydecomposing the software ona set of com-
ponents, developing from scratch some components, reusing others and adapting them.
In the remainder of this chapter, wewill talkmore on the notion of components and their

Contents
4.1 Component-Based Software Engineering 32
4.2 Definition of Software Component 33
4.3 Abstraction of Components . 34
4.4 Component Interfaces . 35
4.5 Component Models . 35
4.6 Verification of Component Compatibility 36
4.7 Formal Analysis of Assembled Systems 37
4.8 Components Adaptation . 38

4.8.1 Adaptation Taxonomy . 38
4.8.2 General Adaptation Process . 40
4.8.3 Principal Adaptation Approaches 41
4.8.4 Other Approaches . 44

4.9 Conclusion . 47

31

32 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

Client
requirements Software

satisfy

Figure 4.1: The goal of software engineering.

adaptation.

This chapter is organized as follows: We will expose in sections 4.1, 4.2, 4.3, 4.4 and 4.5
definitions of Component-Based Software Engineering (CBSE), software component, ab-
straction of a component, the notion of interfaces, and we give examples of component
models. In section 4.6 and 4.7, we present some works which concern the verification of
assembled systems. In section 4.8, we present some works that have already been done
in the context of component adaptation, we present also a taxonomy of adaptation tech-
niques. Finally, in section 4.9, we conclude.

4.1/ Component-Based Software Engineering

The Component-Based Software Engineering (CBSE) is a branch of the software engineer-
ing which is based on the separation of preoccupations. It has emerged in 1990 as an ap-
proach which bases on reusing entities called 'software components'.

At any time, the systemcanexpressnewneeds tonewservices. However, the fact of seeing
anddeveloping the systemas oneunit constitutes a barrier in front of its evolution, where
it will be very difficult to specify the system parts which are altered by each evolution.
Also, the verification of the system after modification will be more and more complex,
because the totality of the system will be concerned. In fact, the disadvantages of this
approach have changed the manner of designing and developing these systems. That is
what justifies the trend of the new approaches which take a system as a set of basic units
such as CBSE approach.

Thus, the CBSE is seen as the process of defining, implementing, assembling and inte-
grating independent components or weakly coupled components. It searches essentially
tomake the construction of softwaremore easier by assembling pre-existed components.
Thus, it aims to the reuse, where a component can be used by several systems, which re-
duces the cost and the time of development. This approach also contributes to control the
evolution of the system and itsmaintenance, where the altered parts bymaintenance can
be defined in term of components (see Figure 4.2).

4.2. DEFINITION OF SOFTWARE COMPONENT 33

Figure 4.2: The goals of CBSE.

4.2/ Definition of Software Component

In literature, there is several definitions of the software component term. Among these
definitions, we choose the one cited in [Mic95], in which the component is defined as a
binary and reused piece of software which can be used and connected with other compo-
nents. In [Szy98a], Clemens Szyperski defined the software component as a unit of com-
position with contractually specified interfaces and explicit context dependences. Ac-
cording to Szyperski, a software component can be deployed independently and can be
the subject to composition by third-parties.

From the definition of Szyperski, we can extract the essential characteristics thatmust be
fulfilled by a software component:

• Standardized: thismeans that the componentmust conform toamodel. Thismodel
can define the interfaces of the component, its meta-data, its documentation, its

34 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

composition ad its deployment.

• Independent: The component can be composed and deployed without having need
to a specific set of components. When a component, in the new system to which it
was composed, requires a set of exterior services, this need can be specified using
the required interface of the component.

• Composable: For a component to be composable, all its external interactions must
take place through publicly defined interfaces

• deployable: To be deployable, the componentmust be able to operate as stand-alone
entity on some components platforms that implement the component model.

• Documented: A componentmust be fully documented to allow to potential users to
decide whether a component can satisfy their needs or not.

A component is considered as a black box. Thus, itmust be equipped by a set of interfaces
whichallow to thecomponent to interactwith its environment, itmustprovideessentially
a description of its interfaces set. More precisely, it has to specify what it can offer and
what it waits from its environment. Each interface must be provided with a contract that
specifies themode of use and the constraints according towhich the functionalities of the
component will be executed [Szy98a].

4.3/ Abstraction of Components

The abstraction allows hiding the detail of implementation through the use of interfaces.
The most ideal abstraction is that where the environment doesn't need any detail about
the implementation of the component interfaces, which justifies the notion of 'black box'
component. The components interact using their input and output actions. Input actions
represents procedures or methods that can be called, and the receiving end of communi-
cation channels, as well as the return locations from such calls. Output actions are proce-
dures or method calls, message emissions, the act of returning after a call or method ter-
minates, and exceptions that arise duringmethod execution [dAH01]. The verification of
these components consists on evaluating their outputs in function of their inputs.

Componentinputs outputs

Figure 4.3: Black-box component.

Often, knowing some detail about the component activities is necessary to havemore in-
teractive component, so called grey box component. In this case, the component can give
more detail concerning, for example, the conditions underwhich the exterior services are
called.

4.4. COMPONENT INTERFACES 35

4.4/ Component Interfaces

In the approaches where the components are considered as black-boxes, the definition of
the components interfaces is very important tomake them able to communicate and col-
laborate with others entities. The interfaces must be defined very clearly to give a good
description of the roles of the components. The description of interfaces must be sepa-
rated from the components implementations [Crn02, Szy98b]. This separationhelps to (i)
replace the implementation without changing the interface, (ii) improve the system per-
formance rather than rebuild it, and (iii) add new interfaceswithout changing the existed
ones.

A component must be, at least, equipped by one type of interfaces, required interface or
provided interface. Theprovided interfacesof a component represent the services that the
component can offer to its environment. However, the required ones are the imported
interfaces of the other components. They summarize the services that the component
requires from its environment. Each service is represented concretely as anoperation (see
Figure 4.4).

Interface

Component

Operation

*

*

offeredInterfaces

*

*

operation

*

*
requiredInterfaces

Figure 4.4: UML sub-meta-model of syntactic specification of a software component.

4.5/ ComponentModels

Themost fundamental problemof component-based development is howa systemcan be
constructedbyassemblingandmaking interoperate a set of components conceivedbydif-
ferent providers. Thus, the standardization of component models, that the components
must respect, appears indispensable. That's why, many component models have seen the
light,such as CCM, EJB, etc. According to Rainer Weinreich and Johannes Sametinger
[WS01], a component model must define the standards set that will reign the design and
the implementation of components. These standards concern the naming, interoperabil-
ity, personalisation, composition, evolution and the deployment. A component model
defines also the standardswhich specify the implementation of the componentmodel on
agivenplatformand the set of executable softwareentitieswhicharenecessary to support

36 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

the execution of a component which conforms to themodel.

A component model must define at least three elements, the syntax of components (i.e.
how they are constructed and represented), their semantics (i.e. what the role of the com-
ponent in the assembled system), and their composition. There exists many component
models for different application domains. The industrial models (e.g. EJB (Entreprice
JavaBeans)[Sun06], CCM(CORBAComponentModel) [OMG06], COM(ComponentObject
Model) et .NET [M. 07]) provide the extra-functional services in containers, such as the se-
curity and the persistence services, which discharge the developers from defining these
extra-functionnal services and allows them to concentrate on the business logic of their
applications. These component models have different views on the component notion.
Some models are used only for the architectural design without any execution support
(e.g. UML 2.0). Some models define the component as a run-time entity (i.e. COM/NET
[M. 07], Fractal[BCL+04, BCL+06]), however, there are other models that consider it as a
design entity (i.e. KobrA [ABM00], SOFA [PV02, BHP06], PCM [BKR07]).

Themost well-known of such componentmodels are CORBA and EJB [Sun06]. The tradi-
tional CORBA Component Model, as it is defined in CORBA 2.4 [OMG00] and its anterior
versions, have many limitations. Among its major limitations, the lack of a standard to
deploy objects on the server side, it also lacks of mechanisms of managing objects life cy-
cles. In these versions, there is no separation between the functional and no-functional
requirements. To overcome these limitations, the CCM (CORBA Component Model) have
seen the light. It defines the functions and the services that allow the implementation,
the management, the configuration and the deployment of components. The most fa-
mous componentmodel is, without doubt, CORBA,which is themost appropriate for dis-
tributed applications. However, the cumbersome and the complexity of this model con-
stitute its major disadvantages. The model EJB is more restrictive and more efficient. It
bases essentially on JAVA, and it has earned an important part of themarket [Mou11].

4.6/ Verification of Component Compatibility

Building a system by assembling a set of components implies the adoption of some pre-
cautions during the assembling time. First of all, the components must be compatible,
after that, it is necessary to check that these components fulfil the requirements to which
they are dedicated. The compatibility check of components is performed by computing
the compatible states of their parallel execution. According to the optimistic approach of

0 1 2 3 4

5

6

msg; send! nack? send!

ack?

ack?ok;

nack?

0

compatible state

illegal state

Figure 4.5: User ⊗ Comp. The set of compatible states is not empty

de Alfaro and Henzinger [dAH01], which is defined on interface automata, two compo-

4.7. FORMAL ANALYSIS OF ASSEMBLED SYSTEMS 37

nents are compatible if the parallel composition of their interface automata is not empty.
This means that there is at least one compatible state in their synchronous execution. To
illustrate that (see Figure 4.6), we reuse the example presented in Figure 3.5.

A decision about the compatibility or not of components must be taken on several dif-
ferent levels. The first level concerns the signature of component services. In [CPS06a],
the authors insist on the fact that the signature of a component is no longer sufficient to
ensure the good interaction with other components. The definition of signature, which
is resumed in a presentation of the offered and required services of components, must
be duly completed by a specification of the interaction protocol of the components with
their environment [dAH05], [CCM12a]. Also, Bordeaux et al. in [BSBM04], have insisted
on the fact that the compatibility of web services depends not only on static properties
like the correct typing of their message parameters, but also on their dynamic behaviour,
where providing a simple descriptionof the service behaviour, basedonprocess-algebraic
or automata-based formalisms, can help detectingmany subtle incompatibilities in their
interactions.

Teixeira in [TeS11] proposed an approach to evaluate the compatibility of components
specifid in UML, they use the state machine diagram to describe component behaviours
which are then translated to a Petri net to identify compatibility problems.

Carrillo et al., in [CCM12a], have proposed an approach that allows combining the semi-
formal models of SysML and the formal models (interface automata) to verify the consis-
tency and the compatibility of SysML blocks.

In the component domain, there is many approaches that have targeted the component
compatibility issue, and themanner tomake them cooperate. Themain difference lies in
the formalismwhich is used tomodel the interactions of components with their environ-
ment. The choice of a model among others, is guided and justified by the expressiveness
of the model semantic and the properties to verify. In [EPK02] and [KEP07a], the authors
have used PRES+ [CEP00], which is a variant of timed Petri net. They justify this choice
by the capacity of PRES+ to capture intuitively the concurrency and real-time aspects, and
can expose both the data and the control flow of the system. The process algebra is used
into many works (e.g. [BBC05a] use a subset of Pi-Calculus [MPW92], [AG97] use CSP
[Hoa85]). This choice of process algebra is justified by its capacity to featuremore expres-
sive descriptions of protocols, enable more sophisticated analysis of concurrent systems,
and support formal derivation of safety and liveness properties.

In our approach for verifying SysML blocks compatibility, we have tried to benefit from
the hierarchy present in the systemmodels. We have based on Hierarchical Interface au-
tomata (HIAs) as formal hierarchical formalism that allowsmodelling the interactions of
eachblockwith its environmentusing composite andnested states. After, basingon some
relations between the HIAs of blocks that we want to verify their compatibility, we select
some states to flatten and others to consider as abstract states. We have introduced this
step into our approach to alleviate the compatibility verification.

4.7/ Formal Analysis of Assembled Systems

It is very interesting tomake call to formalmethods to verify the result of assembling a set
of components to construct a system [KEP07a]. Theuseof formalmethods appearsworth-
while because it allows spotting the interactiongaps and theparallel executiondefaults of

38 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

these components. A formal analysis can concern several errors, suchas thedeadlock, the
unfairness, etc. It can also target the temporal properties [CGP99, Sch04, CCM14], such as
the order of components services invocation, or verifying if when a component requests a
service, the other components can always answer this request by offering the correspond-
ing service. This verification can also concern the defaults in one component but after
its assembling with others. In this case, it targets for example the local blocking in this
component [BCS+08, CK96]. In [CK96], Cheung and Kramer present their approach for
verifying if a component contains the anomalies by using some environment hypothesis.
Thesehypothesis or constraints allow toenhance theverificationby reducing theproblem
of state explosion. Because verifying a component, without having information about its
execution context, makes the verification more difficult. This difficulty can be resumed
byanalysingno interesting scenarios, or byverifying the scenarios that canneverhappen.

There are several manners that allow the verification of the assembled systems. On one
hand, there is those that take the system in its totality as one unit. They base on the
traditional verification methods such as model checking [CGP01] and theorem proving
[Sam76]. On the other hand, we find the methods which take advantage of the fact that
the system is considered as a set of components [CIP04, XB03, CCM14, DOP13, DOP14]. In
[CCM14], Carrillo et al. prove that if a temporal property is verified on a SysML block (a
SysML block is the equivalent of a component in the component-based paradigm), it will
be verified on the parent block which contains this block with others. There is also some
methods that put some hypothesis on some properties of some components or of envi-
ronment, to guarantee that other properties on other components will be verified. This
method is called Assume-Guarantee [DOP13, DOP14]. It bases on iterative processes to
prove that the initial hypothesis is always verified or it is verified in the context where the
systemwill take place.

In our case, we assemble the system parts after adapting them using special blocks called
adapters. To verify that a temporal requirement which is initially satisfied by a block, is
still satisfied after assembling it with other blocks, we base only on a sub-set of the gener-
ated adapters. Later, in chapter 9, we givemore details about our approach.

4.8/ Components Adaptation

When assembling separately developed components, there is a high probability of en-
countering theproblemofmismatches. These lattermayconcern forexample thenameof
services, as well as the order in which the component asks for (resp. offers) environment
services (resp. its services). That iswhat justifies the introduction of third entities or com-
ponents that are used to solve thesemismatches. These components are called 'adapters'.
Thus, the adapter plays the role of amediator (see Figure 4.6) between the reused compo-
nents. In fact, all the interactions pass through this adapter which acts as an orchestrator
and allows the involved components to work correctly.

4.8.1/ Adaptation Taxonomy

In [CMP06], there is a classification of the different types of the adaptation that can be ap-
plied on softwareparts.This classification is basedona set of criteria,where each criterion
produces two categories. The first criterion concerns the phase in the life cycle in which

4.8. COMPONENTS ADAPTATION 39

C1 C2

a m

b n

C1 C2

Ad
a m

b n

«adaptation contract»
⟨ a, n ⟩
⟨ b, m ⟩

Figure 4.6: The role of the adapters.

adaptation takes place:

• Static adaptation (design time adaptation):

This category concerns the adaptation done before the execution of the system. It
can refer to both requirement (ormodel) adaptation, or to the adaptation of already
developed pieces of code. The first case may happen when we need to extend the
system specification bynew requirements. Or, whenwewant tomodify the require-
ments. However, the adaptation of already existed pieces concerns for example the
modificationof themannerwhose the services are requestedor offered. In the static
adaptation, all stepsareknownandhavebeenplannedbeforeproceedingwithadap-
tation.

• Dynamic adaptation (runtime adaptation):

It takes place in the execution time of the software. In this case, the components to
adapt and the steps to follow are unknown before the the adaptation time.

Another classification is based on the the way in which the adaptation is managed. Ac-
cording to this criterion, the adaptation could be:

• Manual adaptation:

The adaptation steps as well as the adaptors are specified and developed by the ar-
chitects and developers involved in the development process. It can be assisted by
some tools.

• Automatic adaptation:

All adaptation steps and adaptors are automatically generated by software tools.
These tools are able to deduce if its necessary to apply an adaptation. It is also to
these tools to decide about the steps to follow for generating the adapter.

40 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

Yahiaoui et al., in [YTL04], have introduced an alternative criterion. This criterion con-
cerns the kinds of the properties concerned by the adaptation:

• Functional adaptation:

It concerns the organisation of required and offered services. It can involve both
adding new services, andmodifying the existed ones.

• Technical adaptation:

In this case, the adaptation intends to modify the way and the constraints under
which the services are provided. It is usually done by adding or removing con-
straints to the behaviour of these services.

Another criterion concerns the restriction of the component interaction protocol. Ac-
cording to this criterion, it is possible to distinguish two kinds of adaptation:

• Restrictive adaptation:

It bases on reducing the interaction protocol of the components to remove the be-
haviours that lead to errors (as in [IS01, IT03a]). The idea consists on synthesizing a
controller between components. Deadlocks detected on the controller are avoided
by removing some branches. By this way, the controller enables the maximum set
of interactions between the components which do not lead to deadlock states.

• Generative adaptation:

It is more general, it takes into consideration the effect that when two compo-
nents are developed separately, there is a great chance that they do not agree on
the same name for their services. It may also have a problem in the combination
of their protocols (parallel execution). Thus, it seems very essential to establish
a mapping between their services. This mapping can take the form one-to-one
[YS97, BCP04, BBC05a] or more complex form one-to-many [CMM10b]

4.8.2/ General Adaptation Process

The component adaptation process contains essentially three phases:

1. The specification of the components interaction protocols using suitable formalism
(IDL: InterfaceDescription Language): This formalismmust be able to represent the
concerned concepts by the adaptation phase.

2. The specification of the adaptation contract: IDLs of componentsmust be extended
by some adaptation rules which form the adaptation contract. When assembling
two components developed separately, there is a high probability to confront the
problem ofmismatches between their services. Essentially, the adaptation contract
in CBSE is used to solve this problem of mismatches between components [CS14].
An adaptation contract is specified by a set of rules, where a rule takes the form of a
synchronous vector vi [CPS08] (see Figure 4.7). The number of elements of each vec-
tor is the number of components. A synchronous vector vi for a set of components
({Ci}i∈{1..n}), is a tuple ⟨e1, ..., en⟩with ei can belong to the set of actions of the compo-
nent Ci, or it can be equal to ε. εmeans that the component Ci doesn't participate in

4.8. COMPONENTS ADAPTATION 41

Figure 4.7: The adaptation contract.

this synchronization. For example, the vector v= ⟨ε,..., e j,..., ek,...ε ⟩means that the
service e j of the component C j corresponds to the service ek of the component Ck.

3. The generation of the adapter: It can be done automatically. Basing on the adapta-
tion contract and the IDLs of components, the adapter will be generated.

4.8.3/ Principal Adaptation Approaches

In literature, therearemanyapproaches foradaptation. Themostknowndifferessentially
in the formalismsused todescribe the interactionof componentswith their environment.
In this section, we will present briefly two approaches, the first one uses the π-calculus
process algebra and the second bases on the labelled transition systems and Petri nets.

Adaptation of π-calculus protocols

In [BBC05a], the authors have proposed an approach based onprocess algebra to generate
automatically the adaptors. In this work, the specification of the component interfaces is
extended by a description of the interaction protocols using π-calculus. The used variant
of pi-calculus is the following:

E::= 0 | a.E | (s) E | [x=y]E | E∥E' | E+E'

a::= τ | x?(d) | x!(d)

The input and the output actions, which represent the requests of services and the re-
ception of these requests, are represented using the notation x!(d) and x?(d), where x is
the name of the action, and d represents a set of parameters or data emitted or received
through x. The internal actions (no observable actions) are represented using τ.

The actions are included in processes E where 0 represents the inaction, (x)E represents
the creation of newname x in the process E. the operator [x=y]E represent the conditional
behaviour, [x=y]E can be translated by E if x=y, and by inaction in the other case. The
choice operator + between E and E' is translatedwith the execution of E or E'. However the
parallel operator ∥ indicates the parallel execution of E and E'.
We will explain this approach through this example:

42 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

role Client={

signature request! (Data url); reply? (Data page);

behaviour request! (url) . reply? (page).0
}

role Server={

signature query? (Data url); return! (Data file);

behaviour query? (url) . return! (file).0
}

The Client is a web browser, where the user can enter an URL and send a request to vi-
sualize the web page or to open a file. The Server is a web sites host which contains an
application that allows to receive the requests of clients and send aweb page or a file. The
interaction behaviours of the Client and the Server are represented using π-calculus.

Basing on the correspondences between request! and query? and between reply? and
return!, the adapter A that satisfies this specification can be defined as follows:

A=request?(url) . query!(url) . return?(file) . reply!(page).0

Adaptation based on LTSs and Petri nets

Theworkpresented in [CPS06a] is based onusing regular expressions and labelled transi-
tion systems to specify the component protocols. The correspondences between compo-
nent services are expressed using synchronous vectors. However, the adapter specifica-
tion is represented using regular expressions which can be represented as a LTS that has
the synchronous vectors as labels of its transitions.

incompatible?
yes

reorder?

no adapter

no

no

yes

LTSs of components

Synchronous Product

Petri net

Adapter

adapter
generation

Figure 4.8: Adaptation approach [CPS06a].

The automatic generation of the adapter can be done with twomanners:

• Adaptation without reordering: In this approach, the adapter must respect the or-
der of actions, and it must deliver the received action to the concerned component
before executing any other action. In this case, the adapter is simply represented by

4.8. COMPONENTS ADAPTATION 43

the mirror of the synchronous product of the LTSs of components. The mirror con-
sists on inverting the type of actions, where the input (resp. output) actions become
output (resp. input) actions.

• Adaptation with reordering: It consists in reordering the calls for services, the idea
is to encode in a Petri net the set of the adaptations constraints. The places assigned
to the states of the components (Control states) and theplaces called resource-places
(the states having a labelwhichfinishes by '??' or '!!') must be created. After that, the
transitions of the Petri net, their incoming and their outgoing arcswill be created by
following the information manifested by the transitions of the LTSs of the compo-
nents. This set of incoming arcs includes also the arcs that link resource-placeswith
the transitions of components (they represent receptions of calls). However, the set
of ongoing arcs contains also the arcs that link the transitions of the components
with the resource-places (they represent the generation of a service call). After that,
the LTS of the adapter and a set of 'tau' transitionswill be used to links the resource-
states where the components put their calls for services with the resource-places
from where the components consume these calls. The Algorithm 1 details the cre-
ation of this Petri net.

Algorithm 1 Adaptation with reordering using Petri net
INPUT: {⟨ Ai, Si, Ii, Fi, Ti ⟩}i=1..n // the LTSs of the components
⟨ AR, SR, IR, FR, TR ⟩ //the LTS of the adapter specification

1: for all component i do
2: for all s j ∈ Si do
3: - create a place Control-i-s j

4: end for
5: -add a token in the place Control-i-Ii, where Ii is the initial state

of i
6: for all a! ∈ Ai do
7: - add a place ??a
8: end for
9: for all a? ∈ Ai do

10: - add a place !!a
11: end for
12: for all (s,l,s’) ∈ Ti do
13: - add a transition t labelled with l̄
14: - add an arc from the place Control-i-s to the transition t
15: - add an arc from the transition t to the state Control-i-s’
16: - if l has the form a! then add an arc from the transition t to

the place ??a
17: - if l has the form a? then add an arc from the place !!a to the

transition t
18: end for
19: end for
20: for all sR ∈ SR do
21: - create a place Control-R-sR

22: end for

44 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

23: -add a token in the place Control-R-IR

24: for all (sR,(l1,...,ln),s’R) ∈ TR do
25: - add a transition t labelled with tau
26: - add an arc from the place Control-R-sR to the transition t
27: - add an arc from the transition t to the place Control-R-s’R

28: for all li of the form a! do
29: - add an arc from the place ??a to the transition t
30: end for
31: for all li of the form a? do
32: - add an arc from the transition t to the place !!a
33: end for
34: end for

TheLTSof the adapterwill be obtained by computing themarking graph (non recur-
sive adapters) or the recoverability graph (recursive adaptors) of the resulted Petri
net.

4.8.4/ Other Approaches

Several surveys have been done on existing works which have proposed solutions in the
software adaptation area [CMP06, SEG09]. In the literature, many approaches [KEP07b,
CPS06b, CMM12] have been proposed to adapt components designed separately. These
approaches can differ, for example, in the formalism used to represent the interfaces of
the components and to model their interaction protocols and the context of adaptation.
There exist many frameworks that allow modelling components and establishing links
between them such as Papyrus [pap], BIP [BBB+11], etc. Papyrus put at the disposal of de-
signers a set of SysMLdiagrams that allowsmodelling the architecture, the behaviour and
the requirements of components. BIP (Behaviour, Interaction, Priority) is a general frame-
work that supports rigorous design of components. BIP language allows building com-
plex systems by coordinating the behaviour of a set of components. The behaviour is de-
scribed with Labelled Transition Systems (LTS) extended with data and functions written
in C. In [BBJ+10], the authors have introduced the notion of dispatcher component. Their
dispatcher links the required and the provided ports of BIP components, but it doesn't im-
pose a scheduling on component execution, where the global interaction of these compo-
nents is guidedonly by their execution scenarios, and the dispatcher plays its role roughly
as a connector. In fact, most of these frameworks use the concept of connector to express
the coordination between components. Nonetheless, connectors are stateless [BBB+11].
In our work, we use the connectors to express coordination between components of sys-
tems but after a stage of behaviour adaptation. In our work, the coordination between
components cannot be assuredwithout inserting special components called adapters that
allow solving the mismatches between the name of component services, and they allow
also restricting some coordination scenarioswhich are not essential for assembling these
components. This restriction is allowedby respecting the specification of the interactions
of the parent (of the reused blocks) block toward its environment.

In [CMP06], we find a census of the different methods and works that have proposed so-
lutions on the software adaptation track. The authors have addressed the different an-
tecedents andmotivations that justify the interest given to this track, where themajor ob-
jective is the creation of a software component market (the so called COTS : Commercial

4.8. COMPONENTS ADAPTATION 45

OffTheShelf),where thedevelopers canfindsomecomponents for their applications. The
authors opened a debate on the characteristics that must be present in a component, this
debate can be summarized into the question: How canwe offer components with specifi-
cations that will serve and help in the totality of CBSE process?

In [CPS06a], the authors insist on the fact that the component signature is no longer suf-
ficient to ensure its good adaptation with other components. The definition of signature,
which is summarized into a presentation of the offered and required services of the com-
ponent, must be duly completed by a specification of the interaction protocol of the com-
ponent with its environment. This protocol helps to order the interaction of this compo-
nent, allows defining its functional semantic and gives an idea of its behaviour towards
its environment.

Most adaptation proposals focused on solving the behavioural mismatches between ab-
stract descriptions of software components [MPS12, CPS08, TI08, BBC05b]. In [TI08],
Tivoli et al. present an approach that allows generating adapters by enforcing behavioural
properties. The entry of the adaptation process is the set of MSCs (Message Sequence
Charts) that represent the components to assemble, and the set of LTL properties (live-
ness and safety) that the resulted system must satisfy. The authors have adopted on a
restrictive adaptation approach to generate the adapter. This approach consists in reduc-
ing the interaction protocol of the components by removing the behaviours that lead to
errors. The idea consists in synthesizing an adapter that plays the role of a controller be-
tween components. Deadlocks detected on the controller are avoided by removing some
branches. In this way, the controller enables the maximum set of interactions between
the components which do not lead to deadlock states. Bracciali et al. in [BBC05b], have
proposed their methodology for generative behavioural adaptation where components
behaviours are specified using a subset of the π-calculus and composition specifications
are specified with name correspondences. In [MPS12], Mateescu et al. have presented
their on-the-fly approach to adapt a set of services initially modelled by STSs (Symbolic
Transition Systems), where these STSs are extracted from the BPEL description of the ser-
vices. A contract which contains a set of synchronization vectors is used to specify the
correspondences between the interfaces of services. They perform a verification of this
contract using CADP [GLMS13], a rich verification toolbox. They explain there, how it
is possible to represent these STSs and LTS using LOTOS process algebra. They explain
also their forward approach to eliminate, from the adapter, the states and the branches
that can cause anomalies (e.g. livelock states) in the interactions of the adapter with web
services. Canal et al. in [CPS08], show how to automatically generate a concrete adaptor
fromaspecificationof the component interfaces and the adaptation contract (which takes
the form of a set of correspondences between the actions of components). Also in [CS14],
Canal et al. have focused on asynchronous communication between components, where
components exchangedmessages via buffers. Our approach takes place in the context of
synchronous communication, where we adopt a generative-restrictive approach to con-
struct the adapter block that can solve name mismatches between blocks. We have used
interface automata to formally specify the interactions of the reused blocks, where their
parallel composition,whichconsists in eliminating the illegal states, allowsus togenerate
adapters that avoid the blocking of components. Also, our adapter is generated according
to the specification of the composite block that will contain the reused blocks (which is
not the case for the works presented above), this specification can be seen as a reflection
of the environment where the components will take place.

The approacheswhich intend to assemble the components can also differ in the direction

46 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

of the design: bottom-up vs to-down. We find in [CCM12b], Carrillo and al. adopt a top
down approach, where they verify if a specification of a SysML composite block can be di-
vided on a set of sub-blocks specifications, the authors didn't refer to the adaptation issue.
In [IT03b, PST07], the authors have adopted a bottom-up approach, they construct the
wanted system by assembling existing components. Thus, they start from existing com-
ponents which represent the leaves of the system. They take components designed sepa-
rately, hence to allow the correct interaction between them, they synthesize a third entity
called adapter. Our approach, which we present in this paper, concerns SysML blocks as
in [CCM12b], it is a bottom up approach like in [IT03b, PST07]. However in our process,
we don't give only the mapping rules between actions like in [IT03b], and we don't give
the specification of the adapter as in the works already done in [PST07]. But, we give the
interaction protocol of the composite block which will include the reused blocks. This
block represents the part of the system that the architect wants to develop and integrate
to the system. Thus, the interactions of this block must be specified with respect of the
role which it will play in the systemwhere it will be integrated.

The main difference between the existing adaptation approaches concerns the detail
given to generate the adapter. In [IT03b, CH11b, DBM14, BBC05b, TI08, CMM10a], the au-
thors give only an adaptation contract which is resumed in a specification of the corre-
spondences between the services of the blocks (see Figure 4.9 (i)). In fact, this will have an
impact on the generation of the adapter that will contain all the possible interaction sce-
narios between the reused components, it can contain scenarios that they are not neces-
sary for the cooperation of the reused components. However, in [PST07, CPS06a, CPS08,

C1 C2

v1
v2
v3

(i) Ad ⊂ M= {v| v∈ Sc1 × Sc2}

C1 C2
v1

v2
v3

v3 v1

(ii) Ad=(v1.(v3.v1)∗.v2.v3)∗

C1 C2

C
a1
a2 a3

a1

a4

a5

a3

(iii) Ad=f(C1, C2, M, C)

Figure 4.9: The difference between our approach (iii) and the existing approaches (i, ii) of
adaptation.

MPS12], the authors increment their adaptation contract by a specification of the adapter
interactions by ordering the vectors of the adaptation contract using regular expressions
or a LTS of vectors (see Figure 4.9 (ii)). This requires that the developer, beforemaking the
specification of the adapter, must know verywell the interaction of each component with
its environment, andhemust have an idea about the synchronous executionof the reused
components. In this context, we ask the question about the detail that will be enough to
generate adapters to make a set of components cooperate, where this cooperation must
respect the intention behind their assembling? Therefore, in our approach (see Figure 4.9

4.9. CONCLUSION 47

(iii)), we propose tomoderate the specification thatmust be given to generate the adapter.
In our approach, the developer gives the interactions of the part of the system to be built
and integrated to the systemwith its environment. The generation of the adapter is based
on the specification of this part, by taking into consideration that this last will be the box
thatwill include and represent the reused blocks during their interactionswith the rest of
the system.

In our approach, we don't use the conditions of consistency used by Carrillo et al. in
[CCM12b] concerning the inclusion relation between the set of services offered and re-
quired by the composite block vs the set of services provided and required by its sub-
blocks, because in the present work we take into consideration the possibility of making
an adapter as a complement to achieve the specification of the parent block. In fact, our
notion of adapter differs from the notion used in the existing works. In previous works,
the adapter is defined as a protocol converter (it solves the problem of namemismatches
between components). However, in our approach the adapter has two roles. It plays the
first role as a converter between sub-blocks on the one hand, and between the reused
blocks and their environment on the other hand. It plays the second role as a comple-
ment, i.e., when the environment of the reused blocks asks for a service, and this service
is not offered by any of the reused sub-blocks, the adapter gives way thus to the developer
to implement this service. Also, when a reused block needs a service and this last can't be
offered by neither its sibling blocks nor by the environment of its parent, in this case the
adapter gives way to the developer to define this service.

We can consider that our approach introduces a new branch to the taxonomy of compo-
nent adaptation. In [BBC05b] , the adapter is defined binary, and in [IT03b] is defined
system-wide. However, in our approach, the adapter is defined as a composite-block-wide
adapter.

4.9/ Conclusion

In this last chapter of the state of the art part, we have presented some preliminaries con-
cerning the notion of component. We have also presented some works which have given
interest to the verification of systems developed as a set of components. We have focused
more on the adaptation and the works that have targeted this issue.

In the next part of this thesis, wewill present our contributions. They concern, aswe have
mentioned slightly in this chapter, the compatibility verification, the adaptation, and the
verification of the assembled systems after adaptation.

II
Contributions

49

5
Formalizing SysMLDiagrams

The goal of proposing and introducing SysML into the system engineering domain is
to put at the disposal of designers a language that allows resuming the thousands of

document lines (textual documents used to describe the requirements, the architecture
and the behaviour of the system) using a set of convivial and graphical models. Thus,
SysML was created to be a high level language that offers to designers sufficient design
flexibility. However, this flexibility and no-formal aspect of SysML have contributed to
the emergence of some ambiguities. These ambiguities can be summarized in the differ-
ent interpretations of the semantic of its concepts and diagrams (e.g. there is no indica-
tion at the level of SysML diagrams about whether the communication is synchronous or
asynchronous). In order to make the semantic of SysML diagrams that we will use more
precise and clear, we propose, in this chapter, to formalize these diagrams.

In the rest of this chapter, wewill give a formal definition of four SysML diagrams: In Sec-
tion 5.1, we present the elements of the Requirement Diagram (RD). After, in Section 5.2,
we give a formal definition of the Block Definition Diagram (BDD), where we focus on its
different elements. Next, in Section 5.3, we formalize the SysML Internal Block Diagram
(IBD). However, we reserve Section 5.4 for a behavioural diagram of SysML which is the
Sequence Diagram (SD).

Contents
5.1 Requirement Diagram (RD) . 52
5.2 Block Definition Diagram (BDD) 53

5.2.1 BDD Formal Definition . 53
5.2.2 Block . 53
5.2.3 Ports . 54
5.2.4 Parts . 55
5.2.5 References . 55
5.2.6 BDD Relations . 56

5.3 Internal Block Diagram (IBD) . 57
5.4 Sequence Diagram (SD) . 59
5.5 Conclusion . 59

51

52 CHAPTER 5. FORMALIZING SYSML DIAGRAMS

5.1/ Requirement Diagram (RD)

The requirementdiagram, as itsname indicates, allowsus to represent the systemrequire-
ments and the relations between them using graphical notation. In this section, we for-
mally define the SysML requirement diagram.

Definition 8: Requirement Diagram (RD)
We formally define the requirement diagram as follows:

RD= ⟨ Req, AtReq, ExtElm, CRel, DRel, SRel, VRel ⟩

Where:

• Req: is the set of all requirements.

• AtReq: is the set of atomic requirements, we have AtReq ⊂ Req. Each re-
quirement belongs to this set can’t be decomposed into other requirements.
We have:

AtReq={r∈Req | @(r1,...,rn) ∈ Reqn, (r, (r1,...,rn))∈CRel}.

• ExtElm: is the set of external elements. The elements of others diagrams to
which the requirements are linked. An external element can be a block, a test
case, etc.

• CRel: is the set of all containment relations between requirements. This
relationship enables a complex requirement (∀ r ∈ Req ∧ r < AtReq) to be
decomposed into its containing child requirements. We have:

CRel ⊂ Req × P(Req).

• DRel: is the set of derivation relations («deriveReqt»). We have:

DRel ⊂ Req × Req.

• SRel: is the set of satisfaction relations («satisfy»). A satisfaction relation
specifies which block is responsible of satisfying the given requirement. We
have:

SRel ⊂ (ExtElm × Req)

• VRel: is the set of verification relations («verify»), we have:

VRel ⊂ (ExtElm × Req)

In this type of relation the external element is a set of scenarios represented by
a state machine, sequence or activity diagrams, we call it a test case.

This formalisation helps in defining our approach for adapting SysML blocks and verify-

5.2. BLOCK DEFINITION DIAGRAM (BDD) 53

ing the set of requirements. It allows us also to exploit the relations between the require-
ments and the blocks during the verification phase.

5.2/ BlockDefinitionDiagram (BDD)

TheBlockDefinitionDiagram (BDD) in SysMLdefines features of blocks and relationships
between them such as associations, generalizations, and dependencies. It captures the
definition of blocks in terms of properties and operations [OMG12b].

5.2.1/ BDD Formal Definition

Definition 9: Block Definition Diagram (BDD)
Formally, we define a block definition diagram by the tuple:

BDD= ⟨ B, R ⟩

Where:

• B: is the set of blocks that compose the system, where each block represents
a part of the system that has its own properties and behaviour. We have:

B = { Bi | i ∈ {1..n}, n ∈ N },

where n is the number of blocks in the BDD.

• R: is the set of relations between blocks. We have:

R = { Ri | i ∈ {1..m} , m ∈ N } = Herit ∪ Ass ∪ Comp ∪ Aggreg.

Wewill define the sets Herit, Ass, Comp and Aggreg later in this chapter.

• We have B , ∅. This means that our system is composed at least of one block.

• if Card(B) >1 ⇒ R , ∅, where Card: B→N is the function that returns the number
of blocks which compose our system. This relation means that our blocks are not
isolated, and there are some interactions between them.

5.2.2/ Block

The blocks are modular units of the system description. The Block represents the basic
structural element of the BDD. It may include both structural and behavioural features,
such as properties and operations. To communicate with its environment, a block has a
list of ports.

54 CHAPTER 5. FORMALIZING SYSML DIAGRAMS

Definition 10: Block
Formally, we define a block as:

Block = ⟨ name, Values, Operations, Constraints,

Parts, References, Ports ⟩

Where:

• name : is the name of the block.

• Values: is the set of attributes of the block.

• Operations: is the set of the operations of the block. It describes its internal
behaviour.

• Constraints: this set gives some conditions about the values. A constraint
may be a comparison or an equation for computing a value of the block.

• Parts: this set includes the list of the blocks connected with the current block
through a composition relation.

• References: this set includes the list of the blocks connected with the current
block through a navigable association. We mean by navigable association,
an association which has one direction. In our case, its direction is from the
current block to the referenced blocks.

• Ports: is the list of the ports positioned on the block used to interact with
the blocks which belong to its environment. We define by

BlockPorts:B→ Ports,

the function that returns the set of ports associated to a given block.

5.2.3/ Ports

The ports allow to block to interact with the other blocks. In SysML 1.2, we distinguish
flow ports and standard ports. SysML 1.3 has deprecated the flow specification. However,
it has focused more on standard ports. Formally, we define a standard port by its name,
its type and its direction. The type of the port is represented by a block containing a list of
operations, we call it "interface_Block". The direction specifies if the port is a required
or a provided port, it takes two different values: req or prov.

we formalize a standard port as:

port= ⟨ name, type, Direction ⟩

A block which types a port contains a set of operations, we call it Interface_Block, it
specifies one of the interfaces associated to the block.

5.2. BLOCK DEFINITION DIAGRAM (BDD) 55

Definition 11: Interface_Block
We define an Interface_Block as follows:

Interface_Block= ⟨ name, Op ⟩

Where:

• name: is the name of the interface_block.

• Op: is the set of provided operations by the block, which are provided through
the provided port whose type is this interface_block. It can also be the set
of required operations which are required through the required port whose type
is this interface_block.

5.2.4/ Parts

The list of parts of a block contains the list of blocks which are connected to the current
one bymeans of a composition or an aggregation relations.

We have:

• The set of parts of a block is included in the set of the BDD blocks: Parts ⊆ B.

• The function BlockParts : B → Bn returns the set of parts of the block passed
in parameter. It returns thus the set of blocks which are targeted by composition
relations that start at the current block.

• ∀ Bi, B j ∈ B (B j ∈ BlockParts(Bi)
⇒ ∃ r ∈(Aggreg ∪ Comp) (Sides (r) = (Bi , B j)))

Where, Sides is a functionwhich affects to each relation r ∈ R the twoblockswhich
delimit this relation.

Sides : R → B2

• The function BlockParts allows us to identify if a block is an atomic or a composite
block.

• ∀ Bi ∈ B, we have:

– BlockParts(Bi) = ∅ ⇔ Bi is an atomic block.
– BlockParts(Bi) , ∅ ⇔ Bi is a composite block.

5.2.5/ References

The compartment References represents the list of blocks that the current block interacts
with, and in the same time, it indicates the Min and Max cardinalities which specify the
minimum and respectively the maximum number of the instances of target block refer-
enced by the current block. It uses also a boolean variable to indicate if these referenced
instances blocksmust be ordered or not.

We have:

56 CHAPTER 5. FORMALIZING SYSML DIAGRAMS

• The function References : B → (B × N × N × B)n returns a set of tuple,
where each tuple specifies: (1) a block which is referenced by the block passed in
parameter, (2) the min and the max of instances of the referenced block, and (3) a
boolean to specify whether this set of instances is ordered or not.

• We use the function ReferencedBlocks: B → P(B) to represent the set of blocks
which are referenced by the block passed in parameter:

ReferencedBlocks(Bi)={B j | ∃ e∈ References(Bi) ∧ e(1)=B j}

• The existence of a block B j in the set of references of a block B j means that it exists
a reference relation between them:

∀ Bi, B j ∈ B (B j ∈ ReferencedBlocks(Bi)
⇒ ∃ r ∈ Ass (Sides (r) = (Bi , B j)))

• If there is a reference between two blocks Bi andB j, this implies that it exists in each
of them a port which are linked, and these two ports have a different direction.

∀ Bi, B j ∈ B (B j ∈ ReferencedBlocks(Bi)
⇒ ∃ p1 ∈ BlockPorts(Bi) ∧ p2 ∈ BlockPorts(B j) ∧
((p1.Direction=prov)∧(p2.Direction=req))∨
((p1.Direction=req)∧(p2.Direction=prov)))

5.2.6/ BDDRelations

The set of relations in a BDD serves to construct bridges between blocks. Thus, from the
definition of the different compartments of a block, we can deduce that a relation can ex-
press composition, aggregation, heritage and associations between system blocks.

1. Heritage:
The heritage relations allow to simplify the development of system, and to create
clear models by factorizing the shared elements between blocks.

We have:

• The function Inherit : B × B → B, is a boolean function that allows us to
know if the first parameter inherits the second, where the two parameters are
blocks.

• ∀ Bi, B j ∈ B (Inherit(B j, Bi)
⇒ ∃ r ∈ Herit (Sides(r) = (Bi , B j)))

2. Composition and aggregation:
The composition and aggregation relations allow to preserve the principle of black
box vswhite box, which guides the development of system throughmultiple phases
by transiting across abstraction levels. Asweknow, the difference between the com-
position and aggregation relations concerns the importance of the parts for their
parents, where in the composition relation, the parent block can't exists without its
parts. Hence, we can consider that the composition is a strong aggregation.

5.3. INTERNAL BLOCK DIAGRAM (IBD) 57

• The functionIsComponentOf : B × B → B, is aboolean function thatallowsus
to know if the block passed in the first parameter is a component of the second
block passed in the second parameter.

• The set of all blocks linked with composition or aggregation relations which
starts from Bi ∈ B is equal to the set of blocks which belong to the parts of Bi

(BlockParts(Bi)).

∀ Bi ∈ B ({B j ∈ B| IsComponentOf(B j, Bi)} = BlockParts(Bi))

• if a port pi is owned by a block Bi, and this port has no corresponding port in
the blocks in the same hierarchy with Bi. Thus, we deduce that pi is a port of
the parent block (PB) which contains Bi (i.e. it exists a delegation between the
composite block PB and the component blocks {Bi}).

∀ PB ∈ B, ∀ Bi ∈ B, ∀ pi ∈ BlockPorts(Bi) (

isComponentOf(Bi , PB) ∧ @ p j ∈
∪

BlockPorts (B j)(

Correspond(pi , p j)) ⇒ ⇒ ∃ p ∈ BlockPorts(PB) (Correspond(pi , p)))

where Correspond: Ports x Ports → B is the function that returns true
when the ports in parameters are corresponding ports (two ports are corre-
sponding ports if they are conceived to be linked together).

3. Association:

The BlockDefinitionDiagramuses the associationswith restraint navigability. This
kind of associations expresses a directional connexion between two blocks.

• The function Associated : B × B → B is a boolean function that allows us
to know if the block passed in the first parameter is the target of a navigation
relation which starts from the block passed in the second parameter.

• Wehave, the set of all blocks linked to Bi∈ Bwith an association that starts from
Bi is equal to the set of references of the block Bi (BlockReferences(Bi)):

∀ Bi ∈ B ({B j | Associated(B j , Bi)} = BlockReferences(Bi))

5.3/ Internal BlockDiagram (IBD)

The Internal Block Diagram (IBD) in SysML captures the internal structure of a composite
block B (BlockParts(B) , ∅) [OMG12b]. It represents the relations between the required
and the provided ports of blocks instances. These relations are represented using the con-
nectors.

58 CHAPTER 5. FORMALIZING SYSML DIAGRAMS

Definition 12: Internal Block Diagram (IBD)
Formally, an IBD can be defined as a graph, where instances of blocks (parts) are
vertexes and the connectors are edges.

IBD = ⟨ Parts, Ports, Connectors ⟩

Where:

• Parts is a set of instances of the blocks linked to the composite block B with
composition relations.

• Ports is a set of ports. Each port is assigned to a part.

• Connectors is a set of connectors linking provided ports with required ports
of blocks instances.

We can divide the set of connectors into two sub-sets, a set of delegation connectors (DC)
and a set of standard connectors (SC). Thus, we have:

• Connectors = DC ∪ SC

• DC: is the set of connectors that link the composite block with its parts.

DC= { (pi , p j) | pi ∈ Ports ∧ p j ∈ Ports ∧

((pi.Direction= req ∧ p j.Direction=req) ∨

(pi.Direction= prov ∧ p j.Direction=prov))}

• SC: is the set of connectors that link the parts.

SC= { (pi , p j) | pi ∈ Ports ∧ p j ∈ Ports ∧

((pi.Direction= req ∧ p j.Direction=prov) ∨

(pi.Direction= prov ∧ p j.Direction=req))}

5.4. SEQUENCE DIAGRAM (SD) 59

5.4/ Sequence Diagram (SD)

Definition 13: Sequence Diagram (SD)
We specify a SysML sequence diagram by:

SD= ⟨ Blocks, Msgs, CF, Ref ⟩

where:

• Blocks: is the set of blocks, they represents the actors involved in the inter-
action described by this SD.

• Msgs: is the set of the messages exchanged between the blocks.

• CF: is the set of combined fragment,
CF={ (operator, operands) | operator ∈ {alt, loop, par, opt,
seq, strict, break}, operand ={msg| msg∈Msgs}}

• Ref: is like anchors which indicate that this sequence diagram includes other
sequence diagrams. Ref = {SDi}.

5.5/ Conclusion

In this chapter, we have formalized four SysML diagramswhich are the Requirement Dia-
gram (RD), the Block Definition Diagram (BDD), the Internal Block Diagram (IBD) and the
Sequence Diagram (SD). We will use RD to represent the requirements of systems. The
BDD and IBDwill be used tomodel the architecture of systems. However, wewill focus on
theSDtomodel thebehaviour (interaction)of theparts (blocks) of systems. The formalisa-
tion of these diagramswill help us to define our approaches of adaptation and verification
without ambiguities. Thus, this chapter will be the reference in the next chapters when
we deal with high level modelling.

6
A SysMLModel Driven Approach
to Verify Blocks Compatibility

In the component paradigm, the system is seen as an assembly of heterogeneous com-
ponents, where the system reliability depends on these components compatibility. As

we havementioned in chapter 2, SysML uses the Block Definition Diagram (BDD) and the
Internal Block Diagram (IBD) to model the structure of the blocks (the components) and
to establish links between them. To model the behaviour, SysML uses the State Machine
(SM), the Sequence Diagram (SD) and the Activity Diagram (AD).

In SysML, the interactions between blocks are modelled using IBDs and SDs. These in-
teractions take the form of architectural links in the IBDs. However, SDs, that interest us
in this chapter, allow us to model the scheduling of these interactions using the life lines
of blocks. Thus, the SDs constitute a good start point to verify the interactions inside the
system. Since formal verification is still inapplicable directly onSysMLmodels [BCHM15],
therefore to apply a verificationmethod, it's necessary to translate the SysMLmodels into
formal ones, and then verify the wanted properties.

In this chapter, the interactions of blocks are represented using a set of SDs. Each SD is
associated with a block, and it describes the interaction scenarios of a block with its envi-
ronment. To formalize the semantic of SDs, we transform them into interface automata
(IAs) [dAH01]. As we have mentioned in chapter 3, IAs constitute a good formal model
to represent the scenarios of requesting (output actions) and performing (input actions)
services of a block. The composition of interface automata allows verifying some rela-

Contents
6.1 Our Methodology . 62
6.2 Transforming SDs of Blocks into Interface Automata 62

6.2.1 Sequence Diagram Meta-Model . 63
6.2.2 Interface Automata Meta-Model 65
6.2.3 Basic Interaction Transformation Rules 65
6.2.4 ALT Combined Fragment Transformation Rules 68

6.3 Generation of Ptolemy Specification 71
6.4 The Blocks Verification . 73
6.5 Case Study: CyCab . 74
6.6 Conclusion . 78

61

62CHAPTER 6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

tions and properties on blocks such as the consistency and the compatibility (i.e. verify
the existence of an environment where it's possible to connect these blocks).

Our approach of transforming SDs into IAs is mainly based onmeta-modelling [dLVA04]
and meta-model transformations [CH03]. Such approach consists on defining the meta-
models of the source and the targetmodels, and then specifying the correspondences be-
tween them in the meta-level. To avoid user errors during the transformation from the
SDs to IAs,wehaveproposed anautomatedATL [atl] grammar,whichperforms this trans-
formation automatically. After, to verify some properties on the resulted interface au-
tomata, we have opted for Ptolemy [Pto] tool that requires as entry a textual specification.
For this purpose, we have used Acceleo [Acc] to define a templates set on ourmeta-model
of interface automata, that allows generating automatically the Ptolemy entry specifica-
tion. Thus, this tool chain, that we have developed, can assist the architect during the
compatibility verification phase by discharging him from doingmany tasks.

The remainder of this chapter is organized as follows: In Section 6.1, we introduce our
proposed approach. After, Section 6.2 gives details of transforming sequence diagrams
into interface automata. Next, Section 6.3 presents the Acceleo templates that we have
proposed togeneratePtolemyentry specification. InSection6.4,wepresenthowweverify
the compatibility of the blocks. In Section 6.5, we illustrate our approach by a case study.
Finally, in Section 7.5, we conclude.

6.1/ OurMethodology

Our approach aims to prepare the SysML blocks for the compatibility verification phase.
We show an overview of our methodology in Figure 6.1. Thus, we start from sequence
diagrams of the blocks that we want to verify their compatibility. After, by applying the
ATL grammar, that we will expose later in this chapter, we obtain their equivalents of in-
terface automata. For verifying the compatibility of the blocks, we use the Ptolemy tool.
Ptolemy contains a module which allows the verification and the composition of inter-
face automata. To discharge the user from redrawing the interface automata using the
Ptolemy user interface, we propose a set of Acceleo templates to automatically generate
the Ptolemy entry specification.

6.2/ Transforming SDs of Blocks into Interface Automata

In our work, the sequence diagrams are used to visualize the scheduling of the different
interactions of each block with its environment. In the sequence diagram of a block B,
the environment life line will represent the set of all blocks with which the block B can
interact.

To transform the sequence diagrams into interface automata, we give the correspon-
dences in this chapter. To implement these correspondences and to automatize the trans-
formation, we propose a set of ATL rules. Our ATL grammar doesn't deal with combined
fragments as an isolatedunits as in theworkshave alreadybeendoneonPetri nets and the
other kinds of automata. It deals with the different cases of nested combined fragments.

This ATL grammar is defined on the meta-model of sequence diagram as source and the
meta-model of interface automata as target.

6.2. TRANSFORMING SDS OF BLOCKS INTO INTERFACE AUTOMATA 63

Figure 6.1: Our Methodology.

6.2.1/ Sequence DiagramMeta-Model

By intention to reuse existed modelling tools, we have used the sub-set of Papyrus [pap]
SysMLmeta-model and its graphical editor to draw the sequence diagrams. In Figure 6.2,
we represent the set of the classes of Papyrusmeta-model that allowsmodelling sequence
diagrams, and in Figure 6.3, we give an example of a sequence diagramwhich ismodelled
using Papyrus editor.

InFigure6.2, the root class is theclass Interaction. Sequencediagrams, thatwewillmodel,
will be the instances of this class. Each interaction can include a set of life lines, a set of
messages and finally a set of interaction fragments. The classes:

• LifeLine: each instance of this class represents an object which participates in the
interaction. It will be the support of sending (resp. receiving) events executed (resp.
intercepted) by the object.

• Message: defines the messages set interchanged between objects. Each message
has two ends; a send end and a receive end.

• InteractionFragment: is the super class of the classes: Interaction, CombinedFrag-
ment, InteractionOperand and OccurenceSpecification.

• CombinedFragment: each combined fragment includes a set of interaction
operands, and it has its own interaction operator. The interaction operator takes
a value of this list [alt, opt, break, loop, par, ...].

64CHAPTER 6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

Element

Interaction NamedElement
name

MessageEndMessageInteraction
Fragment

Lifeline

Combined
Fragment

interactionOperator

Interaction
Operand

Occurrence
Specification
getCovered()

Message
Occurrence

Specification

Interaction
Constraint

lifeLine 0..* message 0.*

operand *

fragment 0..*

guard

sendEvent

recEvent

message

covered 0..*

CoveredBy 0..*

owner 0..1
ownedElement 0..*

Figure 6.2: Papyrus Meta-Model of SysML Sequence Diagram.

Figure 6.3: Sequence diagram elements.

• InteractionOperand: each operand is associated to a combined fragment, and it
can have a guard.

• MessageOccurenceSpecification: Each event associated to the life line is repre-
sented as a message occurrence specification. it represents an extremity of a mes-
sage. Wecanknowthe life line, towhich the specification is associated, byexecuting
themethod getCovered() of the super class OccurenceSpecification. We can also ob-
tain themessage started or finished at this specification, by navigating through the

6.2. TRANSFORMING SDS OF BLOCKS INTO INTERFACE AUTOMATA 65

associationmessage of the super class MessageEnd.

The classes MessageEnd, Message and InteractionFragment inherit the class
NamedElementwhich its self inherits the class Element. The association 'owner' al-
lows obtaining the father element of the current element, however the association
'ownedElement' allows us to obtain the children elements of the current element.

6.2.2/ Interface AutomataMeta-Model

Basing on the formal definition of interface automata formalism given in section 2, we
have proposed their meta-model in Figure 6.4. The classes:

Interface
Automaton

name

Transition
action

State
name
type

Inport
name

Outport
name

states 0..*

transitions 0..* inports 0..*

outports 0..* StateType
Initial

NotInitial

source

target

Figure 6.4: Interface Automata Meta-Model.

• InterfaceAutomaton: is the root. Each interface automatonhas anamewhich rep-
resents the name of the block to which this automaton is associated. Each instance
of this class can include a set of states, a set of transitions and a set of ports(in-ports,
out-ports).

• State: Each instance of this class has a name and a type. The type allows specifying
if this instance is an initial state or not.

• Transition: each instance of this class has three values to specify. The actionwhich
is the label of this transition, the source state and the target state.

• Inport: represent the ports associated with the input actions.

• Outport: represent the ports associated with the output actions.

In Figure 6.5, we present an interface automaton which is modelled using our editor. We
have used the Graphical Modelling Framework (GMF) to specify and generate our graph-
ical editor of interface automata.

6.2.3/ Basic Interaction Transformation Rules

An interface automaton specifies the interactions of a block 'B' with its environment,
where the environment represents all the blocks with which the block 'B' can interact.
Thus, the interface automaton will be associated to the life line of the block 'B'.

To perform the basic transformations (interactions without combined fragments), we
have three rules:

66CHAPTER 6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

Figure 6.5: Generated Interface Automata Editor.

• Rule 1: LifeLine2InterfaceAutomaton

This rule allows us to initialize the interface automaton which is associated to the
block 'B'. The name of the interface automatonwill be the name of the block 'B'. The
in-ports are created using the helper 'createInports', becausewe need to create one
in-port for all messages having the same name, which are received by the block 'B'.
To create theout-ports,wehaveused thehelper 'createOutports', which creates one
out-port for all messages having the same name, which are emitted by 'B'.

ATL Rule 1:
rule LifeLine2InterfaceAutomaton {
from lifeline : SD!Lifeline (lifeline.name<>’ENV’)
to ia : IA!InterfaceAutomaton (
name <-lifeline.name,
states <-IA!State.allInstances(),
transitions <-IA!Transition.allInstances(),
inports <- thisModule.createInports(lifeline),
outports <- thisModule.createOutports(lifeline)
) }

• Rule 2: MessageOccurrenceSpecification2State

We are only interested with events (sending and receiving of messages) associated
to the life line of our block 'B'. These events (mos) are the instances of the class 'Mes-
sageOccurrenceSpecification', where their life line is not the environment but the
current block 'B'(mos.getCovered , ENV). Thus, must create a state for each mes-
sage occurrence specification.

ATL Rule 2:
rule MessageOccurenceSpecification2State {
from mos :SD!MessageOccurrenceSpecification(mos.getCovered().name <> ’ENV’)
to s : IA!State (name<-mos.message.name.concat(’start’))
}

6.2. TRANSFORMING SDS OF BLOCKS INTO INTERFACE AUTOMATA 67

• Rule 3: Message2Transition

Amessage, which has an extremity that starts or ends at the life line of the current
block 'B',must be transformed into a transition in the interface automaton of 'B'. For
a message mos1

mes−→ mos2 (where mos1 and mos2 are message occurrence specifi-
cations), we create a new transition. This transition will be labelled with the action
'mes', but to specify the type of this action and tofix the beginning and the end states
of this transition, wemust analyse three cases:

– Onlymos1 is associated to the life line of 'B' (see Figure 6.6 (1)): In this case, the
labelwill be anoutput action 'mes!'. The transition starts at the state associated
to mos1 and ends at the state associated to mosi (the next message occurrence
specification of mos1 on the life line of 'B').

– Onlymos2 is associated to the life line of 'B' (see Figure 6.6 (2)): In this case, the
label will be an input action 'mes?'. The transition starts at the state associated
to mos2 and ends at the state associated to mosi (the next message occurrence
specification of mos2 on the life line of 'B').

– mos1 and mos2 are associated to the life line of 'B' (see Figure 6.6 (3)): In this
case, the label will be an internal action 'mes;'. The transition starts at the state
associated tomos1 and ends at the state associated tomos2.

B
(1)

ENV
mes

mos1 mos2

mosi
mes!

B
(2)

ENV
mes

mos2 mos1

mosi
mes?

(3)
B

mos1

mos2
mesmes;

Figure 6.6: Message transformation.

ATL Rule 3:
rule message2Transition {
from mes : SD!Message, mos : SD!MessageOccurrenceSpecification
. (mos.getCovered().name <> ’ENV’)
to t : IA!Transition (
action <- mes.name.concat(

if(mes.sendEvent.getCovered()=mes.receiveEvent.getCovered())then ’;’
else if (mes.sendEvent=mos)then ’!’ else ’?’endif endif),

source <- thisModule.resolveTemp(mos, ’s’),
target <- thisModule.resolveTemp(

thisModule.NextMsgOcSpec(mos.getCovered(), mos), ’s’)
) }

68CHAPTER 6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

– NextMsgOcSpec (lfn, mos) is an ATL helper that returns the next occurrence
specification of 'mos' on the life line 'lfn'.

6.2.4/ ALT Combined Fragment Transformation Rules

The alt fragment allows us to express alternative behaviours according to guards. It is
the most used of fragments. Also, the fragments loop and par, that express respectively
iterative scenarios and the parallel execution of execution scenarios, are very used in SDs.
In Figure 6.7, we give an overview about the equivalence between the fragments alt, loop
and the iterface automata.

B ENV

msgi1

msgin

msg j1

msg jm

altcond1; cond2;

msgin! msg jm!

..
.

..
.

(a) alt combined fragment (b) loop combined fragment

B ENV

msg1

msgn

loopcond;

msgn!

..
...
.

..
.

..
.

Figure 6.7: The transformation of loop and alt into interface automata

In the following we focus on the fragment alt. To transform the alt combined fragment,
we have proposed three rules. Two rules for the beginning of alt, and the third one is for
processing the end of alt.

For the beginning of alt, we distinguish between two cases:

• Rule 1: TransformAltWichFollowsAMsg

In the case when the combined fragment 'alt' follows a message 'mes', to transform
alt, we create a state which represents the beginning of 'alt', and three transitions
(see Figure 6.8(1)).

– 't1'allowsus to connect thebeginningof 'alt'with thepreviousbehaviourusing
themessage just before 'alt'.

– 't2' allows us to connect the beginning of 'alt' with the behaviour of the first
operand using guard as internal action.

– 't3' allows us to connect the beginning of 'alt' with the behaviour of the second
operand using guard as internal action.

6.2. TRANSFORMING SDS OF BLOCKS INTO INTERFACE AUTOMATA 69

ATL Rule 1:
rule TransformAltWichFollowsAMsg {
from alt : SD!CombinedFragment (thisModule.FollowedAMessage(alt))
to
s : IA!State (name <- ’BeginAlt’),
t1 : IA!Transition (
action <- thisModule.previousMessage(alt).name.concat(...

– specify the type of action as in rule 2),
source<-thisModule.resolveTemp(thisModule.PreviousMessageOccurence(alt),’s’),
target <- s),
t2 : IA!Transition (
action <- alt.operand->at(1).guard...concat(’;’),
source <- s,
target<-thisModule.resolveTemp(thisModule.

getTheFirstElement(alt.operand->at(1)), ’s’)),
t3 : IA!Transition (
action <- alt.operand->at(1).guard...concat(’;’),
source <- s,
target<-thisModule.resolveTemp(thisModule.

getTheFirstElement(alt.operand->at(2)), ’s’)),
}

– FollowedAMessage (alt) is anATLhelper that returns true if alt followsames-
sage.

– previousMessage(alt) is an ATL helper that returns themessage which is be-
fore alt.

– PreviousMessageOccurence(alt) is an ATL helper that returns the message
occurrence specification which is before alt.

– getTheFirstElement(op) is anATLhelper that returns the first element in the
operand op.

• Rule 2: TransformFirstAltInInteractionOrOperand

This rule processes 'alt' in case when it is the first element of the global interaction,
the first element in an operand, or when it follows a combined fragment. The dif-
ference between this rule and the last one, reside in the transition t1. In this rule, we
don't create the transition t1 because when 'alt' is :

– the first element in the interaction (see Figure 6.8(2)): we don't need this tran-
sition.

– directly after a combined fragment 'cf' (see Figure 6.8(4)): this transitionwill be
created by the rule which processes the end of 'cf'.

– the first element of an operand 'op'(see Figure 6.8(3)): this transition will be
created by the rule which processes the beginning of the combined fragment
of 'op'.

70CHAPTER 6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

ATL Rule 2:
rule TransformFirstAltInInteractionOrOperand {
from alt : SD!CombinedFragment (thisModule.FirstElementOrFollowsCF(alt))
to
s : IA!State (– the same as rule 1),
t2 : IA!Transition (– the same as rule 1),
t3 : IA!Transition (– the same as rule 1),
}

– FirstElementOrFollowsCF (alt) is an ATL helper that returns true if alt is
the first element in the interaction, the first element inside an operand, or it
follows directly a combined fragment.

B ENV
mes

alt
[cond1]

[cond2]

mes!

cond1; cond2;

(1) CF after a Message
B ENV

alt
[cond1]

[cond2]

cond1; cond2;

(2) CF the first element of SD

B ENV

[cond]
alt
[cond1]

[cond2]

cond;

cond1; cond2;

(3) alt is the first element in an Operand
B ENV

CF
alt
[cond1]

[cond2]

cond1; cond2;

(4) alt after a CF

B ENV

alt
[cond1]

[cond2]
mes1

mes2

Next element
mes1! mes2!

(5) the end of alt operands

Figure 6.8: Alt transformations.

• Rule 3: TransformEndAlt

6.3. GENERATION OF PTOLEMY SPECIFICATION 71

This rule (see Figure 6.8(5)) allows processing the end of an 'alt' operand. It takes as
parameters this operand and the lastmessage occurrence specification (mos) inside
it.

ATL Rule 3:
rule TransformEndAlt {
from op:SD!InteractionOperand, mos:SD!MessageOccurrenceSpecification

(thisModule.isTheLastMessageInOperand(mos.message, op)
and mos.getCovered().name<>’ENV’)

to
t : IA!Transition (
action <- mos.message.name.concat(–specify the type of action as in
rule2),
source <- thisModule.resolveTemp(mos,’s’),
target <- thisModule.resolveTemp(thisModule.getNextElement(op.owner),
’s’),
}

It creates a transition between the state associated to mos and the state associ-
ated to the next element of the combined fragment to which this operand belongs
(op.owner). The next elementmay be amessage or a combined fragment. The tran-
sition takes as label the name of message whose 'mos' is one of its ends.

– isTheLastMessageInOperand(mes, op) returns true if themessagemes is the
last message in the operand op.

– getNextElement(cf) returns the next message or combined fragment of the
combined fragment cf.

Using the samemanner of thinking, we can define rules for other combined fragments.

6.3/ Generation of Ptolemy Specification

At this step, and to discharge the user from redrawing the interface automata using the
Ptolemy user interface, we propose a set of Acceleo templates to generate automatically
the Ptolemy entry specification.

By analysing an entry file of ptolemy interface automaton, and by eliminating informa-
tions related to the position of nodes on the ptolemy canvas, wehave obtained its skeleton
and we have defined six Acceleo templates. We have eliminated the informations related
to the position of nodes on the canvas, because the ptolemy, when it doesn't find informa-
tions about the position of a node, it uses its default values.

The first Acceleo template 'generateIA' is the main template, it creates the file of the
Ptolemy specification and its header, and calls the other templates. The templates, after
the principal one, each one has a name that corresponds to its role.

• generateInport(inport : Inport): it allows us to generate the Ptolemy specifi-
cation of each in-port of the concerned interface automaton.

72CHAPTER 6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

• generateOutport(outport : Outport): itwill becalled iteratively (as theprevious
template) by the main template to generate the Ptolemy specification for each out-
port of the concerned interface automaton.

• generateState(state : State): it allowsus togenerate thePtolemyspecification
for automaton states.

• generateRelation(transition : Transition, i:Integer) and generateLinks
(transition : Transition, i:Integer): these two templates allow to generate
the Ptolemy specification for transitions of the automaton.

[comment encoding = UTF-8 /]
[module generate('http://www.interfaceAutomata.ecore')]
[template public generateIA(IA : InterfaceAutomaton)]
[comment @main/]
[file (IA.name.concat('.xml'), false, 'UTF-8')]
<?xml version="1.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">

<entity name="[IA.name/]" class="ptolemy.domains.modal.kernel.ia.InterfaceAutomaton">

[for (outport :Outport| IA.outports)]
[generateOutport(outport)/]
[/for]

[for (inport :Inport| IA.inports)]
[generateInport(inport) /]
[/for]

[for (state :State| IA.states)]
[generateState(state) /]
[/for]

[for (transition :Transition| IA.transitions)]
[generateRelation(transition, i)/]
[/for]

[for (transition :Transition | IA.transitions)]
[generateLinks(transition,i)/]
[/for]

</entity>
[/file]
[/template]

[template private generateInport(inport : Inport)]
<port name="[inport.name/]" class="ptolemy.actor.TypedIOPort">
<property name="input"/> </port>
[/template]

[template private generateOutport(outport : Outport)]
<port name="[outport.name/]" class="ptolemy.actor.TypedIOPort">
<property name="output"/>
</port>
[/template]

6.4. THE BLOCKS VERIFICATION 73

[template private generateState(state : State)]
<entity name="[state.name/]" class="ptolemy.domains.modal.kernel.State">
[if (state.type=StateType::Initial)]

<property name="isInitialState" class="ptolemy.data.expr.Parameter" value="true">

</property>
[/if]
</entity>
[/template]

[template private generateRelation(transition : Transition, i:Integer)]
<relation name="relation[if (i>1)][i/][/if]"

class="ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">

<property name="label" class="ptolemy.kernel.util.StringAttribute"

value="[transition.action/]"></property>
</relation>
[/template]

[template private generateLinks (transition : Transition, i:Integer)]
<link port="[transition.source.name/].outgoingPort" relation="relation[if (i>1)][i/][/if]"/>
<link port="[transition.target.name/].incomingPort" relation="relation[if (i>1)][i/][/if]"/>
[/template]

6.4/ The Blocks Verification

Wewant to verify the consistency and the compatibility of the blocks. To do that, we base
on the interface automata that describe the interaction protocols of these blocks.

Definition 14: Consistency of SysML blocks
Two blocks B1 and B2 are considered as consistent if their interface automata A1 and
A2 are composable:
ΣI

A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
= ΣH

A1
∩ ΣA2 = ΣA1 ∩ ΣH

A2
= ∅.

Definition 15: Compatibility of SysML blocks
Two blocks are compatible, if they are consistent and their interface automata are
compatible. According to the optimistic approach of Henzinger [dAH01], two inter-
face automata are compatible if their composition is not empty:
A1∥A2 , ∅

To verify the consistency and the compatibility of the blocks, we use the Ptolemy tool. We
give it, as entry, the generatedfiles(thefiles thatwehavegeneratedusingourAcceleo tem-
plates). Ptolemy computes the composition of interface automata and delivers the result.
If the result of composition is not empty, this means that the blocks are consistent and
compatible.

74CHAPTER 6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

properties
values

re f erences
parts

operations

constraints

CompUnit
<< block >>

req
prov

properties
values

re f erences
parts

operations

constraints

S ensor
<< block >>

prov
req

properties
values

re f erences
parts

operations

constraints

Vehicle
<< block >>

prov req

properties
values

re f erences
parts

operations

constraints

S tation
<< block >>

prov
req

properties
values

re f erences
parts

operations

constraints

CyCabS ys
<< block >>

<< inter f aceBlock >>
I-C-Spos

<< inter f aceBlock >>
I-V-C

far
halt

<< inter f aceBlock >>
I-S-V

spos

bdd CyCab

Figure 6.9: Block Definition Diagram of CyCab.

6.5/ Case Study: CyCab

CyCab [BGMPG99] is a newmeans of electrical transportation, it is conceived basically for
free-standing port services. It is controlled by a computer system. The CyCab system has
two major parts: the station and the vehicle. The vehicle is guided by the information
received from the station, which allows situating the vehicle.

In this case study, we are only interested by the 'station' part. The station has a sensor
that receives signals fromvehicle giving the vehicle position (pos?). The station has also a
computing units that sends a signal (far! or halt!) to the vehicle to indicate if it is far from
the station or not. In Figure 6.9, we present the architecture of theCycab Systemusing the
SysML BDD.

The interactions of the sensor and the computing-unit blocks are represented as sequence
diagrams (see Figure 6.10 and Figure 6.11). To draw sequence diagrams, we have used the

6.5. CASE STUDY: CYCAB 75

Figure 6.10: SD of Sensor. Figure 6.11: SD of Computing-Unit

Figure 6.12: IA of Sensor Figure 6.13: IA of Computing-Unit

papyrus editor.

By applying our ATL rules on the sequences diagrams of the sensor and the computing
unit, we have obtained their equivalents of interface automata. In Figure 6.12 and Figure
6.13, we present the resulted interface automata in our graphical editor.

By applying the Acceleo templates, that we have defined to generate Ptolemy specifica-
tion, we have obtained these files.

• Ptolemy file of Sensor block:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTDMoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<entity name="sensor" class="ptolemy.domains.modal.kernel.ia.InterfaceAutomaton"><port

76CHAPTER 6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

name="pos" class="ptolemy.actor.TypedIOPort">
<property name="output"/>

</port>

<port name="spos" class="ptolemy.actor.TypedIOPort">
<property name="input"/>

</port>

<entity name="s1" class="ptolemy.domains.modal.kernel.State"></entity>

<entity name="s0" class="ptolemy.domains.modal.kernel.State">
<property name="isInitialState" class="ptolemy.data.expr.Parameter"

value="true"></property>
</entity>

<relation name="relation" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"

value="spos?"></property>
</relation>

<relation name="relation2" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">

<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="pos!"></property>

</relation>

<link port="s1.outgoingPort" relation="relation"/>
<link port="s0.incomingPort" relation="relation"/>
<link port="s0.outgoingPort" relation="relation2"/>
<link port="s1.incomingPort" relation="relation2"/>
</entity>

• Ptolemy file of Computing-Unit block:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTDMoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<entity name="Computing Unit" class="ptolemy.domains.modal.kernel.ia.InterfaceAutomaton">
<port name="far" class="ptolemy.actor.TypedIOPort">

<property name="output"/> </port>
<port name="halt" class="ptolemy.actor.TypedIOPort">

<property name="output"/> </port>
<port name="pos" class="ptolemy.actor.TypedIOPort">

<property name="input"/> </port>
<entity name="s0" class="ptolemy.domains.modal.kernel.State">

<property name="isInitialState" class="ptolemy.data.expr.Parameter"
value="true"> </property> </entity>

<entity name="s2" class="ptolemy.domains.modal.kernel.State"> </entity>

<entity name="s3" class="ptolemy.domains.modal.kernel.State"> </entity>

<entity name="s1" class="ptolemy.domains.modal.kernel.State"> </entity>

<relation name="relation" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">

<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="pos?"> </property>

</relation>

<relation name="relation2" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">

6.5. CASE STUDY: CYCAB 77

<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="BDistance;"> </property>

</relation>

<relation name="relation3" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"

value="SDistance;"> </property>
</relation>

<relation name="relation4" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"

value="far!"> </property>
</relation>

<relation name="relation5" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"

value="halt!"> </property>
</relation>

<link port="s0.outgoingPort" relation="relation"/>
<link port="s1.incomingPort" relation="relation"/>
<link port="s1.outgoingPort" relation="relation2"/>
<link port="s2.incomingPort" relation="relation2"/>
<link port="s1.outgoingPort" relation="relation3"/>
<link port="s3.incomingPort" relation="relation3"/>
<link port="s2.outgoingPort" relation="relation4"/>
<link port="s0.incomingPort" relation="relation4"/>
<link port="s3.outgoingPort" relation="relation5"/>
<link port="s0.incomingPort" relation="relation5"/>
</entity>

Using Ptolemy tool, we can use these two files to verify the consistency and the compati-
bility of the sensor and the computing unit blocks.

Figure 6.14: Parallel composition of Control Unit and Sensor.

78CHAPTER 6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

In Figure 6.14, we present the result of composing the two interface automata using
Ptolemy tool. Because the composition is not empty, we deduce that the control unit and
the sensor blocks are consistent and compatible. If we assemble them in the same sys-
tem, we obtain a system part that interacts with the rest of the system according to the
scenarios modelled as an interface automaton in Figure 6.14.

6.6/ Conclusion

The point that we have addressed in this chapter is how can we prepare the SysML blocks
interactions for verification. Thus, our proposed approach is based on specifying the cor-
respondences between the blocks sequence diagrams and interface automata. The goal
of this chapter is to present how it's possible to automatize the transformation from se-
quence diagrams to interface automata using ATL. We have shown the transformation
of the basic constructs of sequence diagrams. We have also given the ATL rules to trans-
form the alternative combined fragment. The second objective of this chapter concerns
Ptolemy tool, which is used to verify the interface automata compatibility, and to compute
their parallel composition. To discharge the user from redrawing the resulted interface
automata using the Ptolemy user interface, which can be considered as a source of errors,
we have proposed a set of Acceleo templates to generate the entry code of Ptolemy. We
have also given an overview of how can we use the generated files to verify the compati-
bility of blocks. To illustrate our approach, we have applied it on a CyCab case study.

7
Exploiting TheHierarchy to Verify

Blocks Compatibility

Generally, the high levelmodelling languages as SysML, adopt someprinciples toman-
age the complexity of system's representation and development. In SysML, the de-

composition and the hierarchical organization constitute the major principles used to
handle complexity. The utility of the decomposition and the hierarchy appears clearly
through the structural and the behavioural specification of the system.

In SysML, the interactions between blocks are modelled with Interaction Block Diagram
(IBD) and Sequence Diagram (SD). However, these interactions are modelled by the IBD
only as architectural links. In other hand, a block can participate in multiple use cases,
which makes its interaction protocol divided into a set of sequence diagrams. For these
reasons, there is a lack of global view of the interaction protocol related to a given block.

In this chapter, we propose HPSM, to model the interaction protocol of a block. The pro-
posed HPSM differs from the UML Protocol State Machine (PSM). In UML, each interface
of a class can be associated with a PSM. PSM of UML presents the pre and the post con-
ditions of events allowing the enabling of transitions. However, HPSM as we define it, is
associated with a block and expresses its states and the transitions between them. Each
transition can be labelled with a reception of an ask for a service of the block, and a set
of requests that the current bock sends for asking some services of the environment. We
note that HPSM uses also the composite states to benefit from the clarity added by the
hierarchy.

Contents
7.1 Hierarchical Protocol State Machine (HPSM) 80
7.2 Hierarchical Interface Automata with Inter-Level Transitions (HIA-ILT) 81
7.3 The Proposed Approach . 85

7.3.1 The Mapping Between HPSM and HIA-ILT 85
7.3.2 The Consistency Verification of Blocks 88
7.3.3 The Selection of Composite States to Flatten 88
7.3.4 The Compatibility Verification Between Blocks 89

7.4 Case Study . 89
7.5 Conclusion . 93

79

80CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

One of the advantages of proposing HPSM is to allow modelling all the interactions of
a given block in one diagram, and so enabling the verification of compatibility between
blocks. In our study, the architecture of the system is given by an IBD. The interactions
inside the system take the form of an HPSMs set, each HPSM is assigned to a block. This
permits to graphically describe the system architecture and the interaction protocols of
its blocks. However, this specification is not thoroughly formal to be adapted for verifi-
cation. That is why, it is necessary to present the semantic of HPSM in an another model
more suitable for verification. For that, we define hierarchical interface automata with
Inter-Level Transitions (HIA-ILT), a variant of interface automata [dAH01], we express the
HPSM semantics in term of HIA-ILT, and we use HIA-ILT to verify the compatibility be-
tween SysML blocks. In our verification approach, we avoid the flattening of the entire
HIA-ILT by proposing a preliminary phase that allows selecting the composite states to
flatten. The aim behind this is to contribute for reducing the complexity of compatibility
verification.

The remainder of this chapter is organized as follows : In section 7.1, we introduce the
HPSM. Next, in section 7.2, we present the HIA-ILT the variant of interface automata. In
Section 7.3, we present our approach for verifying blocks compatibility which benefit fro
the hierarchy of HIA-ILTs. Next, we illustrate our approach by a case study in section 7.4.
Finally, in Section 7.5, we conclude.

7.1/ Hierarchical Protocol StateMachine (HPSM)

SysMLuses the SDdiagram to represent interaction protocols of systemblocks, each SD is

Figure 7.1: Relation between SD and HPSM.

7.2. HIERARCHICAL INTERFACE AUTOMATA WITH INTER-LEVEL TRANSITIONS (HIA-ILT)81

associatedwith a use case. When a block participates inmultiple use cases, its interaction
protocol will be divided into several SDs (see Figure 7.1).

We propose the model HPSM (Hierarchical protocol state machine), which allows us to
represent the interaction protocol of a block using one diagram. HPSM adopts the struc-
ture of hierarchical state machine, it bases on simple states, composite states and transi-
tions between them. This structure allowsus to benefit fromhierarchical aspect byhiding
details of states when we don't need to visualize it.

Definition 16: HPSM
We define an HPSM of a block B as follows :

HPSMB = ⟨ SSB, CSB, IB, TB, Prov_ServB, Req_ServB ⟩

Where:

• SSB is a set of simple states.

• CSB is a set of composite states.

• We define by SB = SSB ∪ CSB a set of all states of the HPSM.

• IB is a set of initial states, I ⊆ SB.

• TB is a set of transitions.

• Prov_ServB is a set of services that the block B offers to its environment.

• Req_ServB is a set of services that the block B requires from its environment.

The set of transitions T ⊆ SB × L × SB, where L is the set of all transitions labels. A label
l ∈ L takes the following form:

l=REC ⟨ps⟩ / SND ⟨{rsi}i=1..n⟩

Where:

• REC represents the reception of a request, and SND represents the emission of a re-
quest to the environment.

• ps ∈ Prov_ServB.

• { rsi}i=1..n = P(Req_ServB) is the set of a required services.

When theblockBreceives a request for its serviceps fromits adjacentblocks, itmayhavea
need tocall someservicesofotherblocks. Wemodel the fact that theblockBsendrequests
to these blocks using the directive SND.

7.2/ Hierarchical Interface Automata with Inter-Level
Transitions (HIA-ILT)

In this section, we propose Hierarchical Interface Automata with Inter-Level Transitions
(HIA-ILT). Themodel that we use in our approach to formalizeHPSMs of blocks. Compar-

82CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

ingwith IA,HIA-ILT introduces the concept of composite states, and allows the inter-level
transitions. In fact, in HIA-ILT the source state and the target state of a transition can
belong to two different composite states and to two different levels of hierarchy, which
makes HIA-ILT able to represent more complex interactions of a component with a small
model.

Definition 17: HIA-ILT
We define an Hierarchical Interface Automata with Inter-Level Transitions ’HA’ by:

⟨S S HA,CS HA, IHA,
∑I

HA,
∑O

HA,
∑H

HA, δHA⟩

where:

• SSHA is a set of simple states.

• CSHA is a set of composite states.

• IHA is a set of initial states, we have IHA ⊆ SSHA ∪ CSHA.

• ∑I
HA is a set of input actions.

• ∑O
HA is a set of output actions.

• ∑H
HA is a set of hidden actions.

• δHA is a set of transitions.

– δHA ⊆ (SS HA∪ CSHA) × ∑HA × (SS HA∪ CSHA), where∑
HA=

∑I
HA ∪

∑O
HA ∪

∑H
HA

– (s1, a, s2) is an inter-level transition if s1 and s2 don’t belong to the
same composite state or if they belongs to two different level of hierarchy.

TheHIA-ILT is as the IA, it is enclosedwith a boxwhose ports correspond to the input and
the output actions.

The abstract synchronous product between twoHIA-ILTs HA1 and HA2, takes all the com-
posite states of HA1 and HA2 as abstract states.

Definition 18: Abstract state
An abstract state is a composite state s ∈ CSHA, but its internal states and relations
between them are ignored

Let HA1 and HA2 twoHIA-ILTs, we can compute the abstract synchronous product of HA1
and HA2 if they are composable.

• HA1 and HA2 are composable :

ΣI
HA1
∩ ΣI

HA2
= ΣO

HA1
∩ ΣO

HA2
= ΣH

HA1
∩ ΣHA2 = ΣHA1 ∩ ΣH

HA2
= ∅.

• Any composite state of HA1 or HA2 have inside a transition labelled with a shared
action.

7.2. HIERARCHICAL INTERFACE AUTOMATA WITH INTER-LEVEL TRANSITIONS (HIA-ILT)83

Definition 19: Abstract Synchronous Product of HIA-ILT
we define the abstract synchronous product of HA1 and HA2 as:

HA1 ⊗a HA2 = ⟨ SSHA1⊗aHA2, CSHA1⊗aHA2, IHA1⊗aHA2, Σ
I
HA1⊗aHA2

,

ΣO
HA1⊗aHA2

, ΣH
HA1⊗aHA2

, δHA1⊗aHA2 ⟩

• S S HA1⊗aHA2 = S S HA1 × S S HA2 .

• CS HA1⊗aHA2 = CS HA1 ×CS HA2 ∪CS HA1 × S S HA2 ∪ S S HA1 ×CS HA2 .

• IHA1⊗aHA2 = IHA1 × IHA2 .

• ΣI
HA1⊗aHA2

= (ΣI
HA1
∪ ΣI

HA2
) \ S hared(HA1,HA2).

• ΣO
HA1⊗aHA2

= (ΣO
HA1
∪ ΣO

HA2
) \ S hared(HA1,HA2).

• ΣH
HA1⊗aHA2

= ΣH
HA1
∪ ΣH

HA2
∪ S hared(HA1,HA2).

• ((s1, s2), a, (s′1, s
′
2)) ∈ δHA1⊗HA2 if

– a < S hared(HA1,HA2) ∧ (s1, a, s′1) ∈ δHA1 ∧ s2 = s′2
– a < S hared(HA1,HA2) ∧ (s2, a, s′2) ∈ δHA2 ∧ s1 = s′1
– a ∈ S hared(HA1,HA2) ∧ (s1, a, s′1) ∈ δHA1 ∧ (s2, a, s′2) ∈ δHA2 .

Wedefine by Shared(HA1,HA2) = (ΣI
HA1
∩ΣO

HA2
)∪ (ΣO

HA1
∩ΣI

HA2
) the set of the shared actions

between HA1 and HA2.

We deduce the synchronous product HA1⊗HA2 of HA1 and HA2 from the abstract syn-
chronous product HA1⊗aHA2 as follows (an example is given in Figure 7.2):

• ∀(s1, s2)
t−→ (s1, s′2) ∈ σHA1⊗aHA2

if s1 ∈ CS HA1 ⇒ replace the transition (s1, s2)
t−→ (s1, s′2) by this set of transitions:

∀(s1i, s2 j) ∈ (s1, s2) create new transition (s1i, s2 j)
t−→ (s1i, s′2k)

This means that when the state of the block B2 is changed from s2 to s′2 by crossing
the transition t, the block B1 must still in the same composite state s1 and also in the
same simple state s1i. If the state s′2 is a composite state, then the state s′2k must be
the initial state of s′2, otherwise the state s′2k is the state s′2.

If t is an inter-level transition in HA2 :

– if ∃n(s2n
t−→ s′2 ∈ σHA2 ⇒ s2 j = s2n)

– if ∃m(s2
t−→ s′2m ∈ σHA2 ⇒ s′2k = s′2m)

– if ∃n,m(s2n
t−→ s′2m ∈ σHA2 ⇒ s2 j = s2n ∧ s′2k = s′2m)

• ∀(s1, s2)
t−→ (s′1, s2) ∈ σHA1⊗aHA2

if s2 ∈ CS HA2 ⇒ replace the transition (s1, s2)
t−→ (s′1, s2) by this set of transitions:

∀(s1i, s2 j) ∈ (s1, s2) create new transition (s1i, s2 j)
t−→ (s′1k, s2 j)

84CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

Figure 7.2: Example of abstract synchronous product.

This means that when the state of the block B1 is changed from s1 to s′1 by crossing
the transition t, the component B2 must still in the same composite state s2 and also
in the same simple state s2 j. If the state s′1 is a composite state, then the state s′1k
must be the initial state of s′1, otherwise the state s′1k is the state s′1.

If t is an inter-level transition in HA1 :

– if ∃n(s1n
t−→ s′1 ∈ σHA1 ⇒ s1i = s1n)

– if ∃m(s1
t−→ s′1m ∈ σHA1 ⇒ s′1k = s′1m)

– if ∃n,m(s1n
t−→ s′1m ∈ σHA1 ⇒ s1 j = s1n ∧ s′1k = s′1m)

Definition 20: Abstract Parallel Composition
The abstract parallel composition of HA1 and HA2 (HA1∥aHA2) bases on eliminating
from the product HA1 ⊗a HA2 the illegal states and all states reached from these
illegal states by enabling output and internal actions.
We define illegal states as follows:

Illegal(HA1,HA2)=

(s1, s2) ∈ σHA1⊗aHA2 | ∃a ∈ S hared(HA1,HA2).

a ∈ ΣO
HA1

(s1) ∧ a < ΣI
HA2

(s2)
∨

a ∈ ΣO
HA2

(s2) ∧ a < ΣI
HA1

(s1)

7.3. THE PROPOSED APPROACH 85

Definition 21: Compatibility of HIA-ILTs
HA1 and HA2 are compatible iff HA1 ∥c HA2 , ∅

Theorem 1:
If we have an abstract state (x,y) ∈ S HA1⊗aHA2 where (x,y) is an illegal state, this
implies that all states insides are illegal states.

proof :

a. (x,y) ∈ S HA1⊗aHA2 is an abstract state⇒ x is an abstract state in HA1 or y is an abstract
state in HA2.
b. (x,y) is an illegal state⇒ ∃a ∈ S hared(HA1,HA2)∧ (∃x

a!−→ x′ ∈ δHA1 ∧ @y
a?−→ y′ ∈ δHA2 or

∃y
a!−→ y′ ∈ δHA2 ∧ @x

a?−→ x′ ∈ δHA1)

• If we suppose that x is an abstract state in S HA1 , and (x,y) is an illegal state because

∃x
a!−→ x′ ∈ δHA1 ∧ @y

a?−→ y′ ∈ δHA2 :

∃x
a!−→ x′ ∈ δHA1 ⇒ ∀s ∈ x,∃s

a!−→ x′ ∈ δ f latten(HA1)

⇒ ∀(s, y) ∈ (x, y),∃s
a!−→ x′ ∈ δ f latten(HA1), and we have @y

a?−→ y′ ∈ δHA2

⇒ ∀(s, y) ∈ (x, y), (s,y) is an illegal state.

• If we suppose that x is an abstract state in S HA1 , and (x,y) is an illegal state because

∃y
a!−→ y′ ∈ δHA2 ∧ @x

a?−→ x′ ∈ δHA1 :

@x
a?−→ x′ < δHA1 ⇒ ∀s ∈ x, @s

a?−→ x′ ∈ δ f latten(HA1)

⇒ ∀(s, y) ∈ (x, y), @s
a?−→ x′ ∈ δ f latten(HA1), and we have ∃y

a!−→ y′ ∈ δHA2

⇒ ∀(s, y) ∈ (x, y), (s,y) is an illegal state.

7.3/ The Proposed Approach

Our approach includes four steps (Figure 7.3): The first step is a mapping from HPSM to
HIA-ILT of the two blocks to verify their compatibility, the second step is to verify the
consistency betweenHIA-ILTs associatedwith blocks, the third step is to select composite
states toflatten, and the last step is for verifying the compatibility between the twoblocks.

7.3.1/ TheMapping BetweenHPSMandHIA-ILT

In this section, we give the rules to translate HPSM to HIA-ILT. During this transforma-
tion, each simple state in the HPSMmust be transformed to a simple state in the HIA-ILT
and each composite state in the HPSM must be copied as a composite state in the HIA.
The difference betweenHPSMandHIA-ILT resides in the labels of the transitions. A tran-
sition in HPSM can be decomposed into a set of HIA-ILT transitions. In Figure 7.4, we see
that a provided service on a transition of HPSM (

ps
−→) must be translated into a transition

in HIA-ILT, labelled with an input action (
ps?
−→). The set of required services on an HPSM

86CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

Figure 7.3: Our approach of using hierarchy to verify blocks compatibility.

transition (
/rs1,..,rsn−→) must be translated to a sequence of HIA-ILT transitions, labelled with

output actions (
rs1!−→...

rsn!−→).

To implement the correspondences, wehave defined themeta-model of theHPSM (Figure
7.5) and themeta-model of the HIA-ILT (Figure 7.6) using EMF (Eclipse Modelling Frame-
work). Figure 7.5 presents theHPSMas a set of states, a set of transitions, a set of provided
services and a set of required services. A state can be simple or composite, it includes
other states only if it is a composite state. A transition may be labelled with a reception
of request and a set of required services. It must have a source state and a target one. The
meta-model of HIA-ILT in Figure 7.6, describes the hierarchical interface automata as a
set of states, a set of transitions, a set of in-ports and a set of out-ports. If a transition takes
as label an input or an output action, the input action must correspond to an in-port and
the output actionmust correspond to an out-port.

We have implemented the correspondences as an ATL grammar 'TransformHPSM2HIA-
ILT'. This ATL grammar takes as source the meta-model of HPSM and it has as target the
meta-model of HIA-ILT. It includes a set of rules.

In Figure 7.7, we give an extract of the grammar 'TransformHPSM2HIA-ILT'. The first rule
creates theHIA-ILT element from theHPSMelement. However, the second rule initializes

7.3. THE PROPOSED APPROACH 87

Figure 7.4: Correspondences between HPSM and HIA-ILT.

HPSM
name

TransitionState
name
type

CompositeState SimpleState

REC 0..1

SND 0..*

mother 0..1

nestedStates 1..*
Prov_Serv

name
Req_Serv

name

states 0..*

transitions 0..* providedServices 0..*

requiredServices 0..* StateType
Initial
Ordianry

source

target

Figure 7.5: Meta-Model of HPSM.

HIA
name

Transition
action

State
name
type

CompositeState SimpleState
mother 0..1

nestedStates 1..*
InPort
name

OutPort
name

states 0..*

transitions 0..* inPorts 0..*

outPorts 0..* StateType
Initial
Ordianry

source

target

Figure 7.6: Meta-Model of HIA-ILT.

88CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

the simple states of HIA-ILT from the simple states of HPSM.

ATL Rule 1: HPSM2HIA
rule HPSM2HIA {
from hpsm : HPSM!HPSM
to hia : HIA!HIA (
name <-hpsm.name,
states <-HIA!State.allInstances(),
transitions <-HIA!Transition.allInstances(),
inports <- HIA!InPort.allInstances(),
outports <- HIA!OutPort.allInstances()
) }

ATL Rule 2: SimpleState2SimpleState
rule SimpleState2SimpleState {
from s1 : HPSM!SimpleState
to s2 : HIA!SimpleState (
name <-s1.name,
type <-if s1.type=#Initial then s1.type else #Ordinary endif,
mother <- thisModule.resolveTemp(s1.mother, ’cs2’);
) }

Figure 7.7: Rules ATL.

7.3.2/ The Consistency Verification of Blocks

This stepmust ensure that the two blocks B1 and B2 associated with respectively HA1 and
HA2, their HIA-ILTs, respect the condition of composability. This means that the block B1
and B2 haven't shared provided services and shared required services, and there aren't an
overlap between the hidden actions of a block and the set of actions of the other block.
The relation of composability ζ between two blocks B1 and B2 is defined as follows:

B1 ζ B2⇔
ΣI

HA1
∩ ΣI

HA2
= ΣO

HA1
∩ ΣO

HA2
=

ΣH
HA1
∩ ΣHA2 = ΣHA1 ∩ ΣH

HA2
= ∅.

7.3.3/ The Selection of Composite States to Flatten

In this step, we must construct the set of shared actions between HA1 and HA2 of B1 and
B2.

Shared(HA1,HA2) = (ΣI
HA1 ∩ ΣO

HA2) ∪ (ΣO
HA1 ∩ Σ

I
HA2)

The existence of a shared action means that there is an interaction between these two
blocks. Thus, we look over all composite states in HA1 and HA2, if there is a compos-
ite state C having inside a transition labelled with an action which belongs to the set

7.4. CASE STUDY 89

Shared(HA1,HA2) then this composite state Cmust be flattened. It ismandatory to flatten
these composite states to allow the synchronization of their transitions with the transi-
tions of the other HIA-ILT.

For flattening, we refer to works which have been already proposed for this purpose (i.e
[KC09, DM01]).

7.3.4/ The Compatibility Verification Between Blocks

The compatibility verification between two blocks B1 and B2 is obtained by verifying the
compatibility between their interface automata HA1 and HA2. To verify the compatibility
between two blocks B1 and B2, we adopt the approach in [dAH01] which verifies if there
is an environment where it is possible to correctly assemble B1 and B2. Thus, we assume
that this environment will never led one of the blocks B1 or B2 to a deadlock state, means
that the environment will never allow to the parallel execution of B1 and B2 to reach an
illegal state.

The relation of compatibility ζom between two blocks B1 and B2 have as interaction pro-
tocol models HA1 and HA2 is defined by:

B1 ζom B2⇔ HA1 ∥a HA2 has at least one reachable state.

7.4/ Case Study

In this section, the case study concerns a robotic vacuum called Roomba. In our case
study, we consider that Roomba is controlled by human operator. To allow this control,
we consider that a kinect is placed between them. It is used to communicate the oper-
ator positions to the coordinator in the form of images. Then, the coordinator analy-
ses these images and extracts actions required by the operator and conveys them to the
Robot.The Robot includes a receiver and Roomba vacuum. The receiver captures actions
wanted by the operator, transmitted through a WIFI connection, and codes them in the
formof sci commands. Roombacanworkusing twomethods: autonomous(SAFE) ornon-
autonomous(FULL).

In the autonomousmethod (SAFE), there are essentially threemodes : Cleanmode is the
normal cleaning program, starting in a spiral and then following a wall, until the room is
determined to be clean. Spot mode cleans a small area. Max mode runs the standard
cleaning algorithm until the battery is depleted.

Inmanuallymethod (FULL), the operator specifies thedirectionandmovement of roomba
in real time. He can ask for these actions : ADVANCE is to forward, LEFT is a counter-
clockwise rotation, andRIGHT is the same like Left but the rotation is in the other sens.

We focus on the part Robot of the system. We consider that the receiver ensures only a
manual control of roomba. The IBD of assembling the receiver and roomba is given in
Figure 7.9, and the protocols of interaction of the receiver and roomba are exposed in the
form of HPSMs in Figure 7.10.

In Figure 7.9,wehave twoblocks : Receiver andRoomba. Theblock receiver has twoports:
a provided port 'robotServices' and a required port 'sci-cmd-Req'. The provided port in-
cludes services that the receiver can perform to the coordinator, and the required port

90CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

Figure 7.8: Case Study.

represents the services that the receiver can request from the block Roomba. The block
Roombahasoneprovidedport 'sci-cmd-Prov', through this port roombaoffers its services.

Figure 7.9: IBD of assembling the receiver and roomba.

In Figure 7.10, we present the HPSM of the receiver in the top and the HPSM of roomba
in the bottom. The receiver plays the role of a converter between the coordinator and
roomba. Initially, roomba is in state ''OFF''. When it receives the 'POWER' command, it
goes to state ''Wait''. At this state, if roomba receives the 'SAFE' command, its state will be
changed to ''Autonomous''. However, if it receives the 'FULL' command, it passes to the
state ''No-autonomous'' and exactly to the state ''Adv''. At the state ''Adv'', if the receiver
passes the 'ADVANCE' command to roomba, roomba remains in the same state. If it re-
ceives the 'LEFT' command, it changes its movement to a counter-clockwise rotation and
it goes to state ''LRot''. Otherwise, by receiving the 'RIGHT' command, roomba leaves the
state ''Adv'' and it goes to state ''RRot''. The same reactions will happen , when roomba is
in the state ''LRot'' or in the state ''RRot''.

7.4. CASE STUDY 91

Figure 7.10: HPSM of the receiver and roomba.

The 1st step : Mapping betweenHPSM andHIA-ILT

Figure 7.11 shows the result of transformingHPSMs of the receiver and roomba into theirs

equivalents ofHIA-ILTs. The use of inter-level transitions
ADVANCE?−→ ,

LEFT?−→ ,
RIGHT?−→ make the

model obvious and small. For example, if we don't have the possibility of using inter-level
transitions, the inter-level transition No − autonomous

ADVANCE?−→ 6 must be replaced by three
transitions 6

ADVANCE?−→ 6, 7
ADVANCE?−→ 6 and 8

ADVANCE?−→ 6. the same for the two other inter-level
transitions.

For clarity, we don't show the detail of the state Autonomous. Because it has the same
structure like the No-autonomous state.

The 2nd step :Consistency verification between blocks

• ΣI
receiver= {turnOn, turnOff, GoRight, GoLeft, GoStraight}

• ΣO
receiver = { POWER, FULL ,RIGHT, LEFT, ADVANCE}

92CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

Figure 7.11: HIA-ILT of the receiver and roomba.

• ΣI
roomba = {POWER, SAFE, FULL, MAX, SPOT, CLEAN, RIGHT, LEFT, ADVANCE}

• ΣO
roomba = ∅

• ΣI
receiver ∩ ΣI

roomba = Σ
O
receiver ∩ ΣO

roomba = Σ
H
receiver ∩ Σroomba = Σreceiver ∩ ΣH

roomba = ∅.

⇒ receiver ζ roomba , The receiver and roomba are composable.

The 3dth step : The Selection of Composite States to Flatten

Shared(receiver,roomba) =
(ΣI

receiver ∩ ΣO
roomba) ∪ (ΣO

receiver ∩ ΣI
roomba) =

{POWER, FULL,RIGHT, LEFT, ADVANCE}
InHAroomba, we see that the composite state ''autonomous'' has no transition labelledwith
an action belong to Shared(receiver,roomba), so it will not be flattened. However, it is not
the case for the composite state ''no-autonomous''. In Figure 7.12, we expose the result
of flattening state ''no-autonomous'' of roomba. For visibility, we don't show the inter-
nal detail of the composite state 'autonomous'. By considering the state ''autonomous'' as

7.5. CONCLUSION 93

Figure 7.12: HIA-ILT of roomba after flattening no-autonomous state.

an abstract state, we avoid adding three states and nine transitions to the automaton of
"roomba" which alleviates the next step of compatibility verification.

The 4th step : Compatibility verification between blocks

In Figure 7.13, we show the abstract synchronous product HAreceiver ⊗a HAroomba. The state
'3-auto', is an abstract state, it contains all the internal interaction of the composite state
'autonomous'. This abstraction allows handling simultaneously all internal states of 'au-
tonomous'with theirmother. To compute the compositionHAreceiver ∥a HAroomba, wemust
delete the state 3-auto because it is a deadlock state for the parallel execution of the re-
ceiver and roomba and it's an illegal state because full ∈ Shared(receiver,roomba) and full
∈ ΣO

3 and full < ΣI
auto. All the internal states of 3-auto are illegal states (see theorem 1)

HAreceiver ∥a HAroomba has at least one reachable state, so HAroomba is compatible with
HAreceiver. Therefore, this receiver and this roomba can be assembled together.

7.5/ Conclusion

We have presented in this chapter the HPSM, a new convivial model for representing the
interaction protocol of a SysML block. We have also presented HIA-ILT, a variant of IA,
whichallows theuseof the composite states and the inter-level transitions. Wehavegiven
rules to formalize the HPSMusing HIA-ILT, andwe have shown how to exploit the hierar-
chy and the abstraction present in theHIA-ILT to verify the compatibility between blocks.

94CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

Figure 7.13: HAreceiver ⊗a HAroomba.

This verification allows the detection of the anomalies during the interaction. Our ma-
jor objective was to alleviate the verification phase, by considering abstract states in HIA-
ILT and flattening only some ones. The states to flatten are those having inside transi-
tions thatmust synchronizewith the other blocks transitions. Sowe gain, comparedwith
the classical interface automata approach, on the size of the product automata HIA-ILT
to analyse when we verify the compatibility between blocks. Two blocks are considered
compatibles if the composition of their HIA-ILTs is not empty.

8
SysMLBlocks Adaptation

How to assemble components designed in isolation? That is the major question on
which CBSE domain tries to give more precise and adequate answers. As we have

mentioned before, CBSE is considered as a natural consequence to the object oriented
paradigm and the emergence of platforms of components (i.e CORBA, CCM). Its major
goal is to build a market of software components (the so called COTS: Commercial-Off-
The-Shelf), in which the developer finds the adequate components to integrate to its ap-
plication.

Systemengineering also adopts the principle of using the component as the development
unit. This appears clearly through SysML [OMG12b], a language that is used to design
systems that include software and hardware. The System Modelling Language (SysML),
through its diagrams, fosters the view point that takes the system as a set of components
(the so called blocks). The Block Definition Diagram (BDD) of SysML can be seen as a tree
of blocks, where the leaf nodes are the concrete blocks and the rest nodes until the root
are abstract blocks. The abstract ones are called composite blocks, they are composed by
assembling a set of blocks located in a less level of hierarchy.

In this chapter, we propose a bottom-up approach to build the system by adapting SysML
blocks. Starting from a specification of a system part, whichwe consider as a SysML com-
posite block 'B' to be built, the architect selects someSysMLblocks, and adapts themusing
our method to meet the specification of B. In the next step of the development, the com-
posite block B and another set of blocks will be used to achieve the specification of their
parent. Thus, in our approach, we build an adapter per a composite block, the sub-blocks
use this adapter to interact with the rest of the system.

Contents
8.1 Our Incremental Approach for Adapting SysML Blocks 96

8.1.1 The First Phase: Defining a Specification for the Part to Develop . 96
8.1.2 The Second Phase: The Selection of the Reused Blocks {Bi} 98
8.1.3 The Third Step: the Contract and the Reused Blocks Verification . 99
8.1.4 The Fourth Step: Generating the Adapter 99

8.2 Case Study . 103
8.2.1 Generate the Adapters . 103
8.2.2 Deduce the BDD and the IBDs of the Composite Blocks 106

8.3 Conclusion . 107

95

96 CHAPTER 8. SYSML BLOCKS ADAPTATION

The adaptation concerns the interaction protocols of the blocks. In this chapter, we start
from the SysML Sequence Diagrams (SDs) that model the interactions of each block with
its environment. Due to the fact that SysML SDs are not formal, we can't base on them
to define the adaptation rules. Thus, we propose to translate SDs on their equivalents of
Interface Automata (IA). Thus, we use the interface automata [dAH01] as formalism to
formally specify the interaction protocol of the reused blocks (sub-blocks), the adapter
block and the specification of the part to be built (the parent block).

Aswehavementioned in the relatedworks part, our notion of the adapter differs from the
notion used in the existingworks [IT03b, PST07, CMM12, CPS06a, BBC05a], which define
the adapter as a protocol converter. In fact, in our approach the adapter has two roles. It
plays its role as a converter between the reused blocks on the one hand, and between the
reused blocks and their future parent block on the other hand. It plays the second role as a
complement by performing to the reused blocks what they require and it's not planned to
be requiredby their parent, and toofferwhat theparentmust provide and it's not provided
by any part of it.

The remainder of this chapter is organized as follows: In section 8.1, we present our ap-
proach of adapting SysML blocks, starting from the selection of the reused blocks until
the generation of the adapter, and in section 8.2, we illustrate our approach through a
case study.

8.1/ Our Incremental Approach for Adapting SysMLBlocks

In this section, we explain our bottom-up approach to assemble and adapt SysML blocks
which are designed separately. In Figure 8.1, we give the different steps of ourmethod.

• We start by specifying the interactionprotocol of the part of the system thatwewant
to develop and integrate to our system. We model this part as a SysML composite
block B which will contain the reused blocks and their adapter.

• After that, we can select the set of blocks {Bi} to reuse. During the selection of these
blocks, we take into consideration the specification that we want to fulfil.

• Next, basing on the reused blocks and the specification modelled by the composite
block B, we can deduce if it is possible that these blocks may participate in meeting
the specification of B. If it is the case, we compute the interaction protocol of the
adapter and its structure.

• Finally, we integrate the adapter blockwith the selected blocks to build the BDD and
the IBD of the parent block B.

In the next step of the system development (see Figure 8.2), the composite block B will
be used to meet the specification of its parent block. Thus, the unit used to construct the
system is the composite block, and we build an adapter per a composite block.

8.1.1/ The First Phase: Defining a Specification for the Part toDevelop

At this phase, wemust specify the structure and the interaction protocol of the part B that
we want to develop. Structurally, we model this part as a SysML block. On other hand,

8.1. OUR INCREMENTAL APPROACH FOR ADAPTING SYSML BLOCKS 97

the
developed

part

the part
still

to develop

the part B

to develop

B ENV

msgi

sd B
The sequence diagram of B

The interaction protocol of B

Select the blocks to
reuse

Verification
Can’t generate
the adapter

Generate the adapter

Integrate the part B
to the system

the developed part

the part still to

develop

B1 ... Bi Ad

B

Figure 8.1: The proposed approach.

Figure 8.2: Incremental approach.

wemake use of the SysML Sequence Diagram (SD) to specify the different interactions of
our part with its environment. It is easy to model these interactions with SD. However,
formal verification is still inapplicable directly on SDs, because they are expressed in a

98 CHAPTER 8. SYSML BLOCKS ADAPTATION

semi-formalmodelling language. Hence, to apply a verificationmethod, it is necessary to
transform the SysML SDs to formal models. In our work, we have used as formal model
Interface Automata (IAs). To perform this transformation, we make reference to chapter
6, where we have defined the correspondences between these twomodels.

8.1.2/ The Second Phase: The Selection of the Reused Blocks {Bi}

In this phase, the architect can select a set of blocks {Bi} that will participate to meet the
specification of the composite block B (constructed in the previous phase). Each selected
blockmust be equippedwith a sequence diagramdescribing its interactionswith its envi-
ronment. The result of this phasewill be a set of SysMLblocks to reusewith their sequence
diagrams and a contract C that specifies the correspondences between the services of the
blocks.

To specify some conditions on these blocks and the contract format, we need to define
each block Bi by three sets. To define these sets, we have based on the formalization of
SysML diagrams given in chapter 5.

• PSBi: the set of provided services,

PSBi={ps |∃ p∈ Ports(Bi), ps ∈ p.type.Op ∧ p.Direction=provided}

• RSBi: the set of required services,

RSB={rs |∃ p∈ Ports(Bi), rs ∈ p.type.Op ∧ p.Direction=required}

• IOpBi: the set of internal operations,

IOpB= {o | o∈ operations(Bi)}

The adaptation contract C is constructed incrementally. After adding a new block Bi, the
architect must specify the correspondences between the services of Bi and the services of
the specification of B on the one hand, and between the services of Bi and the services of
the blocks already chosen ({B j} j<i) on the other hand. These correspondences represent
the contract C = {vi}i=1..m.

Each element vi of the adaptation contract C takes the format of a synchronous vector: ⟨
a1, a2, ... , an, s ⟩ , where:
s ∈ PSspec ∪ RSspec ∪ {ε} ∧ ai ∈ PSBi ∪ RSBi ∪ {ε}.

Each vector contains two elements ai and a j which are different from epsilon, this means
that the service ai of the block Bi corresponds to the service a j of the block B j. We can see
that the adaptation contract C is the union of two sub-contracts elements: C= CsubBlocks∪
Cspec , where:

• CsubBlocks: specifies the correspondences between the reused sub-blocks {Bi},
CsubBlocks={⟨a1, a2, ..., an, s⟩}, where s=ε ∧ ai∈PSBi ∪ RSBi ∪ {ε}

• Cspec: specifies the correspondences between the reused sub-blocks {Bi} and the
specification of the parent block,
Cspec={⟨a1, a2, ..., an, s⟩}, where s,ε ∧ ai∈PSBi ∪ RSBi ∪ {ε}

8.1. OUR INCREMENTAL APPROACH FOR ADAPTING SYSML BLOCKS 99

8.1.3/ The Third Step: the Contract and the Reused Blocks Verification

The contract C must respect some validity conditions. The contract C is valid if its sub-
contracts are valid as well:

Because in our approach, we are interested with mapping of type one-to-one, our sub-
contract CsubBlocks must verify the condition 1 and the sub-contract Cspec must verify the
condition 2.

condition 1 (CsubBlocks validity):

condition 1.1: A required service of a block corresponds at most to one provided service of
another block.
∀ vi=⟨ ei1, ..., ein, ε ⟩ ∈ CsubBlocks (eik = a, a ∈ RSBk

⇒ ∀ v j,i= ⟨ e j1, ..., e jn, ε ⟩ ∈ CsubBlocks, e jk , a)

condition 1.2: A provided service of a block corresponds at most to one required service of
another block.
∀ vi=⟨ ei1, ..., ein, ε ⟩ ∈ CsubBlocks (eik = a, a∈ PSBk

⇒ ∀ v j,i= ⟨ e j1, ..., e jn, ε ⟩ ∈ CsubBlocks, e jk , a)

The sub-contract Cspec must verify condition 2:

condition 2 (Cspec validity):

condition 2.1: A provided service a of the specification can correspond at most to one
provided service b of the sub-blocks.
∀ a ∈ PSspec, ∀ vi=⟨ ei1, ..., ein, a⟩ ∈ Cspec (eik=b
⇒ b ∈ PSBk ∧ ∀ v j,i= ⟨ e j1, ..., e jn, c ⟩ ∈ C , c , a ∧ e jk , b)

condition 2.2: A required service a of the specification can correspond at most to one
required service b of the sub-blocks.
∀ a ∈ RSspec, ∀ vi=⟨ ei1, ..., ein, a⟩ ∈ Cspec (eik=b
⇒ b ∈ RSBk ∧ ∀ v j,i= ⟨ e j1, ..., e jn, c⟩ ∈ C , c , a ∧ e jk , b)

The reused blocks and the specificationmust also verify the conditions of consistency.

condition 3 (Consistency verification of the selected sub-blocks and the parent
block): This condition must be verified by the parent block (B) that represents the speci-
fication of the part to develop and the reused blocks ({Bi}), that will be children blocks of
B.

• A provided service of a sub-block can not be a required service of the parent block:
∀ a ∈ PSBi, a < RSAspec

• A required service of a sub-block can not be a provided service of the parent block:
∀ a ∈ RSBi, a < PSAspec

8.1.4/ The Fourth Step: Generating the Adapter

To generate the adapter, we need to compute the global interaction protocol of the reused
blocks. To do that, weneed to transform the sequence diagrams of blocks into their equiv-
alents of interface automata. To compute the parallel composition of interface automata
the reused blocks, we need to adapt the notions of synchronous and parallel composi-
tion to take into consideration the contract and the corresponding actions instead of the

100 CHAPTER 8. SYSML BLOCKS ADAPTATION

shared actions. Thus, we have defined in [BCHM15], the notions of contract-based syn-
chronous product (⊗c) and contract-based parallel composition (∥c).
Definition 1 (Contract-based synchronous product):

The contract-based synchronous product is possible between two interface automata Ai

and A j, if they are composable (ΣI
Ai
∩ ΣI

A j
= ΣO

Ai
∩ ΣO

A j
= ΣH

Ai
∩ ΣA j = ΣAi ∩ ΣH

A j
= ∅), and the

adaptation contract is valid (it verifies the condition 1).

Before defining the contract-based synchronous product between two interface automata
Ai and A j, we need to define Corresponding(Ai, A j), the set of corresponding actions
between the interface automata Ai and A j, and the function corresp(a) that returns the
action that corresponds to the action a by referring to the adaptation contract:

Corresponding(Ai,A j)=
{a∈ΣI

Ai
∪ ΣO

Ai
∪ ΣI

A j
∪ ΣO

A j
| ∃v=⟨e1,...,en,ε⟩∈CsubBlocks, ek=a}

corresp(a)={a'|∃v∈C, ∃ (i, j)∈ N2, v=⟨a1,...,an⟩ ∧ ai=a∧ a j=a'}

Definition 22: Contract-based synchronous product
We define the contract-based synchronous product of Ai and A j as:

Ai⊗cA j=⟨SAi⊗cA j, IAi⊗cA j, Σ
I
Ai⊗cA j

, ΣO
Ai⊗cA j

, ΣH
Ai⊗cA j

, δAi⊗cA j⟩

• SAi⊗A j = SAi × SA j and IAi⊗cA j = IAi × IA j;

• ΣI
Ai⊗cA j

=(ΣI
Ai
∪ ΣI

A j
) \ Corresponding(Ai, A j);

• ΣO
Ai⊗cA j

=(ΣO
Ai
∪ ΣO

A j
) \ Corresponding(Ai, A j);

• ΣH
Ai⊗cA j

= ΣH
Ai
∪ ΣH

A j
∪ Corresponding(Ai, A j);

• ((si,s j),a, (si’,s j’)) ∈ δAi⊗cA j if:

– a < Corresponding(Ai,A j) ∧ (si,a,s’i) ∈ δAi∧ s j = s’ j

– a < Corresponding(Ai,A j) ∧ (s j,a,s’ j) ∈ δA j∧ si = s’i

– a ∈ Corresponding(Ai,A j) ∧ a ∈ ΣO
Ai

∧ (si,a,s’i) ∈ δAi ∧ (s j,corresp(a),s’ j) ∈ δA j

– a ∈ Corresponding(Ai,A j) ∧ a ∈ ΣO
A j

∧ (s j,a,s’ j) ∈ δA j ∧ (si,corresp(a),s’i) ∈ δAi

This product absorbs the transitions (si, s j)
a!−→ (s′i , s j)

corresp(a)
−→ (s′i , s

′
j) and the transitions

(si, s j)
a!−→ (si, s′j)

corresp(a)
−→ (s′i , s

′
j) by replacing them by a single transition (si, s j)

a;−→ (s′i , s
′
j).

This absorption is helpful when we need to compute the synchronous product between
multiple IAshavingcorrespondingactions. It allows theatomic executionof theemission
of an action and the reception of its corresponding action.

The contract-based parallel composition between two interface automata Ai and A j is de-
fined as:

8.1. OUR INCREMENTAL APPROACH FOR ADAPTING SYSML BLOCKS 101

Definition 23: Contract-based parallel composition
Ai∥cA j= Ai⊗c A j after removing illegal states and all states reached from these illegal
states by enabling output and internal actions. The set of illegal states is defined as:

Illegal(Ai,A j)=

(si, s j) ∈ S Ai × S A j | ∃a ∈ Corresponding(Ai, A j).

a ∈ ΣO
Ai

(si) ∧ corresp(a) < ΣI
A j

(s j)
∨

a ∈ ΣO
A j

(s j) ∧ corresp(a) < ΣI
Ai

(si)

Thus, the global interaction protocol AG of the sub-blocks {Bi}i=1..n is obtained by compos-
ing their interface automata {Ai}i=1..n using the contract based parallel composition:

AG = A1 ∥c A2 ∥c ... ∥c An

At each given stage i of computing the composition, we must compute the composition
between the interface automaton Ac (where Ac = A1 ∥c ... ∥c Ai−1) and the interface
automaton Ai of the block Bi. At each stage i, wemust verify the condition 4.

Condition 4: (The blocksmust be compatible) Ac must be not empty.

Now,we candeduce the interaction protocol of the adapter by using the interface automa-
ton AG and basing of this relation:

Aspec ≽ AG ∥c Aad

It means that the automaton resulting from composing interface automata of the blocks
{Bi} with the adapter automaton, must refine the interface automaton of the part B. Thus,
to deduce Aad, we refer to the formula proposed in [BR08]. To compute the most general
solution R where Q ≽ P∥R, the authors in [BR08] prove that R = mirror(P∥mirror(Q)),
where P, R and Q are interface automata, andmirror(Q) is the interface automatonQwith
inputs and outputs interchanged. We define formally the notion of mirror as follows:

mirror(Q)={Q' | ∀ (s, a!, s') ∈ δQ, ∃ (s, a?, s') ∈ δQ′ ∧
∀ (s, a?, s') ∈ δQ, ∃ (s, a!, s') ∈ δQ′ ∧
∀ (s, a;, s') ∈ δQ, ∃ (s, a;, s') ∈ δQ′}

Thus, in our case, because we have corresponding actions between automata instead of
shared actions, the Aad must be computed as follows:

Aad = mirror(AG ∥c mirror(Aspec)) =
mirror(A1 ∥c ...∥c An ∥c mirror(Aspec))

Condition 5: (AG and mirror(Aspec)must be compatible) Aad is not empty

If the condition 5 is verified, we can deduce the real interaction protocol of the adapter
by applying the algorithm 2, which allows to return transitions absorbed in the contract
based synchronous product.

102 CHAPTER 8. SYSML BLOCKS ADAPTATION

Algorithm 2 Deduce the interaction protocol of the adapter
INPUT: Aad =⟨ Sad, Iad, ΣI

ad, ΣO
ad, ΣH

ad, δad ⟩, C
OUTPUT: Aadapter =⟨Sadapter, Iadapter, ΣI

adapter, Σ
O
adapter, Σ

H
adapter, δadapter⟩

1: - Create a copy Aadapter of Aad.
2: - Construct the set T of all transitions (s

a;−→s’ ∈ δadapter), where a
appears in the contract C.

3: - Replace all s
a;−→ s′ ∈ δadapter where s

a;−→ s′ ∈ T, by s
a?−→ s′′

corresp(a)!
−→ s′.

According to the contract based synchronous product, the transitions labelledwith inter-
nal actions a; in Aad, which appear in the contract, represent the transitions where the
adapter plays the role of a converter: so each transition of this set must be replaced by
two transitions. The first is labelled with the input action a? and the second by the cor-
responding action corresp(a)!. This means that the adapter receives the action a? from a
block, after that, it converts it to the suitable input of another block and it conveys it using
an output action corresp(a)!. The transitionswhich aren't selected by the algorithm 2 are
those where the adapter plays the role of a complement and not a converter.

Now, we can construct the architecture of the SysML adapter block Badapter. We use the
algorithm 3 to deduce the set of ports of Badapter. To build the BDD and the IBD of the part
B,we apply theAlgorithm3 and the algorithm 5. The role of algorithm4 is to establish the
composition relations between the parent block B and its sub-blocks {Bi}, and a composi-
tion relation between the parent block B and the adapter block Bad. We use the algorithm
5 to generate the IBD of the block B. It bases on relying the adapter block ports with the
ports of the sub-blocks {Bi} and the parent block B.

Algorithm 3 Construct the SysML adapter block
INPUT: Aadapter=⟨Sadapter,Iadapter,ΣI

adapter,Σ
O
adapter,Σ

H
adapter,δadapter⟩

OUTPUT: Badapter =⟨ ′Adapter′, V, O, C, P, Ports ⟩
1: -Create the adapter block Badapter=⟨ ′Adapter′, ∅, ∅, ∅, ∅, ∅ ⟩
2: // create the list of ports of the adapter that must be linked to the ports

of the parent block.
3: if ΣI

adapter ∩ ΣI
spec , ∅ then

4: -create a new provided port p which offers the services ΣI
adapter ∩ ΣI

spec
5: -add p to the ports list of Badapter

6: if ΣO
adapter ∩ ΣO

spec , ∅ then
7: create a new required port p which requires the services ΣO

adapter ∩ ΣO
spec

8: add p to the ports list of Badapter

9: // create the list of ports of the adapter that must be linked to the ports
of sub-blocks {Bi}

10: for all Bi in the list of sub-blocks {Bi} do
11: if ΣI

adapter ∩ ΣO
Bi
, ∅ then

12: create a new provided port p which offers the services ΣI
adapter ∩ ΣO

Bi

13: add p to the ports list of Badapter

14: if ΣO
adapter ∩ ΣI

Bi
, ∅ then

15: create a new required port p which requires the services ΣO
adapter ∩ ΣI

Bi

16: add p to the ports list of Badapter

8.2. CASE STUDY 103

Algorithm 4 Construct the BDD of the parent block B
INPUT: B, {Bi}, Badapter

OUTPUT: BDDB =⟨ B, R ⟩
- Set the value of the blocks set of the BDDB to: B= {Bi}i=1..n ∪
{B, Badapter}
- Create a composition relation ri between the parent block B and each
block Bi where: SourceOf(ri) = B, TargetOf(ri) = Bi

- Create a composition relation rad between the parent block B and the
adapter block Badapter where: SourceOf(rad) = B, TargetOf(rad) = Badapter

- Set the value of the relations set of BDDB to: R= {ri}i=1..n ∪ {rad}

Algorithm 5 Construct the IBD of the parent block B
INPUT: B, {Bi}, Badapter

OUTPUT: IBDB =⟨ Parts, Ports, Connectors ⟩
- Create instances {parti}i=1..n of the blocks Set {Bi}i=1..n.
- Create an instance ’ad’ of the adapter block Badapter.
- Set the set Parts of IBDB to: {parti}i=1..n ∪ {ad}
- Set the set Ports of IBDB to: {Ports(parti)}i=1..n ∪ Ports(ad)
//create connectors between the adapter and {parti}i=1..n .
for all parti ∈ {parti}i=1..n do

for all port p ∈ Ports(ad) do
if ∃p′ ∈ Ports(parti) ∧ (p.type.Op ∩ p′.type.Op , ∅) then

create a connector between p and p’
//create delegation connectors between the adapter and the parent block B.
for all port p ∈ Ports(ad) do

if ∃p′ ∈ Ports(B) ∧ (p.type.Op ∩ p′.type.Op , ∅) then
- create a connector between p and p’

8.2/ Case Study

To illustrate our SysML blocks adaptation approach, we give a simple example of a robot
which is guided by a station. To simplify, we consider that the corresponding actions have
the same name and we differentiate between them by adding the first letter of the block’s
name to each action.

Remark:

In each figure of the reused blocks, we present the architecture of the block with its
interfaces, its sequence diagram, and the result of transforming its sequence diagram
into an interface automaton.

8.2.1/ Generate the Adapters

Tobuild this system,we start bybuilding the robot (see Figure 8.3). Wewant that our robot
receives a request tomove. After that, it can either receive a request to stop, or to commu-
nicate its location. In this last case, the robot send the location data to its environment.

Thus, to build this robot, we have reused amotor and a controller (see Figure 8.4). At this
step, we use the contractCContr↔Mot=

104 CHAPTER 8. SYSML BLOCKS ADAPTATION

0 1 2

R.move?

R.stop?

R.getLocation?

R.location!

R.locationR.stop
R.move

R.getLocation

properties
values

re f erences
parts

operations

constraints

Robot
<< block >>

prov pr2 : RProv req pr1 : RReq

<< inter f aceBlock >>
RProv

R.move
R.stop

R.getLocation

<< inter f aceBlock >>
RReq

R.location

<< block >>
Robot

<< block >>
ENV

R.move

R.getLocation

R.location
R.stop

loop

loop

Transformation

Figure 8.3: The Robot.

{⟨C.on, M.on, ε⟩, ⟨C.off, M.off, ε⟩, ⟨C.move, ε, R.move⟩, ⟨C.stop, ε, R.stop⟩}

0 1

23

C.move?

C.on!

C.stop?

C.o f f !

C.move

C.stop

C.on

C.o f f

0 1

M.on?

M.o f f ?

M.on

M.o f f

<< inter f aceBlock >>
MProv

M.On
M.Off

<< inter f aceBlock >>
CReq

C.On
C.Off

<< inter f aceBlock >>
CProv

C.move
C.stop

properties
values

re f erences
parts

operations

constraints

Controller
<< block >>

prov pc1: CProv
req pc2: CReq properties

values
re f erences

parts

operations

constraints

Motor
<< block >>

prov pm1: MProv

<< block >>
Contr

<< block >>
ENV

C.move
C.on

C.stop
C.off

loop

<< block >>
Motor

<< block >>
ENV

M.on

M.off

loop
Transformation

Figure 8.4: The Controller and the Motor blocks.

Basing on the contract CContr↔Mot, we adapt these two blocks to meet the specification
of the robot by introducing the adapter (a converter-complement) AdContr↔Mot (see Figure
8.5), where the interaction protocol of the adapter AdContr↔Mot is represented using an in-
terface automaton and it is computed by applying the algorithm 2 on the result of this
formula:

IAAdContr↔Mot = mirror(IAController ∥c IAMotor ∥c mirror(IARobot))

8.2. CASE STUDY 105

0 1 2 3

4

5 678

9

R.move? C.move! R.getLocation?

R.location!C.on?

M.on!R.getLocation?

R.location!R.stop?C.stop!

C.o f f ?

M.o f f !

R.move
R.stop

C.on
C.o f f

R.getLocation

C.move
C.stop
M.on

M.o f f
R.location

properties
values

re f erences
parts

operations

constraints

ADContr↔Mot

<< block >>

prov pr1 : RReq

prov pc2 : CReq

req pc1 : CProv
req pm1 : MProv
req pr2 : RProv

Figure 8.5: The adapter ADContr↔Mot.

Our robot must be guided by a station. That is why, we have reused the station at Figure
8.6, which is modelled using SysML and interface automata.

0 1

S .move!

S .stop!

S
.location?

S .location
S .move

S .stop

properties
values

re f erences
parts

operations

constraints

S tation
<< block >>

prov pr2: SProv

req pr1: SReq

<< inter f aceBlock >>
S Prov

S.location

<< inter f aceBlock >>
S Req

S.move
S.stop

<< block >>
Station

<< block >>
ENV

S.Move

S.location

S.stop

loop

loop

Transformation

Figure 8.6: The station.

To adapt the station and the robot, we have used the contractCRob↔S ta:

{ ⟨ R.move, S.move, ε ⟩, ⟨ R.stop, S.stop, ε ⟩, ⟨ R.location, S.location, ε ⟩}

At this step, we have a closed system, which cannot interact with its environment. Thus,
the interface automatonwhich specifies the interactions of our station and our robotwith
their environment will be empty. Thus, to compute the adapter AdRob↔S ta (see Figure 8.7),
we need just the contract CRob↔S ta, where, in Figure 8.7, the interaction protocol of the

106 CHAPTER 8. SYSML BLOCKS ADAPTATION

0 1

23 4

5

S .move?

R.move!

S .stop?

R.stop!

R.getLocation!
R.location?

S .location!

S .move
S .stop

R.location

R.move
R.stop

S .lacation
R.getLocation

properties
values

re f erences
parts

operations

constraints

AdRob↔S ta

<< block >>

prov ps2 : SReq

prov pr2 : RReq

req pr1 : RProv

req ps1 : SProv

Figure 8.7: The adapter AdRob↔S ta.

adapter AdRob↔S ta is represented using an interface automaton and it is computed by ap-
plying the algorithm 2 on the result of this formula:

IAAdRob↔S ta = mirror(IARobot ∥c IAS tation)

8.2.2/ Deduce the BDD and the IBDs of the Composite Blocks

Controller AdContr↔Mot Motor

Robot AdRob↔S ta Station

System

Figure 8.8: The Block definition diagram of the system.

InFigure8.8,we represent theblocksof the systemand thecomposition relationsbetween
them, we have used Algorithm 4 to generate this BDD. However, we have applied Algo-
rithm 5 to generate the internal structure of each composite block: the system and the
robot blocks (see Figure 8.9).

8.3. CONCLUSION 107

«Block»
System

Station

Robot

AdRob↔S ta

«part»
«part»

«part»

req ps1

prov ps2

req pr1

prov pr2

prov ps1

req ps2

prov pr1

req pr2

«Block»
Robot

Controller

Motor

AdCont↔Mot

«part»
«part»

«part»

req ps1

prov ps2

req pr1

prov pr2

prov ps1

req ps2

prov pr1

req pr2

prov pr1

req pr2

(1) IBD of the System

(2) IBD of the Robot

Figure 8.9: The internal block diagram.

8.3/ Conclusion

We have presented in this chapter, a bottom-up approach to build a system, based on its
partial specifications. The approach is based on reusing and adapting SysML blocks us-
ing a converter-complement block. Starting from a specification of a system's part that
we consider as a SysML composite block, the architect tries to meet this specification by
reusing existing blocks. In our present work, we have given a set of conditions that this
set of blocks must verify, and also, we have given some constraints to be respected by the
contract specified by the architect. We have used the interface automata as formalism to
specify formally the interaction protocols of blocks. By defining the new notion of con-
tract based synchronous product and basing on the relation of refinement between inter-
face automata, we deduce the interaction protocol of the converter-complement block,
when the reused blocks respect the adaptation conditions. In our approach the adapter
has two roles. It plays its role as a converter between the reused blocks on the one hand,
and between the reused blocks and their future parent block on the other hand. It plays
the second role as a complementbyperforming to the reusedblockswhat they require and
its not planed tobe requiredby their parent, and toofferwhat theparentmust provide and
its not provided by any part of it.

9
Incremental Verification of

SystemRequirements

I t is very interesting tomake call for formalmethods to verify the result of assembling a
set of components to construct a system. In our context, the verification of the resulted

system after adaptation targets the temporal properties as in [CCM14]. These properties
canconcern theorderof components services invocation, or it canverify ifwhena compo-
nent requests a service, the other components can always answer this request by offering
the corresponding service.

In our approach, we take advantage from our adaptation method, to tackle the problem
of state explosion. For a given requirement, we must know its location in the system hi-
erarchy to specify the blocks involved in the verification of this requirement. The set of
selected blocks will be the minimal set that allows ensuring that if the property, which
represents the requirement, is verified on this set, it will be verified on the whole of the
system.

In this chapter, we extend the adaptation (presented in chapter 8) by a verification ap-
proach which allows verifying SysML requirements on only a partial part of a system in
order to decide on its verification on thewhole system. In this phase, we exploit ourman-
ner of defining the adapter, to avoid the verification of the initial requirements satisfied
by the adapted blocks on the totality of the system, and thus, we avoid the state space ex-
plosion. To allow the verification of the properties that specify these requirements, we
have based our work on SPIN model checker, we have generated the Promela code start-
ing from the interface automata of blocks, andwe have expressed the set of requirements
using LTL properties.

Contents
9.1 Our Approach . 110

9.1.1 Requirements Specification . 110
9.1.2 Problem definition . 111
9.1.3 The First Case : The Low Level Verification 111
9.1.4 The Second Case : The High Level Verification 114
9.1.5 The Verification Algorithm . 117

9.2 Case Study . 119
9.3 Conclusion . 123

109

110 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

In the remainder of this chapter, we expose our approach for requirement verification,
where we present how we represent the requirements and how we verify them. Next, we
illustrateourapproach throughanextendedversionof thecase studypresented inchapter
8.

9.1/ Our Approach

9.1.1/ Requirements Specification

In this work, we consider that each functional requirement is related to the provided (PS)
and required (RS) services of theblock (B) onwhich is defined, and it expresses constraints
and the order of executing these services.

To model the behaviour of our blocks, we have used interface automata. We have men-
tioned, early in this paper, that the required services (RS) of a block correspond to the out-
put actions of its interface automaton, and the provided services (PS) correspond to the
input actions. Thismeans that, we can consider that each requirement rwhich is defined
on a Block B is also specified using the input and output actions of interface automaton of
B.

In our work, we will translate the interface automata of blocks to Promela processes, and
wewill write the requirements using LTL in order to verify these requirements using SPIN
model checker as in [CCM14]. Thus, a block B satisfies a requirement r if the Promela pro-
gram describing the block behaviour (interface automaton) satisfies the LTL property p
specifying the requirement r.

In order to verify whether a component satisfies a LTL property, which describes the or-
der of executing a component services, in [LTM+09], the authors have proposed to use a
series of flags in Promela processes to keep track of who is sending/receiving what mes-
sage to/fromwhomat any time of the execution. These flags are updated together at each
send/receive event using a d_step statement. After defining the flags to track the execu-
tion state of the system, LTL properties can be written as boolean expressions over the
flags.

Thus a property p which is defined on the block B can be expressed as a formula defined
with the flags (the flags takes the value true or false) belonging to this set:

{send, receive} ∪ {actionFlag(a)| a ∈ ΣI
B ∪ ΣO

B } ∪ {blockFlag(B), blockFlag(ENV)}

where:

• actionFlag() is the function that returns the flag which is associated to a given ac-
tion.

• blockFlag() is the function that returns the flag which is associated to a given
block, or to the environment.

Thus, for example, if we want to express that, when the block Bi receives a request to ex-
ecute the service y or the service z, it must send a call for the service x, as a LTL property
using flags, we do it as follows:

9.1. OUR APPROACH 111

� ((f_Bi && f_receive && (f_y || f_z)) →
♢ (f_Bi && f_send && f_x))

where:

• f_Bi is the flag associated to Bi, it takes the value true or false.

• f_x, f_y and f_z are the flags associated to services x, y and z.

• f_send and f_receive are the flags that specify if the executed action is an emission
or a reception.

All the flagsmust be updated after each action of a block. Where, the flags that represent
the executed action, its type (send or receive) and the block which executes this action,
must be updated to true. However, the other flagsmust become equal to false.

9.1.2/ Problemdefinition

Our approach aims to alleviate the verification phase of functional requirements of the
adapted system by exploiting our manner of adapting system blocks. Through our ap-
proach, we will explain how can we reduce the problem of the state explosion during the
verification, by benefiting from our adaptation approach and the composition relations
between blocks and between requirements. Our adaptation mechanism, presented be-
fore, generates for each set of reused blocks an adapter block. This adapter plays the role
of an orchestral conductor for the adapted blocks.

We can resume our problem of verification as follows:

If we have a LTL property p which is verified on a block B1, how canwe checkwhether p is
verified or not on the result of assembling B1 and adapting it with other blocks {Bi}i=2..n.

The first idea that comes to the mind is to verify p on the parallel execution of the blocks
{Bi}i=1..n and their adapters {Ad j} (we can't verify p only on the interaction protocol of Bi

because, after adaptation, there is a possibility that some interaction scenarios of Bi will
be eliminated and others will be created due to the parallel composition). This first idea
is constrained with the problem of the state explosion because the system behaviour ob-
tained after the composition of several blocks is generally complex and voluminous. For
this reason, in our approach, to verify p, we focus on only the generated adapters {Ad j}
and the mirror of the property p . We generate the mirror of the property p because p is
initially defined on the input and output actions of the reused block Bi, while we want to
verify it on the adapter, and we also know that the input (resp. output) actions of Bi are
the output (resp. input) actions of the adapter.

In our approach, we distinguish between two cases:

9.1.3/ The First Case : The LowLevel Verification

Wemean by low level verification (see Figure 9.1), the stages where we verify a property p
on a block B containing a set a blocks {Bi}i=1..n and an adapter Ad, where the property p is
initially defined on a child block Bi ∈ {Bi}i=1..n.

112 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

Taking into account that the adapter Ad mediates all interactions between the blocks
{Bi}i=1..n, we can only focused on its interaction protocol to verify if a property p which is
verifiedon Bi before adaptation steals verified after adapting Bi in thenew system, instead
of verifying p on the parallel execution of the blocks {Bi}i=1..n and the adapter Ad.

B1 Bi Bn

Ad

B

... ...
p is defined and satisfied initially by Bi

B

Ad Bi B∗

7After adaptation, verify p on B

3After adaptation, verify p on Ad

Figure 9.1: The first case: the low level verification.

Theorem 2:
∀ B= B1∥b ...∥b Bn ∥b Ad, ∀ Bi∈{B j}1..n, ∀ p∈Properties(Bi),
∀ p’=PropertyMirror(p)
(Bi |= p ∧ Ad |= p’ ⇒ B |= p)

Theorem 3:
∀ B= B1∥b ...∥b Bn ∥b Ad, ∀ Bi∈{B j}1..n, ∀ p∈Properties(Bi),
∀ p’=PropertyMirror(p)
(Bi |= p ∧ Ad ̸|= p’ ⇒ B ̸|= p)

We define by:

• ∥b: the blocks assembling operation.

• Bi |= p:means that all the execution scenarios of Bi satisfy the temporal order spec-
ified at the level of the property p.

• Properties(Bi): is the set of all properties defined and satisfied initially by Bi be-
fore the adaptation.

• PropertyMirror(p): is the function that transforms each input action in p into an
output action and each output action into an input action.

Proof:

• We have p is a property satisfied by the block Bi. Bi |= p

• we have Σ1, Σ2, ..., Σn represent the sets of shared actions between the interface au-
tomaton of the adapter AAd and, respectively, the interface automata of the blocks
AB1, AB2, ...,ABn: Σi = {a ∈ ΣBi | ∃a ∈ ΣAd}.

9.1. OUR APPROACH 113

• we have Σ =
n∪

i=1
Σi.

• The Traces set of an automatonA represents the set of all execution scenarios {σ} of
this automaton, where each σ ∈ Traces(A) = a1a2...ai...am(∀i = 1..m, ai ∈ ΣA).

• TraceMirror(σ) is the function that takes a traceσ and transforms each input action
into an output action, and each output action into an input action (e.g. TraceMir-
ror(a!b?c!)=a?b!c?).

• reduce(σ, Σ) is the function that takes a traceσ and eliminates from it all the actions
which do not belong to the set Σ.

• Our definition of the adapter as a converter-complement in a synchronous system
implies that:

– all emission of a message a! by the adapter Ad (where a ∈ Σi) must be followed
directly (synchronous system) by its reception a? by the block Bi, and each re-
ception of a message a? by the adapter (where the adapter waits this message
from Bi)must be preceded directly by an emission of thismessage a! by a block
Bi... (1)

Proof 1:

• We consider that the property p'= PropertyMirror(p) is satisfied by the adapter Ad.
Ad |= p′...(2)

• From (1), we have:

– ∀σ ∈ Traces(AAd ⊗ AB1 ⊗ ... ⊗ ABn)⇒∃σ′ ∈ Traces(AAd),
σ′ = TraceMirror(reduce(σ,Σ)) ...(3)

• We interest only with the actions of the block Bi because p is defined on Bi, thus we
can restrict (3) as follows:

– ∀σ ∈ Traces(AAd ⊗ AB1 ⊗ ... ⊗ ABn)⇒∃σ′ ∈ Traces(AAd),
σ′ = TraceMirror(reduce(σ,Σi)) ...(4)

• Our properties specify the order of executing the actions...(5)

• From (4) and (5), we can deduce that: if an action a ∈ Σi is followed (resp. is not
followed) by an action b∈ Σi in all the executionsσ′ of Ad, then it will be the case for
all executions σ of B (because according to (4), Traces(B) are included in Traces(Ad)
by considering only actions that belong to Σi : Traces(AB) ⊂

Σi
Traces(AAd))...(6)

Thus, from (2) and (6), we can deduce that B |= p.

Proof 2:

We consider that the property p'= PropertyMirror(p) is not satisfied by the adapter Ad.
Ad ̸|= p′...(2)

114 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

• From (1), we deduce that:

– ∀σ ∈ Traces(AAd)⇒∃σ′ ∈ Traces(AAd ⊗ AB1 ⊗ ... ⊗ ABn),
σ′ = TraceMirror(reduce(σ,Σ)) ...(3)

• We interest only with the actions of the block Bi because p is defined on Bi, we can
thus restrict (3) as follows:

– ∀σ ∈ Traces(AAd)⇒∃σ′ ∈ Traces(AAd ⊗ AB1 ⊗ ... ⊗ ABn),
σ′ = TraceMirror(reduce(σ,Σi)) ...(4)

• Our properties specify the order of executing the actions...(5)

• From (4) and (5), we can deduce that: The scenarios of the adapter are included in
the scenarios set of the father block B by considering only actions which belong to
Σi. Thus, if an actions order is not verified by at least one of the scenarios of adapter
then this implies that this order will not be verified by at least one scenario of the
father blockB...(6)

Thus, from(2) and (6), we can deduce that B ̸|= p.

9.1.4/ The Second Case : TheHigh Level Verification

Wemean by high level verification, the stages where a property p is initially satisfied by a
block Bi j (where i is the level of the block in our system hierarchy and j is the identifier of
this block in its level), andwe try to verify it on Bm (the ancestorm-i of Bi j) (see Figure 9.2).

Bi1 Bi j Bi f (i)... ...

Adi+1

B(i+1)p... ...

B(m−1)q... ...

...

B(m−1) f (m−1)B(m−1)1

Adm

Bm

Figure 9.2: Incremental adaptation.

Wecandefine theproblemas follows: Wehavea temporalpropertyp satisfiedby theblock
Bi j,where thispropertyconcerns theactionsof theblockBi j. Wehaveapplieda succession
of adaptations on this block. For example, at the first stage of adaptation of Bi j (we are at
the level i of our system hierarchy) the block Bi j interacts with the adapter Adi+1, where
Bi j and Adi+1 has the same father block B(i+1)p. when we are at the stage m of adaptation
of Bi j, we will have the adapter Adm which adapts a set of blocks and the block B(m−1) p (the

9.1. OUR APPROACH 115

ancestorm−i ofBi j). According toourmethodof adaptation, theblockAdm interactswith the
sub-blocks of B(m−1) p through the adapter Adm−1.The question here is how canwe verify p
at the level m without taking into account the parallel execution of all blocks inside the
ancestor block Bm of Bi j?

Theorem 4:
∀ i=1..m, ∀ j=1..f(i), Bm=Adm∥b B(m−1)1∥b ... ∥b B(m−1) f (m−1),
∀ p ∈ Properties(Bi j), ∀ p’=PropertyMirror(p)
(Bi j |= p ∧ ∥bk=(i+1)..mAdk |= p’ ⇒ Bm |= p)

Theorem 5:
∀ i=1..m, ∀ j=1..f(i), Bm=Adm∥b B(m−1)1∥b ... ∥b B(m−1) f (m−1),
∀ p ∈ Properties(Bi j), ∀ p’=PropertyMirror(p)
(Bi j |= p ∧ ∥bk=(i+1)..mAdk ̸|= p’ ⇒ Bm ̸|= p)

Where:

• ∥b is the blocks assembling operation.

• i is the identifier of the hierarchy level,

• j is the identifier of the block inside the level,

• f(i) is the function that returns the number of the children blocks at the level i,

• Bm is the ancestorm − i of Bi j.

Proof:

To simplify, we consider two levels, the level 1 and the level 2. This means that we have
adapted the block B1 j and after we have adapted its father. So the problem will be as in
Figure 9.3.

• we have Σ represents the sets of shared actions between the interface automaton of
the block B1 j and the interface automaton of the adapter Ad2. Σ = {a ∈ ΣB1 j | ∃a ∈
ΣAd2}.

• We have AB3 = AAd3 ⊗ AB21 ⊗ ... ⊗ AB2p ⊗ ... ⊗ AB2m

• So (wemean by σ =
Σ
σ′ that σ = σ′ whenwe consider only the actions belong to Σ):

Traces(AB3) =
Σ

Traces(AAd3 ⊗ AB21 ⊗ ... ⊗ AB2p ⊗ ... ⊗ AB2m)...(1)

• In Our adaptationmechanism:

– the adapted blocks are in interaction only with their adapter. Thus, the block
B2p interacts only with the adapter Ad3...(2)

– the other adapted blocks by Ad3 can't block the interaction of the adapter Ad3
with the block B2p...(3)

116 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

B11 B1 j B1n

Ad2

B2p

... ...

B21 B2p B2m

Ad3

B3

... ...

p is defined and satisfied initially by B1 j

B3

Ad3 B2p B2∗

Ad2 B1 j B1∗

7After adaptation, verify p on B3

3After adaptation, verify p on Ad2 ⊗Ad3

Figure 9.3: The second case: The high level verification.

• from (1), (2) and (3), we can deduce that:

Traces(AB3) =
Σ

Traces(AAd3 ⊗ AB2p) ...(4)

• We have also:

– the block Bi j interacts only with the adapter Ad2...(5)

– the other adapted blocks byAd2 can't block the interactions of theAd2with the
block Bi j...(6)

• from (3), (5) and (6), we can deduce that:

Traces(AAd3 ⊗ AB2p) =
Σ

Traces(AAd3 ⊗ AAd2 ⊗ ABi j) ...(7)

• from (4) and (7), we deduce that:

Traces(AB3) =
Σ

Traces(AAd3 ⊗ AAd2 ⊗ ABi j) ...(8)

• Our definition of our adaptor implies that: all emission of a message a! by the
adapterAd2 (where a ∈ Σ1)must be followeddirectly (synchronous system) by its re-
ceptiona? by theblock B1 j, andeach receptionof amessagea? by theadapter (where
the adapter waits this message from B1 j) must be preceded directly by an emission
of this message a! by a block B1 j... (9)

• from (8) and (9), we deduce that:

9.1. OUR APPROACH 117

∀σ ∈ Traces(AB3)⇒∃σ′ ∈ Traces(AAd2 ⊗ AAd3)

σ′ = TraceMirror(reduce(σ,Σ)) ...(10)

• If themirror of a property p which concerns the actions order of the block B1 j is sat-
isfied by each execution of AAd2 ⊗ AAd3, from (10), we can deduce that this order will
be preserved in all traces of AB3, and thus, p will be satisfied by the block B3.

The same for a property p, when itsmirror is not satisfied by at least one scenario of
Ad2 ⊗ Ad3, then from (10), we can deduce that this property will not be satisfied by
B3.

9.1.5/ The Verification Algorithm

Our verification algorithm takes respectively as inputs the block Bm and the requirement
diagram ReqD. Bm represents the block onwhich wewant to verify the properties defined
andsatisfied initially by its children. However, ReqDrepresents the requirementdiagram.
ReqD helps us to deduce the properties satisfied by the children blocks of Bm. We must
mention that at the beginning of the adaptation, the requirement diagram takes the form
of separated requirements sets,where each set is satisfiedbya reusedblock. Thus, the role
of this algorithm is to synthesize the verification steps described above. Firstly, it extracts
all the requirements satisfied by the sub-blocks of the input block Bm. After, for each sub-
block, it constructs the set of its ancestors until arriving to Bm. Next, Basing on this last
set, it can decide if it will apply the low level or the high level verification. The output
of the verification phase is a set of requirements which are satisfied by the new system
Bm. Next, we use this set, the hierarchy of blocks and the composition relation between
requirements to update the requirement diagram.

118 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

Algorithm 6 verification of temporal properties
INPUT: Bm, ReqD

1: //Pv represents the set of properties satisfied by Bm

2: Pv ← ∅
3: //Sub_Blocks(Bm) represents the blocks set that have Bm

4: //in their ancestors set, including Bm

5: for all Bi ∈ Sub_Blocks(Bm) do
6: // Select, from the requirement diagram, all the atomic requirements
7: //satisfied by Bi

8: REQ← {req| ∃ r ∈ SRel(ReqD) ∧ r.source= Bi ∧ r.target=p}
9: -P represents the properties set specifying the requirements set REQ

10: // Ancestors(Bi) represents the ancestors list of the block Bi

11: Ancestors(Bi)=[Bi+1, ..., Bm]
12: //Ad_of_Ancesters(Bi) represents the list of adapters of the
13: //ancestors blocks of Bi

14: Ad_of_Ancesters(Bi)=[Adi+1, ..., Adm]
15: for all p ∈ P do
16: //Create the Mirror property of p
17: -Create p’ a copy of p
18: -Replace all the flags ’send’ in p’ with the flags ’receive’.
19: -Replace all the flags ’receive’ in p’ with the flags ’send’.
20: if size(Ancestors(Bi))=1 then //the low level verification
21: -Verify p’ on the Adapter Adi+1.
22: else//the high level verification
23: -π =⊗ j=(i+1)..mAd j

24: -Verify p’ on the Adapter π.
25: end if
26: if p’ is verified then
27: Pv ← Pv ∪ {p}
28: end if
29: end for
30: end for
31: //Modify the requirement diagram
32: -REQ_S represents the requirements set specified by the properties in Pv
33: //replace some atomic requirements in Rs by their ancestors
34: for all r ∈ REQ_S do
35: -R_Sibl represents the set of the sibling requirements of r,
36: including r.
37: if R_Sibl ⊂ REQ_S then
38: -delete all requirements in R_Sibl from REQ_S and replace them by
39: parent(r)
40: end if
41: end for
42: -Create a new requirement req.
43: for all reqi ∈ REQ_S do
44: -Create a composition relation cr between req and the
45: requirement reqi, where : source(cr)=req ∧ targets(cr)=reqi

46: end for
47: -Create a satisfaction relation «satisfy» sr between the block Bm and the

requirement req, where: source(sr)=Bm ∧ target(sr)= req

9.2. CASE STUDY 119

9.2/ Case Study

We extend the case study of the previous chapter as follows:

During theselectionof theblocks to reuse forbuildingour system,wehaveverified if these
blocks satisfy our initial requirements. For example in Figure 9.4, we give the require-
ments on those we have based to select the controller, the motor and the station blocks.
During the construction of the robot, we have taken into consideration that the reused
controller must satisfy the requirement Rc1. However, during the adaptation of the robot
with the station to construct the global system, we have verified that the station satisfies
the requirement Rs1. Also, from the specification of the robot, we have deduced that the
robot satisfies the requirement Rr1.

<< block >>
Controller

<< block >>
Robot

<< block >>
S tation

<< requirement >>
Rc1

<< requirement >>
Rr1

<< requirement >>
Rs1

<< satis f ied >> << satis f ied >> << satis f ied >>

text: the
controller activates
the motor after it
receives a request
to move

id: R.c.1

text: after it
receives a request
to move the robot
can receive a
command to stop or
to give its location

id: R.r.1

text:the station
must stop the robot
after it makes it
moving

id: R.s.1

Figure 9.4: The basic requirements.

After the adaptation (adapting the controller and themotor),wemust verify if the require-
ments still verified in the parallel execution of our system blocks.

The requirements specified on the station and on the robot can be verified directly on the
their adapter AdRob↔S ta by following these steps (low level verification):

1. wemust write the interface automaton of AdRob↔S ta as a Promela process. Wemust
also specify its environment ,which is the mirror of AdRob↔S ta interface automaton,
as a Promela process.

2. we add the processes flags f_proc, which are the flag associated to the adapter f_ad,
and another flag which is associated to the environment f_env.

3. we add send f_send and receive flags f_rec.

4. we add the actions flags f_act, where each flag f_act is associated to an action of
the adapter AdRob↔S ta. This action must belong to the shared actions between this
adapter and the concerned blocks (robot and station).

5. wewrite the requirements as LTLproperties, which are specifiedon theflags already
mentioned, as follows:

120 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

/*Variable global*/
bit near=0;
/*Messages declaration*/
mtype={S_move, R_move, S_location, R_location, R_getLocation, S_stop, R_stop };
/*Channels declaration*/
chan ch_Ad_Env[10]=[0] of {mtype};
/***FLAGS***/
/*Last performed action by the adapter block*/
bit send=0;bit receive=0;
/*process that performed last action*/
bit f_ad=0; bit f_Env=0;
/*action performed at a given execution step*/
bit f_S_move=0; bit f_R_move=0; bit f_S_location=0; bit f_R_location=0;
bit f_R_getLocation=0; bit f_S_stop=0; bit f_R_stop=0;
proctype Ad_Rob_Sta() {
do
::atomic{ ch_Ad_Env[0]?S_move;

d_step{send=0;receive=1; Ad=1; Env=0; f_S_move=1; f_R_move=0; f_S_location=0;
f_R_location=0; f_R_getLocation=0; f_S_stop=0; f_R_stop=0; }}

::atomic{ ch_Ad_Env[0]!R_move;
d_step{send=1;receive=0; Ad=1; Env=0; f_S_move=0; f_R_move=1; f_S_location=0;

f_R_location=0; f_R_getLocation=0; f_S_stop=0; f_R_stop=0; }}
do
::near=0 ->

::atomic{ ch_Ad_Env[0]!R_getLocation;
d_step{send=1;receive=0; Ad=1; Env=0; f_S_move=0; f_R_move=0; f_S_location=0;

f_R_location=0; f_R_getLocation=1; f_S_stop=0; f_R_stop=0; }}
::atomic{ ch_Ad_Env[0]?R_location;

d_step{send=0;receive=1; Ad=1; Env=0; f_S_move=0; f_R_move=0; f_S_location=0;
f_R_location=1; f_R_getLocation=0; f_S_stop=0; f_R_stop=0; }}

::atomic{ ch_Ad_Env[0]!S_location;
d_step{send=1;receive=0; Ad=1; Env=0; f_S_move=0; f_R_move=0; f_S_location=1;

f_R_location=0; f_R_getLocation=0; f_S_stop=0; f_R_stop=0; }}
::else ->break
od;

::atomic{ ch_Ad_Env[0]?S_stop;
d_step{send=0;receive=1; Ad=1; Env=0; f_S_move=0; f_R_move=0; f_S_location=0;

f_R_location=0; f_R_getLocation=0; f_S_stop=1; f_R_stop=0; }}
::atomic{ ch_Ad_Env[0]!R_stop;

d_step{send=1;receive=0; Ad=1; Env=0; f_S_move=0; f_R_move=0; f_S_location=0;
f_R_location=0; f_R_getLocation=0; f_S_stop=0; f_R_stop=1; }}

od;}
proctype Env() {
do

...

od;}

/*System Instantiation*/
init{atomic{run Ad_Rob_Sta(); run Env();}}
/*LTL properties*/

ltl Mirror_R_s1 {[]((f_ad && f_receive && f_S_move) ->
<> (f_ad && f_receive && f_S_stop))}

ltl Mirror_R_r1 {[]((f_ad && f_send && f_R_move) ->
<> (f_ad && f_send && (f_R_stop || f_R_getLocation)))}

Figure 9.5: SPIN system for the adapter AdRob↔S ta and its environment.

• Rs1 : � ((f_station && f_send && f_S.move) →
♢ (f_station && f_send && f_S.stop))

• Rr1 : � ((f_robot && f_receive && f_R.move) →

9.2. CASE STUDY 121

♢ (f_robot && f_receive && (f_R.stop || f_R.getLocation)))

6. wemust specify themirror of these properties:

• Mirror_Rs1 : � ((f_ad && f_receive && f_S.move)→
♢ (f_ad && f_receive && f_S.stop))

• Mirror_Rr1 : � ((f_ad && f_send && f_R.move)→
♢ (f_ad && f_send && (f_R.stop || f_R.getLocation)))

7. we verify the properties Mirror_Rs1 and Mirror_Rr1 on the SPIN system composed
of the two Promela process of the adapter and the environment.

To verify the requirement, which is specified on the controller, on the global system, we
need to follow these steps (high level verification):

1. We must compute the synchronous product (π)of the two adapters AdRob↔S ta ⊗
AdContr↔Mot.

2. we write the resulted interface automaton π as a Promela process PI. We must also
specify its environment ,which is themirror of π interface automaton, as a Promela
process.

3. we add the process flag f_proc, which are the flag associated to the adapter product
f_PI, and another flag which is associated to the environment f_env.

4. we add send f_send and receive flags f_rec.

5. we add the actions flags f_act, where each flag f_act is associated to an action of the
adapter π. This action must belong to the shared actions between π and the con-
troller.

6. we write the requirement Rc1 as an LTL property, which is specified on the flags al-
readymentioned, as follows:

• Rc1 : � ((f_PI && f_receive && f_C.move) →
♢ (f_PI && f_send && f_C.on))

7. wemust specify themirror of this property:

• Mirror_Rc1 : � ((f_PI && f_send && f_C.move) →
♢ (f_PI && f_receive && f_C.on))

8. we verify the properties Mirror_Rc1 on the SPIN system composed of the two
Promela process of PI and the environment.

In Figure 9.6, we show the synchronous product of the two adapters AdRob↔S ta ⊗
AdContr↔Mot. After translating it into Promela code and verifying the property Mirror_Rc1
using SPIN model checker, we found that the SPIN system satisfies this property. Thus,
according to theorem3, the global system satisfies the property Rc1.

Thus, the new requirement diagramwill be as it is shown in Figure 9.7.

122 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

a b c d e

f

g

h

k

osu

i

j

t

p

r

q

n

m

l

S .move? R.move; C.move!

R.getLocation;
R.location;

S .location!

C.on?

M.on!

R.location;
S .l

oca
tio

n!

M
.o

n!

S .
sto

p?

S .stop?M.o f f !M.o f f !

C.o f f ?

C.stop!

R.stop;

M.on!

S .stop?

R.getLocation;

S .l
oca

tio
n!

S .s
top?

C.move!

C.on?C.stop!

C.o f f ?

S .move?

Figure 9.6: π = AdRob↔S ta ⊗ AdContr↔Mot.

<< block >>

Controller

<< block >>
Robot

<< block >>
S tation

<< block >>
S ystem

<< requirement >>
ReqRobot

text: Rc1 & Rr1

id: R.1

<< requirement >>
ReqS ystem

text: ReqRobot
& Rs1
id: R.2

<< requirement >>
Rc1

<< requirement >>
Rr1

<< requirement >>
Rs1

<< satis f y >>

<< satis f y >>

<< satis f y >>

<< satis f y >>

text: the
controller
activates the motor
after it receives a
request to move

id: R.c.1

text: after it
receives a request
to move the robot
can receive a
command to stop
or to give its
location

id: R.r.1

text:the station
must stop the robot
after it makes it
moving

id: R.s.1

Figure 9.7: The requirement diagram of the system.

9.3. CONCLUSION 123

9.3/ Conclusion

Our approach of verification presented in this chapter, is proposed to complement the
adaptation approach presented in the previous chapter. Its objective is to alleviate the
verification of functional requirements of the adapted system by exploiting our manner
of adapting system blocks. Thus, we have proposed a verification approach that tackles
the state explosion problem by reducing the state space of the verification of SysML re-
quirements, thanks to the adapters blocks. To allowaverificationof these requirement on
the interaction protocol of blocks modelled using interface automata, we have proposed
to write the interface automata as SPIN processes and to specify the requirements using
LTL properties. Our verification is performed using SPINmodel-checker.

10
Adaptationwith Reordering of

SysMLBlock Services

When assembling two components developed separately, there is a high probability
of encountering the problem ofmismatches between them. Thesemismatches can

concern the name of services (as the problem processed in chapter 8), as well as the order
in which the component asks (resp. offers) for environment services (resp. its services).
In this chapter, wepropose our approach for adapting a set of reusedblocks tomeet an ini-
tial specification given by the designer to solve the problems mentioned before. During
our process, this specification will become the parent block that will include the reused
blocks. The interactions of each block with its environment are modelled using SysML
Sequence Diagrams (SDs), an adaptation contract is defined and used to guide the adap-
tation by specifying atomic and no-atomic correspondences between block services.

In the previous chapter 8, in the same context of this work, we have proposed a bottom-
up approach that bases on interface automata [dAH01] to adapt SysML blocks, but with
different inputs and objectives. The major difference resides on that the adapter as we
will define it in this chapter can solve more problems such as the reordering of services
to eliminate livelock between blocks, it can also solvemore types of mismatches ('one-to-
many' rather than only 'one-to-one'). In fact, in our adaptation approach, the system can
consider the messages of blocks as resources, where it is possible to capture a message
call of a block and deliver it to the concerned block when this last can receive this call.
Thus, our adapter must authorize the reordering of the service calls and deliver them to
the concerned blocks when they will be ready. Representing this information and imple-
menting these operations using interface automata will be very difficult. We have taken
that into consideration during the adaptation phase, that is what justifies our choice of

Contents
10.1 Our Adaptation Approach . 126

10.1.1 Computing the Global Interaction Protocol of the Reused Blocks GIR 127
10.1.2 Introducing the Specification of the Future Parent Block 130
10.1.3 Deduce the Adapter . 133
10.1.4 Tool Support . 135

10.2 Case Study . 137
10.3 Conclusion . 139

125

126 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

Petri Nets (PNs). The Petri nets are characterized by their richness compared with inter-
face automata. They easily allow to represent the reordering of service calls.

However, using simple PNs (as in [CPS06a, DBM14]) implies the introduction of many
empty transitions (tau transitions that serve just for connecting places) that increase the
state space of the system. That's why we have opted for Coloured Petri Nets(CPNs) where
the colours represent the services of blocks. In ourmethod, we use tau transitions only in
some cases when we have no-atomic correspondences between blocks services. Thus, in
this chapter, we will analyse the different correspondences between the blocks by taking
into account the existed hierarchy relation between the reused blocks and the specifica-
tion of the parent block made initially by the designer, and we will define a CPNs rule for
each kind of correspondences.

Unlike the works already done which rely only on formal models, our method bases on
SysMLmodels as inputs, which allows for designers to deal with graphical convivialmod-
els. After, to generate the formalmodels thatwewill use for adaptation,wehaveproposed
ameta-level approach which bases onmeta-modelling andmodels transformation.

In the remainder of this chapter, we will present our approach in Section 1. After that, in
Section 2, we will show howwe apply our approach through a case study.

10.1/ Our Adaptation Approach

Our approach is an incremental bottom-up approach. It consists in constructing the sys-
tem by developing a part of the system at each increment. In our approach this part is
considered as SysML composite block B. After that, the developer selects some blocks to
buildB. These blockswill become the sub-blocks of B, but theyneed to be adapted to fulfil
the tasks expected from the environment of B.

Figure 10.1: Our approach of adaptation with reordering.

10.1. OUR ADAPTATION APPROACH 127

Our approach of adaptation can be divided into three phases (see Figure 10.1). The first
phase consists in computing the global interaction protocol of the reused blocks (future
sub-blocks). During this computation, we authorize the reordering of receiving the ser-
vice calls. To do that, we need to transform the sequence diagrams that describe the inter-
action protocols of the reused blocks into their equivalents of Coloured Petri Nets (CPNs),
and synthesize thembasingon the adaptation contract,where the contract helps todefine
the correspondences between the block services.

The second phase, which can be done in parallel with the first one, consists in transform-
ing the sequence diagram, that specifies the interactions of the future parent blockBwith
its environment, into Coloured Petri Net (CPNB). After computing the global interaction
protocol of the reused blocks ({Bi}) by synthesising their Petri nets using the adaptation
contract, we synthesize this resulted CPNwith the CPN of the specification (CPNB) basing
always on the adaptation contract. We apply somemodifications on the resulted CPN and
we obtain the CPN of the adapter (CPNadapter). Finally, we model the internal structure of
the new part B using the SysML BDD and IBD.

10.1.1/ ComputingtheGlobal InteractionProtocoloftheReusedBlocks
GIR

Aswe havementioned before, the objective of this phase is for deducing the different sce-
narios of the parallel execution of the reused blocks. To do that, we need to transform
their sequence diagrams (SDs) into Coloured Petri Nets (CPNs). This transition from SDs
to CPNs is necessary, because sequence diagrams are informal models, and they do not
offer the necessary tools to execute the wanted operations. However, in our adaptation
method, we need to synthesis the interactions of the blocks and to integrate the informa-
tions presented in the adaptation contract using one CPN. We want also that the system
can consider themessages of blocks as resources,where it is possible to capture amessage
call of a blockanddeliver it to the concernedblockwhen this last can receive thismessage.
All these informations can be represented easily using coloured Petri nets.

Transformation SD→ CPN:

In the first step (see Figure 10.2),

We associate to each event on the life line of each reused block a place. Each emission and
reception of a message is transformed into a transition labelled with the message name
and a mark that specifies the type of the event (! for emission, ? for reception, and ; for
emitting and receiving the same message by the same block). At this stage, we need just
one colour 'idle'. The existence of a token idle in a place of a block means that this block
is ready to execute the next actions.

Thealgorithm7ensures the transformationof thebasic interactionof sequencediagrams.
Its takes as inputs the block B and its sequence diagram SD, and it generates as output
its CPN. We represent by EventSet(B) the list of the all events of emission and reception
associated to the life line of B.

The complexity of Algorithm 7 is computed in function of the number ofmessages in the

128 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

Bi ENV

msgi

msg j

msgk

pi

pi+1

p j

p j+1

pk

pk+1

—-msgi!

—-msg j?

—-msgk;

idle 1

idle 1

idle 1

idle 1

idle 1

idle 1

Figure 10.2: Transformation SD→CPN.

Algorithm 7 SD2CPN
INPUT: B, SDB

OUTPUT: CPNB

1: procedure SD2CPN(B, S DB)
2: -create an empty CPNB

3: for all evti ∈ EventSet(B) do
4: -Create a place p_evt_i in CPNB

5: if evti is the first event in EventSet(B) then
6: -add a token idle to the place p_evt_i
7: end if
8: end for
9: for all message evti

mesi→ evti’ ∈ SDB do
10: if (evti ∈ EventSet(B) ∧ (evti’ ∈ EventSet(B)) then
11: -create a transition t with the label ’mesi;’
12: -create an arc from the place p_evt_i to t
13: -create an arc from t to the place p_evt_i+2
14: else
15: if (evti ∈ EventSet(B) then
16: -create a transition t with the label ’mesi!’
17: -create an arc from the place p_evt_i to t
18: -create an arc from t to the place p_evt_i+1
19: else
20: -create a transition t with the label ’mesi?’
21: -create an arc from the place p_evt’_i to t
22: -create an arc from t to the place p_evt’_i+1
23: end if
24: end if
25: end for
26: return CPNB

27: end procedure

10.1. OUR ADAPTATION APPROACH 129

sequence diagram of the block B passed in parameters (mB). Thus, C(Algorithm 7) =
O(mB).

Synthesizing the CPNs of the reused blocks:

To compute the global interaction protocol of the reused blocks, we synthesize their CPNs
basing on the adaptation contract. In this case, we consider the services (messages) as
resources, where each service (message) will be represented using a token colour. To do
this synthesis, we create a place called store that plays the role of a store for service calls.
When a block sends a call for a service, its corresponding services (according to the adap-
tation contract)will be automatically created as tokens, and theywill be stored in the store
place. However, to be able to receive a call for a service, the block needs to verify that this
call (message) is available in the store place.

rule 1

store

Bi B j

transix!

idle 1

idle 1 y 1

transi y?

idle 1

idle 1

y 1

(a) one(required)-to-one(provided)

rule 2

store

Bi B j

transix!

idle 1

idle 1 y1 1
..

.

ym 1

transi yk?

idle 1

idle 1

yk 1

(b) one(required)-to-many(provided)

rule 3
storeBi B j

transix?

transi

tau

idle 1

idle 1

x 1

transi yk!

idle 1

idle 1
yk 1

y1 1

..
.

ym 1

pre-store-x

x 1

(c) one(provided)-to-many(required)

Figure 10.3: Rules for synthesizing the reused blocks.

Thus, the CPNs, which schedule the actions of the reused blocks, are glued using the store
place and a set of transitions (which translate the adaptation contract). In the following,
through these rules, we explain howwe glue them.

• rule 1: one(required)-to-one(provided). We apply the rule 1 (presented in Figure
10.3(a)), if we have in the adaptation contract, a vector:

v=⟨ e1, ...,en, ε ⟩, where ei={x!}, e j={y?}
and ∀ f=1..n, f, i, f, j, we have e f = ε.

130 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

v specifies that the required service x of blockBi corresponds to the provided service
y of block B j. In this case, when the block Bi executes the transition x!, it generates
the corresponding action y as a token, whichwill be consumed later by the block B j,
when it tries to execute the action y?.

• rule 2: one(required)-to-many(provided). We apply the rule 2 (presented in Fig-
ure 10.3(b)) if we have, in the adaptation contract, a mapping vector:

v=⟨ e1, ...,en, ε ⟩, where ei ={x!}, e j={y1?,...,ym?}
and ∀ f= 1..n, f, i, f, j , we have ek = ε.
v specifies that the required service x of block Bi corresponds to the provided ser-
vices y1,...,ym of block B j. In this case, when the block Bi executes the transition x!,
it generates the corresponding actions y1,...,ym as tokens, which will be consumed
later by the block B j when it tries to execute an action yk ∈ {y1,...,ym}.

• rule 3: one(provided)-to-many(required). A correspondence of type One(prov
ided)-to-many(required) between Bi and B j means that the block Bi can execute the
service mentioned in 'one(provided)' only after when the block B j sends requests
for all services specified in 'many(required)'. This correspondence can be specified
at the level of the adaptation contract by a vector:

v=⟨ e1, ...,en, ε ⟩, where ei ={x?}, e j={y1!,...,ym!}
and ∀ f=1..n, f, i, f, j , we have e f = ε.
To represent this vector usingCPNs,we apply the rule 3 (see Figure 10.3(c)). Thus, we
create a place 'pre-store-x'. This place stores calls for the services that correspond to
x. Then, we link all transitions labelled by yk! where k=1..m to the place 'pre-store-
x'. After, wemust create a transition tau that has an incoming arc which starts from
the place 'pre-store-x'. This arc is labelled by [yk 1]k=1..m. Wemust also create an arc
which starts from transition tau and ends at the store place, where this arc must be
labelled by 'x 1'. Finally, to allow to the block Bi to execute the service x, we link the
store state with the transition x?.

10.1.2/ Introducing the Specification of the Future Parent Block

In thisphase,wemust introduce the rules that link the reusedblocksand the futureparent
block. The specification of the parent block B allows to define what the environment ex-
pects (resp. offers) from (resp. to) the parts of B. Because we have reused the sub-blocks
of B, we must adapt them to the specification of their future parent which is made ini-
tially with respect to the part of the system already developed. So, to represent the part of
the adaptation contract that specifies the relations between B and their sub-blocks, using
CPNs, we need firstly to apply Algorithm 1 on the SD of the future parent block B to obtain
its CPN. After, we apply the delegation rules (presented later) to synthesize the CPN of B
and the CPNwhich represents the global interactions of the reused blocks.

Because we will represent the delegation between the set of blocks {Bi} and their father,
in these rules the correspondences are expressed between services of the same type. This
means that a required service can not correspond to a provided service.

• The correspondences of type one(parent)-to-one(child). This correspondence
can be specified at the level of the adaptation contract by a vector:

10.1. OUR ADAPTATION APPROACH 131

rule 4

Bi

store

tr
an

si

x!
idle 1 idle 1

transiy!

idle 1

idle 1 x 1

x 1

parent

(a) one(parent)-to-one(child)[required]

rule 5

Bi

store

tr
an

si

x?
idle 1 idle 1

transiy?

idle 1

idle 1

y 1
y 1

parent

(b) one(parent)-to-one(child)[provided]

Figure 10.4: The correspondences of type one(parent)-to-one(child).

v=⟨ e1, ...,en, s ⟩, where (s={x!} ∧ ei={y!}) ∨ (s={x?}∧ei={y?})

and ∀ f=1..n, f, i, we have e f = ε.

In this case where we have v=⟨ ε,..., {y},...,ε, {x} ⟩, it means that the environment rec-
ognizes the serviceyof theblockBi as servicex. Thus,wecandifferentiate twocases:

– rule 4: one (parent)-to-one (child)[required]. This correspondence can be
specified at the level of the adaptation contract using a vector:
v=⟨ e1, ...,en, s ⟩, where (s = {x!}) ∧ (ei = {y!}),
and ∀ f=1..n, f, i, we have e f = ε.
To represent this vector using CPNs, we apply the rule 4 presented in Figure
10.4(a). This rule consists in transforming the call for the service y of the block
Bi to a call for the service x of the environment.

– rule 5: one (parent)-to-one (child)[provided]. This correspondence can be
specified at the level of the adaptation contract by a vector:
v=⟨ e1, ...,en, s ⟩, where (s = {x?}) ∧ (ei = {y?})
and ∀ f=1..n, f, i, we have e f = ε.
To represent this vector using CPNs, we apply the rule 5 (see Figure 10.4(b)).
This rule plays its role in the other direction of rule 4 (i.e. when the block Bi

offers the service y, the environment recognizes this service as x). In this case,
wemust rename each reception of x to y to be received after by the block Bi.

• The correspondences of type one(parent)-to-many(child). We distinguish two
cases:

– rule6: one (parent)-to-many (child)[required]. In this case,wehaveone re-
quired service of the parent (which is a provided service of the environment),
corresponds to many required services of the child block Bi. This correspon-
dence is represented in the contract using a vector v:
v=⟨ e1,..., en, s ⟩, where (s={x!}∧ ei ={y1!,...,ym!})
and ∀ f=1..n, f, i , we have e f = ε.

132 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

rule 6

Bi

store

pre_store_x

tr
an

si

x!
idle 1 idle 1

transiyk!

transitau

idle 1

idle 1
yk 1

x 1

parent

y1 1

..
.

ym 1

parent

x 1

(a) one(parent)-to-many(child)[required]

rule 7

Bi

store

tr
an

si

x?
idle 1 idle 1

transiyk?

idle 1

idle 1

yk 1 y1 1

..
.

ym 1

parent

(b) one(parent)-to-many(child)[provided]

Figure 10.5: The correspondences of type one(parent)-to-many(child).

To represent this vector using CPNs, we apply the rule in Figure 10.5(a). The
blockBi sends calls for the services yk (∀k=1..m) at the level of kdifferent transi-
tions. These calls will be stored in the place 'pre-store-x'. When, we have all the
token y1,..., ym present in the place 'pre-store-x', the parent block can consume
them to pass a call for the service xwhich is implemented by the environment.

– rule 7: one (parent)-to-many (child)[provided]. In this case, we have one
provided service of the parent (which is a required service of the environment)
corresponds to many provided services of the child block Bi. This correspon-
dence is represented in the contract using a vector:
v=⟨ e1,..., en, s ⟩, where (s = {x?}) ∧ (ei ={y1?,...,ym?}),
and ∀ f=1..n, f, i , we have e f = ε.
To represent this vector using CPNs, we apply the rule in Figure 10.5(b). When
the parent block receives a call for the service x, we transform it to a call for the
services y1?,...,ym? which are implemented by the block Bi, and we store them
in the store place. when the block Bi will be ready to execute a service yk ∈ {yk|
k=1..n}, it consumes the corresponding token from the store place.

• The correspondences of type one(child)-to-many(parent). In this case, we can
also distinguish two sub-cases:

– rule 8: one (child)-to-many (parent)[required]. In this case, we have one
required service of the child block Bi corresponds to many required services
of its parent block B (which are provided services of the environment). This
correspondence is represented in the contract using a vector:
v=⟨ e1,..., en, s ⟩, where (s = {x1!,...,xm!}) ∧ (ei = {y!}),
and ∀ f=1..n, f, i, we have e f = ε.
To represent this vector using CPNs, we apply the rule in Figure 10.6(a). When
the blockBi sends a call for the service y, we generate calls for its corresponding
services x1,..., xm, and we store them in the store place. When the parent block

10.1. OUR ADAPTATION APPROACH 133

rule 8

Bi

store
tr

an
si

xk!
idle 1 idle 1

transiy!

idle 1

idle 1 x1 1

..
.

xm 1

xk 1

parent

(a) one(child)-to-many(parent)[required]

rule 9

Bi

store

pre-store-y

tr
an

si

xk?

tr
an

si

tau

idle 1 idle 1

transiy?

idle 1

idle 1

y 1
xk 1

parent

x1 1

..
.

xm 1
y 1

(b) one(child)-to-many(parent)[provided]

Figure 10.6: The correspondences of type one(child)-to-many(parent).

will be able to send the request for a service xk which is implemented by the
environment, the corresponding token will be consumed from the store place.

– rule 9: one (child)-to-many (parent)[provided]. In this case, we have one
provided service of the child block Bi corresponds to many provided services
of its parent block B (which are required services of the environment). This
correspondence is represented in the contract using a vector:
v=⟨ e1,..., en, s ⟩, where (s = {x1?,...,xm?} ∧ (ei = {y?}),
and ∀ f=1..n, f, i, we have e f = ε.
To represent this vector using CPNs, we apply the rule in Figure 10.6(b). When
the parent block receives a call for the service xk, we store this call in the pre-
store-y place. When we have all the calls for services (x1?,...,xm?) present as
tokens in the place pre-store-y, we consume them and we transform them to a
token y, after we store y in the store place. The token y will be consumed later
by the block Bi.

10.1.3/ Deduce the Adapter

The adapter will play the role of a mirror between the reused sub-blocks {Bi}. So each call
for a service by a sub-block Bi will be received by the adapter, and each reception of a call
for a service by a sub-block Bi must be preceded by a call for this service, this call must be
emitted by the adapter. Thus, to generate the adapter, we base on the CPN synthesized in
the last phase. Thus, we take this CPN, and we apply the mirror function on some tran-
sitions, we transform each call for a service (x!) by a reused block Bi into a reception of
this call (x?), and each reception of a call for a service (x?) by a reused block Bi must be
transformed to an emission of this call (x!). Therefore this transformation concerns only
the transitions of the reused blocks, because the adapter plays the role of mirror only be-
tween the reused sub-blocks. Concerning the relation between the adapter and the parent
block, it is a delegation relation. Thus, the adapterwill delegate the parent to interactwith
the environment, that's why, we don't need to inverse the actions done at the level of the
parent transitions.

At this stage, we have the CPNadapter which represents the interactions of the adapter with

134 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

the reused blocks and their environment. To generate the different scenarios of interac-
tion, we compute the reachability graph of CPNadapter using CPNtool.

Algorithm 8 resumes all the previous steps. It takes as parameters the reused blocks
{Bi}i=1..n with their future parent block B. The other parameters are the SDs that model
the interaction protocol of these blocks and the adaptation contract C. The role of the al-
gorithm is to compute the coloured Petri net of the adapter.

Algorithm 8 Construct the CPN of the adapter
INPUT: {Bi}i=1..n, {SDi}i=1..n, B, SDB, C
OUTPUT: CPNadapter

1: for all i ∈ [1...n] do
2: CPNi ← SD2CPN(Bi, SDi)
3: end for
4: CPNB ← SD2CPN(B, SDB)
5: CPNadapter ← concatenation of {CPNi}i=1..n and CPNB
6: -create and add the store place to CPNadapter
7: for all v ∈ C do
8: apply the rule that corresponds to v
9: end for

10: for all t ∈ CPNadapter do
11: if ∃ t’ ∈ CPNi, t.name=t’.name then
12: change the name of t to mirror(t.name)
13: end if
14: end for

Algorithm 9 generates the structure of the adapter block basing on its CPN, and the other
reused blocks.

Finally,weusealgorithm9togenerate thestructureof thenewpartB thatwewill integrate
to our system. The algorithm 10 constructs the blocks definition (BDDB) diagram and the
internal block diagram (IBDB) of the part B. It takes as parameters the reused blocks ({Bi}),
the parent blockB and the adapter block.

The complexity of Algorithm 8 is computed as follows: The first loop [lines 1-3] calls the
algorithm 7n-times, where n is the number of the reused blocks. Thus, this loopwill have
a complexity equal to: O(Σn

i=1 mBi), wheremBi is the number ofmessages in the sequence
diagram of the block Bi.

In line 4, there is a call for Algorithm 7 to construct the CPN of the parent block B. Thus,
line 4 has a complexity equal to: O(mB).

The second loop [lines 7-9] has a complexity equal toO(w), where w represents the num-
ber of mapping vector in the adaptation contract.

The complexity of the last loop [lines 10-14] is computed in functionof thenumberof tran-
sitions (tn) in the synthesized CPN. Thus, the complexity will be equal toO(tn).
Thus, C(Algorithm 8) = O(Σn

i=1 mBi) + O(mB) + O(w) + O(tn)=
O(Σn

i=1 mBi + mB + w + tn)

The complexity of Algorithm 9 is computed as follows: C(Algorithm 9) = O(n), where
n is the number of the reused blocks.

The complexity of Algorithm 10 is computed as follows: The first loop [lines 10-16] has a
complexity equal to: O(n*nport), wheren is thenumberof instancesof the reusedblocks,

10.1. OUR ADAPTATION APPROACH 135

Algorithm 9 Construct the architecture of the block adapter
INPUT: {Bi}i=1..n, B, CPNadapter=⟨ P, T, A, Σ, C, N, E, G, I ⟩
OUTPUT: Badapter

1: -Create the adapter block Badapter=⟨ ′Adapter′, ∅, ∅, ∅, ∅, ∅ ⟩
2: //create the list of ports of the adapter that must be linked to the ports of

the parent block.
3: if PSB ∩ Σ , ∅ then
4: -create a new provided port p which offers the services
5: PSB ∩ Σ
6: -add p to the ports list of Badapter

7: end if
8: if RSB ∩ Σ , ∅ then
9: create a new required port p which requires the services

10: RSB ∩ Σ
11: add p to the ports list of Badapter

12: end if
13: //create the list of ports of the adapter that must be linked to the ports of

sub-blocks {Bi}
14: for all Bi in the list of sub-blocks {Bi} do
15: if RSBi ∩ Σ , ∅ then
16: -create a new provided port p which offers the services
17: RSBi ∩ Σ
18: end if
19: if PSBi ∩ Σ , ∅ then
20: -create a new required port p which requires the
21: services PSBi ∩ Σ
22: end if
23: -add p to the ports list of Badapter

24: end for

and nport is the number of ports of the adapter.

The second loop has a linear complexity equal to: O(nport)
Thus, C(Algorithm 10)= O(n*nport).

10.1.4/ Tool Support

Modelling. To model the interactions of the blocks with their environment, we base
on papyrus tool [pap]. Papyrus offers a set of graphical editors to model systems using
UMLandSysMLdiagrams. The editor of sequencediagramsbases onaSysMLecoremeta-
model part that defines the classes of lifelines, messages, etc.

Transformation. To generate the CPNs that correspond to the sequence diagrams
of blocks, we have defined a meta-level model-driven approach which bases on meta-
modelling andATL transformation. Thus, firstly,wehavedefined themeta-model (.ecore)
for CPNs using EMF [EMF]. After, we have defined an ATL grammar that performs the
transformation SDs→CPNs. In our adaptation approach, we don't need to show the re-
cursive messages (messages that start and end at the same lifeline). Because the adapter

136 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

Algorithm 10 Construct the BDD and the IBD of B
INPUT: {Bi}i=1..n, B, Badapter

OUTPUT: BDDB, IBDB

1: //Construct the BDD of B
2: - Set the value of the blocks set of the BDDB to: B= {Bi}i=1..n ∪
{B, Badapter}

3: - Create a composition relation ri between the parent block B and each
block Bi where: SourceOf(ri) = B, TargetOf(ri) = Bi

4: - Create a composition relation rad between the parent block B and the
adapter block Badapter where: SourceOf(rad) = B, TargetOf(rad) = Badapter

5: - Set the value of the relations set of BDDB to: R= {ri}i=1..n ∪ {rad}
6: //Construct the IBD of B
7: - Set the set Parts of IBDB to: {parti}i=1..n ∪ {partadapter}
8: - Set the set Ports of IBDB to: {Ports(parti)}i=1..n ∪ Ports(partadapter)
9: //create connectors between the adapter and the parts that instantiate the

reused blocks
10: for all parti ∈ {parti}i=1..n do
11: for all port p ∈ Ports(partadapter) do
12: if ∃p′ ∈ Ports(parti) ∧ (p.type.Op ∩ p′.type.Op , ∅) then
13: -create a connector between p and p’
14: end if
15: end for
16: end for
17: //create delegation connectors between the adapter and the parent block B.
18: for all port p ∈ Ports(ad) do
19: if ∃p′ ∈ Ports(B) ∧ (p.type.Op ∩ p′.type.Op , ∅) then
20: - create a connector between p and p’
21: end if
22: end for

can't see this kind of actions (messages), thus, we have transformed only the entered and
exited messages and we have ignored the recursive messages. To implement this trans-
formation we have defined three ATL rules. The first rule allows initializing the CPN, the
second rule is used to generate the places of the CPN, and the third one creates transitions
and arcs that link these transitions with the places generated by the previous rule. These
ATL rules implement the algorithm 7.

Synthesising the adapter. To synthesis the CPN of the adapter, we have also defined a
meta-level model-driven approach which base on meta-modelling and ATL transforma-
tion rules. We have defined a meta-model of the adaptation contract using EMF [EMF],
and we have generated its graphical editor using GMF [Pro]. Next, basing on the meta-
model of CPNs and the meta-model of the adaptation contract, we have defined an ATL
grammar that generates the CPN of the adapter.

Generate the scenarios of the adapter. To obtain the interaction scenarios of the
adapter, we compute the reachability graphof its CPN. The reachability graph canbe com-
puted using CPNtool[too]. We plan to develop an Acceleo [Acc] transformation to gener-
ate the entry files of the CPN tool from our CPNmeta-model.

10.2. CASE STUDY 137

10.2/ Case Study

We give an example of a specification of a simple robot which moves according to a spe-
cific path. This robot (see Figure 10.7) can receive a command tofix its speed (R_setSpeed)
and after a command tomove (R_move). Next, it sends a request to the environment (e.g. a
remote control) to display its initial location (R_DisplayInitialLoc). After, it is stillmov-
ing until it receives a request to stop (R_stop). Finally, it sends a request to the environ-
ment (e.g. a remote control) to display the final report (R_DisplayReport) about its final
location and the travelled distance. The interaction of this robot with its environment is
modelled using the sequence diagram in Figure 10.7.

loop

properties
values

re f erences
parts

operations

constraints

Robot
<< block >>

prov pr1 : RProv
req pr2 : RReq

<< inter f aceBlock >>
RProv

R_move
R_stop
R_setSpeed

<< inter f aceBlock >>
RReq

R_DisplayInitialLoc
R_DisplayReport

<< block >>
Robot

<< block >>
ENV

R_setSpeed

R_move

R_InitLoc

R_stop

R_report

Figure 10.7: The specification of the robot

In our case study we want to build this robot. To do that, we have reused two blocks 'Con-
troller' (see Figure 10.8) and 'Moving_System' (see Figure 10.9), their interaction protocols
are modelled using sequence diagrams. Thus, the Robot will be the parent block and the
reused blocks ('Controller' and 'Moving_System') will be its children.

properties
values

re f erences
parts

operations

constraints

Controller
<< block >>

prov pc1 : CProv
req pc2 : CReq

<< inter f aceBlock >>
CProv

C_move
C_stop
C_setSpeed

C_setBatteryLevel
C_setStatus

<< inter f aceBlock >>
CReq

C_on
C_off

C_DisplayInitialLoc
C_DisplayLocation
C_DisplayTravDist

<< block >>
Contr

<< block >>
ENV

C_move

C_setSpeed

C_on

C_BatLevel

C_InitialLoc

C_stop

C_off

C_status

C_location

C_distTrav

loop

Figure 10.8: The Controller

In Figure 10.8, we can see that our reused controller receives a request to move (C_-
move) before receiving the request to fix the speed (C_setSpeed). After, it asks the mov-
ing system to go on (C_on), and so it receives an information about the battery level
(C_setBatteryLevel) from the moving system. Next, it communicates the initial lo-
cation (C_DisplayInitialLoc) to the environment (e.g. a remote control). The con-
troller waits for a request to stop (C_stop). After receiving this request, it asks the mov-
ing system to turn off (C_off), and so this last will communicate its status to the con-

138 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

loop

properties
values

re f erences
parts

operations

constraints

Mov_S yst
<< block >>

prov pm1: MProv

req pm2: MReq

<< inter f aceBlock >>
MProv

M_On
M_Off
<< inter f aceBlock >>

MReq

M_setBatteryLevel
M_setStatus

<< block >>MovSyst << block >>
ENV

M_on

M_batLevel

M_off

M_status

Figure 10.9: The moving system

troller (C_setStatus). Finally, the controller asks the environment to display the loca-
tion of the engine to which is belong (C_DisplayLocation), and the travelled distance
(C_DisplayTravDist).

To simplify, we consider that the corresponding services (one-to-one) have the same
names, andwe differentiate between themby adding the first letter of the block's name to
each service. Thus, to adapt and assemble the controller and the moving system to meet
the specification of our robot, we use the following contract (Figure 10.10 represents the
contract modelled using our generated editor).

C= { ⟨C_on!, M_on?, ε⟩, ⟨C_off!, M_off?, ε⟩, ⟨C_status?, M_status!, ε⟩, ⟨C_-
batLevel?, M_batLevel!, ε⟩, ⟨C_move?, ε, R_move?⟩, ⟨C_setSpeed?, ε, R_-
setSpeed?⟩, ⟨C_stop?, ε, R_stop?⟩, ⟨C_InitialLoc!, ε, R_InitialLoc!⟩, ⟨(C_-
location!,C_disTrav!), ε, R_report!⟩ }
Thus, The adaptation contract C includes nine vectors, where:

• v1=⟨C_on!, M_on?, ε⟩

• v2=⟨C_off!, M_off?, ε⟩

• v3=⟨C_status?, M_status!, ε⟩

• v4=⟨C_batLevel?, M_batLevel!, ε⟩

• v5=⟨C_move?, ε, R_move?⟩

• v6=⟨C_setSpeed?, ε, R_setSpeed?⟩

• v7=⟨C_stop?, ε, R_stop?⟩

• v8=⟨C_InitialLoc!, ε, R_InitialLoc!⟩

• v9=⟨(C_location!,C_disTrav!), ε, R_report!⟩

By applying the algorithm 8, we have obtained the CPN presented in Figure 10.11.

1. we have transformed the sequence diagrams of the robot (parent block), the con-
troller and themoving system to coloured Petri nets (we have applied the algorithm
7). In Figure 10.11, by ignoring the coloured arcs, and applying the mirror on the
transitions of this cpn,we can see that the right part of the cpn represents the cpn of
themoving system, the left part represents the cpn of the controller, and the bottom
part represent the cpn of the robot.

10.3. CONCLUSION 139

Figure 10.10: Adaptation Contract modelled using our generated editor

2. we have applied the rule 1 to represent the vectors 1, 2, 3 and 4 of the contract.

3. we have applied the rule 5 to represent the vectors 5, 6 and 7 of the contract.

4. we have applied the rule 4 to represent the vector 8 of the contract.

5. we have applied the rule 6 to represent the last vector of the contract.

6. wehave inverted the actions of the controller and themoving system (each emission
becomes a reception, and each reception become an emission).

By applying the algorithm 10, we obtain the BDD of the robot (in the Figure 10.12) and its
IBD (in the Figure 10.13).

10.3/ Conclusion

In this chapter, we have presented a bottom-up approach to adapt SysML blocks for build-
ing systems. Our adaptation process takes a part of the system to develop, and gener-
ates an adapter for the SysML blocks which are reused to meet the specification of this
part. During the adaptation process, we consider the part to develop as a SysML com-
posite block. After, we select a set of blocks to fulfil the specification of this composite
block (the specification of the block that will include these reused blocks). We have re-
lied on sequence diagrams of SysML to model the interactions of each block with its en-
vironment. Due to the informal aspect of SysML, we have proposed to transform the se-
quence diagrams of blocks into coloured Petri nets, and we have implemented this trans-
formationusing EMF andGMF formeta-modelling andATL language for transformation.
This transformation was guided by our objective of adaptation. After, to generate the
adapter, starting fromanadaptationcontract,wehaveproposed the staple rules to link the
coloured Petri nets of blocks. Our adaptation contract can specify atomic or non-atomic

140 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

c0 STRING

1`"idle"

c1 STRING

c2STRING

c3STRING

c4STRING

c5STRING

c6STRING

c7STRING

c8 STRING

m0

STRING
1`"idle"

m1 STRING

m2 STRING

m3 STRING

r0
STRING

1`"idle"

r1

STRING

r2

STRING

r3

STRING

r4

STRING

c9 STRING

store STRING

pre_store_report

STRING

C_move!

C_setSpeed!

C_on?

C_batLevel!

C_intialLoc?

C_stop!

C_off?

C_status!

C_location?

M_on!

M_batLevel?

M_off!

M_status?

R_setSpeed? R_move? R_InitialLoc! R_stop? R_report!

C_distTrav?

tau

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle" 1`"idle" 1`"idle" 1`"idle" 1`"idle" 1`"idle" 1`"idle"
1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"idle"

1`"m_on"

1`"m_off"

1`"c_batLevel"

1`"c_status"

1`"m_on"

1`"m_off"

1`"r_initialLoc"

1`"c_setSpeed"

1`"c_move"

1`"c_stop"

1`"c_status"

1`"c_setSpeed" 1`"c_move"

1`"r_initialLoc"

1`"c_stop"

1`"r_report"

1`"c_location"

1`"c_distTrav"

1`"c_location"++1`"c_distTrav"

1`"r_report"

1`"c_batLevel"

Figure 10.11: CPNadapter

correspondences between the reused blocks or between the reused blocks and their fu-
ture parent block (the specification of the adapter built in function of the developed part
of the systemand its part still to develop). To let the designer dealwith graphical elements
for modelling, we have proposed a meta-model for the adaptation contract, and we have
developed its graphical editor using GMF. We have also implemented the ATL rules that
represent our rules of adaptation (translation of the contract).

10.3. CONCLUSION 141

properties
values

re f erences
parts

operations

constraints

Adapter
<< block >>

prov p1 :CReq
prov p2 :MReq
prov p3 :RProv

req p4 :CProv
req p5 :MProv
req p6 :RReq

properties
values

re f erences
parts

operations

constraints

Mov_S yst
<< block >>

prov pm1 : MProv

req pm2 : MReq
properties

values
re f erences

parts

operations

constraints

Controller
<< block >>

prov pc1 : CServ

req pc2 : CReq

properties
values

re f erences
parts

operations

constraints

Robot
<< block >>

prov pr1 : RProv req pr2 : RReq

bdd Robot

Figure 10.12: BDD of the Robot

Robot

prov pr1

req pr2 prov pm1

req pm2

m : Mov_S yst

prov pc1

req pc2

c : Controller

req p4
prov p1
req p5
prov p2

prov p3

req p6

ad : Adapter

ibd Robot

Figure 10.13: IBD of the Robot

III
Conclusion

143

11
Conclusion and Perspectives

11.1/ Conclusion

The component-based development (CBD) focuses on the decomposition of the system
into individual functional components that representwell-defined communication inter-
faces. The primary objective of CBD is to ensure component re-usability. CBD techniques
involve procedures for developing systems by choosing ideal off-the-shelf components,
adapting and assembling them using well-defined adapters.

The main purpose of this thesis is the proposition of a formal approach to build incre-
mentally complex systems by assembling and adapting a set of components, where their
structure and behaviour are modelled using SysML diagrams. When assembling these
blocks, wemust take into consideration the fact that these componentsmaypresent some
incompatibilities. A decision about the compatibility or not of these blocksmust be taken
onto several different levels. Thefirst level concerns the signature of component services.
When the blocks expose a problem of mismatches between the name of corresponding
services, this problem can be easily solved by inserting an adapter that aligns the names
of block services and thus allows the communication between the reused blocks. How-
ever, the incompatibility at the level of the interaction protocols cannot be solved in some
cases. The feasibility of solving this kindof incompatibility dependson theauthorizedop-
erations during the adaptation (reordering the calls for services of blocks or not). It may
depend also on the requirements that we want to satisfy by reusing and composing these
blocks.

In our thesis, we have exploited the SysML diagrams to specify the requirements, the ar-
chitecture and the interactions of the blocks, andwe have applied the transformations on
them in a model-driven process to extract their equivalents of formal models. This pro-
cess is based on meta-modelling and model transformations. We have also adapt the ex-
isting approaches of adaptation of components to be applied in an incremental approach
by exploiting the notion of SysML blocks refinement.

Thus, themain contributions of our thesis are the followings:

1. We have introduced SysML sequence diagrams that model component protocols,
into a model-driven process, that is based on meta-modelling and model transfor-
mations, to obtain their equivalent of interface automata. Thus, we have based on
the part of UML/SysML meta-model, that concerns the constructs of the sequence
diagrams, as source meta-model of the ATL grammar that we have defined. To
draw sequence diagrams, we have based on the graphical editor of Papyrus which

145

146 CHAPTER 11. CONCLUSION AND PERSPECTIVES

is built on the UML/SysMLmeta-model. The target meta-model concerns interface
automata formalism. Thus, we have used EMF (Eclipse Modelling Framework) to
define its meta-model, and GMF (Graphical Modelling Framework) to generate its
graphical editor. We have established the mapping rules between the source and
the target meta-models and we have implemented them using ATL (Atlas Transfor-
mation Language). Since the objective was to verify the compatibility of blocks bas-
ing on the optimistic approach of Hizenger that is defined on interface automata,
we have used Ptolemy tool that implements the parallel composition of interface
automata to decide on the compatibility or not of interface automata. To discharge
the user from redrawing the interface automata using the Ptolemy user interface,
we have proposed a set of Acceleo templates to generate automatically the Ptolemy
entry specification.

2. When a block has a complex interaction with its environment, a use of an hierar-
chicalmodel appears worthwhile. In our thesis, we have proposed to useHPSM (Hi-
erarchical Protocol State Machine), the model that we have defined basing on the
notions of provided and required services of the blocks and that allows us to estab-
lish a scheduling of the interactions of the block with its environment. This model
uses the composite states to hide the details of some block's states. Since our ob-
jective was to alleviate the verification of the compatibility of blocks basing on the
abstractionmanifested by their interactionmodels, we have proposed to transform
the HPSMs of blocks to hierarchical interface automata. After that, by analysing
the relation between the provided services (input actions) and the required services
(output actions) of the blocks, we can decide on the set of composite states of inter-
face automata that must be considered as abstract states, i.e., the composite states
that we will ignore their contained actions, and thus we consider them as simple
states. The rest of composite states will be flattened, and the compatibility verifica-
tion will be applied using Ptolemy tool.

3. In this stage, we process the problem of name mismatches between the services of
the interactingblocks. Thus,weproposedanapproach todefineablock adapter that
allows the interaction between the blocks that present mismatches on their proto-
cols. We have adapted the synchronous product and the parallel composition of in-
terface automata to consider corresponding actions of automata rather than shared
actions. Thus, we have defined the notions of contract-based synchronous product
and contract-based parallel composition. It is at the level of the adaptation contract
wherewedefine the correspondingactions. That iswhat justify the introduction the
adaptation contract as a third parameter of these operations. In this case an intro-
duction of an adapter block is mandatory, but it is not always possible. That is why
wehave defined some conditions on these blocks. Also, our adaptation is defined as
an incremental approach, wherewe give the specification of the future parent block
of the reused blocks. The generation of the adapter is based on the refinement rela-
tion that exists between these reused blocks and their parent. But, in this stage we
haven't authorized the reordering of services calls, i.e., we cannot adapt the block
that asks for services, implemented by sibling blocks or the environments of its par-
ent, in a given order, however these latter offer there services in another order that
is different from the first one.

4. Toverify thepreservationof the requirements initially satisfiedby the reusedblocks,
we have defined our approach to focus only on the generated adapters to perform

11.2. PERSPECTIVES 147

the verification,which allows to avoid the problemof state explosion. Our approach
prevents the computation of the synchronous product of all the system blocks, and
focus only on the interaction protocol of a sub-set of adapters. We have used SPIN
model checker and Promela, its input specification, to verify the properties that
specify the SysML requirements. Thus, we were inspired from the works proposed
by V. Lima et al. to generate Promela-based models from UML interactions ex-
pressed in SequenceDiagrams, anduses conjointly the SPINmodel checker in order
to simulate and verify properties written in Linear Temporal Logic(LTL) on a set of
flags that represent the exchangedmessages.

5. In the samecontext (incremental adaptation), tomake theadapterable to solvemore
type of mismatches (not only one-to-one), and to allow the reordering of the calls
for services, we have defined another approach which bases on Coloured Petri Nets
(CPNs). The Petri nets are characterized by their richness compared with interface
automata. They easily allow to represent the reordering of service calls. Thus, we
have analysed the different relations that may exist between the reused blocks and
their parent, and we have defined a CPN rule for each relation. We have based on
EMF, GMF and ATL to implement our approach.

11.2/ Perspectives

Our approach is suitable for systems where the temporal order of actions is important.
These actions can represent either a request or a reception of a request for component
services. This information represents the interface of the components and it is available
at the level of the contract (here we don't talk about the adaptation contract, but the con-
tract that specify the information related to the input/output of the component) offered
with the component. This contract respects the principle of black-box components, thus
it mentions only themanifested information from the component to its environment. To
adapt our approach to other types of systems, the contract must perform more informa-
tion. For example, Timed interface automata was proposed by Hinzinger, thus it will be
interesting to consider this formalism with our approach which is based on SysMLmod-
els.

Our approach of verification is suitable for temporal properties because the contract as-
sociated with componentsmentions only the temporal order of executing the actions. To
allow a verification of the functional properties that concern for example the value of a
variable, we must enrich the contract (i.e. the model used to represent the behaviour of
components). We can for example extend the contract of the component by pre and post
conditions . After that, using these information, we associate to each state of the com-
ponent a set of flags that specify the value of component variables. Because the adapter
is generated from the parallel composition, we can deduce the values of each variable of
the adapted blocks at the level of the adapter states. Then, whenwe generate the Promela
code, we extend the set of flags associated to actions by the set of flags associated to the
variables.

We can consider these two points as perspectives of our work.

Bibliography

[ABM00] Colin Atkinson, Joachim Bayer, and Dirk Muthig. Component-based prod-
uct line development: The kobra approach. In PatrickDonohoe, editor, Soft-
ware Product Lines, volume 576 of The Springer International Series in En-
gineering and Computer Science, pages 289--309. Springer US, 2000.

[Acc] Acceleo. http://www.eclipse.org/acceleo/.

[AEC14] Mouna Aouag, Raida Elmansouri, and Allaoua Chaoui. From uml 2.0 di-
agrams to aspect oriented diagrams using graph transformation. Interna-
tional Journal of Computer Aided Engineering and Technology, 6(2):200--
233, 2014.

[AG97] Robert Allen and David Garlan. A Formal Basis for Architectural Connec-
tion. ACM Trans. Softw. Eng. Methodol., 6(3):213--249, July 1997.

[atl] ATL: Atlas Transformation Language. https://eclipse.org/atl/.

[AYAM11] Mouna Ait_Oubelli, Nadia Younsi, Abdelkrim Amirat, and Ahcene Menas-
ria. Fromuml 2.0 sequence diagrams to promela code by graph transforma-
tion using atom 3. CIIA’11, 2011.

[BBB+11] Ananda Basu, Saddek Bensalem,Marius Bozga, Jacques Combaz,Mohamad
Jaber, Thanh-HungNguyen, and JosephSifakis. Rigorous component-based
system design using the BIP framework. IEEE Software, 28(3):41--48, 2011.

[BBC05a] Andrea Bracciali, Antonio Brogi, and Carlos Canal. A Formal Approach to
Component Adaptation. J. Syst. Softw., 74(1):45--54, January 2005.

[BBC05b] Andrea Bracciali, Antonio Brogi, and Carlos Canal. A formal approach to
component adaptation. Journal of Systems andSoftware, 74(1):45--54, 2005.

[BBJ+10] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and
Joseph Sifakis. Fromhigh-level component-basedmodels to distributed im-
plementations. In Proceedings of the 10th International conference on Em-
bedded software, EMSOFT 2010, Scottsdale, Arizona, USA, October 24-29,
2010, pages 209--218, 2010.

[BCHM15] Hamida Bouaziz, Samir Chouali, Ahmed Hammad, and Hassan Mountas-
sir. Formal Methods and Software Engineering: 17th International Confer-
ence on Formal EngineeringMethods, ICFEM2015, Paris, France, November
3-5, 2015, Proceedings, chapter SysML Blocks Adaptation, pages 417--433.
Springer International Publishing, Cham, 2015.

[BCL+04] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. An open component model and its support in java.

149

http://www.eclipse.org/acceleo/
https://eclipse.org/atl/

150 BIBLIOGRAPHY

In Proceedings of the 7th International Symposium on Component-based
Software Engineering, Lecture Notes in Computer science, pages 7--22, Ed-
inburgh, UK, 2004. Springer.

[BCL+06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support in java:
Experiences with auto-adaptive and reconfigurable systems. Softw. Pract.
Exper., 36(11-12):1257--1284, September 2006.

[BCP04] Antonio Brogi, Carlos Canal, and Ernesto Pimentel. Behavioural types and
component adaptation. In Algebraic Methodology And Software Technol-
ogy, pages 42--56. Springer, 2004.

[BCS+08] Nikola Benes, Ivana Cerná, Jiri Sochor, Pavlína Vareková, and Barbora Zim-
merova. A case study in parallel verification of component-based systems.
Electr. Notes Theor. Comput. Sci., 220(2):67--83, 2008.

[BGMPG99] G. Baille, P. Garnier, H.Mathieu, and R. Pissard-Gibollet. The INRIA Rhone-
Alpes CyCab' , INRIA, 1999.

[BHP06] T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0: Balancing advanced features
in a hierarchical component model. In Software Engineering Research,
Management and Applications, 2006. Fourth International Conference on,
pages 40--48, Aug 2006.

[BKR07] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based perfor-
mance prediction with the palladio component model. In Proceedings of
the 6th International Workshop on Software and Performance, WOSP '07,
pages 54--65, New York, NY, USA, 2007. ACM.

[BR08] Purandar Bhaduri and S. Ramesh. Interface synthesis and protocol conver-
sion. Formal Asp. Comput., 20(2):205--224, 2008.

[BSBM04] Lucas Bordeaux, Gwen Salaün, Daniela Berardi, and Massimo Mecella.
When are two web services compatible? In Technologies for E-Services, 5th
International Workshop, TES 2004, Toronto, Canada, August 29-30, 2004,
Revised Selected Papers, pages 15--28, 2004.

[CCM12a] OscarCarrillo, Samir Chouali, andHassanMountassir. Formalizing andver-
ifying compatibility and consistency of SysML blocks. In UML & FM 2012,
5-th Int. workshop on UML and Formal Methods, volume 37-4 of ACM Soft-
ware Engineering Notes, pages 1--8, Paris, France, August 2012.

[CCM12b] OscarCarrillo, SamirChouali, andHassanMountassir. FormalizingandVer-
ifying Compatibility and Consistency of SysML Blocks. ACM SIGSOFT Soft-
ware Engineering Notes, 37(4):1--8, 2012.

[CCM14] Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Incremental mod-
eling of system architecture satisfying SysML functional requirements. In
José Luiz Fiadeiro, Zhiming Liu, and Jinyun Xue, editors, FACS 2013, 10th
Int. Symposium on Formal Aspects of Component Software, Revised Se-
lected Papers, volume 8348 of LNCS, pages 79--99, Nanchang, China, 2014.
Springer.

BIBLIOGRAPHY 151

[CEP00] L.A. Cortes, P. Eles, and Zebo Peng. Verification of embedded systems using
a Petri net based representation. In System Synthesis, 2000. Proceedings.
The 13th International Symposium on, pages 149--155, 2000.

[CESK09] Allaoua Chaoui, Raida ElMansouri, Wafa Saadi, and Elhillali Kerkouche.
Fromuml sequence diagrams to ecatnets: a graph transformation based ap-
proach for modelling and analysis. In proceedings of The 4th International
Conference on Information Technology ICIT, 2009.

[CGP99] EdmundM. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, Cambridge, MA, USA, 1999.

[CGP01] EdmundM.Clarke, OrnaGrumberg, andDoronPeled. Model checking. MIT
Press, 2001.

[CH03] K. Czarnecki and s. Helsen. Classification of model transformation ap-
proaches. In OOPSLAWorkshop on Generative Techniques in the Context
of theModel Driven Architecture, Anaheim, USA, 2003.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621--645, 2006.

[CH11a] Samir Chouali and Ahmed Hammad. Formal verification of components
assembly based on sysml and interface automata. ISSE, 7(4):265--274, 2011.

[CH11b] Samir Chouali and Ahmed Hammad. Formal Verification of Components
Assembly Based on SysML and Interface Automata. ISSE, 7(4):265--274,
2011.

[CIP04] M. Caporuscio, P. Inverardi, and P. Pelliccione. Compositional verification
of middleware-based software architecture descriptions. In Software Engi-
neering, 2004. ICSE 2004. Proceedings. 26th International Conference on,
pages 221--230, May 2004.

[CK96] Shing Chi Cheung and Jeff Kramer. Context constraints for compositional
reachability analysis. ACM Trans. Softw. Eng. Methodol., 5(4):334--377, Oc-
tober 1996.

[CLY+14] Chih-Hung Chang, Chih-Wei Lu, Wen Pin Yang, W.C.-C. Chu, Chao-Tung
Yang, Ching-Tsorng Tsai, and Pao-Ann Hsiung. A sysml based requirement
modeling automatic transformation approach. In Computer Software and
ApplicationsConferenceWorkshops (COMPSACW), 2014 IEEE 38th Interna-
tional, pages 474--479, July 2014.

[CMM10a] Samir Chouali, SebtiMouelhi, andHassanMountassir. Adaptation des Pro-
tocoles des Composants par les Automates d'Interface. In AFADL'10, Con-
grèsApproches Formelles dans l'Assistance auDéveloppement de Logiciels,
pages 253--266, Poitiers, France, June 2010.

[CMM10b] Samir Chouali, Sebti Mouelhi, and Hassan Mountassir. Adapting compo-
nent behavioursusing interface automata. In SoftwareEngineering andAd-
vanced Applications (SEAA), 2010 36th EUROMICRO Conference on, pages
119--122. IEEE, 2010.

152 BIBLIOGRAPHY

[CMM12] Samir Chouali, Sebti Mouelhi, and HassanMountassir. Adaptation séman-
tique des protocoles des composants par les automates d'interface. TSI,
Technique et Science Informatiques, 31(6):769--796, 2012.

[CMP06] Carlos Canal, JuanManuel Murillo, and Pascal Poizat. Software adaptation.
L'OBJET, 12(1):9--31, 2006.

[CPS06a] Carlos Canal, Pascal Poizat, and Gwen Salaün. Adaptation de composants
logiciels une approche automatisée basée sur des expressions régulières de
vecteurs de synchronisation. In CAL, pages 31--39, 2006.

[CPS06b] Carlos Canal, Pascal Poizat, and Gwen Salaün. Synchronizing Behavioural
Mismatch in Software Composition. In Formal Methods for Open Object-
Based Distributed Systems, 8th IFIP WG 6.1 International Conference,
FMOODS 2006, Bologna, Italy, June 14-16, 2006, Proceedings, pages 63--77,
2006.

[CPS08] Carlos Canal, Pascal Poizat, and Gwen Salaün. Model-based adaptation of
behavioralmismatching components. IEEE Trans. Software Eng., 34(4):546-
-563, 2008.

[Crn02] Ivica Crnkovic. Building Reliable Component-Based Software Systems.
Artech House, Inc., Norwood, MA, USA, 2002.

[CS14] Carlos Canal and Gwen Salaün. Adaptation of asynchronously communi-
cating software. In Service-Oriented Computing - 12th International Con-
ference, ICSOC 2014, Paris, France, November 3-6, 2014. Proceedings, pages
437--444, 2014.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC /
SIGSOFT FSE, pages 109--120, 2001.

[dAH05] Luca de Alfaro and ThomasA. Henzinger. Interface-based design. In Man-
fred Broy, Johannes Grunbauer, David Harel, and Tony Hoare, editors, En-
gineering Theories of Software Intensive Systems, volume 195 of NATO Sci-
ence Series, pages 83--104. Springer Netherlands, 2005.

[Dav03] Frankel S David. Model driven architecture: applying mda to enterprise
computing, 2003.

[DBM14] Djaouida Dahmani, Mohand Cherif Boukala, and Hassan Mountassir. A
petri net approach for reusing and adapting components with atomic and
non-atomic synchronisation. In Proceedings of the InternationalWorkshop
onPetriNets andSoftware Engineering, Tunis, Tunisia, pages 129--141, 2014.

[DHJ+10] Mourad Debbabi, Fawzi Hassaine, Yosr Jarraya, Andrei Soeanu, and Luay
Alawneh. Verification and validation in systems engineering: assessing
UML/SysML designmodels. Springer Science & Business Media, 2010.

[DIK09] P. David, V. Idasiak, and F. Kratz. Improving reliability studies with sysml.
In Reliability and Maintainability Symposium, 2009. RAMS 2009. Annual,
pages 527--532, Jan 2009.

BIBLIOGRAPHY 153

[dLVA04] J. de Lara, H. Vangheluwe, and M. Alfonseca. Meta-modelling and graph
grammars for multi-paradigm modelling in atom3. Software and System
Modeling, 3(3):194--209, 2004.

[DM01] Alexandre David andM. Oliver Möller. FromHUPPaal to Uppaal : A Transi-
tion fromHierarchical Timed Automata to Flat Timed Automata. Technical
report, BRICS, University of Aarhus, Denmark, 2001.

[DOP13] Iulia Dragomir, Iulian Ober, and Christian Percebois. Integrating verifiable
assume/guarantee contracts in uml/sysml. In Proceedings of the 6th Inter-
national Workshop on Model Based Architecting and Construction of Em-
bedded Systems co-located with ACM/IEEE 16th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2013), Mi-
ami, Florida, USA, September 29th, 2013., 2013.

[DOP14] Iulia Dragomir, Iulian Ober, and Christian Percebois. Safety contracts for
timed reactive components in sysml. In SOFSEM 2014: Theory and Prac-
tice of Computer Science - 40th International Conference onCurrent Trends
in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, Jan-
uary 26-29, 2014, Proceedings, pages 211--222, 2014.

[EMF] Eclipse Modelling Framework EMF. http://www.eclipse.org/modeling/
emf/.

[EPK02] Petru Eles, Zebo Peng, and Daniel Karlsson. Formal Verification in a
Component-Based Reuse Methodology. In Proceedings of the 15th Inter-
national Symposium on System Synthesis (ISSS 2002), October 2-4, 2002,
Kyoto, Japan, pages 156--161, 2002.

[ES09] Sima Emadi and Fereidoon Shams. Mapping annotated use case and se-
quence diagrams to a petri net notation for performance evaluation. In
Computer andElectrical Engineering, 2009. ICCEE'09. Second International
Conference on, volume 2, pages 68--71. IEEE, 2009.

[GBB05] Patrick Graessle, Henriette Baumann, and Philippe Baumann. UML 2.0 in
Action. Pearson Higher Education, 2005.

[GBHP13] Jean-Marie Gauthier, Fabrice Bouquet, Ahmed Hammad, and Fabien
Peureux. Verification and validation of meta-model based transformation
fromSysML toVHDL-AMS. InMODELSWARD 2013, 1st Int. Conf. onModel-
Driven Engineering and Software Development, pages 123--128, Barcelona,
Spain, February 2013.

[GBHP15] Jean-Marie Gauthier, Fabrice Bouquet, Ahmed Hammad, and Fabien
Peureux. Tooled process for early validation of SysMLmodels usingModel-
ica simulation. In FSEN'15, 6th IPM Int. Conf. on Fundamentals of Software
Engineering, volume 9392 of LNCS, pages 230--237, Tehran, Iran, April 2015.
Springer.

[GCA13] Fayçal Guerrouf, Allaoua Chaoui, and Ali Aldahoud. A graph transforma-
tion approach ofmobile activity diagram to nested petri nets. International
Journal of Computer Aided Engineering and Technology, 5(1):44--57, 2013.

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

154 BIBLIOGRAPHY

[GCRJ08] Yue Guo, A. Chakrapani Rao, and R.P. Jones. Architectural and functional
modelling of an automotive driver information system using sysml. In
Mechtronic and Embedded Systems and Applications, 2008. MESA 2008.
IEEE/ASME International Conference on, pages 552--557, Oct 2008.

[GDKR+11] Antonio García-Domínguez, Dimitrios S Kolovos, Louis M Rose, Richard F
Paige, and Inmaculada Medina-Bulo. Eunit: A unit testing framework for
modelmanagement tasks. InModelDrivenEngineeringLanguagesandSys-
tems, pages 395--409. Springer, 2011.

[Gen] Gentleware. http://www.gentleware.com/.

[GGA+08] M.Grecki, ZheqiaoGeng, GoharAyvazyan, S. Simrock, andBahtiarAminov.
Application of sysml to design of atca based llrf control system. In Nuclear
Science Symposium Conference Record, 2008. NSS '08. IEEE, pages 44--52,
Oct 2008.

[GJ09] YueGuoandR.P. Jones. A studyof approaches formodel baseddevelopment
of an automotive driver information system. In Systems Conference, 2009
3rd Annual IEEE, pages 267--272, March 2009.

[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, andWendelin Serwe. Cadp
2011: a toolbox for the construction and analysis of distributed processes.
International Journal on Software Tools for Technology Transfer, 15(2):89--
107, 2013.

[GS03] Jack Greenfield and Keith Short. Software factories: assembling applica-
tions with patterns, models, frameworks and tools. In Companion of the
18th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 16--27. ACM, 2003.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1985.

[INC] INCOSE. http://www.incose.org/.

[IS01] Paola Inverardi and Simone Scriboni. Connectors synthesis for deadlock-
free component based architectures. In Automated Software Engineering,
2001.(ASE 2001). Proceedings. 16th Annual International Conference on,
pages 174--181. IEEE, 2001.

[IT03a] Paola Inverardi and Massimo Tivoli. Deadlock-free software architectures
for com/dcomapplications. Journal of Systems andSoftware, 65(3):173--183,
2003.

[IT03b] Paola Inverardi andMassimoTivoli. SoftwareArchitecture for Correct Com-
ponents Assembly. In SFM 2003, Bertinoro, Italy, pages 92--121, 2003.

[Jal08] Pankaj Jalote. A concise introduction to software engineering. Springer,
2008.

[Jen96] Kurt Jensen. Coloured Petri Nets (2Nd Ed.): Basic Concepts, Analysis Meth-
ods and Practical Use: Volume 1. Springer-Verlag, London, UK, UK, 1996.

http://www.gentleware.com/
http://www.incose.org/

BIBLIOGRAPHY 155

[JKPB12] Thomas Johnson, Aleksandr Kerzhner, Christiaan JJ Paredis, and Roger
Burkhart. Integrating models and simulations of continuous dynamics
into sysml. Journal of Computing and Information Science in Engineering,
12(1):011002, 2012.

[JT13] Marcin Jamro and Bartosz Trybus. An approach to sysml modeling of iec
61131-3 control software. InMMAR, pages 217--222, 2013.

[KBSB10] Marouane Kessentini, Arbi Bouchoucha, Houari Sahraoui, and Mounir
Boukadoum. Example-based sequence diagrams to colored petri nets trans-
formation using heuristic search. In Modelling Foundations and Applica-
tions, pages 156--172. Springer, 2010.

[KC09] Elhillali Kerkouche andAllaouaChaoui. A Formal Framework andaTool for
the Specification and Analysis of G-Nets Models Based on Graph Transfor-
mation. In Vijay Garg, Roger Wattenhofer, and Kishore Kothapalli, editors,
Distributed Computing and Networking, volume 5408 of Lecture Notes in
Computer Science, pages 206--211. Springer Berlin Heidelberg, 2009.

[KEP07a] Daniel Karlsson, Petru Eles, and Zebo Peng. Formal verification of
component-based designs. Design Automation for Embedded Systems,
11(1):49--90, 2007.

[KEP07b] Daniel Karlsson, Petru Eles, and Zebo Peng. Formal Verification of
Component-basedDesigns. DesignAutom. for Emb. Sys., 11(1):49--90, 2007.

[LBLP11] Jonathan Lasalle, Fabrice Bouquet, Bruno Legeard, and Fabien Peureux.
Sysml to uml model transformation for test generation purpose. SIGSOFT
Softw. Eng. Notes, 36(1):1--8, January 2011.

[LCKB08] S. Lafi, R. Champagne, A. B. Kouki, and J. Belzile. Modeling radio frequency
front ends using sysml: a case study of a umts transceiver. In First Interna-
tionalWorkshop onModel Based Architecting and Construction of Embed-
ded Systems, Toulouse, France, pages 115--128, 2008.

[LdSdO06] Marcos Vinicius Linhares, Alexandre Jose da Silva, and Rômulo Silva
de Oliveira. Empirical evaluation of sysml through the modeling of an in-
dustrial automation unit. In ETFA, pages 145--152, 2006.

[LTM+09] Vitor Lima, Chamseddine Talhi, DjedjigaMouheb, Mourad Debbabi, Lingyu
Wang, andMakanPourzandi. Formal verification and validation ofUML 2.0
sequence diagrams using source and destination ofmessages. Electr. Notes
Theor. Comput. Sci., 254:143--160, 2009.

[LWMY11] Lei Li, NaichaoWang, LinMa, andQingwei Yang. Modelingmethod ofmili-
tary aircraft support process based sysml. In Reliability,Maintainability and
Safety (ICRMS), 2011 9th International Conference on, pages 1247--1251, June
2011.

[M. 07] M. Corporation. COM: Component Object Model Technologies. http://
www.microsoft.com/com/, 2007.

http://www.microsoft.com/com/
http://www.microsoft.com/com/

156 BIBLIOGRAPHY

[MCR+12] F. Mhenni, J. Choley, A. Riviere, Nga Nguyen, and H. Kadima. Sysml and
safety analysis for mechatronic systems. In Mechatronics (MECATRONICS)
, 2012 9th France-Japan 7th Europe-Asia Congress on andResearch and Edu-
cation in Mechatronics (REM), 2012 13th Int'l Workshop on, pages 417--424,
Nov 2012.

[MDA] TheModel-Driven Architecture. http://www.omg.org/mda/specs.htm.

[Mer14] Elkamel Merah. Design of atl rules for transforming uml 2 sequence dia-
grams into petri nets. International Journal of Computer Science and Busi-
ness Informatics, 8(1), 2014.

[Mic95] microsoft Microsoft. The component object model specification-version
0.9, 1995.

[MMSC13] ElkamelMerah,NabilMessaoudi,HalimaSaidi, andAllaouaChaoui. Design
of atl rules for transforming uml 2 communication diagrams into büchi au-
tomata. International Journal of Software Engineering and ItsApplications,
7(2):19--34, 2013.

[Mot] Motorola. http://www.motorola.com/.

[Mou11] Sebti Mouelhi. Contribution à la vérification de la sûreté de l'assemblage et
à l'adaptation de composants réutilisables. PhD thesis, Franche comté uni-
versity, 2011.

[MPS12] Radu Mateescu, Pascal Poizat, and Gwen Salaün. Adaptation of service
protocols using process algebra and on-the-fly reduction techniques. IEEE
Trans. Software Eng., 38(4):755--777, 2012.

[MPW92] RobinMilner, Joachim Parrow, and DavidWalker. A Calculus ofMobile Pro-
cesses, I. Inf. Comput., 100(1):1--40, September 1992.

[MR07] MarylèneMicheloudandMedardRieder. Programmationorientéeobjets en
C++: une approche évolutive. PPUR presses polytechniques, 2007.

[MTO+11] Yasushi Mae, Hideyasu Takahashi, Kenichi Ohara, Tomohito Takubo, and
Tatsuo Arai. Component-based robot system design for grasping tasks. In-
telligent Service Robotics, 4(1):91--98, 2011.

[obe] Obeo. http://www.obeo.fr.

[OMG00] OMG. CORBA, Version 2.4. http://www.omg.org/spec/CORBA/2.4/, 2000.

[OMG06] OMG. Corba ComponentModel 4.0 Specification. Technical Report Version
4.0, 2006.

[OMG12a] OMG. OMG SystemsModeling Language (OMG SysML™) Version 1.3, 2012.

[OMG12b] OMG. OMG SystemsModeling Language (OMG SysML™) Version 1.3. http:
//www.omg.org, 2012.

[pap] PAPYRUS. https://eclipse.org/papyrus/.

http://www.omg.org/mda/specs.htm
http://www.motorola.com/
http://www.obeo.fr
http://www.omg.org/spec/CORBA/2.4/
http://www.omg.org
http://www.omg.org
https://eclipse.org/papyrus/

BIBLIOGRAPHY 157

[PBG14] Rui Pais, João Paulo Barros, and Luís Gomes. From sysml state machines to
petri nets using ATL transformations. In Technological Innovation for Col-
lective Awareness Systems - 5th IFIP WG 5.5/SOCOLNET Doctoral Confer-
ence on Computing, Electrical and Industrial Systems, DoCEIS 2014, Costa
de Caparica, Portugal, April 7-9, 2014. Proceedings, pages 227--236, 2014.

[Pro] Graphical Modelling Project. Graphical modelling framework (gmf). http:
//www.eclipse.org/modeling/gmp/.

[PST07] Pascal Poizat, Gwen Salaün, and Massimo Tivoli. An adaptation-based ap-
proach to incrementally build component systems. Electr. Notes Theor.
Comput. Sci., 182:155--170, 2007.

[PSTV13] Pekka Pihlanko, Seppo Sierla, Kleanthis Thramboulidis, and Mauri Vi-
itasalo. An industrial evaluation of sysml: The case of a nuclear automation
modernization project. In ETFA, pages 1--8, 2013.

[Pto] Ptolemy. Ptolemy Project. http://ptolemy.eecs.berkeley.edu/.

[PV02] F. Plasil andS.Visnovsky. Behavior protocols for software components. Soft-
ware Engineering, IEEE Transactions on, 28(11):1056--1076, Nov 2002.

[RC15] Seidali Rehab and Allaoua Chaoui. Tgg-based process for automating the
transformation of umlmodels towards b specifications. International Jour-
nal of Computer Aided Engineering and Technology, 7(3):378--400, 2015.

[RF06] Oscar R Ribeiro and João M Fernandes. Some rules to transform sequence
diagrams into coloured petri nets. In 7thWorkshop and Tutorial on Practi-
cal Use of Coloured Petri Nets and the CPN Tools (CPN 2006), pages 237--56.
Citeseer, 2006.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Lan-
guage Reference Manual, The (2Nd Edition). Pearson Higher Education,
2004.

[RKBIH15] MessaoudRahim,AhmedKheldoun,MalikaBoukala-Ioualalen, andAhmed
Hammad. Recursive ecatnets-based approach for formally verifying system
modelling language activity diagrams. Software, IET, 9(5):119--128, 2015.

[Sam76] JeffreyR. Sampson. Theorem proving. In Adaptive Information Processing,
Texts andMonographs inComputerScience, pages 160--174. SpringerBerlin
Heidelberg, 1976.

[Sch04] Klaus Schneider. Verification of Reactive Systems: FormalMethods and Al-
gorithms. SpringerVerlag, 2004.

[SEG09] R. Seguel, R. Eshuis, and P. Grefen. An overview on protocol adaptors for
service component integration, 2009.

[SK97] Janos Sztipanovits and Gabor Karsai. Model-integrated computing. Com-
puter, 30(4):110--111, 1997.

[Sun06] SunMicrosystems. Enterprise JavaBeans 3.0 Specification, May 2006.

[sys] SYSML. https://sysml.org/.

http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://ptolemy.eecs.berkeley.edu/
https://sysml.org/

158 BIBLIOGRAPHY

[Szy98a] Clemens Szyperski. Component software: beyondobject-oriented program-
ming. Pearson Education, 1998.

[Szy98b] Clemens A. Szyperski. Component software - beyond object-oriented pro-
gramming. Addison-Wesley-Longman, 1998.

[TeS11] Nara Sueina Teixeira and Ricardo Pereira e Silva. Compatibility evaluation
of components specified in UML. In 30th International Conference of the
Chilean Computer Science Society, SCCC 2011, Curico, Chile, November 9-11,
2011, pages 90--99, 2011.

[TI08] Massimo Tivoli and Paola Inverardi. Failure-free coordinators synthesis
for component-based architectures. Science of Computer Programming,
71(3):181 -- 212, 2008.

[too] CPN tool. http://cpntools.org/.

[top] TOPCASED. https://www.polarsys.org/topcased.

[Vas09] Parham Vasaiely. Interactive simulation of sysml models using modelica.
Bachelor Thesis, Dept of Computer Science, HamburgUniversity of Applied
Sciences, 2009.

[wik] WIKIPEDIA. https://fr.wikipedia.org/.

[WS01] Rainer Weinreich and Johannes Sametinger. Component-based software
engineering. chapter Component Models and Component Services: Con-
cepts and Principles, pages 33--48. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[XB03] Fei Xie and James C Browne. Verified systems by composition from veri-
fied components. InACMSIGSOFT Software EngineeringNotes, volume 28,
pages 277--286. ACM, 2003.

[YS97] Daniel M. Yellin and Robert E. Strom. Protocol specifications and compo-
nent adaptors. ACMTrans. Program. Lang. Syst., 19(2):292--333,March 1997.

[YTL04] Nesrine Yahiaoui, Bruno Traverson, and Nicole Levy. Classification and
comparisonofadaptableplatforms. InProceedingsof theFirst International
Workshop on Coordination and Adaptation Techniques for Software Enti-
ties (WCAT’04), Oslo , Norway, pages 55--61, 2004.

http://cpntools.org/
https://www.polarsys.org/topcased
https://fr.wikipedia.org/

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland --- http://www.multiagent.fr/ThesisStyle
the tex-upmethodology package suite --- http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

Abstract:

The work presented in this thesis takes place in the component-based development domain, it is a contribution to the specification,

adaptation and verification of component-based systems. The main purpose of this thesis is the proposition of a formal approach to

build incrementally complex systems by assembling and adapting a set of components, where their structure and behaviour aremodelled

using SysML diagrams. In the first stage, we have defined a meta-model driven approach which is based on meta-modelling and models

transformation, to verify the compatibility of blockshaving their interactionprotocolsmodelledusingSysMLsequencediagrams. Toverify

their compatibility,weperforma transformation into interface automata (IAs), andwebaseon theoptimistic approachdefinedon IAs. This

approach consider that two components are compatible if there is a suitable environment with which they can interact correctly. After

that, we have proposed to benefit from the hierarchy, that may be present in the interaction protocol models of the blocks, to alleviate the

verification of blocks compatibility. In the next stage, we have taken into consideration the problemof namesmismatches of type one2one

between services of blocks. At this stage, an adapter is generated for a set of reused blockswhich have their interaction protocolsmodelled

formally by interface automata. The generation of the adapter is guided by the specification of the parent block which is made initially

by the designer. Our approach is completed by a verification phase which allows us to verify SysML requirements, expressed formally

by temporal properties, on SySML blocks. In this phase, we have exploited only the generated adapters to verify the preservation of the

requirements initially satisfied by the reused blocks. Thus, our approach intends to give more chance to avoid the state space explosion

problem during the verification. In the same context, where we have a set of reused blocks and the specification of their parent blocks, we

have proposed to use coloured Petri nets (CPNs) tomodel the blocks interactions and to generate adapters that solvemore type of problems.

In this case the adapter can solve the problem of livelock by enabling the reordering of services calls.

Keywords: component-based development, SysML, adaptation, verification, Compatibility, interface automata, coloured Petri nets,
Requirements

Résumé :

Le travail présenté dans cette thèse a lieu dans le domaine de développement basé sur les composants, il est une contribution à la

spécification, l'adaptation et la vérification des systèmes à base de composants. Le but principal de cette thèse est la proposition d'une

approche formelle pour construire progressivement des systèmes complexes en assemblant et en adaptant un ensemble de composants,

où leur structure et leur comportement sont modélisés à l'aide de diagrammes SysML. Dans la première étape, nous avons défini une

approche basée sur la méta-modélisation et la transformation des modèles pour vérifier la compatibilité des blocs ayant leurs protocoles

d'interaction modélisés à l'aide de diagrammes de séquence SysML. Pour vérifier leur compatibilité, nous effectuons une transformation

en automates d'interface (IAs), et nous utilisons l'approche optimiste définie sur les IA. Cette approche considère que deux composants

sont compatibles s'il existe un environnement approprié avec lequel ils peuvent interagir correctement. Après cela, nous avons proposé

de bénéficier de la hiérarchie, qui peut être présente dans les modèles de protocole d'interaction des blocs, pour alléger la vérification de

la compatibilité des blocs. Dans l'étape suivante, nous avons pris en considération le problème des incohérences de noms de type one2one

entre les services des blocs. A ce stade, un adaptateur est généré pour un ensemble de blocs réutilisés qui ont leurs protocoles d'interaction

modélisés formellement par des automates d'interface. La génération de l'adaptateur est guidée par la spécification du bloc parent qui est

faite initialement par le concepteur. Notre approche est complétée par une phase de vérification qui nous permet de vérifier les exigences

SysML, exprimées formellement par les propriétés temporelles, sur les blocs SySML. Dans cette phase, nous avons exploité uniquement

les adaptateurs générés pour vérifier la préservation des exigences initialement satisfaites par les blocs réutilisés. Ainsi, notre approche

a l'intention de donner plus de chance d'éviter le problème de l'explosion de l'espace d'état au moment de la vérification. Dans le même

contexte, où nous avons un ensemble de blocs réutilisés et la spécification de leurs blocs parents, nous avons proposé d'utiliser des réseaux

de Petri colorés (CPN) pourmodéliser les interactions des blocs et générer des adaptateurs qui résolvent plus de types de problèmes. Dans

ce cas, l'adaptateur peut résoudre le problème de blocage en permettant le réordonnancement des appels de services.

Mots-clés : développement basé sur les composants, SysML, adaptation, vérification, compatibilité, automates d'interface, réseaux
de Petri colorés, exigences

	1 Introduction
	1.1 Context and Challenges
	1.2 Contributions
	1.3 Publications
	1.4 Document Outline

	I Scientific Context and State of the Art
	2 SE and SysML Language
	2.1 SysML
	2.1.1 The Need of SE to SysML
	2.1.2 Who Created SysML?
	2.1.3 Principles of SYML

	2.2 Emergence of SysML
	2.3 SysML Diagrams
	2.3.1 Structural Diagrams
	2.3.2 Behavioural Diagrams
	2.3.3 Requirement Diagram

	2.4 Free Platforms for SysML Modelling
	2.4.1 TOPCASED
	2.4.2 Papyrus

	2.5 Conclusion

	3 Model-Driven Development and Models Transformation
	3.1 Basic Concepts
	3.2 Model Transformations
	3.3 Transformation of SysML Diagrams
	3.4 Transformation of Sequence Diagram
	3.5 Interface Automata
	3.5.1 Operations on interface automata
	3.5.2 Refinement of interface automata

	3.6 Coloured Petri Nets
	3.7 Conclusion

	4 CBSE and Component Adaptation
	4.1 Component-Based Software Engineering
	4.2 Definition of Software Component
	4.3 Abstraction of Components
	4.4 Component Interfaces
	4.5 Component Models
	4.6 Verification of Component Compatibility
	4.7 Formal Analysis of Assembled Systems
	4.8 Components Adaptation
	4.8.1 Adaptation Taxonomy
	4.8.2 General Adaptation Process
	4.8.3 Principal Adaptation Approaches
	Adaptation of -calculus protocols
	Adaptation based on LTSs and Petri nets

	4.8.4 Other Approaches

	4.9 Conclusion

	II Contributions
	5 Formalizing SysML Diagrams
	5.1 Requirement Diagram (RD)
	5.2 Block Definition Diagram (BDD)
	5.2.1 BDD Formal Definition
	5.2.2 Block
	5.2.3 Ports
	5.2.4 Parts
	5.2.5 References
	5.2.6 BDD Relations

	5.3 Internal Block Diagram (IBD)
	5.4 Sequence Diagram (SD)
	5.5 Conclusion

	6 A SysML Model Driven Approach to Verify Blocks Compatibility
	6.1 Our Methodology
	6.2 Transforming SDs of Blocks into Interface Automata
	6.2.1 Sequence Diagram Meta-Model
	6.2.2 Interface Automata Meta-Model
	6.2.3 Basic Interaction Transformation Rules
	6.2.4 ALT Combined Fragment Transformation Rules

	6.3 Generation of Ptolemy Specification
	6.4 The Blocks Verification
	6.5 Case Study: CyCab
	6.6 Conclusion

	7 Exploiting The Hierarchy to Verify Blocks Compatibility
	7.1 Hierarchical Protocol State Machine (HPSM)
	7.2 Hierarchical Interface Automata with Inter-Level Transitions (HIA-ILT)
	7.3 The Proposed Approach
	7.3.1 The Mapping Between HPSM and HIA-ILT
	7.3.2 The Consistency Verification of Blocks
	7.3.3 The Selection of Composite States to Flatten
	7.3.4 The Compatibility Verification Between Blocks

	7.4 Case Study
	7.5 Conclusion

	8 SysML Blocks Adaptation
	8.1 Our Incremental Approach for Adapting SysML Blocks
	8.1.1 The First Phase: Defining a Specification for the Part to Develop
	8.1.2 The Second Phase: The Selection of the Reused Blocks {Bi}
	8.1.3 The Third Step: the Contract and the Reused Blocks Verification
	8.1.4 The Fourth Step: Generating the Adapter

	8.2 Case Study
	8.2.1 Generate the Adapters
	8.2.2 Deduce the BDD and the IBDs of the Composite Blocks

	8.3 Conclusion

	9 Incremental Verification of System Requirements
	9.1 Our Approach
	9.1.1 Requirements Specification
	9.1.2 Problem definition
	9.1.3 The First Case : The Low Level Verification
	9.1.4 The Second Case : The High Level Verification
	9.1.5 The Verification Algorithm

	9.2 Case Study
	9.3 Conclusion

	10 Adaptation with Reordering of SysML Block Services
	10.1 Our Adaptation Approach
	10.1.1 Computing the Global Interaction Protocol of the Reused Blocks GIR
	10.1.2 Introducing the Specification of the Future Parent Block
	10.1.3 Deduce the Adapter
	10.1.4 Tool Support

	10.2 Case Study
	10.3 Conclusion

	III Conclusion
	11 Conclusion and Perspectives
	11.1 Conclusion
	11.2 Perspectives

