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Abstract

Cryptographic algorithms are nowadays prevalent in establishing secure connectivity in our

digital society. Such computations handle sensitive information like encryption keys, which

are usually very exposed during manipulation, resulting in a huge threat to the security of the

sensitive information concealed in cryptographic components. Eventually, the compromission of

keys results in the compromission of the whole connected system. In the field of embedded systems

security, side-channel analysis is one of the most powerful techniques against cryptographic

implementations. It consists in the extracting the sensitive data by exploiting certain physically

observable leakages during the execution of the cryptographic components. As such attacks

pose a real threat, various protections have been studied and developed, wherein the random

masking is one of the most well-established. Basically, masking provides provable security

against side-channel analysis by splitting (at a systematic level) any sensitive variable into

several random shares. A fundamental parameter for a masking scheme is its security order t.

Thereby, any adversaries aiming at key-recovering must employ strictly more than t shares to

launch a higher-order attack, whereas the data complexity increases exponentially in t (under

noisy conditions), which in turn is providing security against side-channel analysis.

The main subject of this thesis is the measurable side-channel security of cryptographic

implementations, particularly in the presence of random masking. Overall, this thesis consists of

two topics. One is the leakage quantification of the most general form of masking equipped with

the linear codes, so-called code-based masking; the other one is exploration of applying more

generic information measures in a context of side-channel analysis. Two topics are inherently

connected to each other in assessing and enhancing the practical security of cryptographic

implementations.

Regarding the former, we propose a unified coding-theoretic framework for measuring the

information leakage in code-based masking. Specifically, our framework builds formal connections

between coding properties (including the dual distance and the kissing number of codes) and

leakage metrics in side-channel analysis (including signal-to-noise ratio and mutual information).

As has been reported in literature, different linear codes have distinct impact on the side-channel
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resistance of a code-based masking. Those formal connections enable us to push forward the

quantitative evaluation on how the linear codes can affect the concrete security of all code-based

masking schemes, including non-redundant cases (e.g., inner product masking, direct sum

masking, etc) and redundant cases (e.g., polynomial masking based on Shamir’s secret sharing,

etc). Moreover, relying on our framework, we consolidate code-based masking by providing the

optimal linear codes in the sense of maximizing the side-channel resistance of the corresponding

masking scheme. Our framework is finally verified by attack-based evaluation, where the attacks

utilize maximum-likelihood based distinguishers and are therefore optimal.

Regarding the latter, we present a full spectrum of application of alpha-information, a

generalization of (Shannon) mutual information, for assessing side-channel security. In side-

channel analysis, mutual information is frequently adopted in an information-theoretic evaluation

of side-channel security level. By a communication channel model, mutual information provides

an upper bound on the success rate of any attacks given a fixed set of side-channel measurements,

or it gives a lower bound on the number of measurements to achieve a specific success rate.

However, those bounds are loose, even much looser in highly noisy scenarios. In this thesis,

we propose to utilize a more general information-theoretic measure, namely alpha-information

(α-information) of order α. The new measure also gives the upper bound on success rate and

the lower bound on the number of measurements. More importantly, with proper choices of α,

α-information provides very tight bounds, in particular, when α approaches to positive infinity,

the bounds will be exact. As a matter of fact, maximum-likelihood based distinguishers will

converge to the bounds. Therefore, we demonstrate how the two world, information-theoretic

measures (bounds) and maximum-likelihood based side-channel attacks, are seamlessly connected

in side-channel analysis.

In summary, our study in this thesis pushes forward the evaluation and consolidation of

side-channel security of cryptographic implementations. From a protection perspective, our

quantitative outputs allow to empower practical masked implementations with the highest

achievable side-channel resistance when equipped with the optimal linear codes. Therefore, we

provides a best-practice guideline for the application of code-based masking. From an evaluation

perspective, the application of alpha-information enables practical evaluators and designers to

have a more accurate (or even exact) estimation of concrete side-channel security level of their

cryptographic chips.
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Résumé

Les algorithmes cryptographiques jouent un rôle prédominant pour établir une connectivité

sécurisée dans notre société numérique actuelle. Ces calculs traitent des informations sensibles

telles que des clés de chiffrement, qui sont généralement très exposées lors de la manipulation, ce

qui représente une menace énorme pour la sécurité des informations sensibles dans les composants

cryptographiques et l’ensemble des systèmes connectés. Dans le domaine de la sécurité des

systèmes embarqués, l’analyse des canaux auxiliaires est l’une des techniques les plus puissantes

contre les implémentations cryptographiques. Elle consiste à extraire les données sensibles

en exploitant certaines fuites physiquement observables lors de l’exécution des composants

cryptographiques. Comme ces attaques représentent une menace réelle, diverses protections

ont été étudiées et développées. Parmi celles-ci, le masquage aléatoire est l’une des mieux

établies. Fondamentalement, le masquage offre une sécurité prouvable contre l’analyse des

canaux auxiliaires en divisant toute variable sensible en plusieurs parts aléatoires. Un paramètre

fondamental pour un schéma de masquage est son ordre de sécurité t ≥ 0. Ainsi, tout adversaire

visant à récupérer des clés doit utiliser strictement plus de t parts pour lancer une attaque

d’ordre supérieur, alors que la complexité des données augmente de façon exponentielle en t

(sous des conditions liées à la puissance du bruit de mesure), ce qui à son tour fournit une

sécurité contre les attaques par canaux auxiliaires.

Le sujet principal de cette thèse concerne la sécurité mesurable des canaux auxiliaires des

implémentations cryptographiques, en particulier en présence de masquage aléatoire. Globale-

ment, cette thèse se compose de deux sujets. L’un est la quantification des fuites de la forme

la plus générale de masquage équipé des codes linéaires, dit masquage à base de code ; l’autre

est l’exploration de l’application de mesures d’information plus génériques dans un contexte

d’analyse de canaux auxiliaires. Ces deux sujets sont intrinsèquement liés l’un à l’autre dans

l’évaluation et l’amélioration de la sécurité pratique des implémentations cryptographiques.

Pour ce qui concerne le premier sujet, nous proposons un cadre théorique de codage unifié

pour mesurer la fuite d’informations dans le masquage basé sur les codes. Plus précisément,

notre cadre établit des connexions formelles entre les propriétés de codage (y compris la distance
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duale et le nombre de points de contact permettant un sondage) et les métriques de fuite

dans l’analyse des canaux auxiliaires (y compris le rapport signal sur bruit et l’information

mutuelle). Comme cela a été rapporté dans la littérature, différents codes linéaires ont un

impact distinct sur la résistance aux attaques par canal auxiliaires d’un masquage basé sur un

code. Ces connexions formelles nous permettent de faire avancer l’évaluation quantitative sur

la façon dont les codes linéaires peuvent affecter la sécurité concrète de tous les schémas de

masquage basés sur les codes, y compris les cas non-redondants (par exemple, masquage basé

sur le produit scalaire, masquage par somme directe, etc.) et les cas redondants (par exemple,

masquage polynômial basé sur le partage secret de Shamir, etc.). De plus, en nous appuyant

sur notre cadre théorique, nous consolidons le masquage basé sur le code en fournissant les

codes linéaires optimaux dans le sens qu’ils maximisent la résistance des canaux auxiliaires

du schéma de masquage correspondant. Notre formalisation est finalement vérifiée par une

évaluation basée sur les attaques, où les attaques utilisent des distingueurs basés sur le maximum

de vraisemblance et sont donc optimales.

Concernant le deuxième sujet, nous présentons un spectre complet d’applications d’une

variante de l’information mutuelle de Shannon, appelée “alpha-information”. Il s’agit d’une

généralisation de l’information mutuelle permettant d’évaluer la sécurité d’une implémentation

face aux attaques par canaux auxiliaires. Dans l’analyse des canaux auxiliaires, l’information

mutuelle est fréquemment adoptée dans une évaluation du point de vue de la théorie de

l’information afin d’établir le niveau de sécurité des attaques par canaux auxiliaires. Par un

modèle de canal de communication, l’information mutuelle fournit une limite supérieure sur le

taux de succès de toute attaque étant donné un ensemble fixe de mesures de canaux auxiliaires.

Alternativement, elle donne une limite inférieure sur le nombre de mesures pour atteindre un taux

de succès spécifique. Cependant, ces limites sont souples, encore plus souples dans des scénarios

à fort bruit de mesure. Dans cette thèse, nous proposons d’utiliser une mesure plus générale du

point de vue de la théorie de l’information, à savoir l’information alpha (α-information) d’ordre

α. La nouvelle mesure donne également la limite supérieure du taux de succès et la limite

inférieure du nombre de mesures. Ce qui est remarquable, c’est qu’avec des choix appropriés de

α, l’information α fournit des bornes très proches de la réalité ; en particulier, lorsque α tend

vers l’infini (positif), les limites seront exactes. En fait, les distingueurs basés sur le maximum

de vraisemblance convergeront vers les limites. Par conséquent, nous démontrons comment les

deux mondes, à savoir les mesures du point de vue de la théorie de l’information (limites) et
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les attaques par canaux auxiliaires basées sur le maximum de vraisemblance, sont parfaitement

connectés dans l’analyse par canaux auxiliaires.

En résumé, notre étude dans cette thèse fait avancer l’évaluation et la consolidation de la

sécurité des canaux auxiliaires des implémentations cryptographiques. Du point de vue de

la protection, nos sorties quantitatives permettent de mettre en œuvre des implémentations

masquées concrètes, implémentant une résistance vis-à-vis des attaques par canal auxiliaire la

plus élevée possible lorsqu’elles sont équipées des codes linéaires optimaux. Par conséquent, nous

fournissons un guide des meilleures pratiques pour l’application du masquage basé sur le code.

Du point de vue de l’évaluation, l’application de l’alpha-information permet aux évaluateurs

et concepteurs (développeurs) d’avoir une estimation plus précise (voire exacte) du niveau de

sécurité concret des canaux auxiliaires émanant de leurs puces cryptographiques.
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1.1 Cryptography & Cybersecurity

Nowadays, abundant electronic devices are proliferating in our daily life, such as SIM cards,

cell-phones, bank cards, etc. For instance, from Eurosmart’s survey 1, there are about 9.54 billion

shipped units of secure elements. Particularly, the Telecom market has closed 2020 with around

5,1 billion units shipped, including 309 million units shipped for eSIM and a 4,8 billion units for

SIM, which experienced a significant increase. Those secure elements are widely deployed in

1Eurosmart, https://www.eurosmart.com/2019-shipments-and-2020-outlook/
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telecom, financial services, device manufacturers, etc. However, such secure elements usually

handle some sensitive information, which are very exposed during computations when loading,

manipulating, and storing them, resulting in massive scales of vulnerabilities and attacks in

practice. As a consequence, improving their security has become the highest priority task.

In this respect, modern cryptography is the cornerstone to build the chain of trust and security.

It plays a fundamental and pivotal role in establishing secure connectivity in this emerging digital

era. In other words, cryptography makes secure communications between different parties possible

and evolves along with computation and communication technologies. Basically, cryptography

provides five primary functionalities including confidentiality, integrity, authentication, non-

repudiation and key exchange. Those functionalities are well-established on the basis of various

concepts of mathematics such as information-theoretic security, computational-complexity theory,

number theory, coding theory, probability theory and so on.

Relying on mathematical tools, it is feasible to devise and construct theoretically secure

cryptographic algorithms or protocols. In the field of symmetric key cryptography, the Data

Encryption Standard (DES) [116] and its successor Advanced Encryption Standard (AES) [117]

is one of the most important algorithms that was published two decades ago by National Institute

of Standards and Technology (NIST). On the contrary, in the field of public key cryptography,

RSA [141] and ECC [92, 109] are two well-known instances that are based on the intractability

of the corresponding mathematical problems.

1.2 The Root of Security & the Chain of Security

As a basic rule and common consensus in cryptography, Kerckhoffs’s principle, dated back to

19th century, states that a cryptosystem should be secure, even if everything about the system

is accessible to adversaries except the key [90, 91]. It is followed and reformulated by Claude E.

Shannon in 1949 known as Shannon’s maxim: “one ought to design (crypto) systems under the

assumption that the enemy will immediately gain full familiarity with them” [147]. The keys in

a cryptosystem form the basis for the root of trust that is critical to the system. Theoretically,

above constructions (e.g., AES, RSA, ECC, etc) are computationally secure in this regard under

the black-box assumption, wherein an adversary can only access to inputs and outputs of a

cryptosystem.

However, in practical applications, the keys are not static but manipulated dynamically in

the digital world. Indeed, each stage of manipulations (computations) shall expose those keys,
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which leads to the demand of chain of security to guarantee security in reality. As a matter

of fact, any digital devices will leak physically observable information [108] of internal states

during executions. Although mathematical proofs of security for cryptographic algorithms are

fundamental and indispensable, they usually cannot guarantee the practical security of the

corresponding cryptographic implementations. In reality, those cryptographic algorithms must

be run in some physical devices. Therefore, those physical observations usually violate the

black-box setting assumption that an adversary can only access to the inputs and outputs of a

cryptographic algorithm. As knowing certain observable information makes it advantageous to

adversary, the black-box model is lifted to gray-box setting by considering any (abstract) form

of observable leakages existing in practice. Accordingly, the attacks exploiting those physically

observable leakages are called physical attacks.

1.3 Side-Channel Analysis

Side-channel analysis (SCA) is among the most powerful physical attacks against cryptographic

implementations. Since the seminal works [94, 95], a very large amount of SCAs have been

proposed by exploiting various observable physical leakages in practice. Those physical leakages

include but not limited to the running time [59, 94], the power consumption [46, 95], the electro-

magnetic emanations [71, 132], the acoustic emission [20, 73], the photonic emission [27, 67, 96],

etc., and more exploitable leakages emerge as technology improves (e.g., Nanotechnology)

and in-depth understanding of behaviors of elementary circuits, like micro-architectural data

leakages [72, 93, 98, 104]. Essentially, any measurable secret-dependent information or behaviors

of the underlying cryptographic devices can be exploited to launch a successful side-channel

attack.

In principle, side-channel analysis consists of extracting the sensitive information from noisy

measurements. It is commonly classified into two classes depending on the ability of the adversary

and corresponding setting.

• Non-profiling attacks. An adversary attempts to extract the sensitive information by

correlating side-channel measurements and hypothetical leakages. Several well-known

attacks are simple power analysis (SPA) [94], differential power analysis (DPA) [95],

correlation power analysis (CPA) [16], mutual information analysis (MIA) [74, 163], etc.

• Profiling attacks. They are two-phrase attacks. an adversary is assumed to possess an

identical device to build some exact profiles on the leakage behaviors and then apply these

5
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profiles during the attack phrase. Some well-known instances are template attack [31],

stochastic attack [143], etc. In particular, the template attack is known as the most

powerful side-channel attack knowing the leakage model.

Additionally, machine learning (including deep learning) techniques have been adapted into

side-channel analysis in both non-profiling [121, 133, 155] and profiling settings [10, 19, 106,

168, 171]. In essence, side-channel classifies different key hypotheses relying on observations,

in which learning-based techniques shall amplify those attacks dramatically. However, those

learning-based attacks tolerate a loss of interpretability on results, even in some restricted

scenarios.

1.4 Protections and Code-based Masking

In order to protect cryptographic chips (implementations) against SCA, many countermeasures

have been proposed, wherein three main routines are masking, shuffling and hiding. Specifically,

masking schemes [30, 49, 102, 139] randomize the dependency between sensitive data and

leakages by dividing each sensitive variable into several random shares to thwart SCA, while

Shuffling schemes [50, 83, 140] randomize the order of operations during the executions. Quite

differently, by circuit-level alteration, hiding-based countermeasures [46, 102, 134] attempt to

make the leakages uniformly independent to the data processed, while it is difficult to have

any guarantee [85]. Among them, masking schemes are a class of the most attractive and

frequently used techniques against SCA, since they provide formally provable security and could

be implemented on algorithmic-level without any hardware alteration.

1.4.1 Masking Schemes

Featured with the favorable provable security, masking has triggered a fruitful line of works,

ranging from theoretical constructions of secure components (usually called gadget) to practical

resilience evaluations by side-channel attacks. Typically, the key parameter of a masking scheme

is the security order t under the probing model [86], which indicates the least order (t+ 1) of

a successful attack must have. In a t-th order secure masking, each sensitive variable into at

least t+ 1 shares. The rationale is that, the attack complexity increases exponentially with the

number of shares [30, 128] given a sufficient amount of noise, while the implementation cost

increases only quadratically (or cubically in higher-order glitch-free implementations [79]).
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Various masking schemes have been proposed since 1999, as shown in Fig. 1.1. Typically

instances include Boolean masking [30], Inner Product masking (IPM) [2, 3], Leakage Squeezing

(LS) [23, 24] and Direct Sum masking (DSM) [17, 123]. Note that those proposals marked in

blue are the first proposals of the corresponding schemes. An exception exists for the original

IPM [4], since there exist some first-order information leakages that are fixed in the improved

one [2]. To the best of our knowledge, the generalized code-based masking (GCM) [35, 164] is

the most generic scheme in this respect 1. In particular, polynomial masking [77, 131] is also a

special case of GCM, which is built upon Shamir’s secret sharing (SSS) scheme [145].

1999 2022201820142012 2016 2020
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LS

IPM

[CJRR99]

[BFGV12] [BFG15] [BFG+17]
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[BCC+14]

Generalized code-based masking
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Leakage squeezing
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[PRR14]

[CPR12]
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Figure 1.1: Various proposals of masking schemes with corresponding constructions, security
assessment, and some variants.

Naturally, two questions arise: first, how to measure information leakage in different schemes?

and second, for each scheme, how to choose optimal codes (or parameters)?

1.4.2 Generalizing to Code-based Masking

Code-based masking follows the generalization trend and unifies many schemes by concentrating

on the encodings in sharing. In code-based masking, two linear codes are involved, namely C and

D. The only requirement is that there is no nonzero codeword in their intersections [35, 164].

As a result, the resilience of a code-based masking against side-channel analysis depends highly

on the two linear codes, in which the coding-theoretic properties shall be connected to algebraic

complexity from a view of (pseudo)-Boolean function.

1In the sequel, we call the code-based masking in the most general scenario for simplicity.
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The first representative scheme is IPM, in which the encoding is similar to the simplest

Boolean masking except that each share is equipped with a linear function (multiplied by a

public constant). It consumes n parameters in an n-share setting and enjoys the simple structure

that can be implemented quite efficiently [3]. As a special instance of non-redundant code-based

masking, two linear codes in IPM are complementary, resulting in a super simplification when

evaluating its side-channel resistance. Indeed, we demonstrate that the side-channel security of

IPM only depends on properties of the code D [37]. More generally, only the code D matters in

any non-redundant code-based masking like DSM.

Another typical example is the polynomial masking that is based on the SSS scheme. It also

employs n public parameters in an n-share setting, but forms an entirely different encoding.

Essentially, the encoding in SSS-based masking can be reformulated and connected to the

Reed-Solomon (RS) codes [29, 101]. Considering an (n, t)-SSS based sharing as depicted in

Fig. 1.2, it forms n shares while provides a t-th order privacy (side-channel resistance) rather

than nt parameters in a random setting. From a coding-theoretic perspective, the RS code is

optimal in a given finite field which achieves the Singleton bound [149]. However, as shown

in [29], distinct public points play a role in the resilience and the efficiency of the protection.

Therefore, the questions above still remain.

In the above two representative schemes, we can refine the second question: how to choose n

parameters to maximize the side-channel protection? More straightforwardly, how to choose

public points in the case of SSS-based masking.

Figure 1.2: Illustration of an instance of redundant masking. In an (n, t)-SSS based polynomial
masking, the sensitive variable X = f(0) is encoded into n shares with a security order t.
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1.5 Towards Measurable Side-Channel Security

Side-channel attacks pose a considerable threat to cryptographic devices that are physically or

remotely accessible by an attacker. Naturally, the side-channel leakage is at the core of evaluating

the practical security of a given cryptographic implementation. That is, how much information

can an adversary collect and/or how much of it can be exploited in practice? Regarding the

former, we refer to information leakage quantification, in which we aim at measuring side-channel

leakage in a quantification way. Those leakages might be independent of specific attacks relying

on different statistical tools in the corresponding side-channel distinguishers. On the contrary,

the latter is much more relevant to the probability of success in extracting sensitive variables

(like secret keys) in real scenarios.

1.5.1 Information Leakage Quantification

Quantifying the information leakage is essential in assessing the concrete side-channel security

of a cryptographic chip. Typically, the performance of a side-channel distinguisher is highly

determined by the amount of information leakage that is usually measured by leakage metrics

like signal-to-noise ratio, correlation coefficients, mutual information, etc.

According to different leakage models and the abstraction level of cryptographic imple-

mentations, the strategies for quantifying side-channel leakages are roughly classified into five

categories as follows.

• Firstly, the conformance-based leakage detection aims at answering the following question

at a high abstraction level: does the device under test leak side-channel information? [13,

47, 112]. Those statistical tools include Welch’s t-test [13, 47], χ2-test [112, 136], etc. A

similar approach is detailed in ISO/IEC 17825 [87].

• Secondly, the proof-based evaluation intends to prove the side-channel resistance of a

masked design under abstract models like the probing model [86] and related variants [60,

62, 126, 128]. Typically, under independence assumption and large noise condition,

several leakage models are equivalent with certain forms of constants [126] in providing

formal security guarantees of the masked implementation. However, physical defaults like

couplings, glitches, etc., usually contradict assumptions behind the probing model [5, 103].

As a consequence, it is recommended to launch more quantitative evaluations in assessing

practical side-channel security.
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• Thirdly, the moment-based evaluation attempts to find the least order of moments of

side-channel measurement that depend on the sensitives. Representative metrics including

signal-to-noise ratio (SNR) [151] under proper definitions and the normalized inter-class

variance (NICV) [14], etc. Particularly, NICV is connected to SNR in the sense that both

of them evaluate the key-dependent variance of leakage. With proper definition, SNR can

also be used to measure the leakage in presence of higher-order masking schemes.

• Fourthly, the information-theoretic evaluation aims at measuring side-channel leakages

by utilizing information-theoretic measures [151, 166]. In essential, it usually provides

information-theoretic bounds on the probability of success for any side-channel distinguish-

ers given a set side-channel measurements [41, 57]. The frequently used measures include

Shannon mutual information (MI), Kullback-Leibler divergence, conditional entropy, etc.

Additionally, some more general measures like Rényi entropy and Rényi divergence shall

be considered for a purpose of more accurate evaluation.

• Finally, the fifth category of attack-based evaluation is at the core of side-channel security

evaluation, which aims at assessing the probability of success of a specific side-channel

distinguisher. We shall detail more in the following subsection.

Summing up, the conformance-based leakage detection only provides qualitative assertion on

whether the masked circuits leak or not, while other evaluations give quantitative assessment of

concrete side-channel security. In the following, we present the last evaluation strategy, which

quantifies information leakage by exploitation.

1.5.2 Information Leakage Exploitation by Attacks

As is argued frequently, the leakage detected information-theoretic evaluation (e.g., using mutual

information) might not lead to a successful attack in practice. Eventually, the exploitability of

the side-channel leakage determines the success rate of certain attacks.

In this respect, the last category, namely the attack-based evaluation is at the core of

side-channel security evaluation, which aims at assessing the probability of success of a specific

side-channel distinguisher. Relying on large variety of side-channel distinguishers like correla-

tion power analysis [16], template attacks [31], stochastic attacks [143], higher-order optimal

distinguisher [18], etc, the attack-based evaluation provides more accurate assessment of leakage,

which captures device-specific features of side-channel leakage. In particular, some metrics
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can help including the signal-to-noise ratio (SNR) for leakage detection and success rate as an

ultimate attacking metric.

Although attack-based evaluation allows us a more accurate characterization on the concrete

side-channel security, it is much more relying on the expertise of evaluators and measurement

environment (acquisition equipment, set-ups, etc). Moreover, compared to empirical attacks,

the bounds on the success rate given by information-theoretic tools are usually very loose, even

much looser when the noise level is high or the leakage model is not accurate (with model

mismatches). To the best of our knowledge, it is still an open problem: how to narrow down or

even bridge the gap between theoretical bounds and success rate in practical?

Table 1.1: Summary of evaluation strategies in assessing side-channel resilience of cryptographic
devices (implementations).

Rationale Quantitative? Target
Tools /

Metrics

Conformance-based % Impl.
t-test,

χ2-test, etc.

Proof-based ! Abstract Probing model, etc.

Moment-based ! Impl.
SNR,

NICV, etc.

Information-theoretic ! Abstract & Impl.
Entropy, MI,

α-information, etc.

Attack-based ! Impl.
Success rate,

Guessing entropy, etc.

• Impl. is short for implementations;

• Abstract denotes abstract or theoretical constructions.

All above five strategies are summarized in Tab. 1.1. To a large extent, all five evaluation

approaches are complementary to each other in practical application, varying with different

evaluation requirements and necessary expertise on launching evaluations.

1.6 Measuring Leakage in a General Context

Shannon information theory (e.g., entropy, conditional entropy, mutual information, etc) is

frequently adopted in side-channel analysis for measuring the leakage from an information-

theoretic perspective. More generally, the problem of information leakage quantification shall

be extended into a more general one: given two dependent random variables X and Y , how to

measure the information that Y brings on X. Intuitively, it is to measure the difference between

the amount of uncertainty on X alone and the remaining uncertainty when Y is known (the
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equivocation). There is consensus, since the founding work of Shannon [146, 147], that this

information must be given by the mutual information I(X;Y ) = H(X)−H(X|Y ) where H(X)

is the entropy and H(X|Y ) is the equivocation.

Mutual information has been successfully applied to solve many telecommunication problems.

However, recent theories in computer science and information theory show that this paradigm

is not always satisfying in practice [150]. Indeed, the “operational” definition of the quantities

I(X,Y ), H(X), H(X|Y ) is linked to the size of the corresponding typical sets (via the AEP,

the asymptotic equipartition property), thanks to the law of large numbers. It thus supposes

to constitute sequences i.i.d. infinitely long of X and Y to be operational. We would prefer

more practical definitions for much shorter sequences, typically for discrete variables, where

the knowledge of the information implies knowing at least partially X. For instance, in side-

channel analysis, the key-recovery attack is essentially to recover a discrete sub-key by utilizing

unintentional side-channel leakages (like computation time, electromagnetic emanation, power

consumption for embedded implementations).

In this regard, another promising approach is using Rényi entropy and divergence [135], which

are known as α-information theory with a flexible order α (such that α > 0 and α 6= 1). It is

indeed a generalization of Shannon information theory. Particularly, Sibson’s α-information [148]

is more appropriate for some applications [88, 89] than other proposals, which generalizes mutual

information (without mutuality). More recently, several conditional versions of α-information

have been proposed [64, 99, 157] for generalizing conditional mutual information. Especially,

[99] shows great potentials when applied into side-channel analysis by providing much tighter

bounds on the probability of success, although only few candidates of order α are provided.

However, the open problem still remains: how to derive a more accurate or even exact bound

on the success rate of empirical attacks? In this thesis, we shall explore more possibilities in

applications of α-information theory in side-channel analysis and answer this open problem in a

formal and exact way.
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During this thesis, the main subject targets the measurable security of cryptographic

chips. More specifically, the first topic is how to unify and quantify the information leakage

of cryptographic implementations in the presence of masking protections. In this regard, we

present a coding-theoretic framework to concretely measure the information leakage in code-

based masking. Secondly, how the general information-theoretic measures (e.g., Rényi entropy,

α-divergence, α-information, etc) can be exploited to evaluate and understand the concrete

security level of cryptographic devices. In this respect, we present information-theoretic bounds

on the maximum success rate of key-recovery attacks and the minimum number of side-channel

traces to achieve a specific success rate.

2.1 Empowering Inner Product Masking by Optimal Codes

The first contribution of this thesis lies in optimizing Inner Product Masking (IPM) by providing

the optimal codes for it [36, 37, 40]. IPM is proposed to strengthen the frequently used Boolean

13



2. CONTRIBUTIONS

masking by improving the algebraic complexity of encoding (or sharing). We propose a coding-

theoretic approach to quantitatively assess the side-channel security of the IPM. Specifically,

starting from the expression of IPM in a coded form, we use two defining parameters of the code

(namely the dual distance and the kissing number) to characterize its side-channel resistance.

We then connect it to two leakage metrics, namely signal-to-noise ratio (SNR) and mutual

information (MI) from an information-theoretic aspect. Next, we show how to systematically

choose optimal codes (in the sense of maximizing the resilience) to optimize IPM. We present a

simple but effective algorithm for choosing optimal codes for IPM, which should be of special

interest for designers when selecting optimal parameters for IPM.

2.2 Leakage Quantification of the Code-based Masking

In this thesis, we follow a generalization approach by targeting the most general code-based

masking called generalized code-based masking (GCM) [35], which includes Boolean masking,

IPM, Leakage Squeezing (LS), Direct Sum masking (DSM), Shamir’s Secret Sharing (SSS)-based

masking, etc. We follow the above coding-theoretic approach and propose a unified leakage

quantification framework for GCM by connecting the side-channel resistance of GCM with two

coding properties of the corresponding linear codes used in GCM. The two coding properties are

the dual distance and the adjusted kissing number. We demonstrate that the two properties are

analytically linked to commonly used leakage metrics, namely signal-to-noise ratio and mutual

information, in the case of GCM.

As straightforward applications, we show that our extended framework is consistent with

the above in IPM. Particularly, the adjusted kissing number converges to the kissing number

when the masking is non-redundant, e.g., in cases of IPM and DSM. Secondly, we illustrate how

the redundancy in SSS-based masking affects its side-channel resistance [35]. We highlight that

the public interpolation points (see in Fig. 1.2) significantly impact the side-channel resistance

of SSS-based masking. We then provide an information-theoretic evaluation on public points

and show the optimal public points for SSS-based masking.

2.3 Bounding Success Rate in Recovering Secret Key

The third part of this thesis completes side-channel resistance of the code-based masking by

providing attack-based evaluations and present information-theoretic bounds when attacking

masked cryptographic implementations. In this respect, success rate (SR) is one of the ultimate
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metrics in side-channel analysis. Firstly, we employ the higher-order optimal distinguisher

(HOOD) against instances of code-based masking, namely IPM and SSS-based masking cor-

responding to redundant and non-redundant cases, respectively. The experimental results of

HOOD exactly confirm our previous information-theoretic evaluations. We emphasize that the

redundancy in code-based masking can only decrease its resilience against practical attacks. We

also provide some optimal and worst cases of both IPM and SSS-based masking, especially the

worst cases of (3, 1)-SSS based masking is less resilient than the first-order Boolean masking in

spite of the same security order.

Secondly, we derive information-theoretic bounds on the success rate following a communica-

tion channel model [41, 138]. When evaluating the practical side-channel security of chips, it is

extremely useful to have an upper bound on success rate of any attack given a (fixed) number of

side-channel measurements. Or conversely, it is equivalent to derive a lower bound on the number

of queries for a given success rate of any attacks. In this thesis, we derive several bounds in both

directions by using information-theoretic tools, particularly for cryptographic implementations

protected by masking schemes (including the code-based masking). In particular, those bounds

are bidirectional by either providing upper bounds on success rate of any attacks or lower bounds

on the number of traces to achieve a certain success rate.

2.4 Generic Information-Theoretic Measures in SCA

In the final part of this thesis, we investigate more general information-theoretic measures in the

context of side-channel analysis [43, 99], particularly in comparison with Shannon entropy and

mutual information [35, 138]. Those measures include Rényi entropies, guessing entropy and

α-information, etc. In the problem of guessing a cryptographic key, we illustrate a full spectrum

of upper bounds on the probability of success by using conditional α-information between the

secret key and information leakage. Especially, we show that the success rate is tightly upper

bounded by α-information of a larger enough order (e.g., when α ≥ 100.00, as shown in Fig. 2.1).

More importantly, we demonstrate that the success rate of the maximum-likelihood (ML)

based attack converges to the exact upper bound by the conditional α-information of order

α → ∞ (also called maximal information). The ML-based attacks are optimal, for instance,

consider HOOD when the leakage model is known. Therefore, our derivatives imply that this

bound is also achievable. To the best of our knowledge, we shall for the first time seamlessly

connect information-theoretic measures and real attacks in side-channel analysis. Taking the
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Hamming weight leakage with additive white Gaussian noises, numerical results confirm our

findings and show meaningful indications in practice. As a perspective, it would be extremely

interesting to extend our evaluation into protected scenarios, e.g., in the presence of masking.

Figure 2.1: Illustration of information-theoretic bounds on success rate 2by Shannon mutual
information and α-information of order α = 100.00 in an unprotected AES cases, with Gaussian
noise of variance σ2 = 10.00.

2.5 Outline of the Thesis

This thesis mainly consists of four parts and accompanied with the introduction and conclusion

parts. The overall structure of this thesis is diagrammed as in Fig. 2.2.

In Part II, we focus on optimizing inner product masking by a coding-theoretic approach.

Some basics on the linear codes, Pseudo-Boolean functions and information theory are firstly

revisited in Chap. 3 and they will be used throughout this thesis. Secondly, we dive into IPM in

Chap. 4 by forming it into a coding-theoretic fashion. Then the information leakage is measured

by both signal-to-noise ratio and mutual information, along with numerical results. Moreover,

we present the rationale of selecting optimal codes on the basis of our leakage quantification.

Next, in Part III we present the generalization of several masking schemes into the most

general scenario, and also extend our coding-theoretic approach into this general scenario.

Specifically, in Chap. 5, we extend the leakage quantification approach to redundant scenarios,

2Note that the success rate is evaluated 10, 000 times to be more accurate and the curve is much smoother.
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Figure 2.2: The overall structure of this thesis.

for instance in the case of SSS-based masking. As an application, in Chap. 6, we present an

example that exactly verifies the effectiveness of our new framework and provides optimal linear

codes in several cases.

Then, in Part IV we first present an attack-based evaluation on code-based masking in

Chap. 7. In order to amplify the attack, we employ the optimal one that is based on the

maximum-likelihood rule. We highlight that those numerical results are well-coincided with our

theoretical derivatives. Second, we show how to derive several information-theoretic bounds on

the success rate of any attacks in Chap. 8.

Last in Part V or in Chap. 9, we illustrate how those more general information-theoretic tools

can be applied in side-channel analysis. We first explore the application of Rényi information

theory (including Rényi entropy, Rényi divergence and related extensions) into the problem of

guessing the secret key from its Hamming weight leakage. Second, we propose to use conditional

α-information to assess the concrete side-channel security.

The conclusions of this thesis are in Part VI along with possible investigations in the future.

Additional proofs and materials are included in appendices, Part VII.
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CHAPTER 3

Preliminaries: Basics on Linear Codes, Vector Space and
Pseudo-Boolean Functions

In this chapter, we revisit basics of the linear codes, the vector spaces and the pseudo-Boolean

functions that are used through this thesis.

Contents
3.1 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Complementary Vector Space . . . . . . . . . . . . . . . . . . . . . 23

3.3 Pseudo-Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Shannon Information-Theoretic Measures . . . . . . . . . . . . . . 26

3.1 Linear Codes

We recall several known definitions and properties of linear codes, which hold respectively when

the base field is K = F2 or K = F2` . Let n, k, d ∈ N∗ be positive integers such that k ≤ n. The
linear code is defined as follows.

Definition 3.1 (Linear code [101]). A linear code C is a set of vectors, also called codewords,
which form a vector space. The parameters of a linear code C is a triple (n, k, d), where n is
the code length, k denotes its dimension, and d is its minimum distance. The parameters are
denoted as [n, k, d]q to refer to the finite field Fq the code is defined on.
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3. PRELIMINARIES

The minimum distance of a code C is defined as dC = minc,c′∈C dH(c, c′) where dH denotes

the Hamming distance. In particular, dC equals to the minimum weight of its nonzero codewords.

Given a linear code C with parameters [n, k, dC ], its weight enumerator is defined as follows.

Definition 3.2 (Weight Enumerator [101, §5.2]). The weight enumerator of a linear code
specifies the number of codewords C of each possible Hamming weight in C. Specifically, we have

WC(X,Y) =

n∑
i=0

BiX
n−iYi (3.1)

where Bi = |{c ∈ C|wH(c) = i}| and wH(·) denotes the Hamming weight function. In particular,
BdC is called the kissing number of C.

Lemma 3.1. Basic properties of Bi ∈ N:

• B0 = 1, B1 = · · · = BdC−1 = 0,

• BdC > 0, meaning the kissing number is nonzero,

• Bn = 1 if and only if the code C has a codeword with all ones (e.g., [1, . . . , 1]).

Note that two linear codes are said to be equivalent if one can be obtained from the

other by a series of operations of the following two types: 1) an arbitrary permutation of the

coordinate positions and, 2) in any coordinate position, multiplication by any nonzero scalar.

Straightforwardly, equivalent linear codes have the same weight enumerator.

Definition 3.3 (Dual Code [101, §1.8]). The dual code of C is the linear code C⊥ = {u ∈
Kn | ∀c ∈ C, c · u = 0}, where c · u is the standard inner product.

Definition 3.4 (Dual Distance [101]). The dual distance d⊥C of a linear code C is the minimum
Hamming weight wH(u) of nonzero u ∈ Kn, such that

∑
c∈C(−1)c·u 6= 0.

Let E a vector space of Kn. The indicator of E is the application

x ∈ Kn 7→ 1E(x) =

{
1 if x ∈ E ,
0 otherwise.

Then we introduce a well-known property of the linear code as follows.

Lemma 3.2. For arbitrary linear code C and u ∈ Kn, we have
∑
c∈C(−1)c·u = |C|1C⊥(u).

Proof. We give this well-known proof for the self-contained content. For u ∈ C⊥, it is straight-
forward to see that

∑
c∈C(−1)c·u = |C|.

Suppose that u 6∈ C⊥, thus ∃v ∈ C such that u · v = 1. We denote C = C′ ∪ (C′ + v)

and dim(C′) = dim(C) − 1. Then
∑
c∈C(−1)c·u =

∑
c′∈C′(−1)c

′·u +
∑
c′∈C′(−1)(c′+v)·u =∑

c′∈C′(−1)c
′·u −∑c′∈C′(−1)c

′·u = 0.

Corollary 3.1. For a linear code C, we have d⊥C = dC⊥ .
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Therefore, the dual distance of a linear code C is the same as the minimum distance of the

dual code C⊥.
In this thesis, we consider two classes of linear codes: [n, k, dw]2` and [n`, k`, db]2 with

minimal distances dw and db at word- and bit-level, respectively. More precisely, the latter is

the expanded code of the former from F2` into F2. Indeed, if z is a codeword of the former code,

then the corresponding codeword [z]2 of the latter code is obtained by replacing each term in z

by its coordinates with respect to some fixed basis (e1, . . . , e`) of F2` over F2. Let (b1, . . . , bk)

be a basis of the former code, then a basis of the latter code is ([eibj ]2)i=1,...,`; j=1,...,k.

According to [113, Theorem 5.1.18], there exists a self-dual basis of Fq` over Fq if and only if

either q is even or both q and ` are odd. For the sake of simplicity, we herein fix q = 2. We call

above expansion the sub-field representation defined as follows.

Definition 3.5 (Sub-field representation [101, §7.7]). Let x ∈ F2` , the sub-field representation
of x is [x]2 ∈ F`2.

Definition 3.6 (Code Expansion [101, §7.7]). By using sub-field representation, the elements
in F2` are decomposed over F2. Consider a generating matrix of a linear code of size k × n
in F2` . It becomes a generating matrix of size k`× n` in F2. Any linear codes of parameters
[n, k]2` contain (2`)k = 2k` codewords, hence is turned into a [n`, k`]2 linear code in F2. The
latter code is called the expansion code of the former.

Correspondingly, two kinds of security order tw and tb are at word- and bit-level, respectively.

Summing up, the two definitions build a direct link between word- and bit-level representation

of a linear code and the corresponding conversion. This allows to connect the word (or register)-

level probing and the bit-level probing security models, depending on the granularity of the

attacker spying tool.

3.2 Complementary Vector Space

In this section, we introduce relevant properties of complementary vector space that will be

needed to derive our results. The set of n-bit vectors is denoted by Fn2 , which is an n-dimensional

vector space over the finite field K = F2.

An [n, k, d]q linear code C over K is a k-dimensional subspace of Kn, therefore, we use the

same notations as for the linear codes.

Definition 3.7 (Complementary Vector Space). Two subspaces C and D are complementary in
direct sum (denoted by C⊕D = Kn) if C+D = Kn, and C ∩D = {0}, that is: ∀z ∈ Kn,∃!(c, d) ∈
C × D, such that z = c+ d.
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Accordingly, we shall define the complementary codes as follows.

Definition 3.8 (Complementary Linear Codes [169]). Two linear codes C and D are comple-
mentary if C +D = Kn, and C ∩ D = {0}.

Lemma 3.3. Let C and D be two vector spaces in Kn built from independent bases, meaning
that C ∩ D = {0}. Then C⊥ ∩ D⊥ = (C ⊕ D)⊥.

Proof. First of all, we notice that (C ⊕ D)⊥ ⊆ C⊥. Indeed, a vector orthogonal to all vectors of
C ⊕ D is in particular orthogonal to all vectors of C + 0 = C. In a symmetric way, we have that
(C ⊕ D)⊥ ⊆ D⊥. Therefore, (C ⊕ D)⊥ ⊆ C⊥ ∩ D⊥.

Let us now prove the converse inclusion. Let x ∈ C⊥ ∩D⊥. For any vector y in C ⊕D, there
exists a unique pair (c, d) ∈ C × D (owing to the complementarity of vector spaces C and D),
such that y = c+ d. Now, x · y = x · (c+ d) = x · c+ x · d = 0 + 0 = 0. Indeed, x · c = 0 because
x ∈ C⊥ and x · d = 0 because x ∈ D⊥. Therefore, we also have C⊥ ∩ D⊥ ⊆ (C ⊕ D)⊥.

Lemma 3.4. Let C and D two complementary vector spaces, namely: C ∩ D = {0}, and
C ⊕ D = Kn. Then we have: C⊥ ∩ D⊥ = {0}.

Proof. By application of Lemma 3.3, we have that C⊥ ∩ D⊥ = (C ⊕ D)⊥ = (Kn)⊥. Now, as Kn

is the universe code, we have (Kn)⊥ = {0}.

Actually, for the general case when C and D are not complementary, we can complement

C ⊕ D with a vector space E , such that:

• C ∩ D = {0}, C ∩ E = {0}, D ∩ E = {0},

• C ⊕ D ⊕ E = Kn.

Then, a similar result as Lemma 3.4 holds:

Lemma 3.5. C⊥ ∩ D⊥ ∩ E⊥ = {0}.

Proof. Similar with the proof of Lemma 3.4, first treat C⊕D together and then straightforwardly
apply Lemma 3.3, which gives the results.

In this thesis, we consider two cases in the code-based masking:

• In the generalized code-based masking as a general case [35, 164]: C ∩ D = {0}, and
C ⊕ D ⊆ Kn, where two linear codes C and D are not necessarily complement to each

other. In particular, the redundant case when n > t+ 1 corresponds to the strict condition:

C ⊕ D ( Kn and then {0} ( C⊥ ∩ D⊥.

• In inner product masking or direct sum masking as special cases: C ∩ D = {0}, and
C ⊕D = Kn, meaning that C and D are complementary. This is the case of [37], where we

have C⊥ ∩ D⊥ = {0} as shown in Lemma 3.4.
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3.3 Pseudo-Boolean Functions

Leakage functions turn a bitvector into a real value, which the attacker measures. Those

functions are pseudo-Boolean functions P : Kn` 7→ R, where K = F2.

It is well-known that a pseudo-Boolean function P can be uniquely expressed in a monomial

basis [25] called Numerical Normal Form (NNF) [115]:

P (Z) =
∑

I∈{0,1}n`
βIZ

I , (3.2)

where ZI =
∏
i∈{1,...,n`} s.t. Ii=1 Zi, and βI ∈ R. For instance, Z(000···0)2 = 1, Z(100···0)2 = Z1

and Z(110···0)2 = Z1Z2.

In fact, P is a nice abstraction of practical attacks. For example, in differential power

analysis [95] against the most/least significant bit of the sensitive variable, then P equals

Z(100···0)2 or Z(000···1)2 . Moreover, in correlation power analysis [16] when the Hamming weight

model is adopted, P equals wH(Z) = Z(100···0)2 + Z(010···0)2 + · · ·+ Z(000···1)2 .

Thanks to the existence and the uniqueness of NNF, we can define the numerical degree of

P as follows.

Definition 3.9 (Numerical Degree [25]). The numerical degree of a pseudo-Boolean function
P denoted by deg(P ) equals: deg(P ) := d = max{wH(I)|βI 6= 0}.

Definition 3.10 (Fourier Transform [22, §2.2]). The Fourier transform of a pseudo-Boolean
function P : Kn` 7→ R is denoted by P̂ : Kn` 7→ R, and is defined as: P̂ (z) =

∑
y∈Kn` P (y)(−1)y·z.

Recall from [22, 25] that, P̂ (z) = (−1)wH(z)
∑
I⊆{1,...,n`};supp(z)⊆I 2n`−|I|βI where βI =

2−n`(−2)|I|
∑
z∈Fn`2 ;I⊆supp(z) P̂ (z).

Definition 3.11 (Convolution [22, §2.2]). The convolution of two pseudo-Boolean functions f
and g is defined as: (f ⊗ g)(z) =

∑
y∈Kn` f(y)g(y + z).

We recall below two well-known properties of Fourier transform as well as a property on the

convolution. We omit the proofs for the sake of brevity and refer to [22] for details.

Proposition 3.1 (Involution Property [22, §2.2]). ̂̂P (z) = |Kn`|P (z) = 2n`P (z), ∀z ∈ Kn`.

Proposition 3.2 (Inverse Fourier Transform [22, §2.2]). P (z) = 2−n`
∑
y∈Kn` P̂ (y)(−1)y·z,

∀z ∈ Kn`.

Proposition 3.3 (Fourier Transform and Convolution [22, §2.2, Prop. 8]). f̂ ⊗ g(z) = f̂(z)·ĝ(z),
∀z ∈ Kn`.
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3.4 Shannon Information-Theoretic Measures

We also define some information theoretic tools. The entropy of a random vector X of length q

is defined by:

H(X) = −
∑
x∈X q

Pr(x) log2 Pr(x).

The conditional entropy of a random vector X knowing vector Y is defined by:

H(X | Y) = −
∑
y∈Yq

Pr(y)H(X | Y = y)

= −
∑
y∈Yq

Pr(y)
∑
x∈X q

Pr(x | y) log2 Pr(x | y).

The Mutual Information between two random vectors X and Y is defined as I(X;Y) =

H(X)−H(X | Y). The conditional Mutual Information I(X;Y | T) where X, Y and T are

random vectors is defined as I(X;Y | T) = H(X | T)−H(X | Y,T). Last, the Kullback-Leibler

divergence between two distributions p and q over the same set X is defined as:

D(p‖q) =
∑
x∈X

P(x) log2

p(x)

q(x)
.
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CHAPTER 4

Measuring the Leakages in IPM and Optimal Codes

The results presented in this chapter have been published in collaboration with Sylvain Guilley,

Claude Carlet, Jean-Luc Danger, and Sihem Mesnager in the IEEE Transactions on Information

Forensics and Security (T-IFS) [37] and the journal of Cryptography and Communications

Discrete Structures, Boolean Functions and Sequences (CCDS) [38].
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4.1 Introduction of Inner Product Masking

Masking is one of the most investigated countermeasures against side-channel analysis, allowing

all cryptographic operations to be performed on the masked data. Essentially, masking is a

sound way to improve the side-channel security of cryptographic implementations, since given

high enough noise, the attack complexity increases exponentially with the number of shares [128],

while the implementation cost increases only quadratically (or only cubically in higher-order

glitches free implementations [79]). For instance, the Boolean masking scheme is the simplest

one which enables high performance when implemented on real circuits. The first provably

secure higher-order masking scheme has been introduced by Ishai et al. [86] for the protection

of single bits in F2. Then, this scheme has been extended to the protection of words (e.g. bytes

in F28) with higher-order security by Rivain et al. [139]. Interestingly, it has been noticed later

that this masking scheme can be further improved by mixing bits in each share (of ` = 8 bits).

In brief, the main idea is to elevate the bit-level algebraic complexity of the masking scheme.

Thus in this respect, Inner Product Masking (IPM) scheme has been proposed as an alternative,

in which inner product is adopted as a mixing operation.

The IPM scheme has been first introduced by Balasch et al. at ASIACRYPT’12 [4] as an

alternative to masking schemes like Boolean or multiplicative masking and has been further

improved by Balasch et al. at EUROCRYPT’15 [2] and at ASIACRYPT’17 [3]. In IPM,

the random masks are not used plain, but a mixing between the bits is carried out by the

multiplication with a public vector α = (1, α2, . . . , αn) and then involved into the cryptographic

computation (Z = X + α2Y2 + · · ·+ αnYn, where X is the sensitive data and Yi are the n− 1

masks). Interestingly, by different settings of vector L and mask materials, Balasch et al. [4]

pointed out that IPM is the generalization of four typical kinds of masking schemes, namely the

Boolean one, the multiplicative one [76], the affine one [70] and the polynomial one [77, 131].
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4.2 The-State-of-the-Arts

The concrete security order of a masking scheme depends not only on the number of shares but

also on the encodings involving the sensitive variables and mask materials into cryptographic

operations. With the same number of shares, Balasch et al. [4] observed that the IPM leaks

consistently less than Boolean masking, and further demonstrated this observation in [2, 3]. In

fact, this observable feature originates from the encoding of IPM, in which the random masks

are multiplied by the coordinates of the public parameter α ∈ Fn2` . Therefore several bits in

each share are mixed together, which increases the algebraic complexity of the encoding. By

contrast, in Boolean masking the masks are directly involved by bit-wise XOR operation. This

is the primary advantage of IPM. Furthermore, another interesting effect in [3, Fig. 3] is that

the different choices of the L vector in IPM significantly affect its concrete bit-level security. For

instance, with n = 2 shares made up of ` = 8 bits (byte-oriented), the security order in bounded

moment model [7] can be tbound = 3, while the security order in (word-level) probing model is

only tw = 1.

In fact, this parameter effect in IPM has been studied firstly by Wang et al. [165], named

as “Security Order Amplification”. Wang et al. propose the parameter Omin, the lowest key-

dependent statistical moment, as a metric to measure the amplified security order. This metric

Omin is directly related to the bit-level security order tb in bit-level probing model proposed by

Poussier et al. [123] since Omin = tb + 1. More importantly, Poussier et al. firstly introduce

the coding form of IPM as: Z = XG + YH where X, Y, Z are the sensitive variable, random

mask(s) and masked variable, G and H are the generator matrices of two codes C and D,
respectively. Then they prove that the bit-level security of IPM is related to one of the defining

parameters of the code D (namely its dual distance d⊥D). This result gives an explanation of the

security order amplification discussed in [165].

The other line of research on the encoding and parameter effect of masking schemes is about

the Leakage Squeezing (LS) which stems from Carlet et al. [24]. Particularly, Carlet et al. show

that IPM is an instance of LS. They statistically studied the security order of LS scheme by

linking the correlation immunity [22] of the indicator of the code (that equals the dual distance

d⊥D minus 1), the mutual information (MI ) and the success rate (SR) of side-channel attacks

together. More precisely, in logarithmic form, mutual information log(MI ) is a linear function

of the logarithmic noise variance log(σ2), and the slope (security order) of this linear function

equals the dual distance of D. To summarize, the bit-level security order tb of IPM is d⊥D − 1,
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where d⊥D is the dual distance of the code D in the coding form. Related works are summarized

in Tab. 4.1 (note that SNR is short for attack signal-to-noise ratio [102, § 4.3.2, page 73]).

Table 4.1: Summary of side-channel security analysis on IPM.

Security
Orders

Code
Parameters

Metrics Comments

Balasch et al.
[2]

tw – MI MI varies for different L vectors

Wang et al.
[165]

tb d⊥D MI
Omin (= d⊥D) was used (the lowest
key-dependent statistical moment)

Poussier et al.
[123]

tw, tb d⊥D MI

Balasch et al.
[3]

tw, tb – MI
tbound (= tb + 1) is in the bounded

moment model
Carlet et al.

[24]
tw, tb d⊥D MI, SR

SR of the optimal attack
[18]

This work tw, tb d⊥D, Bd⊥
D

SNR, MI, SR
A unified framework to analyze all

IPM codes by closed-form expression

* Here tw, tb are word- and bit-level security orders, where tw = n−1. Bit-level security order tb
equals to d⊥D−1 as in [24, 123] and in this paper.

Actually, the security order of IPM depends on the code D involved in the scheme, which

can be easily demonstrated by information-theoretic metric. As shown in Fig. 4.1(a), the

security order (the slope) of IPM depends on the dual distance of the chosen code D, namely d⊥D.

Specifically, the slope in the log-log plot representation of MI as a function of noise variance

σ2 is −d⊥D. However, it can be observed that for different choices of the code D with the same

dual distance, the MI s are distinctly different as shown in Fig. 4.1(b). The smaller the number

of nonzero codewords of minimal weight (Bd⊥D), the smaller the MI consistently over the full

range of noise variance σ2. Similar situations happen with success rates of optimal attacks [18],

indicating that only parameter of D equal to the dual distance d⊥D is not enough to characterize

the side-channel resistance of IPM. Therefore, a natural question is: What is/are other defining

parameter(s) of D that influence the concrete side-channel security level of IPM? Since the

different choices of the code D have critical impacts on the concrete security order of IPM, then

another question that comes with it is: how to choose optimal codes in the sense of side-channel

resistance for IPM?

2Note that the only criteria is the highest minimum Hamming distance [158].
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Figure 4.1: Systematic investigation of linear codes of IPM over F24 grouped by d⊥D and Bd⊥D ,
and one BKLC code (Best Known Linear Code2).

4.3 IPM in a Coding-Theoretic Form

Let an information word X ∈ K = F2` and n−1 masks Yi ∈ K, the Boolean masking scheme [123]

protects X as:

Z =

(
X +

n∑
i=2

Yi, Y2, Y3, . . . , Yn

)
= XG + YH, (4.1)

where G, H are generator matrices of two linear codes C and D as follows, respectively. Moreover,

C and D are supplementary codes such that C ⊕ D = Kn.

G =
(

1 0 0 · · · 0
)
∈ K1×n,

H =


1 1 0 · · · 0

1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

 ∈ K(n−1)×n.
(4.2)

IPM is an encoding to improve the algebraic complexity by mixing bits in each share together.

In IPM, linear functions are applied to mask materials yi to construct only the first share.

We define a family of bijective linear functions fi : K 7→ K defined by fi(yi) = αiyi where

α = (α1, . . . , αn) ∈ Kn, α1 = 1 and αi ∈ K\{0} for i ∈ {2, 3, . . . , n}. Then the IPM scheme [2]

with n shares is expressed as:

Z = (X +

n∑
i=2

fi(Yi), Y2, Y3, . . . , Yn) = XG + YH. (4.3)

Remark 4.1 (Word-level security order). In the first share Z1 of Z, X is masked only by mask
Y1, where Y1 is a uniformly distributed mask equal to Y1

def
=
∑n
i=2 fi(Yi). But still, the masking

scheme is more than second-order secure since the attacker cannot directly measure a leakage
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arising from Y1. Instead, to get information from Y1, the attacker should measure the leakage
from shares (Z2, . . . , Zn) = (Y2, . . . , Yn), hence a n-order attack.

Two generator matrices G and H of the above linear codes are as follows. Note that this

encoding3 was first introduced in [123] and we borrow it here.

G =
(

1 0 0 · · · 0
)
∈ K1×n,

H =


α2 1 0 · · · 0

α3 0 1 · · · 0
...

...
...

. . .
...

αn 0 0 · · · 1

 ∈ K(n−1)×n.
(4.4)

IPM is a generalization of Boolean masking (by choosing αi = 1, 1 ≤ i ≤ n). Both schemes

ensure the property that X cannot be deduced from d < n shares provided Yi are uniformly

distributed (see Prop. 4.1 for a detailed formulation).

4.4 Quantifying Leakages of IPM via SNR

In this section, we focus on quantitatively assessing the leakages of IPM by SNR. Let P : Kn` 7→ R

where K = F2 with numerical degree d◦P be the leakages collected (and manipulated) by the

attacker. In practice, d◦P reflects the strength of the attacker, because it is the number of

masked bits which shall be combined together to unveil a dependency on the key. Two typical

situations are:

- The devices leak bits individually, as in the probing model [86]. Therefore, the degree d of the

leakage function is the number of probed bits.

- The devices leak bits as words in parallel through a leakage function φ. The attackers

subsequently apply their strategy (a composition function) ψ on top of φ. For instance, φ

is the Hamming weight and ψ consists of raising the result at some power d, resulting in

P = ψ ◦ φ = wH(·)d.

4.4.1 Leakage Model & Attack Strategy

In practice, the security of a cryptographic implementation not only depends on its leakages

during execution but also highly relates to the capability of an adversary to exploit these leakages.

For instance, for a t-th order secure masking scheme, an adversary can launch a successful d-th

order attack against it when d is greater than t.
3Note that Equ. 5 in [123] contains a mistake, namely G should be (I`, 0, . . . , 0), and not (1, . . . , 1, 0, . . . , 0).
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As the first step, we clarify the leakage model of a device and the attack strategy of an

adversary in practical scenarios. An illustration is provided in Fig. 4.2. Taking noisy leakage

X Z = XG+ Y H
algorithm

cryptographic
(IPM)
masking

Y : added masks
physical
leakage

φ(Z)
N addition
channel noise

d++

L = φ(Z) +N
ψ = Ld Yes

k̂: attack

No P = ψ ◦ φ
attacker’s
policy

(d = 1)

SNR>0

T, k∗

Figure 4.2: Overview of the attacker’s strategy in the higher-order (moments) side-channel
attacks to extract the secret key k∗, using side-channel leakages and the plain/cipher-text T .

model with additive Gaussian noise into consideration, we specify the leakages of a real device

in two cases:

• In a serial implementation, all shares are manipulated at different times (clock cycles). We

denote the leakages from the device as Li = φ(zi) +Ni, where zi ∈ K = F2` is the ith share

and Ni ∼ N (0, σ2) for i ∈ {1, . . . , n} are associated noises. From the attacker’s point of view,

the best strategy is to combine these leakages together to launch higher-order attacks. As is

known, the centered product combination is the most efficient combination function [129] 4.

Thus,

Lser =

d∏
i=1

Li =

d∏
i=1

(φ(zi) +Ni) =
d∏
i=1

φ(zi)︸ ︷︷ ︸
P (z): z∈Kn

+ζ +

d∏
i=1

Ni,

where the adversary combines leakages of d shares over all n shares. ζ denotes intermediate

terms with numerical degree d◦ζ < d that does not depend on the sensitive variables thus

have no positive impact on attacks. Assume that Ni for i ∈ {1, 2, . . . , n} are i.i.d, then

V
[∏d

i=1Ni

]
= σ2d.

• In a fully parallel implementation, all shares are manipulated at the same time (the same

clock cycle). Thus we have L = φ(z) +N =
∑n
i=1 φ(zi) +N by assuming the device leaks in

linear leakage model, where z ∈ Kn and zi ∈ K = F2` . In this case, the best strategy is to use

4It is worth noting that Pearson correlation coefficient is invariant under affine transformation, although
authors used the centered product in [129] to launch the correlation power analysis (CPA).
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the least d-th order of statistical moments to launch the attack. Therefore,

Lpar = Ld =

(
n∑
i=1

φ(zi) +N

)d
=

d∏
i=1

φ(zi)︸ ︷︷ ︸
P (z): z∈Kn

+ζ ′ +Nd,

where ζ ′ denotes intermediate terms with numerical degree d◦ζ ′ < d. For Gaussian noise

N ∼ N (0, σ2), by higher-order moments for Gaussian variables [120, § 5.4], we have:

V
[
Nd
]

= E
[
N2d

]
− E

[
Nd
]2

=

{
σ2d(2d− 1)!! if d is odd,
σ2d
(
(2d− 1)!!− (d− 1)!!

)
if d is even.

Hence, the variance of noise by raising to power d is proportional to σ2d, namely:

V
[
Nd
]
∝ σ2d. (4.5)

In summary, we formalize the leakage function (with the attacker’s strategy) by a pseudo-

Boolean function P : Kn 7→ R such that P (z) =
∏d
i=1 φ(zi), which can be decomposed into

P (Z) =
∑
I∈Fn`2

αIZ
I as in Eqn. 5.4. In both cases, we have V

[
Nd
]
∝ σ2d. Thanks to this

model, we are able to explain the link between leakages at word-level and at bit-level. We also

give an explanation on the physical defaults like physical couplings in a quantitative way. For

instance, in AES implemented on a 32-bit embedded device (e.g. ARM Cortex 4), leakages

of four bytes of intermediates may interfere with each other because of couplings, thus could

leak the sensitive data from the joint distribution of leakages. This kind of joint distributions

corresponds to the assignment of different values for αI of P (Z) as in Eqn. 5.4.

Definition of SNR. The SNR [102] is a critical security metric in the field of side-channel

analysis, which is the ratio between the signal variance and the noise variance.

Let L = P (Z)+N denote the leakage which is irrespective to serial or parallel implementations.

N denotes the independent noise with variance V [N ] = σ2
total ∝ σ2d as shown in Eqn. 4.5. We

have V [E [P (Z) +N |X]] = V [E [P (Z)|X]], then the SNR of leakages is defined as:

SNR =
V [E [L|X]]

V [N ]
=

V [E [P (Z)|X]]

σ2
total

. (4.6)

In side-channel analysis, if SNR is null, attacks are merely impossible. Otherwise, attacks

are possible and are all the more powerful as the SNR is larger.
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4.4.2 Quantifying Leakages of IPM by SNR

Recall the coding form of IPM, whereby the sensitive variable X is encoded into Z by:

Z = XG + YH ∈ Kn = Fn2` .

Let us consider this equation in F2 basefield, and thus let X = F`2, Y = F(n−1)`
2 and Z = Fn`2 .

We clarify the computations as follows (where D is expanded as per Def. 3.6):

- E [P (Z)|X = x] for a given x ∈ X is: E [P (xG + YH)] =
∑
y∈Y P(Y = y)P (xG + yH) =

1
|Y|
∑
y∈Y P (xG + yH) = 1

|D|
∑
d∈D P (xG + d),

- For any variable X, we have that V [E [P (Z)|X]] = E
[
E [P (Z)|X]

2
]
− E [E [P (Z)|X]]

2.

Hence, we have the following two lemmas to compute terms E
[
E [P (Z)|X]

2
]
and E [E [P (Z)|X]]

for IPM.

Lemma 4.1. E [E [P (Z)|X]] = 1
2n`

P̂ (0).

Lemma 4.2. E
[
E [P (Z)|X]

2
]

= 1
22n`

∑
x∈D⊥

(
P̂ (x)

)2

.

The proofs of Lemma 4.1 and 4.2 are in Appendix A.1. Therefore for the SNR of IPM

scheme we have the following theorem.

Theorem 4.1. Let a device be protected by the IPM scheme as Z = XG + YH. Assume
the leakages of the device can be represented in the form: L = P (Z) + N and an adversary
may launch a d-th order attack by using higher-order moments (e.g., in parallel scenarios) or
multivariate combinations (e.g., in serial scenarios). Hence the SNR of the exploitable leakages
is:

SNR =
2−2n`

σ2
total

∑
x∈D⊥\{0}

(
P̂ (x)

)2

,

where σ2
total ∝ σ2d.

Proof. On the basis of Lemma 4.1 & 4.2, we have that

SNR =
V [E [L|X]]

V [N ]

=
E
[
E [P (Z)|X]

2
]
− E [E [P (Z)|X]]

2

V ar(N)

=
2−2n`

σ2
total

 ∑
x∈D⊥

P̂ 2(x)− P̂ 2(0)


=

2−2n`

σ2
total

∑
x∈D⊥\{0}

P̂ 2(x).

(4.7)
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Remarkably, this quantity does not depend on the properties of the code C, except for the
fact it is supplementary to D in Kn (recall Lemma 4.1). The only factor for the SNR of IPM that

makes all the differences is the choice of D. The special interest of Theorem 4.1 is that it allows

quantifying the leakages of any IPM and its variants (e.g. [165]). In a nutshell, Theorem 4.1

works under any form of P . Indeed, as shown in Fig. 4.2, the function P is composed of the

leakage function φ from a device and the attack strategy ψ from an adversary, where φ and ψ

can be any functions. In particular, a real device may produce nonlinear leakages rather than

the simple Hamming weight one, where Theorem 4.1 can be applied straightforwardly.

4.4.3 Link between SNR and Security Order t

In fact, it is easy to build the connection between SNR and the side-channel security order of an

implementation by checking whether SNR equals 0. From Theorem 4.1, we deduce the security

order t of IPM from SNR as follows.

Theorem 4.2. If d◦P < d⊥D, the attack exploiting leakage function P fails (i.e., SNR = 0), thus
the security order of IPM scheme in the bounded moment model is t = d⊥D − 1.

Proof. We know from [17, Lemma 1] (in fact, this is a direct consequence of results of [25]) that,
given a pseudo-Boolean function P , one has P̂ (z) = 0 for all z ∈ Kn such that wH(z) > d◦P .
Let z ∈ D⊥\{0}; then wH(z) ≥ d⊥D. Assuming that the numerical degree of P is strictly less
than d⊥D, we then have wH(z) ≥ d⊥D > d◦P , which means that P̂ (z) equals 0, resulting in the fact
that SNR = 1

22n`σ2
total

∑
x∈D⊥\{0} P̂ (x)2 = 0. Hence, the security order t in bounded moment

model equals d⊥D − 1.

Let us assume that the attacker builds its attack by tweaking P . For example, if the device

leaks the sensitive variable Z through a noisy leakage function φ, the attacker can choose to

use P = φ or P = φ2, . . ., or P = φd (see illustration in Fig. 4.2), or actually any composition

P = ψ ◦ φ. Therefore the security order is the minimum value of d◦P such that SNR 6= 0.

Although the Theorem 4.2 is essentially the same as [123, Proposition 1], we obtain this theorem

in a different way. More importantly, by combining with Theorem 4.1, the quantitative leakages

can be assessed straightforwardly. In practice, we can directly compare, for a given leakage

model, two countermeasures: if SNR1 < SNR2, then the first countermeasure is more secure

than the second one.

With Theorem 4.2, we directly link the dual distance d⊥D of codes D in IPM to the security

order in bounded moment model. Furthermore, the quantitative expression in Theorem 4.1

allows designers to assess easily the security order of an IPM scheme by using properties of
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the code D. Since IPM is the generalization of Boolean masking, Theorem 4.1 & 4.2 are also

applicable to the Boolean masking and other variants [165].

4.4.4 Connecting SNR with Code Parameters

As common leakage models, Hamming weight and affine models have been validated in practice

[123] for side-channel analysis. We set φ(z) = wH(z), then use P (z) = wH(z)d as a leakage

model. Clearly, the numerical degree of P is d◦P = d. Moreover, one can write:

P (z) = wH(z)d =
∑

J1+···+Jn`=d

(
d

J1, . . . , Jn`

) n∏̀
i=1

zJii

=
∑

J∈Nn`, s.t.
∑n`
i=1 Ji=d

wH(J)<d

(
d

J

)
zJ + d!

∑
I∈{0,1}n`
wH(I)=d

zI ,
(4.8)

where N = {0, 1, . . .} is the set of integers. The multinomial coefficient
(

d
J1,...,Jn`

)
is defined as

d!
J1!···Jn`! (recall that J = (J1, . . . , Jn`) ∈ Nn` with

∑n`
i=1 Ji = d). This coefficient equals to d! as

long as for all i (1 ≤ i ≤ n`), Ji = 0 or 1. Now, the terms in P (z) are categorized into two cases:

• zJ where J ∈ Nn`, wH(J) < d, which consists in products of < d bits of z, as zJ =∏
i∈{1,...,n`} s.t. Ji>0 zi,

• zI where I ∈ {0, 1}n`, wH(I) = d which consists in products of d bits of z, as zI =∏
i∈{1,...,n`} s.t. Ii=1 zi.

Indeed, let i ∈ {1, . . . , n`}, then zJii = 1 if Ji = 0, and zJii = zi if Ji > 0. The first terms zJ have

numerical degree d◦(zJ ) < d, hence can be discarded in the analysis (they contribute nothing to

the SNR). Remaining terms of numerical degree d are:
∑
I∈{0,1}n`, wH(I)=d z

I . Hence we have

following theorem for quantifying the leakages of IPM.

Theorem 4.3. Let a device leak in Hamming weight model, which is protected with IPM at
bit-level security order t = d⊥D − 1. A higher-order attack is possible only if the attacker uses a
leakage function P with d◦P = d > t. Moreover, the SNR can be quantified by:

SNR =

 0 if d◦P ≤ t
B
d⊥D

σ2
total

(
d⊥D!

2d
⊥
D

)2

if d◦P = t+ 1 = d⊥D .
(4.9)

Proof. Let ϕI(z) = zI where I ∈ {0, 1}n`. Thus

zI =
∏
i∈I

zi =
∏
i∈I

(1− (−1)zi)

2
=

1

2d

∏
i∈I

(1− (−1)zi). (4.10)
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By Theorem 4.2, all monomials with numerical degree d◦ < d have SNR = 0, hence we only
focus on monomials with d◦ = d. We have ϕI(z) = φI(z) + (−1)d

2d
(−1)

∑
i∈I zi where φI(z) is

linear combination of monomials with numerical degree d◦ < d in ϕI(z). The Fourier transform
of ϕI(z) is

ϕ̂I(y) = φ̂I(y) +
(−1)d

2d

∑
z

(−1)z·I(−1)z·y

= φ̂I(y) +
(−1)d

2d

∑
z

(−1)z·(I+y)

= φ̂I(y) + (−1)d2n`−d1{I}(y).

(4.11)

We have φ̂I(y) = 0 for y with wH(y) ≥ d⊥D = t+ 1 > d (recall the proof of Theorem 4.2).
Thus by combining Eqn. 4.11 with Eqn. 4.7, we have the following equation for V [E [P (Z)|X]]:

V [E [P (Z)|X]] =
∑

y∈D⊥\{0}

P̂ 2(y)

22n`

= 2−2n`
∑

y∈D⊥\{0}

 ∑
I|wH(I)=d

(−1)d2n`−d
(
d

I

)
1{I}(y)

2

= 2−2d
∑

y∈D⊥, wH(y)=d

 ∑
I|wH(I)=d

(
d

I

)
1{I}(y)

2

= 2−2d
∑

y∈D⊥, wH(y)=d

(d!)
2

= Bd

(
d!

2d

)2

.

(4.12)

Finally, using Theorem 4.2, it appears that the only possible solution of d is d = d⊥D such

that SNR 6= 0, thus V [E [P (Z)|X]] = Bd⊥D

(
d⊥D!

2d
⊥
D

)2

, then

SNR =
V [E [P (Z)|X]]

V [N ]
=

Bd⊥D
σ2
total

(
d⊥D!

2d
⊥
D

)2

. (4.13)

In a nutshell, Theorem 4.3 provides a quantitative way for assessing the side-channel security

level of an implementation under Hamming weight leakages. More importantly, the SNR is

linked to two parameters of the code used in IPM, which brings great convenience on simplifying

the assessment. In practice, the designer can easily select a better or even optimal code for IPM

which amplifies the side-channel resistance of the implementation protected by IPM.

In fact, the quantitative result in Theorem 4.3 can be extended to all linear (affine) leakages

[97] which can be expressed as:

P : z ∈ Fn`2 7→ P (z) = β0 + 〈β, z〉 ∈ R, (4.14)
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where β0 ∈ R is an unimportant additive constant that can be considered null (which is dropped

in the sequel), β = (β1, · · · , βn`) ∈ Rn` (note that βi is normalized by β′i =
√
n`
‖β‖2

βi, where

‖β‖2 =
√∑n`

i=1 β
2
i is the L2-norm of β) are coordinate-wise weights, and 〈x, y〉 =

∑n`
i=1 xi ·yi ∈ R

is the canonical scalar product. This leakage model is also known as UWSB model (“unevenly

weighted sum of the bits”) as in [172]. The validity of this leakage model can be tested easily by

stochastic profiling [143] on practical samples. Therefore, we denote the leakage function as:

P (z) =
( n∑̀
i=1

βizi

)d
=

∑
J1+J2+···
+Jn`=d

(
d

J1, . . . , Jn`

) n∏̀
i=1

(
βizi

)Ji
=

∑
J∈Nn`, wH(I)<d
J1+···+Jn`=d

(
d

J

)(
βz
)J

+ d!
∑

I∈{0,1}n`
wH(I)=d

(
βz
)I
.

(4.15)

Thus, we deduce the following corollary for SNR under UWSB leakage model as follows:

Corollary 4.1. Let a device leak in UWSB model, which is protected with IPM at bit-level
security t = d⊥D − 1. A higher-order attack is possible only if the attacker uses a leakage function
P with numerical degree d◦P = d > t. Moreover, the SNR is:

SNR = λ · 1

σ2
total

(
d!

2d

)2

=

 0 if d◦P ≤ t
λ · 1

σ2
total

(
d⊥D!

2d
⊥
D

)2

if d◦P = t+ 1 = d⊥D
, (4.16)

where λ =
∑

y∈D⊥
wH(y)=d

( ∏
1≤i≤n`
s.t. yi=1

βi

)2

, and λ = 0 if d < d⊥D.

For instance, as the Hamming weight model is a special case of UWSB model with βi = 1

for i ∈ {1, 2, . . . , n`}, we obtain λ = Bd⊥D , which is exactly the Theorem 4.3.

In summary, by Corollary 4.1, the SNR of IPM scheme under affine leakage model depends

only on the two parameters of D and the leakage model β. In practice, β is fixed for a given

device and mainly depends on the device itself that an adversary has no control on. Hence

the special interest is that designers can choose optimal codes D for IPM with maximized

side-channel resistance by simply selecting optimal d⊥D and Bd⊥D .

Numerical Comparison with codes by SNR in Theorem 4.3. First, we show the SNR

of different codes for IPM in Tab. 4.2. We omit the full table of all codes with different Bd⊥D ,

but only showing codes with the maximal and the minimal values of Bd⊥D . The last column

of Tab. 4.2 shows the possible candidates of α2 in IPM, by which the generator matrix of

corresponding code D is H = (α2, 1).
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Table 4.2: Demonstration of categorizing codes in IPM by SNR and MI.

σ2·SNR when P (Z) = wH(Z)d
d⊥D Bd⊥D

d = 1 d = 2 d = 3 d = 4

MI ·103

(σ = 3)

α2

(Non-equivalent codes)

maxB2=8 0 2.0000 > 0 > 0 4.4025 {α0} 1

2
minB2=1 0 0.2500 > 0 > 0 3.8410 {α7}
maxB3=7 0 0 3.9375 > 0 0.5470 {α24, α25}

3
minB3=1 0 0 0.5625 > 0 0.2374 {α18, α39, α43, . . .} 2

maxB4=15 0 0 0 33.750 0.0494 {α59, α60}
4

minB4=3 0 0 0 6.7500 0.0392 {α8, α126, α127}

In Tab. 4.2, the green part shows where SNR equals 0 given different d⊥D. Clearly, given a

d⊥D for IPM codes, the SNR of the corresponding IPM decreases along with Bd⊥D . Moreover,

the MI decreases when d⊥D increases and/or Bd⊥D decreases. As a result, the code with the

maximized d⊥D and minimized Bd⊥D performs best against side-channel analysis, which validates

our approach on selecting optimal codes for IPM.

To summarize, there are three optimal codes (up to equivalence) for 2-share IPM on F28 .

Those codes have dual distance 4 and only 3 codewords of nonzero minimum weight equal to

3. Those codes are the optimal for 2-share IPM operating on bytes, and were previously not

specifically distinguished amongst binary codes of parameters [16, 8]2. Their generating matrix

are provided in Appendix B.1.

4.5 Measuring Leakages by Mutual Information

We investigate the security order of IPM at both word- and bit-level, and show the essential reason

of the “Security Order Amplification” which has been observed and described in [3, 123, 165].

We here go further by using an information-theoretic metric, the standard notion of mutual

information (MI), to quantify the leakages of IPM.

4.5.1 Security Orders at Word-level tw and Bit-level tb

The first important property of IPM is its higher security order at bit-level than at word-level,

namely tb ≥ tw. Here we start from a very well-known property of the generator matrix.
1This code corresponds to the Boolean masking where α2 = α0 = 1 and H = (1, 1).
2There are 36 codes (including equivalent codes) with d⊥D = 3 and minB3 = 1 [39].
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Proposition 4.1. The maximal number of linearly independent columns of the generator matrix
H of the code D is d⊥D − 1.

It is a well-known theorem in error-correcting codes [101, Theorem 10]. Hence, if the attacker

probes up to d < d⊥D (inclusive) wires, the sensitive variable X is encoded as a codeword in Fn2`

and is perfectly masked. Therefore no information on X can be recovered.

Lemma 4.3. The IPM is secure at the maximized order tw in the terms of probing model if
and only if the code generated by the 1× n matrix H⊥ = (α1 = 1, α2, α3, . . . , αn) is a code with
parameters [n, 1, dw]2` , where dw = tw + 1.

Proof. Note thatH⊥ = (1, α2, α3, . . . , αn) is the generator matrix of the dual code of D generated
by matrix H in Eqn. 4.4. The masking scheme is secure at order tw under probing model means
that any tuple of Z’s coordinates of size ≤ tw leaks no information on X. Now, Z = f(X) +YH,
i.e., similar to additive masking, which is secure at order tw meaning that any tw tuple of YH

is uniformly distributed (“Vernam code”). By definition, this means that d⊥D > tw.
Since for IPM, d⊥D = dD⊥ where the later is the minimum distance of the dual code D⊥. By

the definition of the dual distance, we have d⊥D = tw + 1.

Obviously, we have d⊥D = n if and only if αi 6= 0 for i ∈ {1, 2, . . . , n}. Therefore, the security

order of IPM scheme is tw = d⊥D − 1 = (n − 1) over K = F2` . This has been formally proved

in [2, 3] and pointed out in [123]. We put it here in Lemma 4.3 for completeness of this thesis

and we can directly obtain the word-level security order tw by Theorem 4.2. In brief, IPM is

optimal in term of word-level security and has the same security order as Boolean masking

(where αi = 1).

4.5.2 Bit-Level Security Order tb

By code expansion as Def. 3.6, we can expand the code D from K = F2` to K = F2, which

turns a code [n, 1, dw]2` to [n`, `, db]2. At first, we show the connection between the two security

orders tw and tb as follows.

Lemma 4.4. In IPM, the word-level security order is not greater than bit-level security order,
namely tw ≤ tb.

In fact, this is essentially the “Security Order Amplification” as explained in [123]. Here we

give another proof as follows.

Proof. With code expansion, the generator matrix H⊥ = (1, α2, · · · , αn) is expanded to [H⊥]2 =

(I`, [α2], · · · , [αn]), as per Def. 3.6. Since αi 6= 0, we have at least one 1 in each row of [αi].
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Otherwise, if one row of [αi] is all zeros, we have:

[αi] =


0 0 · · · 0

− − − −
− − − −
− − − −

 ∈ F`×`2

then [αi] is not invertible which indicates that Li does not exist.

Remark 4.2. It is worth mentioning that since the Boolean masking is a special case of IPM
with αi = 1 for i ∈ {1, . . . , n}, we always have tw = n− 1, tb = n− 1. While for IPM, tb can be
greater than n − 1 if there exists at least one i ∈ {1, . . . , n} such that αi 6∈ {0, 1}, where the
algebraic complexity of IPM is greater than Boolean masking.

To optimize IPM scheme, we aim at choosing tb as large as possible compared to tw, thereby

increasing the security order as much as possible. For instance, with n = 2 shares of ` = 4 bits,

we have F16 = {0, 1, α, . . . , α14}, where F16 := F2[α]/〈α4 + α+ 1〉. There are 15 candidates for

α2 ∈ F16\{0}. All codes have the same word-level security since tw = 1 (dw = 2). While for

bit level security, we have tb = 1 (db = 2) for 7 candidates and tb = 2 (db = 3) for 8 candidates

(refer to Tab. 4.5 for all codes), respectively. Therefore, in this case, the optimal tb for IPM is 2.

4.5.3 Linking Mutual Information with Code Parameters

The other primary means to evaluate the security of a cryptographic implementation is to utilize

the information-theoretic analysis. In this sense, mutual information is a well-known metric in

the field of side-channel analysis [151]. Therefore we use it to assess the leakages of IPM as

follows.

Theorem 4.4. For a device leaking under the Hamming weight model that is protected by IPM
scheme with Z = XG+YH, the mutual information I(L;X) between the leakage L = P (Z) +N

and the sensitive variable X is approximately equal to the first nonzero term: I(L;X) ≈
d⊥D!B

d⊥D

2 ln 2·22d⊥D
· 1

σ2d⊥D
when the leakage function P of a higher-order attack has numerical degree

d◦P = d⊥D. Specifically,

I(L;X) =

 0, if d◦P < d⊥D
d⊥D!B

d⊥D

2 ln 2·22d⊥D
× 1

σ2d⊥D
+O

(
1

σ2(d⊥D+1)

)
, if d◦P = d⊥D, when σ → +∞

(4.17)

where σ is the standard deviation of noise.

Proof. It is obvious that there is no leakage when d◦P = d < d⊥D. We assess the leakages in
an information-theoretic sense as the mutual information between P (Z) and X, defined by
I(P (Z);X) = H(P (Z))− H(P (Z)|X), where:
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- the entropy is H(P (Z)) = −∑z P(P (z)) log2 P(P (z)),

- the conditional entropy H(P (Z)|X) is:

H(P (Z)|X) =−
∑
x∈F`2

PX(x)
∑
z

P(P (z)|x) log2 P(P (z)|x).

In the presence of noise N , the mutual information between the noisy leakage L = P (Z) +N

and the sensitive variable X can be developed using a Taylor’s expansion5 [23]:

I(L;X) =

+∞∑
d=0

1

2 d! ln 2

∑
x∈F`2

PX(x)
(kd(P (Z)|x)− kd(P (Z)))

2

(V ar(P (Z)) + σ2)
d

=
1

ln 2

+∞∑
d=0

1

2 d!

V [kd(P (Z)|X)]

(V [P (Z)] + σ2)
d
, (4.18)

where kd is the d-th order cumulant [21].
As for a d-CI (Correlation Immune) function [22] that is not (d+ 1)-CI, all moments of order

i ≤ d are centered, so are the cumulants. Hence the first nonzero cumulant kd⊥D(X) is equal
to µd⊥D(X). It results that in Eqn. 4.18, the term V [kd(P (Z)|X)] is null for all d < d⊥D, and it

is equal to V
[
µd⊥D (P (Z)|X)

]
= V

[
E
[
P (Z)d

⊥
D |X

]]
for d = d⊥D. Thus, assuming the device is

leaking in Hamming weight model, the mutual information can be developed at the first order
in 1/σ2d⊥D by Eqn. 4.18:

I(L;X) =
d⊥D!Bd⊥D

2 ln 2 · 22d⊥D
× 1

σ2d⊥D
+O

(
1

σ2(d⊥D+1)

)
, (4.19)

when σ → +∞. This proves Theorem 4.4.

Particularly from Theorem 4.3 and 4.4, it is noteworthy that reducing Bd⊥D allows both to

reduce the SNR and the MI, which demonstrates our intuition for the impact of Bd⊥D on the

concrete security level of IPM. In summary, two parameters that determine the leakages of IPM

are depicted in Fig. 4.3:

- the slope in the log-log representation of the MI versus the noise standard deviation is all the

more steep as d⊥D is higher,

- the vertical offset is adjusted by Bd⊥D : the smaller Bd⊥D is, the smaller the MI.

When the noise variance σ2 tends to infinity, I(L;X) is converging to the dominating term

in the expansion given in Eqn. 4.19. Hence, there is an affine law in the log-log representation,

in which the slope equals to the negative order of the first nonzero moment of random variable

L|X, namely the least order of key-dependent moments.
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Reduce Bd⊥D

Increase d⊥D

Noise variance: σ2

M
I:
I(
L;

X
)

Figure 4.3: Two concomitant objectives to reduce the mutual information.
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Figure 4.4: Numerical calculation and approximation of I(L;X) between leakages and the sensitive
variable X ∈ F24 in IPM. The BKLC code [8, 4, 4] cannot be used in IPM. We put it here to show
the code with d⊥D = 4.

Numerical Evaluation of MI. By information-theoretic analysis, we connected the mutual

information with two defining parameters of D, namely d⊥D and Bd⊥D . In order to further

demonstrate Theorem 4.4, we numerically compute the MI for n = 2 shares and ` = 4 bits. The

value of I(L;X) is shown in Fig. 4.4, where L takes the “Hamming weight + Gaussian noise” as

leakages. Several illustrations of leakage distributions are depicted in Appendix C.1 for IPM

with α1 ∈ {1, α, α5}.
5The normalization by ln 2 allows the mutual information expressed in bits instead of nats.
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Obviously, d⊥D and Bd⊥D clearly indicate the concrete security level of IPM as measured by MI.

Furthermore, our estimation of MI by Eqn. 4.19 is in accordance with the numerical calculations.

From Fig. 4.4, the codes for practical applications can be chosen according to the noise level of

real devices (situations). For instance, if the noise level is σ2 > 2, the d⊥D is more dominant on

choosing optimal codes, while if σ2 < 2−1, Bd⊥D is more important; for noise level σ2 in [2−1, 2],

more efforts are needed in choosing a good code.

4.6 A Unified Leakage Assessment Framework for IPM

We introduce a unified framework, consisting in the two parameters d⊥D and Bd⊥D of code D, to
quantify the linear (e.g., Hamming weight) and affine leakages of IPM. By Theorem 4.3 and

Corollary 4.1, we propose the unified framework for assessing the leakages of IPM as follows:

Framework 1 (Unified Leakage Assessment Framework for IPM). The leakages of IPM with
a linear code D can be quantified by the assessment framework consisting of two defining
parameters of D, namely its dual distance d⊥D and the coefficient Bd⊥D in its weight enumerator
(recall Theorem 4.3).

In summary, when the leakage model is Hamming weight or affine model, the side-channel

resistance of IPM scheme is straightforwardly related to two defining parameters of the selected

code D, namely d⊥D and Bd⊥D , which are core ingredients of our unified framework. From the

attacker’s perspective, the only way to compromise a countermeasure is to perform attacks with

order no less than d⊥D. From the other side of the coin, designers can use this framework in

practice, namely to enhance the side-channel security of IPM by choosing appropriate d⊥D and

Bd⊥D . Hereafter, we show how to use this framework to select the optimal codes for IPM.

4.6.1 Selecting Optimal Codes for IPM

Recall that the generator matrix of dual code D⊥ is H⊥ = (α1 = 1, α2, α3, . . . , αn). From above,

two ingredients of our unified framework are d⊥D and Bd⊥D of the code D. Since our framework

straightforwardly indicates the concrete security order of IPM, we propose an algorithm to

choose optimal code for IPM as Alg. 1.

Summing up, our framework is generic and applicable to IPM under Hamming weight and

affine leakages. From the perspective of designers, it would be advantageous to choose the

optimal codes with proper d⊥D and Bd⊥D by using Alg. 1 instead of finding them via long and

tedious design then evaluation cycles. Some optimal codes are shown in Tab. 4.3.
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Algorithm 1: Conceptional Selection of Optimal Code for IPM
Input :All codes of D⊥ generated by H⊥

Output :Code(s) with Optimized d⊥D and Bd⊥D

1 D ← all codes D with D⊥: [n, 1, n]2` over F2` ; // Optimize dw in word-level,
dw = n if αi 6= 0

2 D2 ← {[D]2| D ∈ D} over F2` with [D⊥]2 : [n`, `, db]2;
3 db ← max{d⊥D| D ∈ D2} ; // Optimize in bit-level (db)
4 D ′ = {D| d⊥D = db, D ∈ D} ; // Only keep codes with maximized d⊥D
5 Bmin ← min{Bd⊥D | D ∈ D ′} ;
6 D ′′ = {D| Bd⊥D = Bmin, D ∈ D ′} ; // Only keep codes with minimized Bd⊥D
7 return D ′′;

For n = 2 and n = 3 shares for 4 & 8-bit variables, the best IPM codes and BKLC codes are

tabulated in Tab. 4.3.

Table 4.3: The optimal codes for IPM in several scenarios with BKLCs and Boolean one in
comparison (refer to [39] for list of all codes).

F2` IPM Codes BKLC Codes d⊥ipm−d⊥bool d
⊥
ipm−d⊥bklc SRbool=0.8 SRipm=0.8 SRbklc=0.8 Comments

n
=

2

` = 4
H⊥=(1, α5):

d⊥D = 3, Bd⊥D = 3

[8, 4, 4]: (unique)

d⊥D = 4, Bd⊥D = 14
1 -1

800 (1D)

340 (2D)

4,000 (1D)

1,320 (2D)

8,400 (1D)

2,500 (2D)
[24, 165]

` = 8
H⊥=(1, α8):

d⊥D = 4, Bd⊥D = 3

[16, 8, 5]: (unique)

d⊥D = 5, Bd⊥D = 24
2 -1

1,900 (1D)

870 (2D)

>80,000 (1D)

>20,000 (2D)

>100,000 (1D)

>40,000 (2D)

[123]. We introduce

one nonlinear

code (16,256,6)

n
=

3

` = 4
H⊥=(1, α5, α10):

d⊥D = 6, Bd⊥D = 12

[12, 4, 6]:

d⊥D = 6, Bd⊥D = 12
3 0

4,600 (1D)

310 (3D)

>45,000 (1D)

3,050 (3D)

>45,000 (1D)

3,050 (3D)

New, the best

IPM code is equivalent

to BKLC code

` = 8
H⊥=(1, α18, α183):

d⊥D = 8, Bd⊥D = 7

[24, 8, 8]:

d⊥D = 8, Bd⊥D = 130
5 0 – – –

[123], the best

IPM codes is better

than BKLC one [39]

4.6.2 The Completeness of Our Unified Framework

In this chapter, we quantify the side-channel security of IPM using two complementary metrics,

namely the SNR and the MI, since they depict different aspects of the side-channel leakage.

Specifically,

• the SNR measures the amount of leakage at a given moment (mean, variance, etc.) in the

bounded leakage model;
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• the MI measures the total leakage distribution, namely depending on all orders of moments of

the leakage.

Both metrics are correlated with the attack metric SR, which is the pragmatic evaluation of the

exploitability of the leakage. This means that the smaller the SNR or the MI, the smaller the

SR for a given number of traces used to attack. Moreover, the two complementary metrics are

utilized to thoroughly validate our unified framework.

Our framework shows that security can be assessed only in terms of dual distance d⊥D and

parameter Bd⊥D of code D:

• regarding SNR, whatever the value of σ — refer to Theorem 4.3 for the Hamming weight

leakages and Corollary 4.1 for the affine leakages; moreover, for general leakages, e.g., nonlinear

leakages, refer to Theorem 4.1;

• regarding MI, when σ is large and the leakage model is Hamming weight — refer to Theorem 4.4.

Furthermore, equivalent codes feature the same SNR and MI when the leakage model is Hamming

weight, since permuting coordinates does not change the Hamming weight. So, we have that

the MI of two equivalent codes is the same whatever the value of σ when the leakage model is

Hamming weight. But the converse does not hold, as shown in Tab. 4.4.

It is interesting to notice that for n = 2 and ` = 4, all codes (1, α2)2` represented in F2 with

the same weight enumerator are equivalent6 as shown in Tab. 4.5. Note that the codes in the

same rows are equivalent, so they have the same MI.

Table 4.4: Example of Non-equivalent IPM codes with n = 3, ` = 4 that have the same weight
enumerator but different MI (noiseless).

α2 α3 Weight Enumerators I(Z;X)

α1

α2

α5

α5

[ (0, 1), (4, 2), (5, 3), (6, 2), (7, 4),

(8, 3), (9, 1) ]
0.016494

α1

α8

α7

α9

[ (0, 1), (4, 2), (5, 3), (6, 2), (7, 4),

(8, 3), (9, 1) ]
0.016377

6From viewpoint of coding theory as described in Sec. 3.1.
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Table 4.5: The weight enumerators of IPM codes with m = 2, ` = 4 and MI in a noiseless case.

α2 d⊥D Bd⊥D Weight Enumerators I(Z;X)

α0 (Boolean masking) 2 4 [ (0, 1), (2, 4), (4, 6), (6, 4), (8, 1) ] 1.151963

α1, α14 2 3 [ (0, 1), (2, 3), (3, 2), (4, 3), (5, 4), (6, 1), (7, 2) ] 0.380288

α2, α13 2 2 [ (0, 1), (2, 2), (3, 3), (4, 3), (5, 4), (6, 2), (7, 1) ] 0.287149

α3, α12 2 1 [ (0, 1), (2, 1), (3, 4), (4, 3), (5, 4), (6, 3) ] 0.199569

α4, α6, α7, α8, α9, α11 3 4 [ (0, 1), (3, 4), (4, 5), (5, 4), (6, 2) ] 0.181675

α5, α10 3 3 [ (0, 1), (3, 3), (4, 7), (5, 4), (7, 1) ] 0.246318

4.7 Categorizing Linear Codes of 2-Share IPM over F28

The key takeaway from the mathematical analysis of the previous section is that the two metrics

SNR and MI concur, in that show that d⊥D and Bd⊥D are the two relevant parameters to consider

when seeking for an optimal code D. Namely, theorems 4.3 and 4.4 agree in that SNR and MI

decrease when d⊥D increases and when Bd⊥D decreases. Therefore, we deduce an algorithm to

sort codes D of given length n with respect to their suitability in terms of IPM resistance. It is

sketched in Alg. 1 (borrowed from [37]).
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Figure 4.5: Numerical simulation of mutual information I(L;X) between leakages and the sensitive
variable X ∈ F28 of all linear codes in IPM, and a BKLC code of parameters [16, 8, 5]. The blue
curve is the one with L2 = 0 corresponding to unprotected case.

Clearly, the dual distance d⊥D and the number of minimum weight nonzero codewords Bd⊥D
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are good indicators of the side-channel resistance of IPM. From Fig. 4.5, the linear codes in IPM

can be classified into three categories with different d⊥D, namely d⊥D = 2, 3 and 4. Note that

we call the linear codes used in IPM as IPM codes, where all of them are at word-level over

the field F2` , while all codes in DSM [17] are at bit-level over F2. In addition, we present the

unprotected one and the BKLC code of parameters [16, 8, 5]. It is worth noting that the code

with parameters [16, 8, 5] is unique [11] (up to equivalence). In Fig. 4.5, when dual distance d⊥D
gets larger, the slopes of mutual information curves get steeper. Therefore, the BKLC code has

the best side-channel resistance and it is better than all IPM codes (but this code cannot be

used to carry out secure and provable computations, as is the case of IPM codes). Among IPM

codes, these with d⊥D = 4 are better than others (d⊥D = 3 or d⊥D = 2).

Remark 4.3. In Fig. 4.5, all curves of codes in IPM are between the blue and the red ones over
all range of noise variances σ2. Moreover, the Boolean one (the first orange curve under the
blue one) is the highest among all codes in IPM, which indicates clearly that Boolean masking
is the worst case of IPM in the sense of side-channel resistance.

However, we observe that there exist distinct differences in each of classes categorized by d⊥D,

which are affected by Bd⊥D . Hereafter, we investigate each group of IPM codes with the same

dual distances by further studying the other code property Bd⊥D .

4.7.1 IPM Codes with d⊥D = 2

As the first investigation, we move into the IPM codes with d⊥D = 2 shown in Fig. 4.6. There are

fifteen codes that can be classified into eight classes, each of which have two equivalent codes

with same Bd⊥D . Recall that the IPM codes are determined by α2, thus we search α2 as α2 = αi

and we get i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 248, 249, 250, 251, 252, 253, 254}. Correspondingly, the Bd⊥D
are in the set {8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7}. The best two codes are equivalent and have

Bd⊥D = 1. It is worthy noting that Boolean masking is special case of IPM with α2 = α0, which

is the highest curves in Fig. 4.6 (the worst case of IPM). Hence in the sense of side-channel

resistance, IPM is more advantageous than the Boolean masking.

In summary, the (sub-)optimal codes in the class of d⊥D = 2 are these with the minimized

Bd⊥D = 1 (meaning α2 ∈ {α7, α248}). This is in consistent with Theorem 4.4.

4.7.2 IPM Codes with d⊥D = 3

Secondly, we investigate all linear codes with d⊥D = 3. There are 146 codes (68 non-equivalent

codes) in IPM.
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Figure 4.6: Numerical simulation of mutual information I(L;X) between leakages and the sensitive
variable X ∈ F28 in IPM where all codes have d⊥D = 2 but different Bd⊥D .

Although there are 68 non-equivalent codes, the Bd⊥D only takes seven values in set {1, 2, 3, 4, 5,
6, 7}. Again, we say that the codes with Bd⊥D = 1 are (sub-)optimal in the sense of side-channel

resistance. In order to show this clearly, we only choose seven codes with different Bd⊥D as in

Fig. 4.7. For all codes with d⊥D = 3, there are 36 optimal candidates of α2 with Bd⊥D = 1.

However, there are two IPM codes (mutual equivalent) with α2 ∈ {α95, α160} which have

different side-channel resistance under low noise situations (σ2 < 2−1), while with higher noise

level they are in accordance with other codes. Their weight enumerator is shown as Eqn. 4.20:

W (X,Y) = X16 + 3X13Y3 + 4X12Y4 + 16X11Y5 + 36X10Y6 + 43X9Y7 + 45X8Y8

+ 48X7Y9 + 36X6Y10 + 17X5Y11 + 6X4Y12 + XY15.
(4.20)

The takeaway point for all codes with d⊥D = 3 is that, they are preferable when the noise

level is very low (e.g., σ2 < 2−3). Nevertheless, the optimal dual distance for 2-share IPM over

F28 is equal to 4 as shown in next subsection.

4.7.3 IPM Codes with d⊥D = 4

As the last part, we investigate the rest of IPM codes with d⊥D = 4 where there are 94 codes (40

non-equivalent codes).

Interestingly, there are 12 candidates of Bd⊥D in set {3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15}. In

order to show the differences between IPM codes with different Bd⊥D , we choose one code for
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Figure 4.7: Numerical simulation of mutual information I(L;X) of IPM codes with d⊥D = 3 but
different Bd⊥D .

each of distinct Bd⊥D as shown in Fig. 4.8.
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Figure 4.8: Numerical simulation of mutual information I(L;X) of IPM codes with d⊥D = 4 but
different Bd⊥D .

Clearly, the optimal codes for IPM is the code with minimal Bd⊥D = 3. These codes are

optimal with σ2 > 1 and they correspond to α2 ∈ {α8, α247, α126, α129, α127, α128}. In summary,

a takeaway conclusion is that the optimal codes are with α2 ∈ {α8, α126, α128} (only three
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non-equivalent codes), in which the d⊥D equals to 4 is maximized while Bd⊥D equals to 3 is

minimized among all possible codes in the 2-share IPM.

We underline that all above codes with corresponding α2 in IPM, dual distance d⊥D, the

parameter Bd⊥D and weight enumerators are available on Github [39] (all codes for 2-share and

3-share IPM over both F24 and F28 are included).

4.7.4 Estimation of MI by Theorem 4.4

In this section, we use the MI to show the impact of Bd⊥D in each of above three classes. In

addition, we add the unprotected one, the Boolean one (α2 = α0 = 1) and the BKLC one for

comparison and shown in Fig. 4.9.
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Numerical Calc
IPM: Li=0, unprotected!
IPM: L2 = 0, dD =2, BdD

=8
IPM: L2 = 1, dD =2, BdD

=7
IPM: L2 = 7, dD =2, BdD

=1

IPM: L2 = 24, dD =3, BdD
=7

IPM: L2 = 39, dD =3, BdD
=1

IPM: L2 = 60, dD =4, BdD
=15

IPM: L2 = 8, dD =4, BdD
=3

BKLC code: [16, 8, 5]

Figure 4.9: Comparing seven codes of IPM and one BKLC code of parameters [16, 8, 5] where
all codes have different d⊥D and Bd⊥D . The solid curves are from numerical simulation, while the
dotted lines are estimated by using Eqn. 4.17.

From Fig. 4.9, we can choose directly the optimal codes for IPM (the green curve). Further-

more, the BKLC code of parameters [16, 8, 5] is better than all IPM codes and it is the best one

among all linear codes (but it cannot be used in IPM since there is no IPM code of parameter

(1, α2) corresponding to the generator matrix of this BKLC code). This again confirms the

advantages of DSM beyond IPM in 2-share setting. However, the best IPM codes in 3-share

setting could be as good as the codes used in DSM.
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In Fig. 4.9, the estimated MI (dotted curves) are close to numerical calculation (solid curves)

when the noise level is high. Moreover, the side-channel resistance of IPM is highly depend on

the linear codes used in it, which can be quantified easily by using two properties of the codes.

In a nutshell, even with 2-share setting, the side-channel resistance of IPM can be significantly

different. Hence, a dedicated choice of optimal codes for IPM is more than preferable, where

Alg. 1 provides a good solution.

4.8 Further Applications to More General Masking Schemes

We show in this work the optimal codes for 2-share IPM over F28 . In fact, our approach also

allows analyzing all codes used in DSM, which is the generalization of IPM. Consequently, these

results would be interesting for designers in practice, since the selection of the best parameters

of DSM is simple but very effective.

More generally speaking, IPM is a special case of Leakage Squeezing (LS) [23] and Direct Sum

Masking (DSM) [17, 24]. The connections between these masking schemes are shown in Fig. 4.10.

Moreover, the efficient and secure algorithms for performing the elementary operations like

addition and multiplication on shared data are proposed in [164] for DSM. In particular, in the

case of IPM, more efficient computations have been proposed in [3], in which the multiplication

part can be simplified. From a performance perspective, the overhead of IPM is about 40%

and 60% more than the Boolean masking when deployed on AES-128, for 2-share and 3-share

implementations, respectively [3, Tab. 2].

Direct Sum masking 
(DSM)

Leakage Squeezing 
(LS)

Inner Product 
masking (IPM)

Boolean 
masking

Figure 4.10: Connections between IPM, LS and DSM from a generalization perspective.
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Furthermore, the optimality of the selected codes not only holds under Hamming weight

model, but also holds under the “unevenly weighted sum of the bits” (UWSB) model, in which

each bit in the sensitive variables leaks differently. Indeed, in both cases the leakage function

P have the degree equal to 1. Eventually, Theorem 4.3 is more general and can be used to

assess the codes under the nonlinear or higher order moments leakages where d◦P > 1, e.g.,

P (Z) = wH(Z)d has d◦P = d.

The Impact of Different Irreducible Polynomials. Although all representations of F28

are isomorphic and therefore equivalent, they do not preserve their properties after sub-field

extension. In particular, there are 30 irreducible polynomials over F28 and two typical cases of

them are:

• g1(α) = α8 + α4 + α3 + α+ 1: which is the standard irreducible polynomial in AES7,

• g2(α) = α8 + α4 + α3 + α2 + 1: which is the default irreducible polynomial in Magma and

Matlab, also the one used in this chapter.

In IPM, the irreducible polynomial plays an important role in expanding codes from F28 to F2,

which determines the linear codes over F2. As a result, the optimal choices of the linear code

for IPM may vary for different irreducible polynomials. Taking above two polynomials as an

example, the best achievable values of Bd⊥D with d⊥D = 4 for 2-share IPM are different, where

the best Bd⊥D for g1(α) and g2(α) are 4 and 3, respectively. Moreover, an information-theoretic

comparison on side-channel resistance of the corresponding IPM is shown in Fig. 4.11, which

shows a slight advantage of using g2(α).

However, the different irreducible polynomials have marginal impact on the best linear codes

with respect to d⊥D and Bd⊥D . For instance, the possible values for d⊥D are the same for both

g1(α) and g2(α), and the difference on the best values of Bd⊥D is only one when other g1(α) or

g2(α) is deployed.

4.9 Conclusions

In this part, we followed a quantitative approach to characterize the side-channel resistance of

IPM scheme. In particular, we proposed a unified framework and linked it to two theoretical

metrics (SNR and mutual information), and also an attack metric (success rate). The framework

7As an example, this irreducible polynomial is used to construct the optimal codes in [33].
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Figure 4.11: Comparison of the impact of two irreducible polynomials (of the finite field) on the
best linear codes for IPM.

is based on two parameters of the code D, namely the dual distance d⊥D and the coefficient Bd⊥D
in its weight enumeration polynomial. We showed that the concrete security level of IPM can be

fully depicted by our framework. By our framework, we provided a quantitative explanation for

“Security Order Amplification”, which has been observed in previous works including CARDIS’16,

CARDIS’17 and ASIACRYPT’17. At last, we proposed an effective method to select the optimal

codes for IPM and validated by experiments.

Although we validated our framework by simulated leakages with realistic noise parameters,

it is still not clearly verified on real devices. As a perspective, we will consider the practical

validations of our findings. Moreover, we show in Tab. 4.3 and 4.5 optimal codes obtained by

an exhaustive study, which is very time-consuming. Such method to find the optimal codes

becomes computationally impossible when the number of shares n gets larger (e.g., n > 5).

Hence, a systematic (e.g., algebraic) construction of better codes than mere random codes is

much preferable and could be leveraged. However, it is still an open problem to construct

optimal or suboptimal codes for IPM or LS with a larger number of shares.
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Part III

Information Leakage in Code-based
Masking: Formalization,

Quantification and Applications
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CHAPTER 5

Quantifying Leakage in Code-based Masking

This chapter presents the work [35] published at IACR Trans. Cryptogr. Hardw. Embed. Syst.

(TCHES) 2021, issue 3. Part of results are also been demonstrated in [42].
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

5.1 Introduction

Masking is one of the most well-studied countermeasures to protect cryptographic implemen-

tations against side-channel attacks due to the favorable provable security it provides. The

core idea underlying any masking scheme is to split the sensitive (key-dependent) variables into

several shares and perform independent computations on masked variables only. Indeed, the

rationale is that, given a sufficient amount of noise, the attack complexity increases exponentially

with the number of shares [30, 128], while the implementation cost increases only quadratically

(or only cubically in higher-order glitch-free implementations [79]).

Two key ingredients of a masking scheme are the encoding for randomizing the sensitive

variables, and the masked operations for manipulating the random shares. Regarding the

latter, the secure masked operations can be constructed effectively [86, 139] for both bit- and

word-oriented variables. Furthermore, thanks to the well-established concept of (Strong) Non-

Inference (NI and SNI) introduced by Barthe et al. [6], the basic gadgets carrying out the

elementary operations (e.g., addition, multiplication, etc.) can be composed to construct the

whole implementation without losing the claimed security properties. Regarding the former, the

encoding is a more fundamental ingredient in masking that provides the achievable upper bounds

of side-channel security order with tunable public parameters. Indeed, firstly, the side-channel

security order of the full implementation cannot exceed the security order of the corresponding

encoding, and secondly, when implemented ideally, the security order of an implementation can

be guaranteed by its encoding. However, evaluating the concrete side-channel resistance of the

encoding in general cases remains an open problem since many different encodings in various

masking schemes behave differently when fed with diverse parameters. Therefore, a unified

quantification approach would formalize and compare the security of different encodings and

find optimal parameters for a specific masking scheme.

5.1.1 Unifying Masking Schemes by Generalization

Generalization is a promising approach to unify different masking schemes. In this trend,

the code-based masking generalizes many existing schemes, including Boolean masking, Inner

Product masking (IPM)1 [2, 3], Leakage Squeezing (LS) [23, 24] and Direct Sum masking

(DSM) [17, 123]. To the best of our knowledge, the generalized code-based masking (GCM) [164]

1We consider the improved IPM [2] rather than the original one [4], since firstly, there exist some first-order
information leakages in the latter [130], and secondly the performance of the latter is much lower than the former,
which makes it impractical.
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is the most generic scheme in this respect. In particular, polynomial masking [77, 131] is also a

special case of GCM, which is built upon Shamir’s secret sharing (SSS) scheme [145].

Let X ∈ Fk2` and Y ∈ Ft2` be respectively the sensitive variable and t random masks. Then

the encoded variable in GCM writes:

Z = XG + YH ∈ Fn2` ,

given that k + t ≤ n, where G and H are generator matrices of two codes C and D, respectively.
For the sake of simplicity, we take k = 1, but essentially, the GCM can use packed secret sharing

techniques [79, 164] to improve the performance by parallelism. However, the side-channel

security evaluation of encoding is similar to any k, since each of the k sensitive variables is

encoded similarly. The overview of connections between these masking schemes is shown in

Fig. 5.1, where the four intersecting areas are:

Direct Sum Masking 
(DSM)

Leakage Squeezing 
(LS)

Inner Product 
Masking (IPM)

Generalized Code-based Masking
(GCM)

Boolean Masking

(BM)

Figure 5.1: Overview of code-based masking schemes. In particular, all intersections I, II, III, and
IV mean that n = t+ 1 in SSS-based masking, where the two codes C and D are complementary.

• Intersection I: as pointed out in [51], Boolean masking can be considered as a special case of

polynomial masking for small enough parameters (n ≤ 6 or equivalently t ≤ 5).

• Intersection II: in [2], the authors claimed that the polynomial masking is a special case of IPM.

However, this generalization does not indicate the exact connections between SSS-scheme and

RS codes. Indeed, if we take the polynomial evaluations in encoding into consideration, the

generalization from SSS-based masking to IPM is valid only when n = 2 and t = 1.
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• Intersections III and IV: in SSS-based masking, if n = t+ 1, the codes C and D are comple-

mentary, therefore they can be viewed as DSM (or LS) scheme. Otherwise, if n > t+ 1, the

corresponding masking schemes are out of DSM’s scope. On the other side, the linear codes

for DSM may not be converted into SSS-based schemes since the codes in SSS are endowed

with a specific algebraic structure.

The most significant benefit of utilizing code-based masking is the higher security order

than the simple Boolean masking given the same number of shares. Taking 2-share IPM over

F28 [3, 37] as an instance, when appropriate public parameters are chosen, the side-channel

security order can be maximized to 3 under the bit-probing model [123], which is higher than 1

in Boolean masking. Moreover, the security orders are enlarged to 7 vs. 2 (IPM vs. Boolean

one) in 3-share scenarios [37, Tab. 2].

Currently, the side-channel security order of GCM has been connected to the dual distance

of D [24, 123], which is denoted as d⊥D. As a special case, the security order t in IPM and

DSM is equal to d⊥D − 1 since the two codes C and D are complementary. However, as pointed

out in [37], the dual distance of D is not sufficient to characterize the concrete side-channel

resistance of IPM, hence a new framework with a new parameter (more precisely Bd⊥D , which

counts the number of codewords of Hamming weight equal to d⊥D in D⊥) is proposed to model

IPM’s concrete security level more accurately. Nevertheless, this framework is not applicable to

GCM since C and D may not be complementary anymore.

5.1.2 Public Points in SSS and Polynomial Masking

To construct a t-th order secure polynomial masking, a polynomial of degree t is firstly selected:

fX(X) = X +
∑t
i=1 uiX

i, where the secret X is then associated as the constant term in fX(X).

Secondly, fX(X) is evaluated in n distinct points αi for 1 ≤ i ≤ n, which are called “public

points” in the scheme. As a result, the secret X is encoded by using the private parameters ui

(which are random masks viewed in the context of masking).

As observed in [29], the public points in SSS play a significant role in the side-channel

resistance of SSS-based masking schemes. In fact, this problem of public points is inherent in

the SSS scheme and can be dated back to Massey [105] who claimed that SSS scheme “can

be attacked with the well-developed tools of algebraic coding theory”. The SSS-based masking

provides a practical example whereby changing the public points in polynomial masking, the

concrete security level can be significantly different.
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However, to the best of our knowledge, there are neither qualitative principles for selecting

good or even optimal public points in SSS-based masking nor a quantitative approach to evaluate

the role of public points played in the side-channel resistance of SSS-based masking. In this

chapter, we propose solutions to the two problems by utilizing a coding-theoretic quantitative

approach.

5.1.3 Independence Assumption behind Masking Schemes

The independence assumption is an indispensable condition behind the security proofs when

extending from the probing model to the bounded moment model or noisy leakage models [8, 60].

For instance, if this independence condition is violated due to physical defaults (e.g., couplings

through the ground or parasitic capacitances, glitches, etc.), the side-channel security order

will decrease accordingly [61]. However, this independence condition is essentially related to

inter-share leakages from different shares in masking and treats each share as a whole.

Moreover, the independence issue also happens in intra-share cases where the leakages of

different bits in the same share leak jointly. This kind of leakage is often called non-linear

leakages and comes, e.g., from registers or memory units of real devices. In fact, both intra-share

and inter-share independence issues can happen simultaneously. Taking AES implemented

on ARM Cortex-M4 as an example, where the registers are 32-bit, and each share is in F28 ,

four shares can be manipulated at the same time. Consequently, the register will leak jointly,

including intra-share and inter-share leakages. To the best of our knowledge, the intra-share

independence issue has not yet been studied thoroughly in the sense of security order reduction.

We will show that essentially, the intra-share independence is the condition for higher security

orders under the bounded moment model [8].

5.2 Our Contributions

In view of the above state-of-the-art, our contributions are threefold as follows.

A Unified Leakage Quantification Approach for GCM. We derive a closed-form ex-

pression for SNR to quantify the information leakages in GCM for any leakage functions. In

particular, we present a simplified expression for the Hamming weight leakage model. In fact,

this new result generalizes the framework proposed in [37] for IPM. Furthermore, we use mutual

information (MI) to quantify the information leakages of GCM in an information-theoretic sense.

Both SNR and MI are connected to two properties (namely the dual distance and the number
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of conditioned codewords) of the linear codes used in GCM. Relying on a theoretical analysis of

SNR and MI, we propose a unified approach to quantify information leakage in GCM. Then we

show how to select optimal codes for GCM by optimizing the two properties. The experimental

results confirm that the MI can be minimized by utilizing optimal codes, which indicates the

improved concrete security level of the corresponding masking scheme.

Optimal Public Points for SSS-based Polynomial Masking. As an application of our

unified approach, we characterize the side-channel resistance of polynomial masking from

a coding-theoretic point of view. The first outcome is a more accurate characterization of

information leakage and the second outcome is a straightforward method to choose optimal

linear codes (parameters) for SSS-based masking. For the first time, we quantify the impact of

combining different public points in SSS-based masking in the context of side-channel analysis

and show that more shares leak more information (given a specific t). In particular, our coding-

theoretic approach can exactly depict the observations made in [29]. Using MI, we present the

quantitative results of information leakages in SSS-based masking, which again validate our

unified approach. For the first time, we exhibit several optimal tuples of public points (the linear

codes in a coding-theoretic perspective) for SSS-based masking in the sense of side-channel

resistance.

Revisited Independence Condition in Masking Schemes. Independence condition re-

quires that the information leakages from different variables are statistically independent. In the

context of masking, it exists in two cases: inter-share and intra-share. Specifically, the former

means that the leakages of different shares are independent, which is well-studied in literature [8].

The latter deals with the leakages from one share, in which different bits in this share may

leak independently or not. To capture both of them, we introduce the leakage function P ,

where its numerical degree indicates both cases’ independence conditions. For instance, the

commonly assumed Hamming weight leakage model has a numerical degree equal to 1, a perfect

independent case. Moreover, we show how the degree of P affects the side-channel security order

of a masking scheme.

We underline that all mathematical derivations presented in this chapter have been verified

formally with Magma computational algebra system [158]. The open sources of this work are

available on Github [34].

64



5.3 Encodings in Code-based Masking

Differences between Chap. 4 or [37] with GCM. In this work, we study GCM by using

a similar coding-theoretic approach as in [37]. However, two key differences make this work

significantly different from [37].

Firstly, GCM generalizes IPM by allowing C, and D to be non-complementary, which allows

deriving security metrics in a more general manner. In [37], the authors prove that the side-

channel security of IPM only depends on the code D. While in this work, for the first time, we

show that the side-channel security depends on both C and D. In particular, the quantitative

findings enable us to put forward optimal GCM encodings which are new upon [51]: given the

same parameters n and t (the number of shares and security order), we decrease the information

leakage in GCM to the lesser possible extent.

Secondly, GCM allows for protections in much more general contexts. Namely, GCM can be

used to withstand glitches [131] and to detect errors against fault injection attacks on top of

preventing side-channel attacks. Therefore, our work has broader implications for the protection

of realistic platforms. In a nutshell, GCM opens a new path to derive unified countermeasures

against both fault injection and side-channel attacks.

5.3 Encodings in Code-based Masking

5.3.1 Technical Overview

Let n, k be positive integers and K = F2` be a finite field. Let C be an [n, k]q linear code

parameter with generator matrix G defined over Fq (here we use q = 2`). Let the irreducible

polynomial be g(α) = α8 + α4 + α3 + α2 + 1 to generate the field K = F28 . Recall that for

an (n, t)-SSS scheme, the secret X is split into n shares, and the sharing is t-privacy, where

any t+ 1 shares can be used to recover the secret but not for less than t shares. Note that the

(n, t)-SSS scheme is also connected to the Reed-Solomon (RS) code with parameters [n, t+ 1].

Let X ∈ Kk, Y ∈ Kt and Z ∈ Kn be the sensitive variable, the random masks, and the

shared variable; we use Eqn. 5.1 as the uniform representation of encoding in GCM which is

used throughout the chapter:

Z = XG + YH ∈ Fn2` , (5.1)

where k+ t ≤ n, G and H are two generator matrices of the two codes C and D with C∩D = {0}.
In this work, we focus on GCM, which is the most general case of code-based maskings1. By

using the uniform representation as Eqn. 5.1, we revisit the encodings of code-based masking
1As a special case of IPM, a Boolean masking can be obtained by taking αi = 1 for 1 ≤ i ≤ t in Tab. 5.1.
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schemes as in Tab. 5.1.

Table 5.1: Encodings in IPM, LS, DSM, SSS-based masking and GCM, revisited.

IPM

[2, 3]

LS 1

[23]

DSM

[17, 123]

SSS-based masking

[77, 131]

GCM

[164]

Conditions

on C and D
C ∩ D = {0},
C +D = Kn

C ∩ D = {0},
C +D = Kn

C ∩ D = {0},
C +D = Kn

C ∩ D = {0} C ∩ D = {0}

G ∈ Kk×n
(

1 0 0 · · · 0
)

G ∈ Kk×n G ∈ Kk×n
(

1 1 · · · 1
)

G ∈ Kk×n

H ∈ Kt×n


α1 1 0 · · · 0

α2 0 1 · · · 0

...
...

...
. . .

...

αt 0 0 · · · 1

 H ∈ Kt×n H ∈ Kt×n


α1

1 α1
2 · · · α1

n

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αt1 αt2 · · · αtn

 H ∈ Kt×n

Security

parameters:

n, k, t

k = 1, n = t+ 1

n = k + t.

G, H can be

any matrices

n = k + t.

G, H can be

any matrices

n ≥ k + t and fX(X).

In glitch-free case,

n ≥ 2t+ 1 [131]

n ≥ k + t.

G, H can be

any matrices

5.3.2 Connecting SSS Scheme to the RS code

We recall the (n, t)-SSS scheme by mainly referring to [28, 29]. Let X ∈ K again be the secret

and can be split into n shares such that no tuple of shares with cardinality lower than t depends

on X. The SSS scheme consists in selecting a random polynomial fX(X) =̇ X +
∑t
i=1 uiX

i

of degree t where ui with 1 ≤ i ≤ t are t random coefficients (masks) in K. The secret X

is the constant term: X = fX(0). Then a (n, t)-sharing (Z1, Z2, . . . , Zn) of X is defined by

evaluating the polynomial fX(X) in n distinct public non-zero points α1, α2, . . . , αn in K such

that Zi = fX(αi). The recovery of X from its sharing consists in two steps: fX(X) is first

recovered by using the Lagrange interpolation and second, fX(X) is evaluated in 0. Since in

an (n, t)-SSS, any tuple of shares with cardinality greater than t can be used to recover X, we

denote by U the selected shares (|U | ≥ t+ 1), which is called the interpolation set.

Actually, these two steps can be combined into one [29]:

X =
∑
Zi∈U

Zi · γi , (5.2)

where the public constants γi are computed from αi by: γi =
∏n
j=1 s.t. j 6=i, Zj∈U

αj
αj−αi .

1LS consists of the application of an arbitrary bijection on the shares. Although it has only been studied on
vectors of bits (on F2), it can be trivially extended to vectors on F2` . When the bijections are linear, LS is thus
equivalent to DSM.
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Remark 5.1. Note that in K = F2` , the subtraction is the same operation as the addition.

Remark 5.2. In an (n, t)-SSS scheme, any combination of more than t shares, meaning |U | ≥ t+1,
can be used to recover the polynomial fX(X) and the secret X. Hence, in each combination
(e.g., each set U), γi should be computed correspondingly.

Next, we recall the Reed-Solomon codes.

Definition 5.1 (Reed-Solomon Code [29]). The Reed-Solomon code RS(S, t + 1) ⊂ Kn of
dimension t+ 1 over a finite field K and with evaluation subset S = {α0, α1, . . . , αn} of K is the
subspace:

RS(S, t+ 1) = {(f(α0), f(α1), . . . , f(αn)); f(X) ∈ K[X] and deg(f) ≤ t} .

Given the degree of f(X) is t, then t+ 1 evaluations of it can be used to recover f(X) itself

and the codewords. In terms of RS codes, the sharing of X with SSS scheme is an encoding

with a RS code RS ({α1, . . . , αn}, t+ 1):

Z = (Z1, Z2, . . . , Zn) = (X, Y )

(
G
H

)
= XG + YH, (5.3)

where
(
G
H

)
is the generator matrix (αji )i∈[1;n], j∈[0; t]. More precisely, G is an 1-by-n matrix

equal to (1, 1, . . . , 1) and H is a Vandermonde matrix. By denoting Gi and Hi the i-th column

of G and H respectively, we have: Zi = fX(αi) = X +
∑t
j=1 Yjα

j
i = XGi + (Y1, . . . , Yt) Hi.

Accordingly, the reconstruction of X from Z = (Z1, Z2, . . . , Zn) is done by taking Zi to

obtain an interpolation set U such that |U | ≥ t + 1. We also call this scheme the redundant

sharing when n > t+ 1 since at least t+ 1 shares can recover X. We will show in Sec. 6.2 that

more redundancies in sharing of SSS-based masking leak more information on X.

5.4 Quantifying Information Leakages in GCM

In this section, we use SNR as a leakage metric to evaluate the information leakages in GCM. In

particular, SNR quantifies the key-dependent leakage at certain degrees. SNR is thus attractive

in that if SNR at a given degree d is null, then one can conclude that the scheme is secure at

order d.

5.4.1 Uniform Representation of Leakage Function

As the first step, we formalize the information leakages from a device. In this respect, we rely

on the clarification on serial and parallel implementations proposed in [8].
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

Before formalization, we give an example to provide some intuition for the uniform leakage

function P . Let Z = (Z1, Z2, . . . , Zn) denote the encoded intermediate with n shares and

X be the secret. By ignoring the noise, we assume the leakage of each share is Li = Zi

under the identity leakage model and L =
∑
i Li is the total leakage. To launch a successful

attack, an adversary needs to find the (smallest) key-depend statics, namely raising d such that

E
[
Ld|X

]
6= E

[
Ld
]
, but E

[
Li|X

]
= E

[
Li
]
for all i < d. Equivalently, an adversary needs the

smallest d such that V
[
E
[
Ld|X

]]
6= 0, which measures the informative part in L.

Formally, let P = ϕP ◦ φP denote the leakage function, where φP is the leakage model for

each share, and ϕP is the combination function that assembles the leakages from selected shares.

In this thesis, we call φP and ϕP the intra-share and inter-share leakage model, respectively.

For instance, in serial implementations, the leakage of each share is: Li = φP (Zi) +Ni, then

the exploitable leakages can be combined by ϕP . For instance, taking the Hamming weight

model and centered product as leakage model and combination function, respectively, then

Li = φP (Zi) +Ni = wH(Zi) +Ni and L =
∏d
c=1(Lc − E [Lc]) = P (Z) +Ntotal where the latter

combines leakages of d shares by the normalized product. Consequently, the highest order of

key-dependent leakages is captured by P with numerical degree d.

Therefore, we use the following representation of P as a pseudo-Boolean function:

P (Z) =
∑

I∈{0,1}n`
βIZ

I , (5.4)

where ZI =
∏
i∈{1,...,n`} s.t. Ii=1 Zi, and βI ∈ R and deg(P ) = max{wH(I) |βI 6= 0}.

Two Probing Models. For the purpose of a finer-grain analysis, we clarify the two kinds of

probing model (see also [54, §2.2]) and corresponding security orders as follows:

• Bit-probing model: each probe only gets one bit at a time where each bit leaks independently

or jointly. Correspondingly, φP is defined at bit-level and ϕP at certain degrees are used to

combine the bit-level leakages. The security order in the bit-probing model is denoted by tb.

• Word-probing model: each probe gets an `-bit word at a time, where an `-bit variable leaks

as a whole. As a result, the degree of φP implies how many numbers of bits leaked jointly,

in which the intra-share independence condition plays a role in security order reduction, as

shown above. Similarly, the security order is then denoted by tw.

When connected to coding-theoretic properties, the security orders tb and tw are related to

the dual distance of the code D used in GCM over F2 and F2` , respectively [37, 123]. More
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precisely1, we have tw = d⊥D − 1 and tb = d⊥D2
− 1 where D2 is the sub-field representation of

D. In the sequel, we call t the security order for the sake of simplicity, tb and tw should be

unambiguous from the context (e.g., variables in F2 or F2`).

5.4.2 SNR-based Information Leakage Quantification

Let P (Z) be a leakage function as in Eqn 5.4 and let N denote the independent noise with zero

mean and variance V [N ] = σ2
total ∝ σ2d (∝ means proportional to σ2d) [37]. Then, the leakage

is:

L = P (Z) +N.

We have V [E [P (Z) +N |X]] = V [E [P (Z)|X]], where Z = XG + YH ∈ Kn = Fn2` is the

encoding in GCM (Equ. 5.1). The SNR of leakages is defined as:

SNR =
V [E [L|X]]

V [N ]
=

V [E [P (Z)|X]]

σ2
total

. (5.5)

Therefore, we propose the following theorem to quantify the leakages in the GCM scheme by

SNR.

Theorem 5.1. Let a device be protected by the GCM scheme as Z = XG + YH. Assume the
leakages of the device can be represented in the form: L = P (Z) + N . Then the SNR of the
exploitable leakages is:

SNR =
V [E [P (Z)|X]]

σ2
total

=
1

22n` · σ2
total

 ∑
x, y∈D⊥\C⊥; x+y∈C⊥

P̂ (x)P̂ (y)

 , (5.6)

where σ2
total ∝ σ2d is the total noise and P̂ (·) is the Fourier transform of P (·)

The demonstration of Theorem 5.1 involves computing V [E [P (Z)|X]], which can be derived

by the following Lemma 5.1. In order to have the paper read fluently, its proof is relegated in

Appendix A.1.1 which also proves Theorem 5.1.

Lemma 5.1. Let a pseudo-Boolean function P (Z) denote the leakage function, and taking the
same notations as above, we have

V [E [P (Z)|X]] =
1

22n`

∑
x, y∈D⊥\C⊥; x+y∈C⊥

P̂ (x)P̂ (y). (5.7)

1In [164], a special case is presented with t > d⊥D − 1. However, we always have t = d⊥D − 1 if the optimal
codes are used in GCM. Especially, the equality holds for all RS codes in SSS-based masking.
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5. QUANTIFYING LEAKAGE IN CODE-BASED MASKING

Remark 5.3. Note that Lemma 5.1 encompasses the core result in [37]. Indeed, as a special case,
if n = t+ 1 in SSS-based masking, the two codes C and D are complementary, as well as C⊥ and
D⊥. Since by Lemma 3.4, we have C⊥ ∩ D⊥ = {0} and the only possible solution in Eqn. 5.7 is
x = y 6= 0. Therefore, V [E [P (Z)|X]] can be simplified into:

V [E [P (Z)|X]] =
1

22n`

∑
x∈D⊥\{0}̂

P (x)2, (5.8)

which is exactly the same result as in [37].

As a nutshell, the information leakages from GCM can be quantified by Theorem 5.1 under

the generic leakage model characterized by P , which evaluates the SNR of the leakages. As a

direct result, we have the following proposition, which connects the code property d⊥D and the

security order in GCM.

Proposition 5.1. The GCM is secure at the order t = d⊥D − 1 under the bounded moment
model and the probing model if deg(P ) < d⊥D.

Proof. Given a pseudo-Boolean function P , one has P̂ (z) = 0 for all z ∈ Kn such that wH(z) >

deg(P ) [25]. As a result, SNR will be zero since deg(P ) < d⊥D and all codewords of D⊥\C⊥ as
in Eqn. 5.6 have Hamming weight no less than d⊥D.

Consequently, the attacks on GCM fail if deg(P ) < d⊥D. Conversely, for an attack to succeed,

one must have deg(P ) ≥ d⊥D. This is, however, only a necessary condition, but not a sufficient

one. Indeed, it is possible that attacks in the setting deg(P ) ≥ d⊥D fail. This is illustrated in the

next remark.

Remark 5.4. The security order can be even higher than d⊥D − 1 when there is no x, y ∈ D⊥\C⊥
such that x + y ∈ C⊥ which have weight d⊥D. Indeed, in Eqn. 5.6, the sum will be empty if
the degree of P is equal to deg(P ) = d⊥D. Thus the SNR is equal to zero, and the security
order increases accordingly. A specific example can be found in [164, Example 1] (shown in
Appendix 6.1), in which d⊥D equals 2 and the security order equals 2 as well.

5.5 Quantifying Hamming Weight Leakages

One realistic leakage model is the so-called “Hamming weight” leakage: each bit is leaking

in a similar amount, though independently from others. It has been demonstrated to be

practical in many works, such as [16]. In this case, the attacker can measure a quantity

P (Z) = wH(XG + YH). However, E [P (Z)|X] = E [P (Z)] if the masking is perfect. But there

exists a d > 1 such that for some x, E
[
P (Z)d|X = x

]
6= E

[
P (Z)d

]
.

70



5.5 Quantifying Hamming Weight Leakages

5.5.1 Simplifications

We use P (z) = wH(z)d as the informative part in a leakage model, which captures the higher-

order leakages where the numerical degree deg(P ) equals d. Moreover, we have:

P (z) = wH(z)d

=
∑

J1+···+Jn`=d

(
d

J1, . . . , Jn`

) n∏̀
i=1

zJii

=
∑

J∈Nn`, s.t. wH(J)<d;∑n`
i=1 Ji=d

(
d

J

)
zJ + d!

∑
I∈{0,1}n`;
wH(I)=d

zI

(5.9)

where N = {0, 1, . . .} is the set of integers. The multinomial coefficient
(

d
J1,...,Jn`

)
is defined as

d!
J1!···Jn`! (recall that J = (J1, . . . , Jn`) ∈ Nn` with

∑n`
i=1 Ji = d). This coefficient equals d! as

long as for all i (1 ≤ i ≤ n`), Ji = 0 or 1. Now, the terms in P (z) are categorized into two cases:

• zJ where J ∈ Nn`, wH(J) < d, which consists in products of < d bits of z, as zJ =∏
i∈{1,...,n`} s.t. Ji>0 zi,

• zI where I ∈ {0, 1}n`, wH(I) = d which consists in products of d bits of z, as zI =∏
i∈{1,...,n`} s.t. Ii=1 zi.

Indeed, let i ∈ {1, . . . , n`}, then zJii = 1 if Ji = 0, and zJii = zi if Ji > 0. The first terms zJ

have numerical degree deg(zJ) < d, hence can be discarded in the analysis (they contribute

nothing to the SNR). Remaining terms of numerical degree d are:
∑
I∈{0,1}n`, wH(I)=d z

I .

Relying on decomposition in Eqn. 5.9, we can simplify lemma 5.1 as follows.

Lemma 5.2. Let a pseudo-Boolean function P (Z) = wH(Z)d denote the leakage function, and
taking the same notations as above, we have

V [E [P (Z)|X]] = B′d

(
d!

2d

)2

. (5.10)

where B′d denotes the adjusted coefficient in weight enumerator which is defined in Def. 5.2.

Before diving into the proof of Lemma 5.2, we define the parameter B′
d⊥D

which count the

number of codewords under certain conditions in C⊥ and D⊥.

Definition 5.2 (Adjusted coefficient in weight enumerator). Let C and D denote two linear
codes. The adjusted coefficient B′d is defined as:

B′d =
∣∣{(x, y) ∈ (D⊥\C⊥)2 |x+ y ∈ C⊥, wH(x) = wH(y) = d}

∣∣ . (5.11)
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To be more precise, we use subscript 2 (if necessary) to indicate the subfield representation

of a linear code. For instance, D2 denotes the subfield representation of D over F2. Therefore,

we have the following lemma for B′d.

Lemma 5.3. Recall that Bd⊥D2

is the coefficient in weight enumerator of D⊥2 defined in Def. 3.2,
then we have the following inequality in SSS-based masking:

B′d⊥D2

≥ Bd⊥D2

.

Proof. B′
d⊥D2

is the number of pairs of codewords (x, y) in D⊥\C⊥ which satisfy the two conditions:

their sum is in C⊥ and their weights are equal to d⊥D2
. Clearly, this number is greater or equal

to the same number of pairs where in addition, x and y are chosen to be identical. In the latter
case, the number of codewords is equal to:

∣∣{x ∈ D⊥\C⊥|wH(x) = d⊥D2
}
∣∣ , (5.12)

because x+ y = 0 does always belong to C⊥ and that x and y have the same Hamming weight
since they are equal. Now, Eqn. 5.12 is the minimum nonzero coefficient in the weight enumerator
of D⊥\C⊥, which is equal to Bd in SSS-based masking.

Hereafter, we demonstrate Lemma 5.2 by utilizing Eqn. 5.9 to simplify Lemma 5.1.

Proof of Lemma 5.2. Let ϕI(z) = zI where I ∈ {0, 1}n`. Thus

zI =
∏
i∈I

zi =
∏
i∈I

(1− (−1)zi)

2
=

1

2d

∏
i∈I

(1− (−1)zi). (5.13)

Since all monomials with numerical degree smaller than d have SNR = 0, we only focus on
monomials with numerical degree equal to d. Taking ϕI(z) = φI(z) + (−1)d

2d
(−1)

∑
i∈I zi where

φI(z) is linear combination of monomials with numerical degree smaller than d in ϕI(z), then
the Fourier transform of ϕI(z) is:

ϕ̂I(y) = φ̂I(y) +
(−1)d

2d

∑
z

(−1)z·I(−1)z·y = φ̂I(y) +
(−1)d

2d

∑
z

(−1)z·(I+y)

= φ̂I(y) +
(−1)d

2d−n`
1{I}(y).

(5.14)

We have φ̂I(y) = 0 for y with wH(y) ≥ d⊥D = t+ 1 > d, since given a pseudo-Boolean function P ,
one has P̂ (z) = 0 for all z ∈ Kn with wH(z) > deg(P ) [17, Lemma 1]. As a result, by combining
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Eqn. 5.14 with Eqn. A.3, we have the following equation:

V[E[P (Z)|X]] =
1

22n`

∑
x, y∈D⊥\C⊥
x+y∈C⊥

P̂ (x)P̂ (y)

=
1

22n`

∑
x, y∈D⊥\C⊥
x+y∈C⊥

 ∑
I|wH(I)=d

(−1)d

2d−n`

(
d

I

)
1{I}(x)

 ∑
I|wH(I)=d

(−1)d

2d−n`

(
d

I

)
1{I}(y)



= 2−2d
∑

x, y∈D⊥\C⊥
x+y∈C⊥

 ∑
I|wH(I)=d

(
d

I

)
1{I}(x)

 ∑
I|wH(I)=d

(
d

I

)
1{I}(y)



=

(
d!

2d

)2 ∑
x, y∈D⊥\C⊥; x+y∈C⊥

1

= B′d

(
d!

2d

)2

,

(5.15)

where B′d is the adjusted coefficient in weight enumerator defined in Def. 5.2.

5.5.2 Connecting SNR with Code Properties

Taking Lemma 5.2 as an input to Theorem 5.1, we have the following theorem for Hamming

weight leakages in GCM.

Theorem 5.2. Let a device be protected by the GCM scheme as Z = XG + YH. Assume the
device is leaking in Hamming weight model in the form: L = P (Z) +N . Then the SNR of the
exploitable leakages is:

SNR =
V [E [P (Z)|X]]

σ2
total

=

 0 , if deg(P ) < d⊥D
B′
d⊥D

σ2
total

(
d⊥D!

2d
⊥
D

)2

, if deg(P ) = d⊥D
(5.16)

where σ2
total is the total noise such that σ2

total ∝ σ2d with deg(P ) = d.

Proof. Obviously, substituting the expression of V [E [P (Z)|X]] in Theorem 5.1 by Lemma 5.2
gives the proof.

The takeaway point is, the Hamming weight leakages, in which deg(P ) = 1, are quantified

by Theorem 5.2, in which the two parameters that have an impact on SNR are the dual distance

d⊥D and the coefficient B′
d⊥D

. Therefore, the two parameters also affect the concrete security level

of GCM. As a straightforward application of Theorem 5.2, the side-channel resistance of GCM

can be optimized by increasing d⊥D and/or decreasing B′
d⊥D

.
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5.5.3 MI-based Information-Theoretic Leakage Quantification

We extend the leakage quantification approach by using another metric, namely MI, in an

information-theoretic sense. Let the secret X be encoded as in Eqn. 5.1, and let the leakages be

L = P (Z) +N , then the MI between L and X is defined as I(L;X) = H(L)− H(L|X) where:

- the total entropy is: H(L) = −
∫
l
Pl log2 Pldl,

- the conditional entropy H(L|X) is: H(L|X) = −∑x∈F`2 Px
∫
l
Pl|x log2 Pl|xdl.

In multivariate cases, two entropies are computed on L = (L1,L2, . . . ,Ld) for a d-variate MI by

a d-D integral on continuous variables. While in monovariate cases, two entropies are computed

by 1-D integrals. Moreover, I(L;X) can be expanded using a Taylor’s expansion1 [23]:

I(L;X) =

+∞∑
d=0

1

2 d! ln 2

∑
x∈F`2

Pr(x)
(kd(P (Z)|x)− kd(P (Z)))

2

(V [P (Z)] + σ2)
d

(5.17)

where kd is the d-th order cumulant [21].

Assuming the device is leaking in the Hamming weight model, we have the following theorem

for quantifying the information leakages in GCM.

Theorem 5.3. Let a device be protected by the GCM scheme as Z = XG + YH. Assume the
leakages of the device can be represented in the form: L = P (Z) +N . Then the MI between L
and X is estimated as:

I(L;X) =

 0 , if deg(P ) < d⊥D
d⊥D!B′

d⊥D

2 ln 2·22d⊥D
× 1

σ2d⊥D
+O

(
1

σ2(d⊥D+1)

)
, if deg(P ) = d⊥D, when σ → +∞

(5.18)

where σ is the standard deviation of noise in the leakage of each share.

Proof. Since for a d-CI (Correlation Immune) function [22, Def. 1], all moments of order i ≤ d
are centered, so are the cumulants. Therefore, the first nonzero cumulant kd(X) is kd⊥D (X) and

it equals µd⊥D(X). As a consequence, the term E
[
(kd(P (Z)|X)− kd(P (Z)))

2
]
in Eqn. 5.17 is

null for all d < d⊥D and it is equal to E
[
(µd(P (Z)|X)− µd(P (Z)))

2
]

= V
[
µd⊥D (P (Z)|X)

]
=

V
[
E
[
P (Z)d

⊥
D |X

]]
for d = d⊥D.

Assume that the device leaks in Hamming weight model, then P (Z)d
⊥
D has a degree equal to

d⊥D. Hence the MI is equal to:

I(L;X) =
1

2 ln 2 · d⊥D!

V
[
E
[
P (Z)d

⊥
D |X

]]
(V [P (Z)] + σ2)

d⊥D
+O

(
1

(V [P (Z)] + σ2)
d⊥D+1

)
, (5.19)

1The normalization by ln 2 allows the mutual information to be expressed in unit of bits.
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when σ → +∞. Finally, Eqn. 5.19 can be further developed at the first order in 1/σ2d⊥D as
follows after involving Eqn. 5.15:

I(L;X) =
d⊥D!B′

d⊥D

2 ln 2 · 22d⊥D
× 1

σ2d⊥D
+O

(
1

σ2(d⊥D+1)

)
,

when σ → +∞, which proves Theorem 5.3.

A comparison of MIs by estimation and numerical calculation is shown in Fig. 5.2. More

precisely, the estimated MIs are converging to numerical one when log10 σ
2 ≈ 1.5, which verifies

Theorem 5.3 numerically.
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Figure 5.2: Numerical calculation and approximation of I(L;X) between leakage L and the
sensitive variable X in (3, 1)-SSS based masking. The three public points are α1 = αi, α2 =

αj , α3 = αk.

Summing up, the information leakages of GCM under the Hamming weight model can be

estimated by the two parameters d⊥D and B′
d⊥D

in an information-theoretic sense. In the general

case of leakage function P , the MI can be estimated similarly by applying different forms of P

into Eqn. 5.19 to derive connections to coding properties correspondingly.

5.6 Optimal Codes for GCM

Thanks to Theorem 5.1, 5.2 and 5.3, we can compare the information leakages of GCM in a

quantitative manner. More importantly, relying on the analytic characterization of information
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leakages, the three theorems enable us to choose optimal linear codes for GCM. Specifically,

the codes with maximized d⊥D and minimized B′
d⊥D

are the best candidates for GCM. Consid-

ering the SSS-based masking as a special case, the optimal public points can be determined

straightforwardly by applying the two theorems.

To thoroughly validate the optimal codes, we consider multivariate leakages. In particular,

it is shown in [153] that comparing to sum, absolute difference, and normalized product, the

joint distribution is the most efficient way to combine the multivariate leakages in side-channel

analysis. In this work, we consider both sum and joint distribution to exploit the multivariate

leakages. A comparison of the two combination functions in an information-theoretic sense is

presented in Appendix B.3.

We take (3, 1)-SSS based masking as an example of GCM and specify it as follows. Let X

be encoded into Z = XG + YH with n = 3 shares, the two generator matrices are:

G = ( 1 1 1 ) ,

H =
(
α1 α2 α3

)
=
(

1 αj αk
)
. (5.20)

Considering the common “Hamming weight + Gaussian noise” model, the side-channel leakages

are simulated as follows. Let L = (L1,L2,L3) be 3-D leakages where Li = φP (Zi) + Ni =

wH(Zi) + Ni for 1 ≤ i ≤ 3 and Ni ∼ N (0, σ2) is the Gaussian noise. To combine the 3-D

leakages, other sum or joint distribution are applied wherein ϕP (L) =
∑3
i=0 Li is called 1-D

leakages or ϕP (L) = (L1,L2,L3) is called 3-D leakages, respectively.

The results are shown in Fig. 5.3(a) and 5.3(b) are 1-D MI and 3-D MI, respectively (more

results over F24 are in Fig. 5.4). The first observation is that the 3-D MI utilizing joint distribution

exploits more key-dependent information existed in leakages, therefore the attack is more efficient

when using the joint distribution of leakages [18]. Secondly, the numerical results in Fig. 5.3 are

in accordance with the Theorem 5.2 and 5.3, where the two parameters d⊥D and B′
d⊥D

in codes

play a significant role in determining the side-channel resistance of GCM.

Thirdly, the strategy to choose the optimal codes for GCM is to maximize the dual distance

d⊥D and/or to minimize the conditioned number of codewords B′
d⊥D

. Moreover, the concrete

side-channel security level of GCM will be improved by optimizing either of the two parameters.

Interestingly, when the noise levels are at certain intervals, the codes with smaller d⊥D (also with

smaller B′
d⊥D

) may be better than that with larger d⊥D. For instance, for the curves in purple

(the fourth one) and in sky-blue (the fifth one) of Fig. 5.3, the corresponding d⊥D are 2 and 3,
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Figure 5.3: An information-theoretic evaluation of the leakages L and the sensitive variable X in
(3, 1)-SSS based masking. We choose seven codes with different values of d⊥D and/or B′

d⊥D
. The

three public points are α1 = αi, α2 = αj , α3 = αk.
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(a) 1-D MI on 4-bit case.
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Figure 5.4: An information-theoretic evaluation of the leakages L and the sensitive variable
X ∈ F24 . Six codes are chosen with different d⊥D2

and/or B′
d⊥D2

.

respectively. When σ2 < 10, the purple curve shows a better side-channel resistance than the

sky-blue one.

5.7 Conclusions and Perspectives

This chapter presented a unified approach to quantifying the information leakages of code-based

masking in the most general case, namely GCM, which already encompasses many state-of-the-

art masking schemes. Firstly, by a uniform representation of encodings in GCM, we proposed a
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quantitative approach to evaluate the concrete security level of GCM. The signal-to-noise ratio

and mutual information are used as two complementary metrics to quantify the lowest degree

of key-dependent leakages. By this unified approach, we were able to quantify the impact of

different codes in GCM and optimize it by choosing optimal codes for it. Next, we evaluated

the impact of public points in Shamir’s Secret Sharing in the context of masking. Thanks to the

unified analytic approach, we showed the impact of public points in side-channel security orders

of the corresponding masking. More importantly, we provided a roadmap to optimal linear codes

for designers to optimize the SSS-based masking (also GCM) soundly. Lastly, we revisited the

independence condition behind the masking scheme and showed that the intra-share dependence

could ruin higher-order security under the bounded moment model. In particular, we showed

how the higher-order intra-share leakages affect the side-channel security orders precisely.
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CHAPTER 6

Redundancy in Code-based Masking

This chapter presents the work [35] published at IACR Trans. Cryptogr. Hardw. Embed. Syst.

(TCHES) 2021, issue 3. Part of results are also been demonstrated in [42].
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6.1 A Starter Example

As shown in Remark 5.4, there are some cases of GCM in which the side-channel security order

can be greater than the dual distance of D minus one. In particular, Wang et al. [164] presented
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6. REDUNDANCY IN CODE-BASED MASKING

an example where the generator matrices of C and D as follows, respectively,

G =

(
1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0

)
∈ F2×8

2 ,

H =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 1
0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1

 ∈ F4×8
2 .

(6.1)

We can compute the generator matrices of the dual codes C⊥ and D⊥ as follows, respectively,

G⊥ =


1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 ∈ F6×8
2 ,

H⊥ =


1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 1
0 0 0 1 0 1 0 1
0 0 0 0 1 1 1 0

 ∈ F4×8
2 ,

(6.2)

where C⊥ is a code with parameters [8, 6, 1] and D⊥ is of parameters [8, 4, 2]. We have d⊥D =

dD⊥ = 2 and B2 = 1 for D⊥. Therefore, there is only one codeword u = [1, 1, 0, 0, 0, 0, 0, 0] ∈ D⊥

such that wH(u) = 2. Since u is also in C⊥, which indicates that B′2 equals 0. As a consequence,

applying Theorem 5.2 gives that SNR equals 0 for deg(P ) = d⊥D = 2 under Hamming weight

leakages (e.g., P (Z) = wH(Z)) and then the security order is at least equal to d⊥D, rather than

d⊥D − 1. More generally, taking Theorem 5.1 gives the same conclusion for any leakage function

P with deg(P ) = 2.

In particular, we checked that the first nonzero B′
d⊥D

for nonzero codewords is B′3 = 3.

Therefore the security order is exactly 2 in above example.

6.2 Enhancing the SSS-based Polynomial Masking

In the context of masking, the random masks in SSS-based masking are ui for 1 ≤ i ≤ t where
α1, α2, . . . , αn are n public points. Two main observations made in [29] are:

• the choices of public points αi can have an impact on side-channel resistance of the corre-

sponding masking scheme, therefore, combining different t+ 1 tuples of Zi, the efficiencies of

corresponding template attacks are different,

• combining more than t+ 1 tuples of Zi may improve the attack efficiency in the sense of the

number of traces needed to recover the secret key.
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Recall that the generator matrices in SSS-based masking (e.g., the RS code) from Tab. 5.1,

G and H are the same as the generator matrices in DSM when n = t + 1. In the context of

masking, we only care about G and H, since the former is used to encode the secret X and the

latter is for encoding the random masks (e.g., u1, . . . , ut in the case of SSS-based masking).

Note that H is a Vandermonde matrix, resulting in that the code D is a maximum distance

separable (MDS) code, it is optimal at word-level. However, with different parameters αi for

1 ≤ i ≤ n, the codes have different impacts on side-channel resistance when they are adopted in

masking schemes.

6.2.1 Further Clarifications

We further clarify the properties of the code D and its dual as follows. Let D be an RS code of

parameters [n, t, n− t+ 1] which is generated by H in Eqn. 5.3. Then its dual code D⊥ is also

an RS code of parameters [n, n− t, t+ 1] [101]. Recall the connections between the RS code

and SSS scheme, D can be used to construct an (n, t)-SSS scheme.

Given that n ≥ t+ 1, we assume that t+ 1 ≤ n′ ≤ n, the code D′ is constructed by selecting

n′ columns from the generator matrix H of D (or equivalently, remove n− n′ columns in H).

Subsequently, the code D′ has parameters [n′, t, n′ − t+ 1]. It is also an RS code and its dual

code D′⊥ has parameters [n′, n′ − t, t + 1]. Therefore, the dual distance of D′ is equal to D,
namely d⊥D′ = d⊥D = t+ 1. In summary, removing some coordinates (n′ ≥ t+ 1) in RS code does

not decrease its dual distance (at word-level).

Remark 6.1. Note that for two arbitrary linear codes D and D′ where the latter is generated
from the former as above (by selecting some coordinates), we have the following lemma for their
dual distances.

Lemma 6.1. d⊥D ≤ d⊥D′ .

Proof. Assume u ∈ D′⊥, by appending n− n′ zeros to u, then the new codeword (u, 0n−n′) is
also a codeword of D⊥. Therefore we have d⊥D ≤ d⊥D′ [26].

Interestingly, Lemma 6.1 implies that given a fixed t, adding more shares in an (n, t)-SSS

based masking cannot increase the security order of the corresponding masking scheme and can

be more likely to lower the security order, especially under the bit-probing model.

6.2.2 Representing Linear Codes in Subfield F2

We take F2 as the subfield, then any codes over F2` can be expanded into subfields by code

expansion Def. 3.6. We further investigate the properties of codes D and D′.
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Let D2 and D′2 denote the expanded codes of D and D′ over F2, respectively. Since they are

not MDS codes at the bit level, there is no straightforward method to compare the dual distances

of D2 and D′2. However, by Lemma 6.1, it is obvious to have d⊥D2
≤ d⊥D′2 . This connection helps

in SSS-based masking since, by increasing n, the dual distance at word-level keeps the same,

but the dual distance at bit-level cannot be larger than in the case with n′ = t+ 1. Moreover,

from the adversary’s viewpoint, combining more than t+ 1 shares may be more efficient when

attacking a specific SSS-based implementation.

From the quantitative results in Sec. 5.4, two parameters that have an impact on the side-

channel resistance of GCM is the dual distance d⊥D2
and the coefficient B′

d⊥D2

. Hereafter, we use

the information-theoretic metric to show how the more redundant shares affect the concrete

security level in SSS-based masking.

6.2.3 More Redundancy in Sharing Leaks More

We present an information-theoretic evaluation on (3, 1)-SSS based polynomial masking. Taking

n = 3 and t = 1, then the three public points (α1, α2, α3) can be derived by setting α1 = αi,

α2 = αj and αj = αk, where i, j, k must be distinct integers. Due to the equivalence of the

linear codes (Sec. 3.1), we can choose i = 0, 1 ≤ j < k ≤ 254 and obtain 32131 candidates rather

than
(

255
3

)
= 2731135 in total. Recall that the generator matrices G and H are as in Eqn. 5.20.

Therefore, taking a random mask u1, the X is encoded into:

Z = (Z1, Z2, Z3) = XG + u1H = (X + u1α1, X + u1α2, X + u1α3) . (6.3)

For all possible values of α1, α2, α3 ∈ F28 , we study the dual distance d⊥D and the coefficient

Bd⊥D at both word-level and bit-level. As expected, all codes have the same weight enumerator

at word-level (they are all MDS codes and optimal at word-level). However, there are three

possible values for d⊥D at bit-level, namely d⊥D2
∈ {2, 3, 4}. Hence, for each possible d⊥D2

, we

further study the possible values for the other parameter Bd⊥D2

. In particular, for each case

of d⊥D2
, we show two or three codes with maximal and minimal values of Bd⊥D2

. The specific

properties of the codes are listed in Tab. 6.1 1 and the MI between the leakages L and X are

depicted in Fig. 5.3. The complete details of all linear codes for the (3, 1)-SSS based masking

are available in [34].

1The data in Tab. 6.1 is formally verified by Magma [158]. Moreover, the scripts for calculating B′d are also
available on Github [34].
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Table 6.1: Exhibiting different codes in (3, 1)-SSS scheme generated by Eqn. 6.3. Note that we
take α1 = αi = 1, α2 = αj and α3 = αk.

j = 1

k = 2

j = 1

k = 3

j = 7

k = 15

j = 24

k = 48

j = 8

k = 79

j = 59

k = 172

j = 72

k = 80

Minimum distance dD 3 3 3 3 3 3 3

Dual distance (word) d⊥D 2 2 2 2 2 2 2

Dual distance (bit) d⊥D2
2 2 2 3 3 4 4

Coefficient (bit) Bd⊥D2

20 18 1 22 1 76 36

Coefficient (bit) B′
d⊥D2

34 18 1 60 1 140 44

As shown in Tab. 6.1, for the first time, we exhibit an approach to find the optimal codes for

SSS-based masking and present optimal codes for (3, 1)-SSS based masking. Specifically, the

code with α1 = 1, α2 = α72 and α3 = α80 (in the last column of Tab. 6.1) is one of the best

candidates for (3, 1)-SSS based masking. In addition, the generator matrices of all three optimal

(nonequivalent) codes are shown in Appendix B.2. It is worth noting that the codes obtained by

permuting the order of αi for 1 ≤ i ≤ 3 are equivalent, resulting in only three optimal codes for

(3, 1)-SSS based masking over F28 .

Using the same settings of (3, 1)-SSS based masking as in Sec. 5.6, the results of MI on the

information leakages of 3-share and corresponding 2-share combinations are shown in Fig. 6.1.

In each of four cases, the main takeaway point is that given a specific t in (n, t)-SSS based

masking, all the more shares leak more key-dependent information. Specifically, we first highlight

that the smallest security order determines the side-channel security of SSS-based masking

among all
(
n
t+1

)
combinations. In the context of coding theory, the dual distance of n-share

SSS-based masking is determined by the minimum value of dual distances in truncated codes

D′. Two instances are in Fig. 6.1(b) and 6.1(c) where the minimum of dual distances are 2 and

3, respectively.

Secondly, when the codes in SSS and its truncated variants have the same dual distance,

the parameter B′
d⊥D

plays a role in side-channel resistance. More precisely, smaller B′
d⊥D

brings

improved concrete security for GCM. Two instances are shown in Fig. 6.1(a) and 6.1(d) where

the dual distances of D are 2 and 4, respectively. Interestingly, a recent work [51] provides

empirical comparisons on some instances of (2, 1)-SSS and (3, 1)-SSS based masking, which

confirms our information-theoretic evaluation.
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Figure 6.1: More shares leak more information, two study-cases on (3, 1)-SSS based masking,
where the three public points are: α1 = αi, α2 = αj , α3 = αk.

In summary, the information-theoretic evaluations in Fig. 6.1 confirms that more redundancy

in sharing of GCM would leak more information. Besides, one way to find optimal codes for

GCM is to build up from (sub-)optimal choices of the codes with less shares.

6.2.4 Different Codes for (3, 1)-SSS and (5, 2)-SSS based Masking

We present further results for both (3, 1)-SSS and (5, 2)-SSS based masking schemes which are

supplementary to Tab. 6.1.

Note that in Tab. 6.3 we fix both α1 and α2 since there are too many candidates for

enumeration (more accurately,
(

255
5

)
= 8, 637, 487, 551 candidates in total). In addition, the

reason for taking α2 = α8 is that (1 α8) ∈ F2
28 is one of the optimal code for (2, 1)-SSS based

masking.
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Table 6.2: Exhibiting different codes in (3, 1)-SSS scheme over F24 generated by Eqn. 5.20. Note
that we take α1 = αi = 1, α2 = αj and α3 = αk.

j = 1

k = 2

j = 1

k = 3

j = 3

k = 7

j = 4

k = 8

j = 5

k = 10

Minimum distance dD 3 3 3 3 3

Dual distance (word) d⊥D 2 2 2 2 2

Dual distance (bit) d⊥D2
2 2 2 3 3

Coefficient (bit) Bd⊥D2

8 6 1 17 16

Coefficient (bit) B′
d⊥D2

14 6 1 45 40

Table 6.3: Exhibiting different codes in (5, 2)-SSS scheme over F28 . Note that we fix α1 = αi = 1,
α2 = α8 and enumerate all possible α3 = αk, α4 = αl and α5 = αr.

k = 116

l = 169

r = 214

k = 1

l = 3

r = 184

k = 139

l = 172

r = 225

k = 1

l = 3

r = 12

k = 18

l = 52

r = 219

k = 1

l = 5

r = 51

k = 14

l = 111

r = 219

k = 90

l = 92

r = 192

Minimum distance dD 4 4 4 4 4 4 4 4

Dual distance (word) d⊥D 3 3 3 3 3 3 3 3

Dual distance (bit) d⊥D2
3 3 4 4 5 5 6 6

Coefficient (bit) Bd⊥D2

19 1 29 1 43 1 115 30

Coefficient (bit) B′
d⊥D2

35 1 39 1 55 1 215 32

Table 6.4: Exhibiting different codes in (5, 2)-SSS scheme over F24 . Note that we take α1 = αi = 1,
α2 = αj , α3 = αk, α4 = αl and α5 = αr.

j = 1, k = 4

l = 6, r = 12

j = 1, k = 4

l = 6, r = 11

j = 1, k = 2

l = 3, r = 11

j = 3, k = 6

l = 9, r = 12

j = 1, k = 3

l = 5, r = 8

Minimum distance dD 4 4 4 4 4

Dual distance (word) d⊥D 3 3 3 3 3

Dual distance (bit) d⊥D2
3 3 3 4 4

Coefficient (bit) Bd⊥D2

12 11 1 25 17

Coefficient (bit) B′
d⊥D2

20 19 1 225 39

6.3 Revisiting the Independence Condition

Failing to ensure the independence of the shares can ruin a masking scheme by revealing a lower

order of key-dependent leakages than the designed security order. For instance, the unintentional
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physical coupling [8] in the hardware device can combine leakages from different shares, hence

degrade the concrete security level of a masked implementation. In this section, we investigate

the intra-share independence issue and show the theoretical condition of higher-order security of

code-based masking, especially in GCM as it is the most general case.

Another reason why the independence condition might be broken is the existence of glitches.

Let us reason on a canonical example, namely that of the exclusive-or (XOR) gate. Let Z1

and Z2 be two single-bit shares, which enter an XOR gate. Recall that the leakage function

is P = ϕP ◦ φP as introduced in Sec. 5.4. Taking φP = 1, then the leakage function is the

pseudo-Boolean function ϕP , which lives in F2 × F2 → R. It is equal to:

ϕP (Z1, Z2) = Z1 × Z2 + (1− Z1)× (1− Z2) = 2Z1 × Z2 − Z1 − Z2 + 1. (6.4)

This function can glitch because of the term Z1 × Z2. Indeed, if Z1 changes, then the leading

term still depends on Z2 (derivative). Therefore, glitches are dreadful since they consist in

combinations from within the chip, even before the measurement noise arrives.

An Information-Theoretic Evaluation of Intra-Share Independence. We consider the

Hamming weight as leakage model in a perfect independent case and take the weighted square

of Hamming weight as second-order (non-linear) leakages as follows:

φP (Zi) =
∑̀
j=1

Zi,j + w
∑̀
j 6=k

Zi,jZi,k = wH(Zi) + w
∑̀
j 6=k

Zi,jZi,k (6.5)

where Zi is an `-bit share and w is the weight of second-order leakages. As a consequence,

P (Z) = φP (Z) will be the same as Hamming weight model with deg(P ) = 1 if w = 0. Otherwise,

there exists a different amount of second-order leakages indicated by w where the degree of

P equals 2. The MI results on four candidates of w are shown in Fig. 6.2 for 4-bit and 8-bit

variables, respectively. It is worthwhile to note that in 2-share settings with n = 2 and t = 1,

the SSS-based masking can be transformed into IPM by changing the way of involving public

parameters αi for 1 ≤ i ≤ n. Essentially, the two schemes are different because of the structure

of G and H as in Tab. 5.1, but are comparable from a side-channel perspective.

The first observation from Fig. 6.2 is that MI increases along with the increasing amount of

second-order leakages. More importantly, in the presence of second-order leakages, the security

order under the bit-probing model [123] (indicated by the slope of MI curves when the noise

level is high) decreases by one since the degree of φP is 2. Similarly, the security order will
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Figure 6.2: The intra-share independence issue: the existence of higher-order leakages decreases
the security of the corresponding masking scheme (two public parameters are α1 = αi, α2 = αj as
in Tab. 5.1). Note that the blue curves are for the Boolean masking.

reduce by two when the degree of φP equals 3 in the red curves of Fig. 6.2(b). However, the

lowest security order under the bit-probing model is bounded by the Boolean masking under

the word-probing model. More precisely, increasing the degree of φP only affects the intra-share

independence and therefore decreases the security order under the bit-probing model, while

the degree of ϕP (e.g., induced by couplings) affects the security order under the word-probing

model.

6.4 Related Works

6.4.1 Differences with [37] in Detail

As summarized in Sec. 5.2, this work tackles GCM, which is a more general masking scheme

than the one studied in [37]. In fact, we utilize the same notion of the numerical degree and a

similar coding-theoretic approach as in [37], and also the same leakage assessment metrics like

SNR and MI. However, generalizing [37] to this work is not trivial at all, we show hereafter the

technical differences from [37].

We first highlight the different constructions of the generator matrices G and H in Tab. 5.1

for the codes C and D, respectively. Indeed, C and D are not complementary in GCM, while

they are complementary in IPM. In this respect, we show that Eqn. 5.7 is simplified as Eqn. 5.8

when C and D are complementary, thus we recover the main results in [37] (see Remark 5.3). As
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a special case, the framework proposed in [37] is applicable when C and D are complementary,

e.g., when n = t+ 1 in SSS-based masking.

Moreover, we prove that GCM requires introducing a more general parameter B′d (see

Def. 5.2), which is a novel parameter for linear codes. Particularly, in [37] the parameter Bd

only depends on D. While B′d depends on both C and D, which indicates the importance of

selecting appropriate candidates for both of them in practice. We also provide efficient magma

scripts to evaluate this quantity [34].

Finally, we insist that the generalization in this work is a significant improvement that works

for all GCMs. Since firstly, we show in Remark 5.4 that the security order can be greater than the

dual distance minus one in GCM, which cannot be explained by the framework in [37], but can be

explained perfectly by this work in a quantitative manner. Secondly, the redundancies in GCM

allow detecting faults (e.g., for glitch-free designs [131]), which is currently an active research

topic. We leave open the question on the construction of coding-theoretic countermeasures

against both side-channel and fault injection attacks for future investigation.

6.4.2 Connections with [51]

The SSS-based masking is also the topic of a recent work [51], in which Costes et al. showed that

the Boolean masking is a special case of SSS-based masking when n ≤ 6. More interestingly, their

simulation-based multivariate attacks [18] confirm our mathematical derivations, in particular,

the information-theoretic evaluation in Fig. 6.1.

More generally, this work provides a unified framework for quantifying information leakage

of all GCM instances. As a straightforward application, Theorems 5.2 and 5.3 in this chapter

enable us to explain the empirical observations in practical attacks. For instance, the three

codes for (3, 1)-SSS in Fig. 3 of [51] correspond to different d⊥D and/or Bd⊥D . However, we stress

that the three codes for (2, 1)-SSS in the same figure are not equivalent to each other but have

the same d⊥D equal to 4 and closely distributed Bd⊥D ∈ {11, 8, 8}. Moreover, this work presents a

systematic way to select optimal codes for SSS-based masking and GCM, which is out of the

scope of [51].

6.4.3 Efficient Implementations of GCM

In this chapter, we optimize security without touching the performances of GCM (there is

no tradeoff between security and performance). Our coding-theoretic approach shows that

both SNR and MI security metrics concur that dual distance and adjusted coefficient in weight
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enumerator are the two drivers for security improvements. Essentially, we stick to the definition

of GCM (recall the rightmost column in Tab. 5.1), and propose an effective way to tune the

underlying codes.

In terms of performances, they are the same (with respect to memory and speed) as the

generic GCM. A more detailed study could consist in attempting to represent the generator

matrices G and H as compactly as possible (with as many zeros and ones in coefficients as

possible, or with a specific structure, say “cyclic” for instance). Besides, Wang et al. [164]

showed a complementary way to improve the overall performance of GCM implementations by

an amortization technique. Both approaches would ease an efficient implementation of GCM,

leaving an open problem for future study.

6.4.4 Further Application to Low Entropy Masking Schemes

Compared with the high cost of masking schemes, lower entropy masking scheme (LEMS) [78,

114, 170] provides a practical approach to reduce both randomness and implementation costs

by only taking a small set of random masks. As a specific example, rotating S-Box masking

(RSM) [12, 44, 110, 114] takes only 16 random masks which are elaborately chosen to achieve

maximal protection. RSM is also the core protection used in DPA Contest v4.1 & v4.2 [154] for

masked AES implementations.

In fact, RSM shall be represented in the form of code-based masking. Specifically, the two

codes C and D in RSM are complementary. Let X ∈ F8
2 be the sensitive variable, then

Z = (X + Y H, Y ) (6.6)

be the encoding in RSM [12] where Z ∈ F12
2 be the encoded variable, Y ∈ F4

2 is the mask and H

is a 4× 8 matrix with coefficients in F2. Indeed, C is spawn by the 8× 12 matrix G = (I8, 0)

and D is spawn by the 4× 12 matrix H = (H, I4) where H ∈ F4×8
2 is the generator matrix of

the code [8, 4, 4] (which is known to be optimal and unique [24]). Therefore, we have

G = (I8 08×4),

H = (H I4) =


1 0 0 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0
0 0 1 0 1 0 1 1 0 0 1 0
0 0 0 1 0 1 1 1 0 0 0 1

 .
(6.7)

As a consequence, the dual distance of D is d⊥D = 2. Indeed, the dual code D⊥ has parameters

[12, 8, 2] and its weight distribution is: [(0, 1), (2,4), (4, 70), (6, 108), (8, 65), (10, 8)]. Accordingly,

89



6. REDUNDANCY IN CODE-BASED MASKING

the security order of RSM with this [8, 4, 4] code can only achieve a second-order side-channel

resistance (under bit-probing model).

However, the above choice of the code D [12] is not optimal in the sense of d⊥D. For instance,

it can be improved by using the optimal code [12, 4, 6] and its dual code has parameters [12, 8, 3].

The generator matrix of D is then as:

H = (H ′ I4) =


0 1 1 0 1 1 1 0 1 0 0 0
1 0 1 0 1 1 0 1 0 1 0 0
1 1 1 1 1 0 1 1 0 0 1 0
0 0 1 1 0 1 1 1 0 0 0 1

 . (6.8)

Note that the coordinates ofH is permuted to have a systematic view. Accordingly, the weight dis-

tribution of the dual codeD⊥ is: [(0, 1), (3,16), (4, 39), (5, 48), (6, 48), (7, 48), (8, 39), (9, 16), (12, 1)],

which achieves a third-order side-channel resistance.

6.5 Conclusions and Perspectives

In this chapter, we investigate the side-channel resistance of redundant code-based masking and

applications of our theoretical derivatives in SSS-based masking. In particular, we highlight

the impact of the adjusted kissing number B′
d⊥D

that depends on both codes C and D. As

applications, we present optimal codes for (3, 1)-SSS based masking as a first-order protection,

and (5, 2)-SSS based masking as a second-order protection, respectively (over both F24 and F28).

However, the construction of optimal codes for a large number of shares is still an open

problem. We launched an exhaustive study on (3, 1)-SSS based masking and presented some

results on (5,2)-SSS in [34]. But the exhaustive enumeration would be computationally infeasible

when n gets larger (e.g., n > 8) in SSS-based masking or, more generally, in GCM. A heuristic

solution is to construct new (sub-) optimal codes by concatenating two optimal or sub-optimal

codes, following a gradient descent idea. Alternatively, constructing the (sub-)optimal codes by

an algebraic approach under certain constraints is a promising solution. We will explore both

solutions for GCM in the future.
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Masked Cryptographic
Implementations: Attacks and
Information-Theoretic Bounds
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CHAPTER 7

Optimal Attacks in the Presence of Code-based Masking

In this chapter, we present the results of higher-order optimal attacks against protected crypto-

graphic implementations by the code-based masking. Part of work presented in this chapter is

under submission (see [CGD21] in publication list).
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7. OPTIMAL ATTACKS IN THE PRESENCE OF CODE-BASED MASKING

7.1 Introduction

Side-channel analyses (SCAs) are among the most powerful attacks against cryptographic imple-

mentations. Since the seminal works [94, 95], a very large amount of SCAs have been proposed by

exploiting various observable physical leakages in practice, like power consumption [46, 95], the

electro-magnetic emanations [71, 132], etc. In essential, SCAs attempt to extract the sensitive

information from noisy measurements containing unintended emissions or leakages, where the

measurements are correlated with internal states or behaviors of a cryptographic device.

Along with a large body of attacks, numerous countermeasures have been proposed to protect

practical implementations against SCAs. Relying on different strategies and principles, two

major lines of countermeasures are hiding and masking [102]. Specifically, the hiding approach

attempts to balance the leakage of different key-dependent operations or data, resulting in

less informative signals in side-channel measurements [32, 156]. In contrast, the masking

approach randomizes the internal states by splitting internal sensitive variables into several

shares, which breaks the straightforward connection between the sensitive variables and the

measurements. In particular, the latter is more preferable since it is featured with the provable

security rather than engineering intuitions of designers. However, protecting cryptographic

implementations against SCAs is usually not trivial and expensive in the sense of implementation

cost [15, 30, 79, 128]. Furthermore, many proposals of protection are devised under abstract

assumptions like independence assumption [7, 103], sufficiently noisy condition [30, 128], etc.,

which are not always fulfilled in real scenarios [5, 48].

Therefore, the evaluation of side-channel security of an implementation, especially in the

presence of protection, plays a significant role in understanding its concrete security level and

verifying the correctness and effectiveness of certain protections. In the following, we focus on

the evaluation of masked implementations.

7.1.1 Evaluation of Side-Channel Security

According to different leakage models and the abstraction level of cryptographic implementations,

evaluation tools are classified into four categories.

Firstly, the conformance-based leakage detection utilizes conformance testing to check whether

there are significant differences in side-channel measurements of different key-dependent variables

and/or operations [47, 107, 112, 144, 152]. It is intended to answer the following question at

a high abstraction level: does the device under test leak side-channel information? Those
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statistical tools include Welch’s t-test, χ2-test, etc. However, the conformance-based leakage

detection only provides qualitative result, which is usually independent of the exploitation of the

leakages, e.g., to launch a successful key-recovery attack. Furthermore, it might be difficult to

interpret the detection result when the conformance testing gives a negative answer indicating

no significant leakage. Therefore, other evaluations are necessary to further verify the leakage.

Secondly, the proof-based evaluation intends to prove the side-channel resistance of a masked

design under abstract models like the probing model [86] and related variants [60, 62, 126, 128].

Typically, under independence assumption and noise condition, several leakage models are

equivalent with certain forms of constants [126] by providing formal security guarantees of

the masked implementation. However, physical defaults like couplings, glitches, etc. usually

contradict assumptions behind the probing model [5, 103]. As a consequence, it is recommended

to launch the attacked-based quantitative evaluation.

Thirdly, the information-theoretic evaluation aims at measuring side-channel leakages by

utilizing information-theoretic measures [151, 166]. The frequently used measures include

Shannon mutual information, Kullback-Leibler divergence, conditional entropy, etc. In fact, this

category of evaluation measures the full distribution of leakages and provides insights on how

much information an adversary can obtain. In essential, it usually provides information-theoretic

bounds on the probability of success for any side-channel distinguishers given a set side-channel

measurements [41, 57]. It is worth mentioning that not all distribution-based leakages can

not be exploited by side-channel distinguishers. For instance, correlation power analysis is a

typical non-profiling attack and it exploits only a few orders of moments of side-channel leakage.

However, one of the major difficulties of using information-theoretic evaluation is how to estimate

the leakage distribution accurately when the number of measurements is not sufficiently enough.

Finally, the attack-based evaluation is at the core of side-channel security evaluation, which

aims at assessing the probability of success of a specific side-channel distinguisher. Relying

on large variety of side-channel distinguishers like correlation power analysis [16, 82], mutual

information analysis [55, 74, 163], template attacks [31, 119], stochastic attacks [75, 143], higher-

order optimal distinguisher [18, 84], etc, the attack-based evaluation provides more accurate

assessment of leakage, which captures device-specific features of side-channel leakage. However,

it is infeasible to exhaust all distinguishers to launch attack-based evaluation provided a limited

resources and time.

Summing up, the conformance-based leakage detection only provides qualitative assessment of

side-channel security while other three evaluations give different levels of quantitative assessment.
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To a large extent, four evaluation approaches are complementary to each other in practical

application, varying with different evaluation requirements and necessary expertise on launching

evaluations.

In this chapter, we complete the evaluation of side-channel resistance of masked implementa-

tions protected by the code-based masking, which is complementary to information-theoretic

evaluation in Chap. 4 and 5 for IPM and GCM, respectively.

7.1.2 Metrics in Attack-based Evaluation

Considering a key-recovery attack in SCA, the ultimate metric is the success rate indicating

the probability of an adversary can succeed in recovering the secret key [151]1. In particular,

two interrelated problems in attack-based evaluation are, on one hand, how many side-channel

measurements are needed for a successful attack? Or on the other hand, what is the probability

of success given a certain number of measurements? Therefore, it is preferable to show how the

success rate evolve when the number of measurements increases.

Moreover, another attack metric is the guessing entropy (GE) [151], which measures the

average rank of the correct key among all candidates based on distinguishing scores after an

attack. GE is complementary to success rate as it indicates how wrongly guessed keys behave

before a successful attack, and it converges to 1 when the success rate goes to 100% stably.

Therefore, we use both success rate and guessing entropy in evaluating the exploitability of

information leakages in the code-based masking.

7.2 Contributions

We complete the evaluation of side-channel resistance of code-based masking by attacking results.

In particular, our contributions are as follows.

HOOD-based Evaluation of GCM. We provide an extensive evaluation on the side-channel

resistance of the generalized code-based masking. The attacks are based on the higher-order

optimal distinguisher as it is the best attack strategy following the Maximum-Likelihood principle.

We investigate both IPM and SSS-based masking, since they are representatives of non-redundant

and redundant masking schemes, respectively. We highlight that the side-channel resistance

1There are different order of success rates when considering an adversary can launch key enumeration [124, 162]
as a post-processing technique after side-channel attacks. However, we focus on the first-order success rate by
convention as it is more straightforward.
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of GCM is highly related to coding-theoretic properties wherein the dual distance and the

adjusted kissing number are good indicators as we show in Chap. 5 from an information-theoretic

perspective. Therefore, we verify our framework on quantifying the information leakage in GCM

by HOOD-based attacks.

Redundancy in Code-based Masking Decreases Side-Channel Resistance. We lever-

age on both information-theoretic and attack-based evaluations to illustrate that the redundancy

in sharing can only decrease the side-channel resistance of the corresponding masking schemes.

Compared to the state-of-the-arts, our HOOD-based results challenge the evaluation launched

in [29], but are in accordance with the ones in [51]. In particular, the authors showed in [29] that

exploiting leakages from more shares does not always lead to more efficient attacks, whereas we

show the improvements using leakages from more shares. Moreover, compared to [51], we extend

the state-of-the-art in two directions: 1) we show the best cases of the linear codes, that are

recommended to use, and 2) we give the worst cases of the linear codes that are not recommend

for practical applications.

Challenges on Practical Use of Probing Model. Consider an (n, t)-sharing in redundant

code-based masking, e.g., in (n, t)-SSS based masking, a sensitive variable is split into n shares

while any t+1 shares among n are need to recover the sensitive. As a consequence of redundancy

in sharing, increasing n can only decrease the concrete side-channel security given a fixed

t. However, different sharings with the same t possess the same side-channel security order

under the probing model. Therefore, only preserving security orders in proof-based evaluation

of redundant code-based masking is not sufficient: it always has to be completed with the

information-theoretic or attack-based evaluations. To verify this, we consider (2, 1) and (3, 1)-SSS

based masking, and show that exploiting leakages from all three shares always leads to more

efficient attacks than using two shares.

7.3 Side-channel Distinguishers

We first recall the side-channel distinguishers in unprotected scenarios (without masking, etc).

Let X ∈ K be the sensitive variable which depends on the secrets in the cryptographic imple-

mentations. For instance, the sensitive variable is usually X = S(T ⊕K), the output of Sbox

given a plaintext (or ciphertext) T and a subkey K, e.g., in AES or PRESENT, then we may

use X(k) in order to indicating a specific key guess k in generating X.
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Considering simulated measurements, we adopt the common scenario in which the interme-

diates leak in Hamming weight model with independent additive white Gaussian noise (AWGN).

Therefore, we have Lj = wH(Xj) +N j , 1 ≤ j ≤ q for q traces, where wH denotes the Hamming

weight function and N j ∼ N (0, σ2) is Gaussian noise with standard deviation σ. The basic

setting of side-channel analysis seen as a communication channel is illustrated in Fig. 7.1.

Crypto Channel Attack
XK L K̂

T N T

Figure 7.1: Side-channel seen as a communication channel.

7.3.1 Different Distinguishers

In SCA, a key-recovery attack intends to extract the secret key from q traces by exploiting

certain side-channel distinguishers. In particular, a distinguisher takes maximization over all

key hypothesis and gives the most possible candidate(s) by:

k̂ = argmax
k∈K

∆̂(k) = argmax
k∈K

∆̂(L, X(k)). (7.1)

Formally, we define the side-channel distinguisher as follows.

Definition 7.1 (Side-Channel Distinguisher [80]). Given a set of side-channel measurements L
and known cryptographic inputs (or outputs) T , a side-channel distinguisher returns a theoretical
value

∆(k) = ∆(L, X(k)) (7.2)

for any key guesses k ∈ K and the estimator ∆̂(k) converges to ∆(k) as q → ∞, in the sense
that the mean-squared error E

[
(∆(k)− ∆̂(k))2

]
approaches 0 when q →∞.

Note that we shall simplify X(k) as X by implicitly indicating the link between the sensitive

variable and the key hypothesis. In view of Def. 7.1, several classic side-channel distinguishers

are presented as follows:

• Difference of Means (DoM): it is the original distinguisher proposed in the seminal work [95],

known as Differential Power Analysis (DPA). Let fb(X) be the selection function which

returns one specific bit of X, then we have

∆(k) = |E [L|fb(X) = 0]− E [L|fb(X) = 1]|,

∆̂(k) =

∣∣∣∣∣
∑q
j=1(1− fb(Xj))Lj∑q
j=1(1− fb(Xj))

−
∑q
j=1 fb(X

j)Lj∑q
j=1 fb(X

j)

∣∣∣∣∣, (7.3)
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where the absolute value is always considered in maximization for each key hypothesis.

• Correlation Power Analysis (CPA) [16]: in which the distinguisher value is given by

computing the Pearson correlation coefficient between the side-channel traces and the

hypothetical leakages:

∆(k) = |ρ(L, f(X))| = |Cov(L, f(X))|
σLσf(X)

=
|E [Lf(X)]− E [L]E [f(X)]|

σLσf(X)
,

∆̂(k) =

∣∣∣ 1q∑q
j=1 Ljf(Xj)− 1

q

∑q
j=1 Lj · 1

q

∑q
j=1 f(Xj)

∣∣∣√
1
q

∑q
j=1(Lj)2 − ( 1

q

∑q
j=1 Lj)2

√
1
q

∑q
j=1(f(Xj))2 − ( 1

q

∑q
j=1 f(Xj))2

,

(7.4)

where f(·) denotes the leakage function, e.g., in the Hamming weight leakage model

f(X) = wH(X). The absolute value is taken for each key hypothesis.

• Mutual Information Analysis (MIA) [74, 163]: the mutual information is used as a metric

for assessing the dependency between the side-channel traces and the hypothetical leakages

in an information-theoretic sense:

∆(k) = I(L, X) = H(L)−H(L|X),

∆̂(k) =
∑
l

∑
x

P̂r(L = l,X = x) log2

P̂r(L = l,X = x)

P̂r(L = l)P̂r(X = x)
,

(7.5)

• Maximum Likelihood (ML)-based attack [31, 84]: when the leakage distribution is known,

the optimal strategy for launching such attack is to use the maximum likelihood (ML)

approach:

∆(k) = Pr(L|X(k)),

∆̂(k) = P̂r(L, |X(k)) =

p∏
j=1

P̂r(Lj , |Xj(k)),
(7.6)

where side-channel measurements are assumed to be i.i.d. Therefore, the best key guess is

made by:

k̂ = argmax
k∈K

∆̂(k). (7.7)

Note that the ML rule is equivalent to Maximum A Posterior (MAP) rule with equiprobable

keys. It is the case as commonly assumed that K is uniformly distributed over K.

Given a side-channel distinguisher, a primary question arises: whether the attack utilizing the

distinguisher will be succeed eventually? Therefore, we define the soundness of a distinguisher

as follows.
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Definition 7.2 (Soundness of a Distinguisher [80, 151]). A side-channel distinguisher ∆̂(k) is
said to be sound if the theoretical distinguisher value is maximized at the correct key hypothesis,
namely,

∆(k∗) > ∆(k) for any k 6= k∗. (7.8)

Apparently, if a distinguisher is sound, the attack tends to succeed with success rate equal

to 100% eventually given enough number of traces (e.g., when q →∞).

Remark 7.1. For above classic distinguishers, CPA is sound [81], so as the DoM, since DoM
can be seen as a special case of CPA [80] when q →∞. MIA is also proved to be sound under
Gaussian noise [111, 127]. Moreover, ML-based distinguishers are sound by design, where the
correct key guess will rank the first given enough amount of side-channel measurements.

7.3.2 Optimal Distinguisher in the Presence of Masking

We focus on code-based masking, which generalizes several existing masking schemes. The

communication view in the presence of masking is depicted in Fig. 7.2. Let X ∈ K and Y ∈ Kt

be respectively the sensitive variable and t random masks. Then the sharing in GCM writes:

Z = XG + YH ∈ Kn, (7.9)

given that t+ 1 ≤ n, where G and H are generator matrices of two codes C and D, respectively.
For the sake of simplicity, we concentrate on scenarios in which the sensitive variable is a scalar.

As assumed previously, the sensitive variable is X = S(T ⊕K).

Crypto Masking Channel Attack
K X Z L K̂

T Y N T

Figure 7.2: Side-channel seen as a communication channel in the presence of masking.

Regarding the simulated measurements, we utilize the Hamming weight model with inde-

pendent AWGN. For each share Zi, we have Li = wH(Zi) + Ni, 1 ≤ i ≤ n for n shares and

Ni ∼ N (0, σ2) is Gaussian noise with standard deviation σ. Given a dataset of q traces, we

further denote all traces as L = (Lji ) for 1 ≤ i ≤ n and 1 ≤ j ≤ q.
In our scenario, as the leakage model is assumed to be known, the best strategy for performing

key-recovery attacks is to utilize the ML-based approach. Following the principle of ML-based

attack, the higher-order optimal distinguisher (HOOD) is known as follows.

100



7.4 Attacks against Non-Redundant Code-based Masking

Lemma 7.1 (Higher-Order Optimal Distinguisher [18]). Given a set of q measurements L =

(Lji ) = f(Zji ) +N j
i for 1 ≤ i ≤ n and 1 ≤ j ≤ q such that N j

i are i.i.d. across 1 ≤ j ≤ q and
independent across 1 ≤ i ≤ n. When the leakage distribution is known (both the leakage function
and the noise distribution), the d-th order optimal distinguisher is:

∆(k) =

q∏
j=1

∑
y∈Kt

Pr(Y = y)

d∏
i=1

Pr(Lji |Zji ), (7.10)

where the calculation of Zji implicitly involves Y = y. Therefore, the key hypothesis is given by

k̂ = argmax
k∈K

∆(k). (7.11)

In the sequel, we focus on attack-based evaluation of the generalized code-based masking,

particularly we target IPM with n = 2 and n = 3, and (3, 1)-SSS based masking.

7.4 Attacks against Non-Redundant Code-based Masking

Considering IPM as an instance of non-redundant code-based making, the generating matrices

of C and D are:

G =
(

1 0 0 · · · 0
)

H =


α1 1 0 · · · 0
α2 0 1 · · · 0
...

...
...

. . .
...

αt 0 0 · · · 1

 (7.12)

where n = t + 1 and αi ∈ K\{0} for 1 ≤ i ≤ t. In particular, by taking αi = 1 for 1 ≤ i ≤ t

recovers the Boolean masking. As a result, the generator matrix of D⊥ is: H⊥ = (1 α1 α2 · · · αt)
with d⊥D = t+ 1, indicating that IPM with n shares has a security order equal to n− 1 under

word-probing model [3, 123]. We denote α = (1, α1, . . . , αt) the public parameters in IPM.

7.4.1 Optimal Distinguishers

Relying on Lemma 7.1, the HOOD is instantiated in the context of Hamming weight leakage

with an AWGN as follows.

∆(k) =

q∏
j=1

∑
y∈Kn−1

Pr(Y = y)

d∏
i=1

Pr(Lji |zji )

=

q∏
j=1

∑
y∈Kn−1

Pr(Y = y)

d∏
i=1

N (Lji |wH(zji ), σ
2).

(7.13)
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Since Y is uniformly distributed (Pr(Y = y) = 1
|Kn−1| ) required by a sound masking scheme, it

is independent of each key hypothesis and hence has no impact on ∆(k). Taking logarithms

further eases the numerical computations (avoiding float overflows), the HOOD is equivalent to

the following distinguisher score [29, 51]:

S(k) =

q∑
j=1

log
∑

y∈Kn−1

d∏
i=1

N (Lji |wH(zji ), σ
2), (7.14)

then the key guess is determined by maximizing S(k).

Formally, thanks to masking, an adversary cannot obtain anything about the sensitive

variable if the order d of a HOOD is not greater than the security order t. A prerequisite for

launching a successful attack is d > t in our scenario when targeting IPM, which is consistent

with coding-theoretic conditions.

7.4.2 IPM with n = 2

Taking n = 2 gives t = 1, resulting that only one parameter in IPM is α1 and H = (α1 1).

There are 255 candidates for α1 as it cannot be zero. In order to facilitate practical applications

and fair comparison with the state-of-the-art, we aim at the irreducible polynomial g(X) =

X8 + X4 + X3 + X + 1 that is used in AES to generate the field K = F28 .

As shown in Chaps. 4, the two coding-theoretic properties that indicate the side-channel

resistance of IPM are the dual distance d⊥D and the kissing number Bd⊥D . Herein, we first

investigate the statistical properties of d⊥D and Bd⊥D among all linear code candidates. The

distribution of d⊥D are enumerated in Tab. 7.1 and the corresponding choices of the codes with

given d⊥D and Bd⊥D are in Tab. 7.2, while in the latter we are only interested in the linear codes

with the maximal and minimal values of Bd⊥D for each d⊥D.

Table 7.1: Distribution of d⊥D for IPM with n = 2.

d⊥D = d |{α1}| max {Bd} min {Bd}

d = 2 35 8 1

d = 3 146 6 1

d = 4 74 17 4

As shown in Tab. 7.2, there are only 12 optimal linear codes which maximize d⊥D and minimize

Bd⊥D at the same time.

1 We use
eqv≈ to denote that two linear codes with the given parameters are equivalent over F2` or after the

sub-field representation in F2, see [37, 42] for details.
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Table 7.2: Choices of the codes for IPM with n = 2.

d⊥D = d Bd |{α1}| Candidates of α1 Comments

d = 2

Bd = 8 1 {1} Boolean masking

Bd = 1 20
{16, 17, 34, 39, 60, 90, 115, 116, 119, 120, 133,

140, 180, 182, 201, 207, 215, 230, 234, 247}

d = 3

Bd = 6 8 {3, 83, 101, 137, 158, 166, 202, 246}

Bd = 1 58
{14, 15, 19, 20, 40, 44, 48, 49, 52, 56, 61, 67

69, 75, 76, 80, 84, 94, 97, 99, 103, 112, 113, . . .}

d = 4

Bd = 17 2 {29, 64} 29
eqv
≈ 64 1

Bd = 4 12
{23, 46, 51, 54, 81, 92, 95,

102, 108, 162, 165, 184}

12 optimal codes

in total

7.4.2.1 Experimental Results

As mentioned previously, the simulated traces are L = (Lji ) for 1 ≤ i ≤ n and 1 ≤ j ≤ q where

Lji = wH(Zji ) +N j
i denotes the leakage of i-th share in j-th trace. The evaluation metric is the

minimum number of traces achieving Ps ≥ 95%, which integrates the success rate along with

different noise levels.

For linear codes of different d⊥D shown in Tab. 7.2, we choose both the minimum and the

maximum of Bd⊥D excluding the Boolean one. The evaluation results of IPM with n = 2 are

shown in Fig. 7.3 by using up to q = 100, 000 traces. Moreover, we include Boolean masking

(BM) with n = 2 and n = 3 shares in comparison.

The main takeaway point from Fig. 7.3 is that, IPM with the linear code of the maximized

dual distance d⊥D and the minimized kissing number Bd⊥D indeed has the best achievable side-

channel resistance. The attack-based evaluation also confirms: 1) all 2-share IPM are better

than the first-order Boolean masking (with n = 2); 2) good choices of linear codes of 2-share

IPM can even be better than the second-order Boolean masking (with n = 3) when the noise

level is σ2 > 1.0. The reason is that in IPM, the best cases of d⊥D is larger and Bd⊥D is smaller

than that in the second-order Boolean masking, respectively; 3) it is also advantageous to adopt

2-share IPM rather than 3-share BM from a performance perspective. For instance, the clock

cycles are 157, 196 vs 160, 357 as reported in [3] for an AES-128 implementations on an AVR

architecture protected by the former and the latter, respectively.

Optimal Codes for 2-Share IPM. According to Tab. 7.2, there are only 12 optimal codes

with the best coding-theoretic properties. For the sake of brevity, we present four cases of
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Figure 7.3: Attack-based evaluation of IPM with n = 2 shares. Taking two codes in each group
with different d⊥D and/or Bd⊥D .

optimal codes as in Fig. 7.4. The primary observation is that those four codes have similar

side-channel resistance from an adversary perspective who launches HOOD-based attacks. Note

that the fluctuations among those four curves are due to the nature of numerical simulation with

certain random seeds. Overall, those four codes perform closely against HOOD-based attacks.

We assume that the leakage distribution is known when launching such attacks, this scenario

allows a worst-case evaluation of side-channel resistance of IPM. However, this assumption is

usually too radical in practice, where the leakage properties of the device is unknown and the

acquisition environment might be various. Furthermore, when other distinguishers are adopted

in carrying out attacks, ML-based analysis also provides an upper bound on the success rate. In
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Figure 7.4: Comparison of four instances of optimal codes for 2-share IPM, according to the best
coding-theoretic properties given by d⊥D = 4 and Bd⊥D = 4.

summary, our worst-case evaluation provides some insights on how successful can an attack be

in practice and shows how to select optimal codes when applying IPM.

The Impact of Bd⊥D . We have showed how to select optimal codes according to both d⊥D and

Bd⊥D , yet the solo role of Bd⊥D is not explicitly investigated. In the following, we compare several

instances of the linear code in IPM with the same d⊥D while different Bd⊥D .

As shown in Fig. 7.5, we set d⊥D = 2 and Bd⊥D ∈ {1, 2, 3, 5, 8} where 2-share BM being a

special case of IPM has Bd⊥D = 8. Apparently, reducing Bd⊥D leads to a more difficult attack in

the sense of the necessary number of traces to launch a successful attack. In addition, since we
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choose d⊥D = 2, all those codes will not outperform 3-share BM in full range of noise levels.
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Figure 7.5: Illustrating the impact of Bd⊥D given the same d⊥D in 2-share IPM.

Summing up, we demonstrate how Bd⊥D plays a significant role in indicating the side-channel

resistance of IPM. More generally, it is integrated with the dual distance as indicators in

evaluating side-channel security of non-redundant code-based maskings like DSM and LS, etc.

7.4.3 Linear Codes for IPM with n = 3

Herein we present the classification of the linear codes of 3-share IPM. Taking n = 3, resulting that

t = 2 and two free parameters in α = (1, α1, α2) are α1, α2 ∈ K\{0}. There are 255×255 = 65025

candidates, where the number of candidates can be dramatically reduced by considering the
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equivalence of the linear codes [35]. Therefore, we take α1 ≤ α2, which reduces the number of

the codes to 32640.

The distribution of d⊥D are enumerated in Tab. 7.3 and the choices of the codes under given

d⊥D and Bd⊥D are in Tab. 7.4. Note again that in Tab. 7.4 we only focus on the maximal and

minimal values of Bd⊥D .

Table 7.3: Distribution of d⊥D for IPM with n = 3.

d⊥D = d |{(α1, α2)}| max {Bd} min {Bd}

d = 3 207 8 1

d = 4 1730 6 1

d = 5 7242 7 1

d = 6 15304 13 1

d = 7 7929 12 1

d = 8 228 20 6

As shown in Tab. 7.4, there are only 3 optimal codes which maximize d⊥D and minimize Bd⊥D
at the same time. Since the maximized dual distance is d⊥D = 8, IPM with those optimal codes

should be comparable with the eighth-order BM, namely n = 8 given a certain level noise. In

particular, considering the security order in the bit-probing model, the former and the latter

share the same security order tb = d⊥D − 1 = 7. Therefore, it is recommended to apply IPM

rather than BM with many more shares since as a rule of thumb, the implementation cost

increases at least quadratically with n.

7.5 Attacks on Redundant Code-based Masking

In the sequel, we investigate the HOOD-based evaluation on the polynomial masking [77, 131],

where in its central is Shamir’s Secret Sharing (SSS) scheme. Taking SSS-based masking as an

example of redundant code-based masking, the parameters are denoted as α = (α1, α2, . . . , αn)

and the condition for αi is that αi 6= αj for any i 6= j. Then we have the following generator

matrices for the codes C and D, respectively,

G =
(

1 1 · · · 1
)

H =


α1

1 α1
2 · · · α1

n

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αt1 αt2 · · · αtn

 (7.15)
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Table 7.4: Choices of the codes for IPM with n = 3.

d⊥D = d Bd |{(α1, α2)}| Candidates of (α1, α2) Comments

d = 3

Bd = 8 1 {(1, 1)} Boolean masking

Bd = 1 151
{(1, 16), (1, 17), (1, 34), (1, 39),

(1, 60), (1, 90), (1, 115), (1, 116), . . .}

d = 4

Bd = 6 3 {(2, 3), (140, 141), (246, 247)}

Bd = 1 1227
{(1, 14), (1, 18), (1, 19), (1, 20),

(1, 21), (1, 30), (1, 41), (1, 42), . . .}

d = 5

Bd = 7 8
{(1, 176), (2, 164), (5, 143), (8, 64),

(8, 232), (12, 12), (29, 232), (82, 141)}

Bd = 1 4586
{(1, 23), (1, 31), (1, 46), (1, 47),

(1, 75), (1, 77), (1, 98), (1, 107), . . .}

d = 6

Bd = 13 2 {(1, 130), (127, 127)}

Bd = 1 7050
{(2, 184), (3, 45), (3, 46), (3, 47),

(3, 59), (3, 65), (3, 77), (3, 81), . . .}

d = 7

Bd = 12 3 {(16, 185), (56, 142), (116, 242)}

Bd = 1 645
{(3, 53), (7, 45), (7, 49), (7, 77),

(7, 99), (7, 106), (7, 107), (9, 154), . . .}

d = 8

Bd = 20 3 {(94, 109), (97, 124), (147, 161)}

Bd = 6 3 {(27, 196), (91, 204), (218, 240)}
Only three cases

are optimal.

where αi for 1 ≤ i ≤ n are also called public points in SSS-based masking. The corresponding

scheme is also denoted as (n, t)-SSS based masking.

From a coding-theoretic perspective, the SSS scheme is connected to the Reed-Solomon (RS)

code. Given the two generator matrices as in Eqn. 7.15, the rank of H equals t, so the dual

distance of D is t + 1 [35]. Accordingly, the side-channel security order in the word-probing

model is tw = t.

7.5.1 Optimal Distinguishers

Recall the form of H in Eqn. 7.15 that, there are n public points to be determined in SSS-based

masking. However, the masking itself is in the t-th order.

Similarly as in IPM, the optimal distinguisher is determined by applying the ML rule.
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Considering the same assumption on leakage distribution, we have:

∆(k) =

q∏
j=1

∑
y∈Kt

Pr(Y = y)

d∏
i=1

Pr(Lji |zji )

=

q∏
j=1

∑
y∈Kt

Pr(Y = y)

d∏
i=1

N (Lji |wH(zji ), σ
2).

(7.16)

Taking logarithms to ease the numerical computations, the HOOD is therefore equivalent to the

following distinguisher score [51]:

S(k) =

q∑
j=1

log
∑
y∈Kt

d∏
i=1

N (Lji |wH(zji ), σ
2). (7.17)

Remark 7.2. Note that the distinguisher proposed in [29, Eqn. 13] is problematic, which leads
to suspicious conclusions. In fact, the summation within the logarithm is over y ∈ Kt rather
than over y ∈ Kn−1 when n > t+ 1, namely in redundant cases.

7.5.2 HOOD against (3, 1)-SSS based Masking

Considering n = 3 and t = 1, the generator matrices G and H are as follows.

G =
(

1 1 1
)

H =
(
α1 α2 α3

)
,

(7.18)

where αi for 1 ≤ i ≤ 3 are not equal to each other. We can fix α1 = 1 by utilizing the equivalence

of the linear codes. Additionally, we set α2 < α3 as in [35] and resulting that there are 32131

candidates (instead of 2731135 codes for any pairwise different α1, α2 and α3).

The distribution of d⊥D are exhausted in Tab. 7.5 and the choices of the codes under given

d⊥D and Bd⊥D are in Tab. 7.6 in which we only focus on the maximal and minimal values of Bd⊥D
as above.

Table 7.5: Distribution of d⊥D for (3, 1)-SSS based masking.

d⊥D = d |{(α2, α3)}| max {Bd} min {Bd}

d = 2 11460 13 1

d = 3 20581 19 1

d = 4 90 73 37

Remark 7.3. In SSS-based masking, we should use the adjusted kissing number B′
d⊥D

instead
of Bd⊥D . Typically, we have B′

d⊥D
≥ Bd⊥D in SSS-based masking as pointed out in [35]. However,

we use Bd⊥D here since it follows the same trend as B′
d⊥D

. Note that given a specific C, different
choices of D with the same Bd⊥D may lead to different B′

d⊥D
.
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Table 7.6: Choices of the codes for (3, 1)-SSS.

d⊥D = d Bd |{(α2, α3)}| Candidates of (α2, α3) Comments

d = 2

Bd = 13 3 {(2, 4), (2, 141), (141, 203)}
The worst

cases

Bd = 1 5976
{(3, 17), (3, 34), (3, 37), (3, 39),

(3, 48), (3, 49), (3, 51), (5, 60), . . .}

d = 3

Bd = 19 3 {(6, 137), (71, 123), (105, 158)}

Bd = 1 435
{(7, 23), (7, 53), (7, 111), (7, 148),

(7, 198), (11, 84), (11, 94), (11, 154), . . .}

d = 4

Bd = 73 3 {(29, 37), (64, 131), (77, 128)}

Bd = 37 3 {(51, 54), (102, 228), (108, 198)}
Only three cases

are optimal

7.5.2.1 Experimental Results

With the same setting as in evaluation of IPM, the simulated traces are L = (Lji ) for 1 ≤ i ≤ n
and 1 ≤ j ≤ q where Lji = wH(Zji ) +N j

i denotes the leakage of i-th share in j-th trace.

For linear codes of different d⊥D shown in Tab. 7.6, we choose both the minimum and the

maximum of Bd⊥D . The evaluation results of (3, 1)-SSS based masking are shown in Fig. 7.6 by

using up to q = 100, 000 traces. Moreover, we include Boolean masking (BM) with n = 2 and

n = 3 shares in comparison.

From Fig. 7.6, the most important takeaway point is that the public points in (3, 1)-SSS based

masking make a significant difference in side-channel resistance of the corresponding masking

scheme. Furthermore, we can observe that: 1) with dedicated selection of good linear codes,

the side-channel resistance of the scheme can be improved significantly; 2) comparing with the

attack-based evaluation on 2-share IPM, the side-channel security of (3, 1)-SSS based masking

is degraded because of the redundancy, which is consistent with our information-theoretic

evaluation in Chap. 6; 3) similarly as in 2-share IPM, the best codes can provide comparable

security level as 3-share BM when the noise level is higher enough (e.g., σ2 ≥ 5.0); 4) for the

first time, we show that with bad choices of the code, the security level of (3, 1)-SSS based

masking can be continuously lower than 2-share BM.

In the sequel, we further leverage the last two points by providing more instances of the

optimal and the worst codes for (3, 1)-SSS based masking, respectively.

Optimal Codes for (3, 1)-SSS based Masking. According to Tab. 7.6, there are only three

cases of optimal codes. The evaluation results are depicted in Fig. 7.7. It is more obvious
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Figure 7.6: Attack-based evaluation of (3, 1)-SSS based masking. Taking two codes in each group
with different d⊥D and/or Bd⊥D .

in logarithmic view as in Fig. 7.7(b) that those three codes lead to very close side-channel

resistance.

To sum up, the optimal choices of public points in SSS-based masking can significantly

improve its side-channel resistance that is much higher than 2-share BM. In particular, those

optimal codes can even provide comparable security as 3-share BM.

Worst Codes for (3, 1)-SSS based Masking. From Tab. 7.6, there are several classes of

the linear codes that are worse than 2-share BM, including the three worst cases. The evaluation

results are plotted in Fig. 7.8. Interestingly, those worst codes make the SSS-based masking
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Figure 7.7: The optimal codes for (3, 1)-SSS based masking, in which d⊥D is maximized and Bd⊥D
is minimized given a specific d⊥D = 4.

perform worse in full range of noise levels.
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Figure 7.8: The worst codes for (3, 1)-SSS based masking, where d⊥D is minimized and Bd⊥D is
maximized given a specific d⊥D = 2.

To the best of our knowledge, we identify, for the first time, the worst cases of public points

in SSS-based masking or more generally in the context of secret sharing schemes, when each

share leaks certain noisy information. Comparing with the state-of-the-art, our coding-theoretic

approach not only provides the optimal cases, but also identifies the worst cases of the public

points in SSS-based masking. Both of them are instructive in designing redundant code-based

masking in protecting cryptographic implementations in practice.
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7.6 Comparisons: How Redundancy Matters?

As shown in Chap. 6, the redundancy in code-based masking gives rise to more leakage from

an information-theoretic sense when assessed by mutual information. However, more leakage

detected by mutual information can not always be exploited by side-channel distinguishers. As a

result, it is not clear how much impact can the redundancy have from an attacking perspective.

In this section, we demonstrate from an attack-based evaluation that, adding redundancy in

code-based masking can only reduce the side-channel resistance of the corresponding masking

scheme. To have a fair comparison, we consider two instances of (3, 1)-SSS based masking and

reuse the parameters in 2-share IPM. Specifically, in (3, 1)-SSS based masking, the parameters

are α = (1, α1, α2), while any 2-out-of-3 element in α gives an instance of IPM and there are

three instances in total. Then those four instance of code-based masking are evaluated by

HOOD-based attacks (e.g., refer to Eqn. 7.14 and Eqn. 7.17, respectively).

The first group of comparisons is shown in Fig. 7.9, where we have α = (1, 2, 4). The first

observation is that adding one share of redundancy always reduces the concrete side-channel

security of code-based masking. Secondly, given the same security order under the word-probing

model, IPM always outperforms SSS-based masking. The more redundancy can only further

reduce the security level. Interestingly, as three instances of IPM have the same security order

under the bit-probing model, a major difference exists in Bd⊥D . Put differently, given the same

d⊥D over F2, more redundancy leads to a greater value of Bd⊥D , indicating a lower security level.
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Figure 7.9: Illustrating the impact of redundancy by comparing 2-share IPM with (3, 1)-SSS
based masking, using α = (1, 2, 4) in the latter.

Another group of comparison is presented in Fig. 7.10 with α = (1, 3, 17). It is worth noting

that, both coding-theoretic parameters are different in SSS-based masking and IPM. Although
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one instance of IPM is even better than the 3-share BM, the instance of SSS-based masking

gets much worse with one share of redundancy. In particular, the latter is worse than the worst

one among the three instances of IPM. Overall, the attack-based evaluation results verify the

impact of redundancy on the concrete security level of code-based masking.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Noise level: 2

0

2

4

6

8

10

Nu
m

be
r o

f t
ra

ce
s

1e4
BM, n=3, d=3, Bd=8
IPM, =(1,3), d=3, Bd=6
IPM, =(1,17), d=2, Bd=1
IPM, =(3, 17), d=3, Bd=1
SSS, =(1,3,17), d=2, Bd=1
BM, n=2, d=2, Bd=8

(a) Number of traces in normal scale.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Noise level: 2

6
7
8
9

10
11
12
13
14
15
16
17

Nu
m

be
r o

f t
ra

ce
s:

 lo
g 2

(q
)

BM, n=3, d=3, Bd=8
IPM, =(1,3), d=3, Bd=6
IPM, =(1,17), d=2, Bd=1
IPM, =(3, 17), d=3, Bd=1
SSS, =(1,3,17), d=2, Bd=1
BM, n=2, d=2, Bd=8

(b) Number of traces in log2 scale.

Figure 7.10: Illustrating the impact of redundancy by comparing 2-share IPM with (3, 1)-SSS
based masking, using α = (1, 3, 17) in the latter.

At last, we illustrate the impact of redundancy by presenting a comparison between the

optimal codes in IPM and SSS-based masking. Those optimal codes are visualized in Fig. 7.11.

In particular, the four (out of twelve) optimal codes for 2-share IPM and three optimal codes

for (3, 1)-SSS based masking are already shown in Fig. 7.4 and 7.7, respectively. Apparently,

the redundancy can leverage an easier key-recovery attack in the sense of the necessary number

of traces to succeed.
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Figure 7.11: Illustrating the impact of redundancy by comparing 2-share IPM with (3, 1)-SSS
based masking, using α = (1, 3, 17) in the latter.

Those observations made in above two groups of comparison invoke the need of a trade-off
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7.7 Revisiting All Codes in the State-of-the-Art

between the amount of redundancy and the concrete security level in code-based masking. From a

theoretical perspective, more redundancy can lead to more leakage, which is indicated by the two

coding-theoretic properties. As a consequence, it is always advantageous to adopt non-redundant

masking schemes rather than redundant ones when thwarting side-channel analysis. However,

considering fault injection attacks (FIA) in real scenarios, a redundant masking scheme provides

a combined countermeasure against both SCA and FIA.

More generally, above evaluation results pose a challenge on practical applications of the

probing model when assessing the concrete security level of a protected cryptographic imple-

mentation. Specifically, given the same side-channel security order (irrespective to word-level or

bit-level), adding redundancy will always facilitate the adversaries in recovering secrets, and

lower the practical security in the sense of attacks. Therefore, we recommend to further assess

the practical security of code-based masking by verifying both the dual distance and the kissing

number in practice.

In summary, the attack-based evaluation confirms those theoretical findings in Parts II

and III of this thesis. That is, we connect the dots in studying and improving code-based

masking schemes. Particularly, we propose a unified framework to quantify the information

leakage in code-based masking, and verify extensively by considering both IPM and SSS-based

masking as instances of non-redundant and redundant code-based masking.

7.7 Revisiting All Codes in the State-of-the-Art

Regarding the state-of-the-art, various instances of code-based masking have been presented in

literature, accompanied with specific linear codes (which are tuning parameters) used in them.

We therefore revisit all linear codes in the literature for a thorough comparison.

For the purpose of a fair comparison, we focus on instances of code-based masking in which

the codes are generated over F28 by using AES’s irreducible polynomial (see Sec. 7.4.2). The

results are detailed in Tab. 7.7. In particular, we present the best codes in several cases, along

with the corresponding coding-theoretic properties.

The main takeaway point is that those optimal shall be used straightforwardly in practice,

for instance, to protect AES implementations. We also provide instructive details for employing

those codes in real circuits.
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Table 7.7: Revisiting all linear codes used in literature over F28 , with redundancy when n > t+ 1

while no redundancy when n = t+ 1.

Security

Order t

Num. of

Shares n
Parameters α in Sharing

Masking

Scheme

Coding-Theoretic Properties
Comments

d⊥D Bd⊥D
B′
d⊥D

t = 1

n = 2

Non-redundant

(1, 255)

(3, 7)

IPM

(2, 1)-SSS

3

3

2

2

2

2
[2]

(1, 17)

(1, 5)

(1, 7)

IPM

2

3

4

1

4

8

1

4

8

[3]

Three distinct codes

(221, 198), (188, 189), (237, 198)

(237,175)
(2, 1)-SSS

3, 3, 3

4

1, 1, 1

4

1, 1, 1

4

[51]. Note that α = (237, 175)

is optimal

(1,23), (1,46), (1,51), . . . IPM 4, 4, 4, . . . 4, 4, 4, . . . 4, 4, 4, . . .
This work. 12 optimal code

in total, see Tab. 7.2

n = 3

(5, 221, 198)

(237, 175, 221)

(237, 221, 198)

(3, 1)-SSS

3

3

4

1

3

6

1

3

6

[51]

(1,51,54), (1,102,228), (1,108,198) (3, 1)-SSS 4, 4, 4 37, 37, 37 53, 53, 53
This work. Only 3 optimal codes,

see Tab. 7.6

n = 4

(5, 237, 221, 198)

(237, 175, 221, 198)

(12, 80, 176, 237)

(4, 1)-SSS

3

3

3

10

12

19

10

12

53

[51]

n = 5 (5, 237, 175, 221, 198) (5, 1)-SSS 2 2 2 [51]

t = 2

n = 3

Non-redundant

(1, 15, 233)

(13, 240, 163)

IPM

(3, 2)-SSS

5

6

1

2

1

2
[2]

(1, 146, 147), (1, 188, 189) (3, 2)-SSS 3, 3 8, 8 8, 8 [51]. Both are equivalent to BM

(1,27,196), (1,91,204), (1,218,240) IPM 8, 8, 8 6, 6, 6 6, 6, 6
This work. Only 3 optimal codes,

see Tab. 7.4

n = 5

(125, 246, 119, 104, 150), (86, 23, 115, 107, 189)

(169, 63, 106, 49, 112)

(5, 237, 175, 221, 198)

(5, 2)-SSS

4, 4

4

5

1, 1

2

6

1, 1

2

6

[29]

(1,23,71,167,235) (5, 2)-SSS 6 36 46
This work. We find only one optimal

code by fixing α1 = 1 and α2 = 23

7.8 Conclusions

In this chapter, we present an attack-based evaluation on two representative instances of code-

based masking, namely IPM and SSS-based masking. The higher-order optimal distinguisher is

employed in evaluation. As shown in previous chapters, we highlight that various encodings

have significant impacts on the side-channel analysis of the corresponding scheme. Moreover, as

an ultimate metric, the success rate of empirical attacks confirm the advantages of applying

optimal instances of code-based masking.

Furthermore, our attack-based evaluation completes the assessment of code-based masking

in known leakage model. However, this study shall be further verified on practical measurements

from real circuits.

116



CHAPTER 8

Information-Theoretic Bounds on Attacks

Measuring the information leakage is critical for evaluating practical security of cryptographic

devices against side-channel analysis. More straightforwardly, it is interesting to have an upper

bound on success rate of any attack given a (fixed) number of side-channel measurements.

Or conversely, we wish to derive a lower bound on the number of queries for a given success

rate of optimal attacks. In this chapter, we derive several bounds in both directions by using

information-theoretic tools, particularly for cryptographic implementations protected by masking

schemes. We show that a generic upper bound on the probability of success, irrespective of

specific attacks, is linked to mutual information between side-channel measurements and the

secret. Moreover, our numerical evaluation confirms that, the success rate of optimal maximum

likelihood distinguishers is tightly bounded given a fixed number of measurements.

Part of results shown in this chapter has been presented in [41] (preprint on ArXiv).
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8.1 Introduction

Since the seminal work by Kocher et al. [95], side-channel analyses (SCAs) have been one of the

most powerful attacks against cryptographic devices in practice. They exploit physical observable

information leakages like instantaneous power consumption [95] or electromagnetic radiation [71]

to recover the secrets used in cryptosystems. From an adversary’s perspective, many attacks

(distinguishers) have been proposed to exploit various leakages and there are several metrics to

compare them in a fair way [151]. However, bounding how (any) side-channel attack succeeds

is still an open problem. In other words, given a set of side-channel measurements, we seek

a generic upper bound on the success rate of any attack. In this respect, Chérisey et al. [57]

propose several bounds on the key extraction success rate by using information-theoretic tools,

which are tight in assessing unprotected cryptographic implementations.

To counteract SCAs, many countermeasures are proposed wherein masking is a well-

established one which provides provable security [86, 128]. Indeed, the number of measurements

for a successful attack against masked implementations is exponential to the masking order

(e.g., the number of random masks per sensitive variable) provided with a sufficient amount of

noise [61]. However, the lower bounds proposed in [61, 128] are demonstrated by approximations

and inequalities, resulting in loose bounds on the number of traces needed for a given success

rate. Moreover, as we will show in this chapter, those bounds on success rate given in [57] by

using mutual information (MI) for several measurements are also very loose when targeting

protected cryptographic implementations.

In this chapter, we aim at providing tight bounds on the success rate of any SCA by leveraging

information-theoretic tools. To do so, we consider a similar communication-channel framework
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8.1 Introduction

which has been developed in [57, 84] and adapt it to masking schemes. The overview of the

framework is shown in Fig. 8.1 and notations are introduced in the following section.

8.1.1 Notations

In the sequel, uppercase letters (e.g. X) denote random variables where calligraphic letters (e.g.,

X ) are for sets, lowercase letters (e.g., x) are for realizations and bold letters are for vectors and

matrices.

Therefore, as illustrated in Fig. 8.1, we have

• K ∈ F2` denotes the secret key (typically ` = 8, e.g., in AES), and K̂ is the output of a

side-channel attack

• T ∈ Fq
2`

denotes plaintexts or ciphertexts of length q

• U is the sensitive variable, say U = S(T⊕K) where S denotes a cryptographic operations

like the Sbox in AES

• without or with masking:

– V = U if no masking, which is the case for [57, 84]

– V = (U⊕M,M) if considering e.g., the 1st-order Boolean masking with a random

mask M ∈ Fq
2`

– V = UG + MH if taking the code-based masking [35] where G and H are two

generator matrices used in the masking

• X = f(V) is the noiseless leakage, say X = f(V) and f = wH in co-called Hamming

weight model

• Y is the noisy leakage, which models q measurements (traces) in practice, say Y = X+N

where N denotes the additive white Gaussian noise: N ∼ N (0, σI). Additionally, the

channel is assumed to be memoryless.

Crypto
Operations

Leakage
Function

AttacksMasking Channel

Figure 8.1: Representation of side-channel analysis of a masked cryptographic operation as a
communication channel.
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As a consequence, assumingT is known, other variables form a Markov chain: K−U−V−X−
Y−K̂. By Markovity, when related to single-letter quantities, we have: I(X;Y|T) ≤ qI(X;Y |T )

as in [57]. In particular,

• in [57, §3.1], one of the bounds is given by: q ≥ cst
I(X;Y |T ) . So I(X;Y |T ) comes naturally

from bounds.

• in [37, Theorem 4], the leakage metric is: I(K;Y |T ) = I(U ;Y |T ), which is implicitly

connected to q [24].

8.2 Contributions

In this work, we derive security bounds for side-channel attacks in the presence of countermeasures.

First of all, instead of utilizing universal inequality-based bounds on mutual information as

in [57], we use mutual information itself and derive bounds on the success rate by applying

Fano’s inequality [52]. Secondly, we suggest to use I(U;Y|T) instead of I(X;Y|T) in masked

cases, since the bounds on success rate by the former is much tighter than by the latter. At last,

we furnish numerical results in a commonly used side-channel setting which confirm that, our

new bound provides more accurate security guarantees in the context of masked cryptographic

implementations.

8.3 Applying MIs of Different Variables

8.3.1 Links between Different Pairs of MIs

With notations shown in Fig. 8.1, we have following equalities and inequalities with respect to

MIs given different pairs of variables in the context of side-channel analysis.

Lemma 8.1. By a side-channel setting as in Fig. 8.1, one has

I(K;Y|T) = I(U;Y|T) ≤ I(V;Y|T) = I(X;Y|T). (8.1)

Proof. For I(V;Y|T) = I(X;Y|T), knowing T gives that V −X−Y forms a Markov chain
and, since X = f(V) then X−V−Y also forms a Markov chain. Thus I(V;Y|T) = I(X;Y|T).
Similarly, we get the first equality.

For I(U;Y|T) ≤ I(V;Y|T), it is straightforward as U−V−Y is a Markov chain. Yet the
converse is not true because of the random mask M.

120



8.3 Applying MIs of Different Variables

As a consequence of Lemma 8.1, we only focus on two quantities I(U;Y|T) and I(X;Y|T),

where intuitively, the former should give a better bound than the latter. Next, since the ML

(Maximum Likelihood)-based distinguishers are optimal [84] in SCAs, we have the following

lemma which works for any distinguisher.

Lemma 8.2. Considering any distinguisher, including the optimal one (namely the ML-based
one), one has

I(K; K̂) ≤ I(K; K̂|T) = I(K;Y|T). (8.2)

where K̂ = ϕ(y, t) = argmaxk p(Y = y(k)|T = t) follows the distinguisher rule in SCAs.

Proof. Since H(K|K̂) ≥ H(K|K̂,T) and K is independent of T, we have I(K; K̂|T) =

H(K|T)−H(K|K̂,T) = H(K)−H(K|K̂,T) ≥ H(K)−H(K|K̂) = I(K; K̂).
Secondly, knowing T implies that K̂ is a deterministic function of Y following the ML rule:

K̂ = ϕ(Y,T) = argmaxk p(y(k)|T = t), which proves equality.

Remark 8.1. The ML rule coincides with MAP (Maximum A Posterior) rule assuming K is
uniformly distributed (to maximize its entropy), which is a common setting in SCAs.

Interestingly, we can upper bound I(K;Y|T) as follows.

Lemma 8.3. Given the same setting as in Fig. 8.1, one has

I(K;Y|T) ≤ H(K). (8.3)

Proof. The inequality holds in the side-channel setting of Fig. 8.1, since I(K;Y|T) = H(K|T)−
H(K|Y,T) = H(K)−H(K|Y,T) ≤ H(K) where H(K|Y,T) ≥ 0.

In practice, Lemma 8.3 reflects the fact that the total amount of information any adversary

could extract cannot exceed the information carried by the secret key, while the latter is measured

by the entropy H(K).

8.3.2 Connecting to Capacity

Lemma 8.4. Considering the same setting as in Fig. 8.1, one has

I(X;Y)− I(T;Y) = I(X;Y|T) ≥ 0. (8.4)

Proof. Since T − X − Y forms a Markov chain, we have H(Y|X,T) = H(Y|X) 1. Hence
I(X;Y|T) = H(Y|T) − H(Y|X,T) = H(Y|T) − H(Y|X) = H(Y) − H(Y|X) −

(
H(Y) −

H(Y|T)
)

= I(X;Y)− I(T;Y).

1We use H for entropy of both discrete and continuous variables, although h is used more frequently for
differential entropy of a continuous variable.
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In fact, I(X;Y)− I(T;Y) ≥ 0 is also a direct consequence of the data processing inequality

where T−X−Y forms a Markov chain.

This leads us to define the capacity of the side-channel as

C = max
T−X−Y

I(X;Y)− I(T;Y)

= max
T−X−Y

I(X;Y|T),
(8.5)

where the maximum is taken over all distributions of X given T such that T −X −Y is a

Markov chain. The capacity can be determined from the following lemma.

Lemma 8.5. One has

C = max
X

I(X;Y) (8.6)

where the maximum is taken over all channel input distributions X.

Proof. From (8.5), one has I(X;Y|T) = ETI(X;Y|T = t) and each I(X;Y|T = t) is maximized
taking p(x|t) = p(x), so as to maximize I(X;Y). Since the optimal distribution does not
depend on t, it also maximizes the expectation ETI(X;Y|T = t) = I(X;Y|T) and thus
maxT−X−Y I(X;Y|T) = maxX I(X;Y).

Remark 8.2. We can consider the more general situation where the channel also depends on T.
In this case we would have C = E{CT } where Ct = maxX I(X;Y|T = t).

8.4 Bounding Success Rates and Capacity

8.4.1 Upper Bounds on Success Rates

As shown in [57], the mutual information itself gives the tightest bound on the success rate of a

side-channel attack. By combining Lemmas 8.1, 8.2 and 8.3, we have I(K; K̂) ≤ I(U;Y|T) ≤
H(K).

The probability of success (say success rate) in SCA is defined as: Ps = P(K̂ = K).

Accordingly, the error rate is Pe = 1− Ps. Now, we have the following upper bound on Ps.

Theorem 8.1. Given a side-channel setting as in Fig. 8.1, we have

fP (Ps) ≤ I(U;Y|T), (8.7)

where fP (p) = H(K) −H2(p) − (1 − p) log(2` − 1) and H2(p) = −p log p − (1 − p) log(1 − p),
for p ∈ [2−`, 1] and ` denotes the number of bits in K = k.

Proof. By Fano’s inequality [52] and Lemma 8.2, we have: fP (Ps) = H(K) −H2(Ps) − (1 −
Ps) log(2` − 1) ≤ I(K; K̂) ≤ I(U;Y|T).
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Since fP (p) is strictly increasing for p ∈ [2−`, 1] [56, §A], Theorem 8.1 not only provides an

upper bound on Ps, but also gives a lower bound on the number of traces q to obtain a specific

Ps in SCAs, where q is involved in I(U;Y|T). Apparently, we have I(U;Y|T) ≤ q · I(U ;Y |T ).

Remark 8.3. It is trivial to have a much loose bound on Ps as: fP (Ps) ≤ I(X;Y|T). However, as
we will show later, this bound is too loose and is out of use in evaluating masked implementations.
Furthermore, I(X;Y|T) cannot be bounded byH(K) (recall Lemma 8.3) and it increases linearly
in q.

8.4.2 Bounding I(X;Y|T) by Shannon’s Channel Capacity

As mentioned in Remark 8.3, I(X;Y|T) will not be bounded byH(K) in protected cryptographic

implementations. But still, it is upper bounded by the capacity defined in (8.5) as in the following

lemma.

Lemma 8.6. Given a side-channel setting in Fig. 8.1, we have

I(X;Y|T) ≤ q

2
log(1 + SNR), (8.8)

where SNR is the signal-to-noise ratio and σ2 denotes the variation of noise.

Proof. I(X;Y|T) ≤ q · I(X;Y |T ) = q · (H(Y |T )−H(Y |X)) ≤ q · (H(Y )−H(Y |X)) ≤ q · C =
q
2 log(1 + SNR).

We will show in next section that this upper bound on I(X;Y|T) is very tight in the presence

of a Boolean masking.

8.5 Applying into Hamming Weight Leakages with Addi-
tive Gaussian Noise

By equalities in Lemma 8.1, the only two MIs that need to be evaluated are I(X;Y|T) and

I(U;Y|T) 1. Taking notations from Fig. 8.1, we calculate both MIs in a numerical manner. We

have

I(X;Y|T) = H(Y|T)−H(Y|X,T),

I(U;Y|T) = H(Y|T)−H(Y|U,T),
(8.9)

where H(Y|T) and H(Y|U,T) = H(Y|U) can be estimated by Monte-Carlo simulations and,

H(Y|X,T) = H(Y|X) = H(N)

= q · 1

2
log
(
2πeσ2

)
.

(8.10)

1We use log2 to have mutual information and entropy expressed in bits.
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8.5.1 Importance Sampling in Monte-Carlo Simulation

Monte-Carlo simulation is a well-known method to estimate expectations of a function under

certain distribution by repeated random sampling, where the importance sampling can be used

to improve the efficiency and speedup the convergence procedure [100, Chap. 29].

By Monte-Carlo simulation, we can estimate the first term H(Y|T) in subtractions (8.9) by

randomly drawing NC samples. Particularly, equipped with importance sampling, we have

H(Y|T) =

∫
y

∑
t

p(y, t) log
1

p(y|t) dy

≈ lim
NC→∞

− 1

NC

NC∑
j=1

log p(yj |tj),
(8.11)

where each (tj ,yj), for 1 ≤ j ≤ NC , is drawn randomly. The estimation in (8.11) is sound based

on the law of large numbers [52, Chap. 3] and it has been numerically verified in [57]. Similarly,

H(Y|U) can be estimated using Monte-Carlo simulation by H(Y|U) = − 1
NC

∑NC
j=1 log p(yj |uj).

Convergence in Monte-Carlo Simulation. Since the accuracy of Monte-Carlo simulation

highly depends on the number of samples, we justify hereafter how we chose NC . As shown in

Fig. 8.2, the estimation of I(X;Y|T) (in unprotected case, cf Sec. 8.5.2) gets more accurate

by using larger NC . In particular, this estimation on I(X;Y|T) is accurate enough by using

only NC = 100, 000 draws. However, we use NC = 1, 000, 000 throughout this chapter (e.g., in

Fig. 8.3, 8.4 and 8.5) to have a more stable estimation.
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Figure 8.2: Monte-Carlo simulation with various NC draws where σ2 = 10.00.
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8.5 Applying into Hamming Weight Leakages with Additive Gaussian Noise

In the following, we present different cases of p(y|t) of one draw in both unprotected and

masked cases.

8.5.2 Without Masking

The unprotected case corresponds to the one considered in [57]. Here (tj ,yj), for 1 ≤ j ≤ NC ,
is drawn according to this process:

• tj ∼ U(Fq
2`

),

• kj ∼ U(F2`), and

• yj ∼ N (wH(S(tj ⊕ kj)), σ2Iq) ∈ Rq.

We then have for one draw (t,y):

p(y|t) =
∑
k

p(k)p(y|t, k) =
∑
k

p(k)

q∏
i=1

p(yi|ti, k)

=
∑
k

p(k)

q∏
i=1

1

(2πσ2)1/2
e
−(yi−wH (S(ti⊕k)))

2

2σ2 .

(8.12)

Since K ∈ F2` is uniformly distributed, (8.12) gives

log p(y|t) = log
∑
k

p(k)

q∏
i=1

1

(2πσ2)1/2
e
−(yi−wH (S(ti⊕k)))

2

2σ2

= −`− q

2
log
(
2πσ2

)
+ log

∑
k

q∏
i=1

e
−(yi−wH (S(ti⊕k)))

2

2σ2 .

(8.13)

The numerical results of I(X;Y|T) are shown in Fig. 8.3 with different levels of noise (σ2).

Note that we take NC = 1, 000, 000 random draws in Monte-Carlo simulation. These bounds

are the same as those already plotted in [57]. Here, plotting the bounds as a function of various

values of σ2 highlights that I(X;Y|T) curves are about homothetic, in that they I(X;Y|T)

depends only on q/σ2. Said differently, from an attacker perspective, the effort in terms of traces

collection scales linearly in the noise variance (for a given value of mutual information).

8.5.3 With a First-order Boolean Masking

Here (tj ,yj), for 1 ≤ j ≤ NC , is drawn i.i.d. according to this process:

• tj ∼ U(Fq
2`

),

• mj ∼ U(Fq
2`

),
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Figure 8.3: Evolution of I(X;Y|T) with the number of traces under different levels of noise in
the unprotected case without masking, NC = 1, 000, 000.

• kj ∼ U(F2`), and

• yj ∼ N (wH(S(tj ⊕ kj)⊕mj) + wH(mj), σ2Iq) ∈ Rq.

Note that we consider the zero-offset leakage [24] where the leakages of each share are summed

together (see the sum of two Hamming weights above).

We have for one draw (t,y):

p(y|t) =
∑
k

p(k)p(y|t, k) =
∑
k

p(k)

q∏
i=1

p(yi|ti, k)

=
∑
k

p(k)

q∏
i=1

∑
mi

p(mi)p(yi|ti, k,mi)

=
∑
k

p(k)

q∏
i=1

∑
mi

p(mi)
e
−(yi−f(ti,k,mi))

2

2σ2

(2πσ2)1/2
,

(8.14)

where f(ti, k,mi) = wH(S(ti ⊕ k)⊕mi) + wH(mi) is the zero-offset leakage under Hamming

weight model. Again, taking K ∈ F2` uniformly, and considering that all masks are i.i.d.

∼ U(F2`), we have

log p(y|t) = −`(q + 1)− q

2
log
(
2πσ2

)
+ log

∑
k

q∏
i=1

∑
m

e
−(yi−f(ti,k,m))2

2σ2 . (8.15)

The numerical results of I(X;Y|T) are depicted in Fig. 8.4. It clearly appears that the effect

of masking is to relax the values of I(X;Y|T), which motivates for the fact that a bound based
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on I(X;Y|T) will be very loose. This motivates for the shifting to focus on I(U;Y|T). Back

to Fig. 8.4, the dotted black lines show the upper bounds given by Lemma 8.6. The takeaway

observation is that the bounds are all the tighter as the noise level increases.
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Figure 8.4: Bounding on I(X;Y|T) by Shannon’s channel capacity in masked cases, NC =

1, 000, 000.

Estimation of I(U;Y|T). Similarly as in (8.15), we have

log p(y|u) = −q`− q

2
log
(
2πσ2

)
+ log

q∏
i=1

∑
m

e
−(yi−f

′(ui,m))2

2σ2 . (8.16)

where f ′(ui,m) = wH(ui ⊕m) + wH(m).

The numerical results of I(U;Y|T) are shown in Fig. 8.5 with different levels of noise (σ2).

As shown in Fig. 8.5, I(U;Y|T) is bounded by H(K) as expected (see Lemma 8.3). Par-

ticularly, given the same noise level, the number of traces needed to obtain I(K;Y|T) =

I(U;Y|T) = 8 bits is much larger than in the unprotected case shown in Fig. 8.3. The curves

I(U;Y|T) vs σ2 also look homothetic with a scale of σ2 (as was the case of curves I(X;Y|T) vs

σ2 without masking, cf. Fig. 8.4). This is justified by a simple scaling argument: if the number

of traces for a given set of (T,U) is doubled, then the mutual information is the same as with

the nominal number of traces, but with SNR doubled as well.

8.5.4 Bounding Success Rate in Masked Implementations

Relying on Theorem 8.1, we have a upper bound on probability of success Ps, which also gives a

lower bound on the minimum of q to get a specific Ps. Moreover, a linear bound on q is given
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Figure 8.5: Evolution of mutual information I(U;Y|T) with the number of traces under different
levels of noise in masked cases, NC = 1, 000, 000. Note that I(U;Y|T) is upper bounded by
H(K) = 8 bits.

by I(U;Y|T) ≤ q · I(U ;Y |T ).

We apply Theorem 8.1 into the masked case. Numerical results are shown in Fig. 8.6 where

we present several instances with different levels of Gaussian noises. In particular, the ML

attacks utilize the higher-order distinguishers which have been demonstrated to be optimal in

the presence of masking [18]. In order to evaluate Ps of ML attacks, each attack is repeated 200

times to have a more accurate success rate.

As shown in Fig. 8.6, the bound given by I(U;Y|T) is very tight. Indeed, a commonly used

metric on attacks is the minimum number of traces to reach Ps ≥ 95%. Considering σ2 = 3.00

in Fig. 8.6, we set Ps = 95% and the ML attack needs around q = 800 traces, where our new

bound gives q = 720, while the bound proposed in [57] by using I(X;Y|T) only gives q = 12.

Furthermore, the latter bound would be much looser when the noise level continues to increase.

A more detailed comparison is depicted in Fig. 8.7, which shows the predicted minimum numbers

of traces reaching Ps ≥ 95% given by both I(U;Y|T) and I(X;Y|T). These curves show that

our new bound is much tighter than the previous one from the state-of-the-art, as it captures

the masking scheme (recall from Fig. 8.1 that the masking countermeasure step is between U

and Y but not between X and Y).
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Figure 8.6: Application and comparison of bounds on success rate. We present six instances
with different noise levels by using qmax = 4800 traces. Note that we omit the bounds given by
I(X;Y|T) as they are invisible when plotted together with bounds given by I(U;Y|T).
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Figure 8.7: Comparison of the minimum number of traces qmin to reach Ps ≥ 95% predicted by
our new bound, by I(X;Y|T) as in [57] and also the baseline given by an ML attack.

8.6 Extending to Code-based Masking

We have shown the advantages of the code-based masking against side-channel attacks in previous

chapters. As the information-theoretic bounds in this chapter are generic, we therefore apply

those evaluations into the code-based masking.

The general communication channel framework is the same as in Fig. 8.1, except that

the Boolean masking is replaced by a more general masking scheme. Specifically, we say

V = UG + MH where G, H are the generator matrices of two codes C and D in code-based
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masking, respectively. For the sake of simplicity, we consider IPM with n = 2, meaning that

V = UG + MH = U
(
1 0
)

+ M
(
α1 1

)
= (U + α1M, M),

(8.17)

where α1 is the only public parameter in IPM. As a consequence, different values of α1 lead to

various linear codes in IPM.

8.6.1 Bounding Mutual Information

From a high abstract view of communication channel, utilizing code-based masking satisfies the

same inequality as in Lemmas 8.1, 8.2 and 8.3. Therefore, we have that I(K; K̂) ≤ I(U;Y|T) ≤
H(K), an information-theoretic upper bound for I(K; K̂) by the entropy of K, for instance,

H(K) = ` under the uniform assumption.

Considering the Hamming weight leakages under AWGN, the simulation setting is the same

as in the Boolean masking, except that: yj ∼ N (wH(S(tj⊕kj)⊕(α1m
j))+wH(mj), σ2Iq) ∈ Rq.

Accordingly, Eqn. 8.16 is updated by replacing f ′(ui,m) by f ′′(ui,m, α1) = wH(ui ⊕ α1m) +

wH(m) for the zero-offset leakage:

log p(y|u) = −q`− q

2
log
(
2πσ2

)
+ log

q∏
i=1

∑
m

e
−(yi−wH (ui⊕f

′′(ui,m,α1))2

2σ2 . (8.18)

After inserting Eqn. 8.18 into Eqn. 8.11, we launch the Monte-Carlo simulation and the

numerical results are shown in Fig. 8.8.

The takeaways from Fig. 8.8 are twofold. Firstly, I(U;Y|T) is well-bounded by H(K) = 8.

The bound is tight, since given an enough amount of side-channel measures (q), we should

have I(U;Y|T) = H(K). Secondly, as already illustrated in Chaps. 4 and 7, different choices

of the codes in IPM have distinct impact on the effectiveness of side-channel protection. We

herein provide another argument such that α1 = 23 is one of the optimal codes for 2-share IPM.

Additionally, compared with the state-of-the-art (e.g., [3, 37]), we complete the analysis of IPM

by I(U;Y|T) rather than I(U ;Y |T ), where the former enables concrete predication of number

of traces to launch a successful attack.

8.6.2 Bounding the Probability of Success

In the presence of code-based masking, Fano’s inequality also holds, meaning that fP (Ps) ≤
I(U;Y|T). By Theorem 8.1, the success rate Ps is straightforwardly linked to I(U;Y|T).
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(b) α1 = 17.

0 400 800 1200 1800 2400 3000 3600 4200 4800
Number of traces: q

0

1

2

3

4

5

6

7

8

M
ut

ua
l i

nf
or

m
at

io
n 

I(U
;Y

|T
)

2 = 0.25
2 = 0.50
2 = 1.00

(c) α1 = 3.
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(d) α1 = 23.

Figure 8.8: Numerical results of I(U;Y|T) under different choices of α1 in IPM. Note that
α1 = 1 corresponds to Boolean masking as shown in Fig. 8.5 for other levels of noise.

Therefore, we derive the same upper bound on Ps, the best probability of success an attack can

obtain given a set of q measurements.

Similarly with the above setting, we can numerically verify the bound on success rate

considering the Hamming weight leakage under AWGN. Those numerical results are depicted in

Fig. 8.9, where the ML attack follows the maximum likelihood rule.

As shown in Fig. 8.9, first of all, the effectiveness of protection against SCA increases

from α1 = 1 (corresponds to the Boolean masking) to α1 = 23. It can be explained by the

coding-theoretic properties like the dual distance and the kissing number of the code D as IPM

is non-redundant. Secondly, with the same noise level (σ2), it is significantly more difficult to

attack IPM with α1 = 23 than the Boolean one. The gap is much larger along with σ2 increases,

as frequently stated in demonstrating the security of masking schemes [128].

In above analysis, we derive the success rate of attack given a certain fixed number of traces.

Conversely, given a certain value of Ps, we are able to predict the minimum number (lower
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Figure 8.9: Bounds on success rate Ps by I(U;Y|T) under different choices of α1 in IPM.

bound) of traces needed to achieve this Ps. The twined problems are unified by Theorem 8.1,

knowing the one direction gives the bound for the other one. Accordingly, inverse to Fig. 8.9,

we can plot the predicted number of traces to achieve Ps ≥ 95% as in Fig. 8.10. We also add

the prediction by I(X;Y|T) [57, 58] in comparison. Note that several points in Fig. 8.10(c)

and 8.10(d) are missing since qmin are already exceed 5000 in corresponding noise levels.

As shown in Fig. 8.10, the lower bound on qmin given by I(U;Y|T) is much tighter than that

given by I(X;Y|T). Consequently, It is recommended to utilize the bound given by I(U;Y|T)

rather than I(X;Y|T) in the presence of masking.

In order to show the exponential properties, we depict in Fig. 8.11 with the number of traces

in normal scale. More apparently from Fig. 8.11, the inherent properties of higher algebraic

complexity in IPM significantly improve the side-channel resistance when empowered by optimal

linear codes. When moving to redundant code-based masking, for instance in SSS-base masking,

those optimal codes also achieve the best protection against SCA, while bad codes may degrade

the protection as already demonstrated in Chap. 7.
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Figure 8.10: Prediction of qmin achieving Ps ≥ 95% under different choices of α1 in IPM. Note
that the number of traces are in log2 scale.

8.7 Conclusions

We derive security bounds for side-channel attacks in the presence of countermeasures. In this

respect, we leverage the seminal framework from Chérisey et al. in TCHES 2019, and extend it

to the case of a protection aiming at randomizing the leakage. Interestingly, the generalization

allows to improve bounds compared to Chérisey et al’s. Also, we improve on the computation

method for the security metric, by resorting to a powerful probabilistic information estimation

based on importance sampling.

Furthermore, we verify our information-theoretic bounds in the context of code-based masking.

On the one hand, those bounds confirm again the advantages of code-based masking compared to

the commonly used Boolean masking, when the former is equipped with optimal codes. On the

other hand, those bounds also allow us to predict how successful can an ML-based distinguisher

be: evaluated by either an upper bound on the success rate given a set of traces or a lower bound

on the number of traces to succeed in recovering the secret key. In summary, our results provide
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Figure 8.11: Prediction of qmin achieving Ps ≥ 95% under different choices of α1 in IPM.

quantitative bounds allowing for the theoretical (i.e., “pre-silicon”) evaluation of protections

applied on top of a cryptographic algorithm.
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Part V

Generic Information-Theoretic
Measures and Applications to

Side-Channel Analysis
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CHAPTER 9

Towards Exact Assessment of Side-Channel Leakage by α-Information

Measuring the leakages of sensitive variables is the key to evaluate the security level in many

secrecy and privacy problems. In practice, an adversary can observe some “information” about

the manipulation of secrets, e.g., she can get some physically observable leakages like cache timing

variations, power consumption, electromagnetic radiations, etc. Those physical observations are

particularly called side-channel leakages when targeting cryptographic systems. Therefore, the

problem is how much information about a variable is carried in its side-channel leakages. In this

chapter, we study this problem, instead of using Shannon information theory (Shannon entropy,

mutual information, divergence, etc), in a more general sense by using Rényi entropies, Rényi

divergences and alpha-information.

Part of results shown in this chapter has been presented in IEEE Information Theory

Workshop (ITW 2021) [99].
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9.1 Introduction

Since the seminal work [146] by Claude E. Shannon published in 1948, entropy and mutual

information have been fundamental tools for measuring uncertainty and dependency in in-

formation theory. These information-theoretic tools have achieved great success in a large

variety of domains and topics, including quantification, storage, and communication of digital

information. Particularly, they have been widely used in cryptography [147], along with the

concept of “perfect secrecy”. Later on, several generalizations of entropy 1 and divergence have

been proposed, wherein Alfred Rényi propose a parameterized one depending on α for α > 0

and α 6= 1 in 1961 [135], usually called Rényi entropies and divergences. Essentially, all these

information-theoretic tools measure the intrinsic properties and connections between different

distributions of variables (under certain assumptions) despite using various tools.

The generalization of Shannon information theory continues. On one hand, regarding the

conditional version of Rényi entropies, at least six proposals have been come up with [1, 66, 148].

In particular, the one proposed by Arimoto [1], known as Arimoto-Rényi conditional entropy,

is a good definition possessing several fundamental features. On the other hand, regarding

the generalization of mutual information, the one proposed by Sibson [148], known as Sibson’s

mutual information, is perhaps the most preferred generalization of classical mutual information

and has been applied in various scenarios [63, 64, 122, 137, 157, 160].

However, there is no widely accepted definition on conditional mutual information. Recently,

two proposals are [63, 157], both of which do not have the uniform expansion property (UEP)

as shown in [99]. In this respect, our proposal in [99] is featured with UEP and other good

properties which are useful in the context of quantifying information leakage in side-channels.
1We call entropy, exclusively for Shannon entropy except stated otherwise.
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9.2 Contributions

9.1.1 Information-Theoretic Measures in Side-Channel Analysis

Mutual information has been extensively exploited in evaluating side-channel security of practical

cryptographic implementations. Typically, as a theoretical tool, it can be applied as a side-

channel distinguisher [9, 74, 84, 111, 163], or a leakage evaluation tool [41, 57, 151]. Interestingly,

from a framework of communication channel model, an optimal side-channel distinguisher is

derived in [84] in the sense that it can make the best use of leakage. Later on, the same

framework is explored in universally upper bounding the success rate of any attacks [41, 57], or

conversely giving lower bounds on the number of measurements to launch a successful attack

(e.g., with a success probability Ps ≥ 95%).

However, there is a gap between the success rate of an optimal ML-based attack and the

upper bounds given by mutual information, and the gap is even widened when other estimated

bounds are adopted [57]. We will show how the conditional α-information closes the gap and

provides an exact bound on attacks in this chapter.

9.2 Contributions

In this chapter, we aim at quantifying information leakage by utilizing generalized information-

theoretic measures and provide numerical simulation results in the context of guessing the value

of a discrete variable from its side-channel leakage. In this regard, we first show how conditional

information-theoretic tools are applied to quantify the amount of information carried by the

leakage in a Hamming weight leakage model. We present numerical results in both noiseless and

noisy scenarios. The takeaway is that the conditional α-entropy brings different bounds on the

information leakage when equipped with various α. In particular, the larger value of α gives a

much tighter bound.

Secondly, we present a full spectrum of application α-information in side-channel analysis

equipped with different α. In particular, we fully fill the gap between two worlds, namely

information-theoretic measures and side-channel attacks by applying conditional α-information.

Notably, it is the first time that we are able to predict exactly the success rate of the maximum-

likelihood (ML)-based attack in SCA, or conversely to predict the minimum number of traces to

launch a successful key-recovery attack. Furthermore, we also prove that when α approaches

positive infinity, the ML-based attack converges to conditional α-information between the leakage

and the sensitive variable. Therefore, this conditional α-information will provide the best upper

bound on the success rate of any attacks.
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9.3 Quantifying Hamming Weight Leakages by Rényi En-
tropy

Considering two random variables X and Y , where Y denotes the general leakage from the

sensitive variable X. For instance, Y is the side-channel leakage of sensitive variables during

its computation, storage, or even some micro-architectural caching information. An abstract

overview of the leakage model is illustrated in Fig. 9.1, in which f can be any deterministic or

probabilistic function on X and N denotes some additive noises.

Figure 9.1: Leakage model: the sensitive variable X and the leakage Y with some noise N .

We first present several definitions. Let p(x) and p(y) be the probability distributions (e.g., in

discrete case) or probability density functions (e.g., in continuous case) of X and Y , respectively.

We recall the definition of Rényi entropy as follows.

Definition 9.1 (Rényi entropy [135]). The α-entropy, or Rényi entropy of order α ≥ 0 is defined
for 0 < α < +∞ and α 6= 1 as

Hα(X) =
1

1− α logE
(
p(X)α−1

)
=

1

1− α log
∑∫
p(x)α. (9.1)

Remark 9.1. Considering different choices of α, we shall recover various entropies [137]:

• Hartley’s entropy (max-entropy): taking α → 0 gives H0(X) = log |SuppX| where
|SuppX| = Σ

∫
p(x)>0

1 denotes the volume/cardinality of the support of the distribution.

• Shannon entropy: taking α→ 1 recovers H1(X) = E log 1
p(X) = Σ

∫
p(x) log 1

p(x) = H(X).

• Min–entropy: taking α→∞ leads to H∞(X) = log 1
sup p where the notation sup p denotes

the ∞-norm ‖p‖∞. In discrete case, we have H∞(X) = log 1
maxx p(x) .

Then defining the conditional α-entropy Hα(X|Y ) implies an expectation over Y . We use in

this chapter the Arimoto’s conditional α-entropy as it is attributed with some good properties:

Definition 9.2 (Conditional Arimoto-Rényi Entropies [1]). The conditional α-entropy or
conditional Arimoto-Rényi entropy of order α ≥ 0 is defined for 0 < α < +∞ and α 6= 1 as

Hα(X|Y ) =
α

1− α logE‖p(·|Y )‖α =
α

1− α log
∑∫
y

p(y)
(∑∫
x

p(x|y)α
)1/α

. (9.2)

Remark 9.2. Similarly, we shall recover conditional version of above entropies as follows.
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• Conditional max-entropy (conditional 0-entropy): taking α → 0 gives H0(X|Y ) =

supyH0(X|Y = y) = log
(
supy

∣∣SuppX|Y = y
∣∣) where the supy is the infinity norm

as above.

• Conditional Shannon entropy (conditional 1-entropy): taking α → 1 gives Shannon’s
conditional entropy: H1(X|Y ) = H(X|Y ).

• Conditional min-entropy (conditional ∞-entropy): taking α→∞ leads to H∞(X|Y ) =

log 1
Ey supx p(x|y) where the supx is the infinity norm as above.

We aim at characterizing the leakages by utilizing the (conditional) guessing entropy and

Rényi entropies [142, 159], then build quantitative connections and upper/lower bounds between

the entropies and the success rates (SR). In particular, for quantifying the information that Y

brings on X, we focus on following four metrics.

• Guessing entropy

• Conditional Shannon entropy

• Conditional Arimoto-Rényi entropies (the α-entropy [161])

• Success rate (or success probability)

Assume that the discrete variable X ∈ F2` is uniformly distributed over X with cardinality

|X | = M and N = 0 in noiseless scenario, the marginal and joint distributions are:

P(X = x) = 2−` =
1

M
, P(Y = y) =

|f−1(y)|
M

, P(X,Y ) =
1

M
· 1y=f(x). (9.3)

The conditional probability distributions are as follows.

P(Y |X) =

{
1 if y = f(x)

0 otherwise
, P(X|Y ) =

P(Y |X)P(X)

P(Y )
=

{
1

|f−1(y)| if y = f(x)

0 otherwise
. (9.4)

Next, the maximum probability of success is defined as follows.

Ps(X) = max
x

p(x). (9.5)

For any leakage function f , we have: Ps(X|Y ) = Ey maxx p(x|Y ) =
∑
y p(y) · 1

|f−1(y)| =
∑
y

1
M =

M ′

M ≥ 1
M , where M ′ = |Y| and M = |X |.

In the following, we assume that the sensitive variable X leaks the Hamming weight model,

which is the well-studied leakage model in side-channel analysis. The reason is that, hardware

implementations leak bits in parallel, hence the leakage is the sum of the registers state bits,

that is the Hamming weight of the register contents. The schematic is shown in Fig. 9.1, where

we have f = wH for Hamming weight leakages.
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9.3.1 Guessing with Noiseless Leakages

Let f(X) = wH(X) where N = 0 and |X | = M = 2` for the sake of calculation. Hence,

P(x) =
1

2`
, P(y) =

(
`
y

)
2`

, P(x|y) =
P(Y |X)P(X)

P (Y )
=

1y=wH(x)(
`
y

) . (9.6)

We focus on quantifying the reduction of uncertainty of X knowing its Hamming weight

leakages Y . The four metrics are then calculated as follows.

• Conditional guessing entropy.

G(X|Y ) =
∑
y

P(y)
∑
x

x · P(x|y) =
∑
y

(
`
y

)
2`

(∑
wx=y

1(
`
y

) · x) =
1

2
+

1

2`+1

(
2`

`

)
. (9.7)

• Conditional Shannon entropy.

H(X|Y ) = −
∑
x, y

p(x, y) log p(x|y) = 2−`
∑
y

(
`

y

)
· log

(
`

y

)
. (9.8)

• Conditional Arimoto-Rényi Entropies.

Hα(X|Y ) =
α

1− α log
∑
y

p(y)

(∑
x

p(x|y)α

) 1
α

=
α

α− 1

(
`− log

∑
y

(
`

y

) 1
α

)
. (9.9)

• Conditional success probability.

Ps(X|Y ) = EY max
x

p(x|Y ) =
M ′

M
=
`+ 1

2`
. (9.10)

By using the upper bound from Fano’s inequality [65] and the lower bound H(X|Y ) ≥
ϕ∗(Ps(X|Y )) where

ϕ∗(s) = b 1
sc
(
sd 1
se − 1

)
logb 1

sc+
(

1− b 1
sc
(
sd 1
se − 1

))
logd 1

se, (9.11)

and Hα(X|Y ) ≥ α
1−α log φ∗α(Ps(X|Y )), where

φ∗α(s) =
(⌈1

s

⌉
s− 1

)⌊1

s

⌋1/α
+
(

1−
⌊1

s

⌋(⌈1

s

⌉
s− 1

))⌈1

s

⌉ 1−α
α (9.12)

(proposed by Sason et al. [142]), we numerically show the conditional Shannon and Rényi

entropies of X as Fig. 9.2 and Fig. 9.3. Specifically, the upper bound of Rényi entropy is highly

dependent on the α. With α much larger than 1.0, the marked region is much smaller than the

region with α < 1.0.
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Figure 9.2: Conditional Shannon entropy of guessing X knowing Y .
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(a) α = 0.25
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(b) α = 0.50
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(c) α = 2.00

0.0 0.2 0.4 0.6 0.8 1.0
Success probablity Ps(X|Y)

0

1

2

3

4

5

6

En
tro

pi
es

Upper bound of H (X|Y), M=32
Lower bound of H (X|Y): * (Ps(X|Y))
H (X|Y) with M=32, = 4.00
Upper bound of H (X|Y), M=16
H (X|Y) with M=16, = 4.00
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Figure 9.3: Conditional Rényi entropies of guessing X knowing Y with different α.

9.3.2 Guessing with Noisy Leakages

In fact, noise is the intrinsic part in the side-channel leakages, like in the power consumption and

electromagnetic radiations. Thus we consider the noisy leakages in a classic way by assuming

the noise is the additive white Gaussian noise (AWGN), which is a common noise model to
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mimic the effect of many random processes.

We assume that N = ϕ(z) ∼ N (0, σ2) and ϕ(z) = 1√
2πσ2

e−
z2

2σ2 which is a nonincreasing

function of |z|. Then, we have:

P(X = x) =
1

M
,

P(Y = y) =
∑
x

p(x) · p(y|x) =
1

M

∑
x

ϕ(y − f(x)),

P(y|x) = ϕ(y − f(x)) ,

P(x|y) =
p(y|x)p(x)

p(y)
=

ϕ(y − f(x))∑
x′ ϕ(y − f(x′))

.

(9.13)

In addition, the maximum conditional probability of success is computed as follows.

Ps = Emax
x

p(x|Y ) =

∫ (
1

M

∑
x′

ϕ(y − f(x′))

)
× ϕ(minx |y − f(x)|)∑

x′ ϕ(y − f(x′))
dy

=
1

M

∫
ϕ(minx|y − f(x)|) dy

=
1

M

∫
ϕ(y − f(x∗(y))) dy (where x∗(y) = arg min

x
|y − f(x)|)

=
M ′

M
− 2

M ′ − 1

M
Q

(
∆/2

σ

)
,

(9.14)

where M ′ is the cardinality of f(x) and Q(x) = 1
2erfc

(
x√
2

)
, ∆ equals the regularly spaced

distance of f(x), for instance ∆ = 1 in the Hamming weight model.

Thus, we calculate the conditional Shannon and Arimoto-Rényi entropies as follows.

• Conditional Shannon entropy. Given I(X;Y ) = H(X)−H(X|Y ) = h(Y )−h(Y |X)

and the differential entropy of Gaussian variable Y is h(Y ) = 1
2 log(2πeσ2), the conditional

Shannon entropy is:

H(X|Y ) = H(X)− h(Y ) + h(Y |X)

= logM +
log(2πeσ2)

2
−
∫
p(y) log

1

p(y)
dy.

(9.15)

• Conditional Arimoto-Rényi entropies.

Hα(X|Y ) =
α

1− α log
∑∫
y

p(y)
(∑
x∈X

p(x|y)α
)1/α

=
α

1− α log

∫
y

p(y)
(∑
x∈X

p(x|y)α
)1/α

dy

=
α

1− α log

∫
y

(∑
x∈X

p(x, y)α
)1/α

dy

=
α

1− α log
1

M

∫
y

(∑
x∈X

ϕ(y − f(x))α
)1/α

dy .

(9.16)
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With function scipy.integrate.quad in Python, we numerically investigate the remaining

information of X with knowing noisy Hamming weight leakages Y where the noise is the additive

Gaussian noise. Specifically, for conditional Shannon entropy, its upper bound is given by Fano’s

inequality and lower bound is: H(X|Y ) ≥ ϕ∗(Ps(X|Y )) where

ϕ∗(s) = b 1
sc
(
sd 1
se − 1

)
logb 1

sc+
(

1− b 1
sc
(
sd 1
se − 1

))
logd 1

se. (9.17)

While for conditional Arimoto-Rényi entropies, the upper bound and lower bound are given by

Sason et al. [142]. Particularly, Hα(X|Y ) ≥ α
1−α log φ∗α(Ps(X|Y )), where

φ∗α(s) =
(⌈1

s

⌉
s− 1

)⌊1

s

⌋1/α
+
(

1−
⌊1

s

⌋(⌈1

s

⌉
s− 1

))⌈1

s

⌉ 1−α
α , (9.18)

and it does not depend on M .

With noise level σ ∈ [0.05, 5.00], the conditional Shannon entropies with different M are as

in Fig. 9.4. Specially note that for M = 4 and noise level σ = 0.05, the lower bound is 0.5, while

the conditional Shannon entropy is 0.5000000000000003, which is very close but greater than

the lower bound.

From the Fig. 9.4, the conditional Shannon entropy is increasing along with M , which in fact

impacts the success probability Ps. In the noisy scenarios, adding noise increases the difficulty

of guessing, resulting in that the conditional entropy is increasing along with noise level and

approaching H(X). As a result, the numerical results are consistent with theoretical analysis.

With the same setting of noise level, the conditional Arimoto-Rényi entropies with different

α are plotted as in Fig. 9.5. It is interesting to show that with greater α, the upper bounds

are tighter. This result is the same as in Fig. 9.3. The conditional Arimoto-Rényi entropies are

increasing along with noise level σ as expected. But the shape of the conditional entropies curve

changed from concave to convex, and approaching to lower bound with an increase of α.

With observations from Fig. 9.5, we recommend to use Arimoto-Rényi entropies with larger α

under the Hamming weight leakages. It is worthy noting that H1/2 is highly related to guessing

entropy [45], and can be utilized to estimate the bounds for key ranking in a fast and scalable

way.

9.4 Good Definition of α-Information

We extend our investigation to α-information 1. It is well-known that α-information is related

to α-divergence. Therefore, we first recall the definition of the latter.
1We remove “mutual” in α-information since in general: Iα(X;Y ) 6= Iα(Y ;X).
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0.0 0.2 0.4 0.6 0.8 1.0
Success probablity Ps(X|Y)

0

1

2

3

4

5

6
Sh

an
no

n 
en

tro
py

Upper bound: Fano's inequality, M=32
Lower bound: * (Ps(X|Y))
H(X|Y) with M = 32, [0.05, 5.00]

(d) M = 32

Figure 9.4: Conditional Shannon entropies of guessing X knowing Y with different M , which
indicating different probabilities of Ps(X|Y ).

Definition 9.3 (Rényi Divergence [135, 137, 159]). Let p, q be distributions such that p
q is well

defined. The α-divergence, or Rényi divergence of order α ≥ 0 is defined for 0 < α < +∞ and
α 6= 1 as

Dα(p‖q) =
1

α− 1
logE

(q(X)

p(X)

)1−α
=

1

α− 1
log
∑∫
pα(x)q1−α(x), (9.19)

where X ∼ p(x). In particular, if p and q are binary distributions, say (p, 1− p) and (q, 1− q),
respectively, then the binary α-divergence is:

dα(p ‖ q) =
1

α− 1
log
(
pαq1−α + (1− p)α(1− q)1−α). (9.20)

Then we present Sibson’s α-information and identity.

Definition 9.4 (Sibson’s α-Information [53, 148, 160]). Let p, q be distributions such that p
q is

well defined as above. The Sibson’s α-information of order α ≥ 0 is defined for 0 < α < +∞
and α 6= 1 as

Iα(X;Y ) = min
qY

Dα(pY |X‖qY |pX) = min
qY

Dα(pX,Y ‖pXqY ). (9.21)
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(b) α = 0.50
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(c) α = 2.00
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Figure 9.5: Conditional Arimoto-Rényi entropies of guessing X knowing noisy Y with different
α ∈ [0.25, 0.50, 2.00, 4.00], and also different noise level.

Explicitly, the closed-form formula for Sibson’s α-information is:

Iα(X;Y ) =
α

α− 1
log
∑∫
y

(∑
x

p(x)pα(y|x)
)1/α

. (9.22)

Definition 9.5 (Sibson’s Identity [148, 160]). On the basis of above definition, we have Sibson’s
identity:

Iα(X;Y ) = Dα(pY |X‖qY |pX)−Dα(q∗Y ‖qY ) (9.23)

for any probability distribution qY , where q∗Y is the minimizing probability distribution such
that Iα(X;Y ) = minqY Dα(pY |X‖qY |pX) = Dα(pY |X‖q∗Y |pX).

It is worth mentioning that Sibson’s α-information satisfies the following basic properties [122,

137], which are seamlessly connected to Shannon mutual information.

• Shannon mutual information: taking α → 1 recovers Shannon’s mutual information:

I1(X;Y ) = I(X;Y ).

• Independence Characterization: Iα(X;Y ) ≥ 0 with equality iff X ⊥⊥ Y .
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• Uniform expansion property (UEP): if X is discrete uniformly distributed (p(x) = 1
M ), we

obtain Iα(X;Y ) = logM −Hα(X|Y ). This links α-information to conditional α-entropy.

• Data processing inequality (DPI): ifX−Y −Z forms a Markov chain, we have the data “post-

processing” inequality (post-processing cannot increase information): Iα(X;Z) ≤ Iα(X;Y ),

and the data “pre-processing inequality” (pre-processing cannot increase information):

Iα(X;Z) ≤ Iα(Y ;Z).

In summary, Sibson’s α-information provides a continuous extension from Shannon mutual

information to the parametric one by order α for α > 0 and α 6= 1. However, in the context

of side-channel analysis, an adversary usually is allowed to know some public information, for

instance plaintexts or ciphertexts when targeting cryptographic algorithms or implementations.

Therefore, it is critical to define the conditional version of α-information.

9.4.1 Extending to Conditional α-Information

As a natural continuation of the definitions in the preceding section, we define the conditional α-

information with a “log-expectation” closed-form expression, obtained by taking the expectation

over the conditional variable inside the logarithm in Eqn. 9.22, the expression of Sibson’s

(unconditional) α-information.

Rényi entropy and divergence are well-known generalizations of Shannon’s entropy and

Kullback-Leibler divergence:

Definition 9.6 (Compact Representation of Rényi Entropy and Divergence [99]). Assume
that either 0 < α < 1 or 1 < α < +∞. The α-entropy of a probability distribution P and
α-divergence of P from Q are defined as

Hα(P ) = α
1−α log ‖p‖α,

Dα(P‖Q) = 1
α−1 log〈p‖q〉αα,

(9.24)

where we have used the special notation:

‖p‖α =
(∑∫

pαdµ
)1/α

, 〈p‖q〉α =
(∑∫

pαq1−αdµ
)1/α

, (9.25)

with the following convention: All considered probability distributions P,Q possess a dominating
measure µ such that P � µ and Q� µ, the corresponding lower-case letters p, q are densities
of P,Q with respect to µ.

Therefore, we shall have the following definition for α-information.
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Definition 9.7 (Conditional α-Information, Closed-Form Definition [99]). The α-information
between random variables X and Y knowing Z is:

Iα(X;Y |Z) =
α

α− 1
logEZEY |Z〈pX|Y Z‖pX|Z〉α =

α

α− 1
logEY Z〈pX|Y Z‖pX|Z〉α. (9.26)

More explicitly, it is equivalent to:

Iα(X;Y |Z) =
α

α− 1
log
∑∫
p(z)

∑∫ (∑∫
p(x|z)pα(y|x, z) dµX(x)

) 1
α dµY (y) dµZ(z). (9.27)

To the best of our knowledge, this definition has not been considered elsewhere.

Interestingly, we have the following property for the impact of order α in conditional

α-information.

Lemma 9.1. Given fixed distributions of X, Y given Z, Iα(X,Y |Z) is non-decreasing in α, in
particular,

I0(X;Y |Z) ≤ I1(X;Y |Z) = I(X;Y |Z) ≤ I2(X;Y |Z) ≤ I∞(X;Y |Z), (9.28)

where I(X;Y |Z) is the Shannon mutual information, and we call I2(X;Y |Z) the quadratic
α-information as in convention. Additionally, we call I∞(X;Y |Z) the (conditional) maximal
information 1 as α→∞.

Proof. Since α-divergence is non-decreasing in α, if α < β, then Dα(PXY Z‖PX|ZQY Z) <

Dβ(PXY Z‖PX|ZQY Z) given a distribution of X,Y and Z. By the conditional Sibson’s identity,
we have that Iα(X;Y |Z) ≤ Dα(PXY Z‖PX|ZQY Z) ≤ Dβ(PXY Z‖PX|ZQY Z). Finally, taking
Q∗Y Z for minimization gives Dβ(PXY Z‖PX|ZQ∗Y Z) = Iβ(X;Y |Z).

In the following, we present some important properties of this conditional α-information.

9.4.2 Basic Properties

The conditional α-information in Def. 9.7 enjoys three important properties, namely consistency,

UEP and DPI. Note that we refer the interested reader to [99] for detailed proofs of above

properties.

Property 1 (Consistency of Conditional α-Information w.r.t. α-Information [99]). If Z is
independent of (X,Y ) then Iα(X;Y |Z) = Iα(X;Y ).

Property 2 (UEP for Conditional α-Information [99]). If U ∼ U(M) is uniformly distributed
independent of Z, then

Iα(U ;Y |Z) = Hα(U)−Hα(U |Y Z) = logM −Hα(U |Y Z). (9.29)
1We use term maximal information to highlight the essential meaning of “information” in reducing uncertainty,

e.g., in guessing games, side-channel analysis, etc. Another similar notion proposed in [89] is called maximal
leakage. In a nutshell, maximal leakage shall be larger than maximal information in conditional scenarios.
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9. TOWARDS EXACT ASSESSMENT OF SIDE-CHANNEL LEAKAGE

We say that a sequence of random variables forms a conditional Markov chain given some

random variable T if it is Markov for any T = t.

Property 3 (DPI for Conditional α-Information [99]). If W −X − Y − Z forms a conditional
Markov chain given T , then

Iα(X;Y |T ) ≥ Iα(W ;Z|T ). (9.30)

It is noteworthy that, firstly, the consistency property provides a continuous connection to

unconditional Sibson’s α-information. Secondly, we are especially interested in UEP since in

cryptographic applications, the sensitive variable is usually discrete and uniformly distributed,

say X ∼ U(M). Therefore, it enables us to derive some straightforward but non-trivial bounds

on how much information an adversary could infer knowing certain leakages. At last, DPI

allows us to apply the conditional α-information to several communication channel-based

frameworks [57, 58, 84]. We shall therefore expect that conditional α-information will bring

some insights in practical scenarios.

9.5 Applications in Side-channel Analysis

As we have demonstrated in previous chapters, side-channel analysis (SCA) is a very powerful

attacks against cryptographic implementation. In 2009, Standaert et al. establish a connection

between side-channel analysis and information theory for the first time [151]. Then it is exploited

by [84] to derive the optimal distinguisher and by [57] to obtain generic and universal bounds on

how successful an optimal distinguisher can be in context of SCA. In this section we will generalize

the results of [57] by Rényi information measures, particularly the conditional α-information,

and deduce new upper bounds for the probability of success of side-channel attacks.

9.5.1 Side-Channel in a Communication Channel View

Recall that the secret key is denoted as K, and the plaintext or ciphertext is T , which is the

input or output of the cryptographic implementation. By cryptographic operations, K and

T are “encoded”, and processed by some leakage function, producing a sensitive variable X.

Then X is leaked along with inherent noise N in the channel, denoted as the noisy leakage Y .

From a perspective of an adversary, she exploits Y to recover the key by certain side-channel

distinguishers, resulting in K̂ as a guess of K.

The communication channel view of side-channel analysis is shown in Fig. 9.6: In particular,

we assume that,
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Crypto Channel Attack
XK Y K̂

T N T

Figure 9.6: A communication channel view of side-channel analysis.

• K is uniformly distributed over K = F2` = {0, . . . , 2` − 1}. Denote M = |K| = 2`.

• T is independent with K, which is assumed to be available, e.g., in a key-recovering attack.

• the leakage function is a deterministic function, but not necessarily known to the attacker.

Based on this model, we have the following observation.

Lemma 9.2 (Conditional Markov Chains [57]). The communication channel we described above
admits the following Markov chains when given T :

K → Y → K̂; K → X → Y (9.31)

Proof. When T is known, it is clear that p(k̂|y, k) = p(k̂|y) and p(y|x, k) = p(y|x).

9.5.2 Upper Bounding the Success of Probability for Any Attacks

Considering the communication channel framework in Fig. 9.6, we have the following lemma.

Lemma 9.3.
Iα(K,Y |T ) = Iα(X,Y |T ) (9.32)

Proof. Since K → X → Y is a Markov chain given T , using Eqn. 9.30 we have Iα(K,Y |T ) ≤
Iα(X,Y |T ).

Conversely, when T is known, X is a deterministic function of K, which means X →
K → Y also forms an Markov chain given T . Again from Eqn. 9.30, we have Iα(K,Y |T ) ≥
Iα(X,Y |T ).

In order to build a connection between α-information and the probability of success, we

introduce the generalized Fano’s inequality as follows.

Lemma 9.4 (Rioul’s Generalized Fano Inequality [137, Thm. 1]).

Iα(X;Y ) ≥ dα
(
Ps(X|Y )‖Ps(X)

)
(9.33)

where
dα(p‖q) = 1

α−1 log
(
pαq1−α + (1− p)α(1− q)1−α) (9.34)

denotes binary α-divergence.
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Therefore, we derive the main result as follows.

Theorem 9.1 (Generic Upper Bound on Success Rate [99]). Given a side-channel setting as in
Fig. 9.6, we have

dα(Ps ‖
1

M
) ≤ Iα(K,Y |T ). (9.35)

Proof. Given Eqn. 9.32, it is enough to prove Iα(K,Y |T ) ≥ dα(Ps ‖ 1
M ). Since K − Y − K̂

forms an Markov chain given T , by DPI in Eqn. 9.30, we have Iα(K;Y |T ) ≥ Iα(K; K̂|T ).
Using UEP in Eqn. 9.29, one has Iα(K; K̂|T ) = logM−Hα(K|K̂, T ) ≥ logM−Hα(K|K̂) =

Iα(K; K̂), where the inequality holds since conditioning reduces α-entropy [1, 66]. Then by
Rioul’s Fano inequality (Lemma 9.4), we have Iα(K; K̂) ≥ dα(Ps ‖ 1

M ).

By applying binary α-divergence as in Eqn. 9.34, we have

dα(Ps ‖
1

M
) =

1

α− 1
log
( Pαs
M1−α +

(1− Ps)α
(M−1
M )α−1

)
= log

( M

M − 1

)
+

1

α− 1
log
(
(M − 1)α−1Pαs + (1− Ps)α

)
,

where dα(Ps ‖ 1
M ) is an increasing function of Ps when Ps ≥ 1

M , as illustrated in Fig. 9.7. Note

that we have Ps ≥ 1
M because if there is no leakage, e.g., when q = 0, then an adversary can

only guess k randomly. Therefore, the probability of success is 1
M .
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Figure 9.7: Illustration of dα(Ps ‖ 1
M
) as a function of Ps with different α, where M = 28.

Since dα(Ps ‖ 1
M ) is a monotonous function of Ps, it provides a lower bound on Iα(X,Y|T)

by Theorem 9.1 given a specific Ps. As a result, it enables us to derive a lower bound on

the number of traces to achieve that success rate Ps as Iα(X,Y|T) ≤ qIα(X,Y |T ) where
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X = (X1, X2, . . . , Xq) and Xi are i.i.d., the same with Y and T. More precisely, given a set

of leakages with length q, Iα(X,Y|T) involves q itself, which should be more tighter than

q ≥ dα(Ps‖ 1
M )

Iα(X,Y |T ) .

Inversely, given a fixed set of leakages with length q gives a fixed Iα(X,Y|T), then Theorem 9.1

leads to an upper bound on Ps. In particular, let f−1
d be the inverse of dα(Ps ‖ 1

M ) of Ps, then

we have Ps ≤ f−1
d (Iα(X,Y|T)). Note that f−1

d is also monotonous in its valid domain, e.g., the

range is determined by 1
M ≤ Ps ≤ 1.0. The inverse function f−1

d of dα(Ps ‖ 1
M ) is illustrated in

Fig. 9.8.
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Figure 9.8: Illustration of the inverse of dα(Ps ‖ 1
M
) with different α where M = 28.

In summary, Theorem 9.1 allows us to derive twined bounds in two directions, namely an

upper bound on Ps and a lower bound on q. In the sequel, we illustrate applications of this

theorem by numerical experiments.

9.5.3 Maximal Information Meets ML-based Attacks

In view of Lemma 9.1, given a fixed distribution for corresponding variables, conditional α-

information is non-decreasing with respect to the order α, and ∞-information with α→∞ is

the maximal one. Considering the communication channel model shown in Fig. 9.6, we shall

apply this maximal information to side-channel analysis.

Recall that in the maximum-likelihood based distinguisher in Chap. 7 (see Eqn. 7.6 and 7.7),

the best key guess is made by

k̂ = argmax
k∈K

∆(k) = argmax
k∈K

p(Y |k, T ). (9.36)
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It is worth mentioning that ML-based distinguisher is sound by design, implying the best key

guess will be the true key used in the cipher with a success rate Ps given enough number

of side-channel measurements. Therefore, we have the following theorem which bridges the

maximum α-information to the ML-based distinguisher.

Theorem 9.2 (Exact Upper Bound on Success Rate by Maximal Information). Given a
side-channel setting as in Fig. 9.6, we have

d∞(Ps|ML ‖
1

M
) = I∞(K,Y |T ) (9.37)

when I∞(K,Y |T ) denotes the (conditional) maximal information, and Ps|ML is the success rate
achieved by a maximum-likelihood based distinguisher.

Proof. By definition, we have

Iα(K;Y |T ) =
α

α− 1
log
∑∫
p(t)

∑∫ (∑∫
p(k|t)pα(y|k, t) dµK(k)

) 1
α dµY (y) dµT (t)

=
α

α− 1
log
∑
t

p(t)
∑∫ (∑

k

p(k|t)pα(y|k, t)
) 1
α dµY (y)

=
α

α− 1
log
∑
t

p(t)
∑∫ (∑

k

p(k)pα(y|k, t)
) 1
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logEY,T
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) 1
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α

α− 1
logEY,T

(∑
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) 1
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= logM +
α

α− 1
logEY,T
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α(y|k, t)
) 1
α∑

k p(y|k, t)
.

(9.38)

The equality in p(k|t) = p(k) holds since T is independent of K and p(k) = 1
M as it is uniformly

distributed. Moreover,
(∑

k p
α(y|k, t)

) 1
α is the α-norm of p(y|k, t). Therefore, we obtain(∑

k p
α(y|k, t)

) 1
α = max

k
{p(y|k, t)} = Ps|ML when α→∞, resulting that

I∞(K;Y |T ) = logM + logEY,T
Ps|ML∑
k p(y|k, t)

. (9.39)

In other words, Ps|ML is the exact success rate (e.g., evaluated by hundreds or more repetitions)
given by the ML-based distinguisher. Conversely, inserting the same Ps|ML and α→∞ into dα
gives equality in Eqn. 9.37.

Intuitively, Theorem 9.2 coincides with the fact that if the distinguisher is sound, then the

probability of success for the correct key guess will exceed all other wrong key guesses. Indeed,

the infinity norm in α-information when α→∞ exactly fits with the ML-based distinguisher
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by which it returns the most possible key guess. Still, it gives an upper bound for the success

rate, implying that Theorem 9.2 leads to an exact bound achievable by using the optimal

distinguishers (e.g., the ML-based one).

As we will show in the sequel, the derivatives in Eqn. 9.38 are easy to be implemented and

evaluated by Monte-Carlo simulations. We shall simplify the notation Ps|ML to Ps when there

is no ambiguity.

Remark 9.3. It is worth mentioning that Theorem 9.2 will recover the conditional maximal
leakage proposed in [89, Def. 6]. However, the maximum is considered not only over Pr(K = k),
but also over Pr(T = t), resulting in a larger value than our α-information when α tends to
infinity.

9.6 Applications to HammingWeight Leakage with AWGN

Let K ∈ F2` be the secret key and T ∈ F2` be the plaintext or ciphertext, where typically ` = 8,

e.g., in AES. Therefore, in side-channel analysis, an adversary aims to recover the secret key

by exploiting several (many) side-channel measurements, say q traces. That is, considering the

commonly used Hamming weight leakage model, the side-channel leakage can be generated by:

Yi = wH(S(Ti ⊕K)) + Ni, (9.40)

where wH is the Hamming weight function, S denotes certain cryptographic operation within a

cipher and Ni are i.i.d ∼ N (0, σ2) for 1 ≤ i ≤ q.
Applying the definition of Iα(X,Y|T) as in Def. 9.7, we have:

Iα(X,Y|T) = Iα(K,Y|T)

=
α

α− 1
log
(∑

t

p(t)

∫
Y

(∑
k

p(k|t)pα(y|t, k)
) 1
α dµY(y)

)

=
α

α− 1
log
(∫
Y

∑
t

p(y, t)

(∑
k p(k|t)pα(y|t, k)

) 1
α

p(y|t) dµY(y)
)
.

(9.41)

Next, Eqn. 9.41 can be estimated by using Monte-Carlo simulation by the law of large

numbers. Indeed, we have

exp

(
α− 1

α
Iα(X,Y|T)

)
≈ lim
NC→∞

1

NC

NC∑
j=1

(∑
k p(k|tj)pα(yj |tj , k)

) 1
α

p(yj |tj)

= lim
NC→∞

1

NC

NC∑
j=1

(∑
k p(k)pα(yj |tj , k)

) 1
α∑

k p(k)p(yj |tj , k)
,

(9.42)
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where tj ∼ U(Fq
2`

) and yj ∼ N (f(tj , kj), σ2Iq) ∈ Rq by choosing kj ∼ U(F2`) and f(tj , kj) =

wH(S(tj ⊕ kj)).
Considering independent Gaussian noise in each yj , we can simplify (9.42) and insert

into (9.41), therefore,

Iα(X,Y|T) ≈ `+
α

α− 1
log

1

NC

NC∑
j=1

(∑
k p

α(yj |tj , k)
) 1
α∑

k p(y
j |tj , k)

= `+
α

α− 1
log

1

NC

NC∑
j=1

(∑
k e
− α

2σ2
||yj−f(tj ,k)||2) 1

α∑
k e
− 1

2σ2
||yj−f(tj ,k)||2

,

(9.43)

given a larger enough NC .

Hereafter, we depict Iα(X,Y|T) with different choices of α.

9.6.1 Evaluation of Iα(X,Y|T) with Different α

We first consider the lower level of Gaussian noise with σ2 = 1.00 and 2.00. The results are

depicted in Fig. 9.9 by using q = 50 side-channel traces in total. As the first observation,

Iα(X,Y|T) is non-decreasing in α, which confirms Lemma 9.1. Note that for the sake of clarity

on comparison at beginning, we ignore the first point when q = 0, which gives Iα(X,Y|T) = 0.

Secondly, we push forward our evaluation into scenarios with high noise levels as shown

in Fig. 9.10. For instance, σ2 = 8.00 corresponds to SNR = 0.25 in Fig. 9.10(b). Therefore,

the second observation is that the gap between larger and smaller orders enlarges when the

variance of noise increases. Intuitively, Iα(X,Y|T) with a larger order α should be more relevant

in side-channel analysis. The reason is that a larger value of α makes this measure be more

sensitive to key guesses that have higher probabilities, which is exactly the case when a sound

distinguisher [80, 151] is adopted in corresponding attacks.

9.6.2 Bounding the Probability of Success

Relying on Theorem 9.1, we derive upper bounds on the probability of success Ps. For the sake

of clarity, the bounds of Ps given by applying the generalized Fano’s inequality is plotted in

Fig. 9.11 and then the numerical results on the success rate are shown in Fig. 9.12 for different

pairs of α in Iα(X,Y|T).

The main takeaway from Fig. 9.12 is that, larger orders in Iα(X,Y|T) enable to derive

better bounds on the success rate. Specifically, taking α = 100.00 as an example, it almost
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Figure 9.9: Numerical comparison of Shannon mutual information I(X,Y|T) and α-information
Iα(X,Y|T) with different α in a side-channel analysis context, with q = 50 traces.

pushes to the limit of supremum. However, smaller orders, e.g., taking α < 1.0, only provide

loose upper bounds on Ps.

Next, we compare those upper bounds given by Iα(X,Y|T) with empirical success rate from

ML-based attacks (using optimal distinguishers [84]). The numerical results under different

noise levels are shown in Fig. 9.12 and 9.13 for qmax = 50 and 200 traces, respectively. The most

significant observation is that when the order is larger enough, the information-theoretic bounds

provide exact upper bound on Ps, or conversely, the empirical success rate of the ML-based

attack will converge to the upper bound by Iα(X,Y|T). Compared with the state-of-the-art

bound [57] given by Shannon mutual information I(X,Y|T), our new bounds with large orders

α are significantly better in a sense of tight upper bounds.
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Figure 9.10: Numerical comparison of Shannon mutual information I(X,Y|T) and α-information
Iα(X,Y|T) with different α in a side-channel analysis context, with q = 200 traces.

To summing up, we present the full spectrum of upper bounds when applying Iα(X,Y|T)

in bounding the success rate of the optimal attacks in SCA. Particularly, we shown that a

larger order of Iα(X,Y|T) will give a tighter bound. When pushing to the limit, I∞(X,Y|T)

would lead to the best upper bound on Ps, since I∞(X,Y|T) is increasing in α as proved in

Lemma 9.1. At last, the optimality of the ML-based distinguisher indicates that there is no

distinguisher better than it. In other words, the success rate of utilizing other distinguishers like

CPA, DPA and MIA will not exceed that of ML-based distinguishers. As a consequence, the

bound by I∞(X,Y|T) is truly the supremum of success rate of any attacks, which confirms our

theoretical derivatives shown in Theorem 9.2.

As applications, the bound given by I∞(X,Y|T) bridges two worlds: the one is the

158



9.6 Applications to Hamming Weight Leakage with AWGN

0 5 10 15 20 25 30 35 40 45 50
Number of traces: q

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e:

 P
s

Bounds by I (X; Y|T) with < 1.00
Bounds by I(X; Y|T)
Bounds by I (X; Y|T) with > 1.00

 = 0.20
 = 0.25
 = 0.50
 = 0.80

 = 2.00
 = 4.00
 = 8.00
 = 100.00

(a) σ2 = 1.00.

0 5 10 15 20 25 30 35 40 45 50
Number of traces: q

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e:

 P
s

Bounds by I (X; Y|T) with < 1.00
Bounds by I(X; Y|T)
Bounds by I (X; Y|T) with > 1.00

 = 0.20
 = 0.25
 = 0.50
 = 0.80

 = 2.00
 = 4.00
 = 8.00
 = 100.00

(b) σ2 = 2.00.

Figure 9.11: Comparison of applying the Rioul’s generalized Fano inequality on Ps in α-
information Iα(X,Y|T) with different α in a side-channel analysis context, with q = 50 traces.

information-theoretic evaluation of side-channel leakage and the other is the exploitability

of those leakage. Additionally, it should also bring us a deeper understanding on the precise

security level of real devices in practice.

9.6.3 Predicting the Minimum Number of Traces for an Attack

As another application of Theorem 9.1, we shall derive lower bounds on the number of traces

qmin to achieve a given success rate Ps, since q is implicitly involved in Iα(X,Y|T). The lower

bounds on qmin are shown in Fig. 9.14, where in each figure, one pair of values of order α

are added for comparison. Specifically, two groups of α are: 2.00 vs 0.50 and 100.00 vs 0.01.

In particular, α = 2 corresponds to collision information (or collision entropy H2(X,Y|T)).
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Figure 9.12: Comparison of upper bounds on success rate Ps given by Shannon mutual information
I(X,Y|T) and α-information Iα(X,Y|T) with different α in a side-channel analysis context, with
q = 50 traces.

Moreover, we consider α = 100.00 as a large enough order in α-information. Note than the

empirical success rate given by ML-based attack is obtained by 400 repetitive experiments, while

NC = 1, 000, 000 random draws are used in Monte-Carlo evaluation of Iα(X,Y|T) to get a good

convergence.

As expected, lower bounds given by Iα(X,Y|T) with larger values of α are tighter than those

with smaller values of α. In particular, the order α = 100.00 gives an almost exact prediction

on the minimum number of traces to achieve Ps ≥ 95%. Additionally, we shall predict that

I∞(X,Y|T) will provide us the exact number of traces to achieve such a success rate, since the

success rate of ML attack will converge to the bound given by the maximal information.
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Figure 9.13: Comparison of upper bounds on success rate Ps given by Shannon mutual information
I(X,Y|T) and α-information Iα(X,Y|T) with different α in a side-channel analysis context, with
q = 200 traces.

9.7 Conclusions

In this chapter, we aim at measuring information leakage by utilizing more general information-

theoretic measures instead of Shannon information measures. We show first how the Hamming

weight leakage is assessed by conditional α-entropy in both noiseless and noisy cases. In

particular, we illustrate that the leakage quantification will be more accurate when the order α

is larger enough.

More importantly, we present how the conditional α-information is applied in assessing the

side-channel leakage. In this respect, we show a full spectrum of bounds given by conditional
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Figure 9.14: Comparison of lower bounds on the number of traces qmin to reach Ps ≥ 95%.

α-information with different orders. The outputs are twofold. On one hand, the success rate

of any key-recovering attack is upper bounded by the conditional α-information between the

sensitive variable and the corresponding leakage. We therefore, for the first time, provide a

supremum of empirical success rate of any attacks. On the other hand, the minimum number of

traces that achieves a specific success rate is lower bounded by the conditional α-information.

Again, the bound is tight when the order α is larger enough, meaning that optimal attacks can

reach this bound, e.g., by utilizing maximum-likelihood based distinguishers.
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CHAPTER 10

Conclusions and Perspectives

10.1 Conclusion

Measuring the concrete side-channel security is in the center of designing and evaluating

cryptographic implementations in practice, which is still an active and dynamic research area.

This problem is all the more important for evaluating masked implementations to understand

and enhance their practical security. In this thesis, we contribute to this problem in two aspects.

On the one hand, we present a unified and generic information leakage quantification framework

for the code-based masking, which allows us to assess the side-channel resistance of all instances

of code-based masking. On the other hand, we explore possibilities of applying more general

information-theoretic tools in side-channel analysis.

The first two parts of this thesis focus on quantifying information leakage in code-based

masking. Because of the generalization, the leakage quantification framework works for all

code-based masking instances like the simplest Boolean masking, inner product masking, direct

sum masking, Shamir’s secret sharing based masking, etc. Technically, our framework formally

binds the coding-theoretic properties of the corresponding linear codes to two leakage metrics,

namely signal-to-noise ratio (SNR) and mutual information (MI). Particularly in the case of

the Hamming weight leakage model, we find that both SNR and MI depend exclusively on the

dual distance and the kissing number of the linear codes used in the masking. Those theoretical
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derivatives enable us to enhance the code-based masking by providing optimal linear codes for

it in the sense of side-channel resistance.

Next, in the third part, we investigate the exploitability of those information leakages. We

consider the higher-order optimal distinguisher as it is the most powerful one based on the

maximum-likelihood rule. We first verify our theoretical framework from a perspective of

attack-based evaluation. The experimental results fairly confirm those theoretical findings and

demonstrate the advantages of employing code-based masking in practice. Another takeaway is

that redundancy can only reduce the side-channel resistance as expected, implying that a trade-

off must be considered in designing code-based masking against both side-channel analysis and

fault injection attack simultaneously. Second, by utilizing traditional information-theoretic tools,

we provide several theoretical bounds in attacking protected cryptographic implementations, in

the presence of code-based masking.

Finally, in the fourth part, we devote ourselves to applying general information-theoretic

measures for tighter universal bounds on how successful can any side-channel attack achieve.

This is of special importance in understanding and defeating side-channel analysis in practice.

In this respect, we propose to utilize α-information featured with an order α and investigate

several relevant properties in the context of side-channel analysis. Interestingly, with various

choices of α, we obtain a full spectrum of upper bounds on the success rate of the optimal

attacks (distinguishers), from the loosest one to the tightest one. In particular, we prove that

the success rate of the optimal attack converges to the upper bound given by α-information,

indicating that our new bounds are exactly tight. As a straightforward application, we verify

our theoretical bounds in side-channel analysis by considering the common Hamming weight

leakages. The simulation results exactly match with theoretical predictions.

Relying on above progresses made in this study, we put forth the evaluation tools and pave

the way to measurable side-channel security, especially in the presence of protections. From a

perspective of protection, we also provide the best-practice guideline for applying code-based

masking in practical cryptographic chips.

10.2 Further Perspectives

In view of topics studied and some progresses made in this thesis, we shall investigate the

following aspects in the future.
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Efficient Construction of Optimal Linear Codes. We showed in this thesis that different

linear codes have significant impact on the side-channel resistance of a specific code-based

masking. Thanks to our unified leakage quantification framework, we provided use-cases for

several masking schemes with lower number of shares (e.g., n ≤ 5) [35, 37]. However, it is still

an open problem to construct those optimal codes rather than enumerate all possible candidates

exhaustively, which would be infeasible soon when n increases [123]. A possible approach is to

construct linear codes by adding small blocks recursively in a greedy fashion. This approach can

be very efficient but the output of this approach might not be the global optimum. Moreover, it

will be interesting to consider algebraic codes with certain good structures as well, which we

shall explore more in the near future.

Generic Construction of Masked Gadgets against Both SCA and FIA. Devising

combined countermeasures against both side-channel analysis and fault injection attacks (FIA)

is always a very active topic in this field. Considering the intrinsic nature of a linear code, it

can detect (or correct) errors provided that the number of erroneous “digits” is smaller than the

minimum distance (or half of the minimum distance) of the code. Therefore, a question arising

in code-based masking is, whether it can be extended to counteract both SCA and FIA. In

this respect, an interesting construction of gadgets is proposed in [164], which presents several

generic and efficient gadgets against SCA, while not all of them are applicable to thwart FIA. As

a consequence, our interest particularly lies in constructing generic and efficient gadgets against

both SCA and FIA for future study.

Practical Applications of Code-based Masking. We have demonstrated significant ben-

efits of utilizing code-based masking from a security perspective and also provided evidence of

its efficiency when implemented in practice. Our theoretical derivatives have been verified by

numerical simulation experiments. However, it still remains to be validated in real devices. In

particular, it is still non-trivial to devise a secure masked implementation, considering various

physical defaults (like couplings, etc) and glitches in practical circuits (chips), which usually ruin

the security guarantees provided by protections. In the case of code-based masking, we shall

push forward the practical evaluation by considering various settings and platforms in practice.

Moreover, it is also interesting to apply code-based masking in protecting implementations of

post-quantum cryptographic schemes and algorithms.
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Extended Applications of α-Information in Side-Channel Evaluations. As already

shown in this thesis, the general α-information paves the way to seamlessly connect the

information-theoretic evaluation and side-channel attacks. In particular, we presented a tight

upper bound on the success rate of any side-channel distinguishers in unprotected scenarios.

More generally, α-information is expected to provide tight bounds in the presence of masking

or other protections. As perspectives, we will aim at applying α-information into side-channel

security evaluations. Especially, we shall also explore possible construction of security proofs

under the noisy leakage model, which may narrow down or even fill the gap between the theo-

retical proof-based security and the practical security of masked cryptographic implementations.

Finally, we will investigate how α-information can be put into practice, where a tighter bound

on success rate of any attacks implies an exact security guarantee against side-channel attacks.

To summarize, those perspectives shall contribute to measurable side-channel security both in

theory and in practice.
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APPENDIX A

Further Proofs, Lemmas and Discussions

A.1 Detailed Proofs

Before presenting these proofs, we recall below two well-known properties of Fourier transform.

We omit the proofs for the sake of brevity and refer to [22] for details.

Lemma 1.1 (Involution Property). ̂̂P (z) = |Kn`|P (z) = 2n`P (z), ∀z ∈ Kn`.

Lemma 1.2 (Inverse Fourier Transform). P (z) = 2−n`
∑
y∈Kn` P̂ (y)(−1)y·z, ∀z ∈ Kn`.

A.1.1 Proof of Lemma 5.1

In order to demonstrate Lemma 5.1, we clarify the computations in V [E [P (Z)|X]] as follows.

Let us consider Eqn. 5.1 in basefield F2, and thus let X = F`2, Y = Ft`2 and Z = Fn`2 . Moreover,

the C and D are expanded into F2 by using code expansion (Def. 3.6):

• E [P (Z)|X = x] for a given x ∈ X is:

E [P (xG + YH)] =
∑
y∈Y

P(Y = y)P (xG + yH) =
1

|Y|
∑
y∈Y

P (xG + yH)

=
1

|D|
∑
d∈D

P (xG + d).

• For any variable X, we have that:

V [E [P (Z)|X]] = E
[
E [P (Z)|X]

2
]
− E [E [P (Z)|X]]

2
.
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Next, we derive formulas for both sub-terms E [E [P (Z)|X]] and E
[
E [P (Z)|X]

2
]
and their

proofs are in Appendix A.1.2 and A.1.3, respectively.

Lemma 1.3. E [E [P (Z)|X]] = 1
2n`

∑
x∈(C⊕D)⊥ P̂ (x).

Lemma 1.4. E
[
E [P (Z)|X]

2
]

= 1
22n`

∑
x, y∈D⊥
x+y∈C⊥

P̂ (x)P̂ (y).

Particularly, when two codes C and D are complementary, we can simplify above two lemmas

as follows, which is exactly the case for IPM (recall Lemmas 4.1 and 4.2).

Lemma 1.5. E [E [P (Z)|X]] = 1
2n`

P̂ (0).

Proof. Given that C ⊕ D = F2n` , then we obtain (C ⊕ D)⊥ = {0}. Therefore, E [E [P (Z)|X]] =
1

2n`

∑
x∈(C⊕D)⊥ P̂ (x) = 1

2n`
P̂ (0).

Lemma 1.6. E
[
E [P (Z)|X]

2
]

= 1
22n`

∑
x∈D⊥

(
P̂ (x)

)2

.

Proof. Given that C and D are complementary, then C ∩ D = {0}, so as C⊥ ∩ D⊥ = {0}.
Therefore, the conditional codewords x, y ∈ D⊥ and x+ y ∈ C⊥ gives x+ y = 0, or equivalently
x = y. As a result, Lemma 1.4 becomes E

[
E [P (Z)|X]

2
]

= 1
22n`

∑
x, y∈D⊥,x+y∈C⊥ P̂ (x)P̂ (y) =

1
22n`

∑
x∈D⊥

(
P̂ (x)

)2

.

Therefore, relying on the two lemmas, the proof of Lemma 5.1 is as follows.

Proof of Lemma 5.1. From Lemma 4.1, we compute E [E [P (Z)|X]]
2 as follows:

E [E [P (Z)|X]]
2

=

 1

2n`

∑
x∈(C⊥∩D⊥)

P̂ (x)

2

=
1

22n`

 ∑
x∈(C⊥∩D⊥)

P̂ (x)

2

=
1

22n`

∑
x, y∈(C⊥∩D⊥)

P̂ (x)P̂ (y).

(A.1)

Finally, we obtain V [E [P (Z)|X]] by combining Lemma 4.2 and Eqn. A.1 as follows.

V [E [P (Z)|X]] = E
[
E [P (Z)|X]

2
]
− E [E [P (Z)|X]]

2

=
1

22n`

∑
x, y∈D⊥;

x+y∈C⊥

P̂ (x)P̂ (y)− 1

22n`

∑
x, y∈(C⊥∩D⊥)

P̂ (x)P̂ (y)

=
1

22n`

 ∑
x, y∈D⊥;

x+y∈C⊥

P̂ (x)P̂ (y)−
∑

x, y∈D⊥;

x, y∈C⊥

P̂ (x)P̂ (y)

 .

(A.2)

Due to Lemma 3.3, we have C⊥ ∩ D⊥ = (C ⊕ D)⊥ in SSS-based polynomial masking, where
⊕ denotes the direct sum operation. Notice that {(x, y) ∈ Kn ×Kn|x, y ∈ D⊥, x+ y ∈ C⊥} ⊇
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{(x, y) ∈ (D⊥ ∩ C⊥) × (D⊥ ∩ C⊥)}. This means that in Eqn. A.2, the subtracted terms are
already included in the first sum. Indeed, if x ∈ D⊥ also satisfies x ∈ C⊥, then x+ y ∈ C⊥ in
the first sum implies y ∈ C⊥. Therefore, Eqn. A.2 can be rewritten as follows:

V [E [P (Z)|X]] = E
[
E [P (Z)|X]

2
]
− E [E [P (Z)|X]]

2

=
1

22n`

∑
x, y∈D⊥\C⊥; x+y∈C⊥

P̂ (x)P̂ (y).
(A.3)

A.1.2 Proof of Lemma 4.1

Proof. Note that C ∩ D = {0}, while (C ⊕ D)⊥ = (C⊥ ∩ D⊥) ⊇ {0}. We have

E [E [P (Z)|X]] =
1

|X |
∑
x∈X

(
1

|Y|
∑
d∈D

P (xG+ d)

)
=

1

|C|
∑
c∈C

(
1

|D|
∑
d∈D

P (c+ d)

)

=
1

|C||D|
∑

c∈C, d∈D

P (c+ d)

=
1

|C||D| ·
1

2n`

∑
c∈C, d∈D

∑
x∈Fn`2

P̂ (x)(−1)(c+d)·x . By Lemma 1.2

=
1

|C||D| ·
1

2n`

∑
x∈Fn`2

P̂ (x)

(∑
c∈C

(−1)c·x
)(∑

d∈D

(−1)d·x
)

=
1

2n`

∑
x∈Fn`2

P̂ (x)1C⊥(x)1D⊥(x) =
1

2n`

∑
x∈C⊥, x∈D⊥

P̂ (x)

=
1

2n`

∑
x∈(C+D)⊥

P̂ (x) . . By Lemma 3.3

(A.4)

A.1.3 Proof of Lemma 4.2

Proof. By definition,

E
[
E [P (Z)|X]

2
]

=
1

|C|
∑
c∈C

(
1

|D|
∑
d∈D

P (c+ d)

)2

=
1

|C||D|2
∑
c∈C

(∑
d∈D

P (c+ d)

)2

. (A.5)

We have:

∑
c∈C

(∑
d∈D

P (c+ d)

)2

=
1

2n`
· 1

2n`

∑
c∈C, d,d′∈D
x,y∈Fn`2

P̂ (x)P̂ (y)(−1)x·(c+d)+y·(c+d′), (A.6)

since, according to the inverse Fourier transform (by using Lemma 1.2), we have:

P (a) = 2−n`
∑
x∈Fn`2

P̂ (x)(−1)x·a .
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Hence we obtain

Eqn. A.6 =
1

2n`
· 1

2n`

∑
c∈C, d,d′∈D
x, y∈Fn`2

P̂ (x)P̂ (y)(−1)(x+y)·c+x·d+y·d′

=
1

2n`
· 1

2n`

∑
c∈C, d,d′∈D
x, y∈Fn`2

P̂ (x)P̂ (y)(−1)(x+y)·c(−1)x·d(−1)y·d
′

=
1

22n`
· |C| · |D|2

∑
x, y∈D⊥; x+y∈C⊥

P̂ (x)P̂ (y),

(A.7)

where C, D are not necessary to be complementary codes and |C||D| = 2t` ≤ 2n`. Indeed, since C
is linear,

∑
c∈C(−1)(x+y)·c is null when x+ y does not belong to C⊥ and equals the size of C if it

does, and the same with D. Note that x, y ∈ D⊥ and x+y ∈ C⊥ which implies x+y ∈ C⊥∩D⊥.
In summary, we have the following result for E

[
E [P (Z)|X]

2
]
.

E
[
E [P (Z)|X]

2
]

=
1

|C||D|2 ·
1

22n`
· |C| · |D|2

∑
x, y∈D⊥; x+y∈C⊥

P̂ (x)P̂ (y)

=
1

22n`

∑
x, y∈D⊥; x+y∈C⊥

P̂ (x)P̂ (y).

(A.8)
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APPENDIX B

Generator Matrices for Some Optimal Linear Codes

B.1 Optimal Codes for IPM with n = 2

This appendix provides the details about the three non-equivalent optimal codes identified by

Alg. 1 and reported in the last line of Tab. 4.2.

Extension of the first optimal code from F256 to F2. The generating matrix for the

expanded code spanned by
(
1 α8

)
from F256 on the base field F2 is:

H⊥1 =



1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1
0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0


∈ F8×16

2 .

Extension of the second optimal code from F256 to F2. The generating matrix for the

expanded code spanned by
(
1 α126

)
from F256 on the base field F2 is:

H⊥2 =



1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1
0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0


∈ F8×16

2 .
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Extension of the third optimal code from F256 to F2. The generating matrix for the

expanded code spanned by
(
1 α127

)
from F256 on the base field F2 is:

H⊥3 =



1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1


∈ F8×16

2 .

B.2 Optimal Codes for (3, 1)-SSS based Masking

As shown in Tab. 5.1, the generator matrix of D is H =
(
α1 α2 α3

)
. From an exhaustive study

on 32131 candidates, the three optimal codes for (3, 1)-SSS based masking are: (α1, α2, α3) ∈

{(α0, α72, α80), (α0, α175, α247), (α0, α8, α183)}. Note that permutation on three public points

does not change the codes due to equivalence.

The generator matrices of the three optimal codes are shown below.

H1 =
(
α0 α72 α80

)
=



1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 1 1
0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 1
0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0
0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1
0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0


∈ F8×24

2

H2 =
(
α0 α175 α247

)
=



1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 0 0
0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0
0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0
0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1
0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1


∈ F8×24

2
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H3 =
(
α0 α8 α183

)
=



1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1
0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1


∈ F8×24

2

B.3 Comparison of MI on 1-D and n-D Leakages

We add more results on MI to compare the efficiency of different combination functions ϕP in

exploiting information leakages. In Fig. 5.3, we show the advantages to use joint distribution in

trivariate leakages. In addition, we compare the two combination function in 2-share cases by

plotting MI curves together. As shown in Fig. B.1, the combination by using joint distribution

is more efficient than the one by using sum in bivariate leakages scenarios. Moreover, this is

true for n-variate leakages.
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(a) 1-D vs. 2-D MI on 4-bit case.
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(b) 1-D vs. 2-D MI on 8-bit case.

Figure B.1: Comparing 1-D and 2-D MI on different linear codes where the sum and joint
distribution are used to combine the bivariate leakages, respectively. Note that the blue curves are
for the Boolean masking.

More importantly, the superiority of GCM can be fully unleashed by choosing appropriate

codes. In this respect, our leakage quantitation approach is a simple, generic and effective way

to choose the optimal codes for GCM.
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APPENDIX C

The Impact of Encoding on Leakage Distributions

C.1 The Impact of Encoding on Leakage Distributions

In this section, we further show the distinct impact of different encoding in Boolean masking,

IPM and DSM. Note that IPM is a special case of DSM, but not vice versa.

The leakage distribution in bivariate manner is shown in Fig. C.1, and two cases of IPM

are in Fig. C.2 and C.1 for α1 = α and α1 = α5, respectively. At last, DSM equipped with the

BKLC code [8, 4, 4] is shown in Fig. C.4.
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Figure C.1: Bivariate leakage distribution of 2-share Boolean masking under the Hamming weight
model.
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Figure C.2: Bivariate leakage distribution of 2-share IPM under the Hamming weight model,
with α1 = α1.
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Figure C.3: Bivariate leakage distribution of 2-share IPM under the Hamming weight model,
with α1 = α5, which is one of the optimal case.
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Figure C.4: Bivariate leakage distribution of 2-share DSM over bits under the Hamming weight
model, with BKLC code [8, 4, 4] involved.

185



C. THE IMPACT OF ENCODING ON LEAKAGE DISTRIBUTIONS

186



Bibliography

[1] Suguru Arimoto. Information measures and capacity of order α for discrete memoryless

channels. In Antoine Joux, editor, Topics in Information Theory, Proc. 2nd Colloq. Math.

Societatis János Bolyai, volume 16, pages 41–52, 1975. 138, 140, 152

[2] Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. Inner Product Masking Revisited.

In Oswald and Fischlin [118], pages 486–510. 7, 28, 29, 30, 31, 41, 60, 61, 66, 116

[3] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglialonga, and François-Xavier

Standaert. Consolidating Inner Product Masking. In Tsuyoshi Takagi and Thomas Peyrin,

editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on

the Theory and Applications of Cryptology and Information Security, Hong Kong, China,

December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer

Science, pages 724–754. Springer, 2017. 7, 8, 28, 29, 30, 40, 41, 53, 60, 62, 66, 101, 103,

116, 130

[4] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede. Theory

and Practice of a Leakage Resilient Masking Scheme. In Xiaoyun Wang and Kazue Sako,

editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference

on the Theory and Application of Cryptology and Information Security, Beijing, China,

December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science,

pages 758–775. Springer, 2012. 7, 28, 29, 60

187



BIBLIOGRAPHY

[5] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-Xavier

Standaert. On the Cost of Lazy Engineering for Masked Software Implementations. In

Marc Joye and Amir Moradi, editors, Smart Card Research and Advanced Applications -

13th International Conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised

Selected Papers, volume 8968 of Lecture Notes in Computer Science, pages 64–81. Springer,

2014. 9, 94, 95

[6] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,

Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-

order masking. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.

Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pages

116–129. ACM, 2016. 60

[7] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier

Standaert, and Pierre-Yves Strub. Parallel Implementations of Masking Schemes and the

Bounded Moment Leakage Model. In Jean-Sébastien Coron and Jesper Buus Nielsen,

editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Confer-

ence on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30

- May 4, 2017, Proceedings, Part I, volume 10210 of Lecture Notes in Computer Science,

pages 535–566, 2017. 29, 94

[8] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier

Standaert, and Pierre-Yves Strub. Parallel Implementations of Masking Schemes and the

Bounded Moment Leakage Model. In Advances in Cryptology - EUROCRYPT 2017, Paris,

France, April 30 - May 4, 2017, Proceedings, Part I, pages 535–566, 2017. 63, 64, 67, 86

[9] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-Xavier

Standaert, and Nicolas Veyrat-Charvillon. Mutual Information Analysis: a Comprehensive

Study. J. Cryptology, 24(2):269–291, 2011. 139

[10] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas. Deep

learning for side-channel analysis and introduction to ASCAD database. J. Cryptogr. Eng.,

10(2):163–188, 2020. 6

188



BIBLIOGRAPHY

[11] Koichi Betsumiya and Masaaki Harada. Binary optimal odd formally self-dual codes. Des.

Codes Cryptography, 23(1):11–22, 2001. http://www.math.nagoya-u.ac.jp/~koichi/

paper/fsd-odd.pdf. 49

[12] Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm.

Analysis and improvements of the DPA contest v4 implementation. In Rajat Subhra

Chakraborty, Vashek Matyas, and Patrick Schaumont, editors, Security, Privacy, and

Applied Cryptography Engineering - 4th International Conference, SPACE 2014, Pune,

India, October 18-22, 2014. Proceedings, volume 8804 of Lecture Notes in Computer

Science, pages 201–218. Springer, 2014. 89, 90

[13] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. NICV: Normalized

Inter-Class Variance for Detection of Side-Channel Leakage. In International Symposium

on Electromagnetic Compatibility (EMC ’14 / Tokyo). IEEE, May 12-16 2014. Session

OS09: EM Information Leakage. Hitotsubashi Hall (National Center of Sciences), Chiyoda,

Tokyo, Japan. 9

[14] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Side-Channel

Leakage and Trace Compression using Normalized Inter-Class Variance. IACR Cryptology

ePrint Archive, 2014:1020, 2014. 10

[15] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably Secure Masking of

AES. In Helena Handschuh and M. Anwar Hasan, editors, Selected Areas in Cryptography,

volume 3357 of Lecture Notes in Computer Science, pages 69–83. Springer, 2004. 94

[16] Éric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with

a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic

Hardware and Embedded Systems - CHES 2004: 6th International Workshop Cambridge,

MA, USA, August 11-13, 2004. Proceedings, volume 3156 of Lecture Notes in Computer

Science, pages 16–29. Springer, 2004. 5, 10, 25, 70, 95, 99

[17] Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley, and Houssem Maghrebi.

Orthogonal Direct Sum Masking - A Smartcard Friendly Computation Paradigm in a

Code, with Builtin Protection against Side-Channel and Fault Attacks. In David Naccache

and Damien Sauveron, editors, Information Security Theory and Practice. Securing the

Internet of Things - 8th IFIP WG 11.2 International Workshop, WISTP 2014, Heraklion,

189

http://www.math.nagoya-u.ac.jp/~koichi/paper/fsd-odd.pdf
http://www.math.nagoya-u.ac.jp/~koichi/paper/fsd-odd.pdf


BIBLIOGRAPHY

Crete, Greece, June 30 - July 2, 2014. Proceedings, volume 8501 of Lecture Notes in

Computer Science, pages 40–56. Springer, 2014. 7, 36, 49, 53, 60, 66, 72

[18] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, and Olivier Rioul. Masks Will Fall

Off – Higher-Order Optimal Distinguishers. In Palash Sarkar and Tetsu Iwata, editors,

Advances in Cryptology – ASIACRYPT 2014 - 20th International Conference on the Theory

and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,

December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer

Science, pages 344–365. Springer, 2014. 10, 30, 76, 88, 95, 101, 128

[19] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional Neural Networks with

Data Augmentation Against Jitter-Based Countermeasures - Profiling Attacks Without

Pre-processing. In Fischer and Homma [68], pages 45–68. 6

[20] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and Aurélien Francil-

lon. Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceed-

ings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,

CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 163–177. ACM, 2018. 5

[21] Jean-François Cardoso. Dependence, Correlation and Gaussianity in Independent Compo-

nent Analysis. Journal of Machine Learning Research, 4:1177–1203, 2003. ISSN 1533-7928.

43, 74

[22] Claude Carlet. Boolean Functions for Cryptography and Error Correcting Codes: Chapter

of the monography Boolean Models and Methods in Mathematics, Computer Science, and

Engineering. pages 257–397. Cambridge University Press, Y. Crama and P. Hammer eds,

2010. Preliminary version is available at http://www.math.univ-paris13.fr/~carlet/

chap-fcts-Bool-corr.pdf. 25, 29, 43, 74, 173

[23] Claude Carlet, Jean-Luc Danger, Sylvain Guilley, Houssem Maghrebi, and Emmanuel

Prouff. Achieving side-channel high-order correlation immunity with leakage squeezing. J.

Cryptographic Engineering, 4(2):107–121, 2014. 7, 43, 53, 60, 66, 74

[24] Claude Carlet and Sylvain Guilley. Statistical properties of side-channel and fault injection

attacks using coding theory. Cryptography and Communications, 10(5):909–933, 2018. 7,

29, 30, 46, 53, 60, 62, 89, 120, 126

190

http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf


BIBLIOGRAPHY

[25] Claude Carlet and Philippe Guillot. A New Representation of Boolean Functions. In Marc

P. C. Fossorier, Hideki Imai, Shu Lin, and Alain Poli, editors, AAECC, volume 1719 of

Lecture Notes in Computer Science, pages 94–103. Springer, 1999. 25, 36, 70

[26] Claude Carlet, Cem Güneri, Sihem Mesnager, and Ferruh Özbudak. Construction of some

codes suitable for both side channel and fault injection attacks. In Lilya Budaghyan and

Francisco Rodríguez-Henríquez, editors, Arithmetic of Finite Fields - 7th International

Workshop, WAIFI 2018, Bergen, Norway, June 14-16, 2018, Revised Selected Papers,

volume 11321 of Lecture Notes in Computer Science, pages 95–107. Springer, 2018. 81

[27] Elad Carmon, Jean-Pierre Seifert, and Avishai Wool. Photonic side channel attacks against

RSA. In 2017 IEEE International Symposium on Hardware Oriented Security and Trust,

HOST 2017, McLean, VA, USA, May 1-5, 2017, pages 74–78. IEEE Computer Society,

2017. 5

[28] Guilhem Castagnos, Soline Renner, and Gilles Zémor. High-order masking by using coding

theory and its application to AES. In Martijn Stam, editor, Cryptography and Coding -

14th IMA International Conference, IMACC 2013, Oxford, UK, December 17-19, 2013.

Proceedings, volume 8308 of Lecture Notes in Computer Science, pages 193–212. Springer,

2013. 66

[29] Hervé Chabanne, Houssem Maghrebi, and Emmanuel Prouff. Linear repairing codes and

side-channel attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):118–141, 2018.

8, 62, 64, 66, 67, 80, 97, 102, 109, 116

[30] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards Sound

Approaches to Counteract Power-Analysis Attacks. In Wiener [167], pages 398–412. 6, 7,

60, 94

[31] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S.

Kaliski, Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware and

Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA,

August 13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in Computer Science,

pages 13–28. Springer, 2002. 6, 10, 95, 99

[32] Zhimin Chen and Yujie Zhou. Dual-Rail Random Switching Logic: A Countermeasure to

Reduce Side Channel Leakage. In CHES, volume 4249 of LNCS, pages 242–254. Springer,

October 10-13 2006. Yokohama, Japan, http://dx.doi.org/10.1007/11894063_20. 94

191

http://dx.doi.org/10.1007/11894063_20


BIBLIOGRAPHY

[33] Wei Cheng, Claude Carlet, Kouassi Goli, Jean-Luc Danger, and Sylvain Guilley. Detecting

faults in inner product masking scheme. J. Cryptogr. Eng., 11(2):119–133, 2021. 54, 168

[34] Wei Cheng and Sylvain Guilley. Open-source: Quantifying Information Leakages in GCM,

September 2020. http://github.com/Qomo-CHENG/GeneralizedCM. 64, 82, 88, 90

[35] Wei Cheng, Sylvain Guilley, Claude Carlet, Jean-Luc Danger, and Sihem Mesnager.

Information leakages in code-based masking: A unified quantification approach. IACR

Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):465–495, 2021. 7, 14, 15, 24, 59, 79, 107,

108, 109, 119, 167, 168

[36] Wei Cheng, Sylvain Guilley, Claude Carlet, Jean-Luc Danger, and Alexander Schaub.

Optimal Codes for Inner Product Masking, June 24 - 25 2019. CRYPTARCHI,

Pruhonice, Czech republic. https://labh-curien.univ-st-etienne.fr/cryptarchi/

workshop19/abstracts/cheng.pdf. 13

[37] Wei Cheng, Sylvain Guilley, Claude Carlet, Sihem Mesnager, and Jean-Luc Danger.

Optimizing Inner Product Masking Scheme by a Coding Theory Approach. IEEE Trans.

Inf. Forensics Secur., 16:220–235, 2021. xiii, 8, 13, 24, 27, 48, 62, 63, 65, 68, 69, 70, 79, 87,

88, 102, 120, 130, 167, 168

[38] Wei Cheng, Sylvain Guilley, and Jean-Luc Danger. Categorizing All Linear Codes of

IPM over F28 . Cryptography and Communications and Discrete Structures, 2020. Link to

GitHub sources: https://github.com/Qomo-CHENG/OC-IPM. 27

[39] Wei Cheng, Sylvain Guilley, and Jean-Luc Danger. Optimal Linear Codes for IPM, January

2020. https://github.com/Qomo-CHENG/OC-IPM. xxiii, 40, 46, 52

[40] Wei Cheng, Sylvain Guilley, and Jean-Luc Danger. Categorizing All Linear Codes of IPM

over F28 . Cryptogr. Commun., 13(4):527–542, 2021. 13, 168

[41] Wei Cheng, Yi Liu, Sylvain Guilley, and Olivier Rioul. Attacking masked cryptographic

implementations: Information-theoretic bounds. CoRR, abs/2105.07436, 2021. 10, 15, 95,

117, 139, 170

[42] Wei Cheng, Yi Liu, Sylvain Guilley, and Olivier Rioul. Towards Finding Best Linear

Codes for Side-Channel Protections, September 17 2021. 10th International Workshop on

Security Proofs for Embedded Systems (PROOFS). Beijing, China. 59, 79, 102, 169

192

http://github.com/Qomo-CHENG/GeneralizedCM
https://labh-curien.univ-st-etienne.fr/cryptarchi/workshop19/abstracts/cheng.pdf
https://labh-curien.univ-st-etienne.fr/cryptarchi/workshop19/abstracts/cheng.pdf
https://github.com/Qomo-CHENG/OC-IPM
https://github.com/Qomo-CHENG/OC-IPM


BIBLIOGRAPHY

[43] Wei Cheng, Olivier Rioul, and Sylvain Guilley. Guessing a secret cryptographic key from

side-channel leakages. In 2019 IEEE European School of Information Theory (ESIT’19),

Sophia Antipolis, France, Apr. 15-19, 2019, 2019. 15

[44] Wei Cheng, Chao Zheng, Yuchen Cao, Yongbin Zhou, Hailong Zhang, Sylvain Guilley,

and Laurent Sauvage. How Far Can We Reach? Breaking RSM-Masked AES-128 Im-

plementation Using Only One Trace. IACR Cryptology ePrint Archive, 2017:1144, 2017.

89

[45] Marios O. Choudary and P. G. Popescu. Back to massey: Impressively fast, scalable and

tight security evaluation tools. In Fischer and Homma [68], pages 367–386. 145

[46] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential Power Analysis

in the Presence of Hardware Countermeasures. In Çetin Kaya Koç and Christof Paar,

editors, CHES, volume 1965 of Lecture Notes in Computer Science, pages 252–263. Springer,

2000. 5, 6, 94

[47] Jeremy Cooper, Gilbert Goodwill, Joshua Jaffe, Gary Kenworthy, and Pankaj Rohatgi.

Test Vector Leakage Assessment (TVLA) Methodology in Practice, Sept 24–26 2013.

International Cryptographic Module Conference (ICMC), Holiday Inn Gaithersburg, MD,

USA. 9, 94

[48] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner, Matthieu

Rivain, and Praveen Kumar Vadnala. Conversion of security proofs from one leakage model

to another: A new issue. In Werner Schindler and Sorin A. Huss, editors, Constructive

Side-Channel Analysis and Secure Design - Third International Workshop, COSADE 2012,

Darmstadt, Germany, May 3-4, 2012. Proceedings, volume 7275 of LNCS, pages 69–81.

Springer, 2012. 94

[49] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side Channel Cryptanalysis

of a Higher Order Masking Scheme. In Pascal Paillier and Ingrid Verbauwhede, editors,

CHES, volume 4727 of LNCS, pages 28–44. Springer, 2007. 6

[50] Jean-Sébastien Coron and Lorenzo Spignoli. Secure wire shuffling in the probing model.

In Tal Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st

Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20,

193

http://icmc-2013.org/wp/


BIBLIOGRAPHY

2021, Proceedings, Part III, volume 12827 of Lecture Notes in Computer Science, pages

215–244. Springer, 2021. 6

[51] Nicolas Costes and Martijn Stam. Redundant code-based masking revisited. IACR Trans.

Cryptogr. Hardw. Embed. Syst., 2021(1):426–450, 2021. xiii, 61, 65, 79, 83, 88, 97, 102,

109, 116

[52] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience,

July 18 2006. ISBN-10: ISBN-10: 0471241954, ISBN-13: 978-0471241959, 2nd edition.

120, 122, 124

[53] Imre Csiszár. Generalized cutoff rates and Rényi’s information measures. IEEE Trans.

Inf. Theory, 41(1):26–34, 1995. 146

[54] Jean-Luc Danger, Sylvain Guilley, Annelie Heuser, Axel Legay, and Ming Tang. Physical

Security Versus Masking Schemes. In Çetin Kaya Koç, editor, Cyber-Physical Systems

Security., pages 269–284. Springer, 2018. 68

[55] Éloi de Chérisey, Sylvain Guilley, Annelie Heuser, and Olivier Rioul. On the optimality

and practicability of mutual information analysis in some scenarios. Cryptography and

Communications, 10(1):101–121, 2018. 95

[56] Éloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. Best information

is most successful. Cryptology ePrint Archive, Report 2019/491, extended version of [57],

2019. https://eprint.iacr.org/2019/491. 123

[57] Éloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. Best Information

is Most Successful — Mutual Information and Success Rate in Side-Channel Analysis.

IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):49–79, 2019. xx, 10, 95, 118, 119,

120, 122, 124, 125, 128, 129, 132, 139, 150, 151, 157, 194

[58] Éloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. An information-

theoretic model for side-channel attacks in embedded hardware. In IEEE International

Symposium on Information Theory, ISIT 2019, Paris, France, July 7-12, 2019, pages

310–315. IEEE, 2019. 132, 150

[59] Jean-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater, and J.-L. Willems.

A Practical Implementation of the Timing Attack. In CARDIS, pages 167–182, 1998.

http://citeseer.nj.nec.com/dhem98practical.html. 5

194

https://eprint.iacr.org/2019/491


BIBLIOGRAPHY

[60] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage Models: From

Probing Attacks to Noisy Leakage. In Phong Q. Nguyen and Elisabeth Oswald, editors,

Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,

May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages

423–440. Springer, 2014. 9, 63, 95

[61] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making Masking Security

Proofs Concrete - Or How to Evaluate the Security of Any Leaking Device. In Oswald

and Fischlin [118], pages 401–429. 63, 118

[62] Stefan Dziembowski, Sebastian Faust, and Maciej Skorski. Noisy leakage revisited. In

Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015

- 34th Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture

Notes in Computer Science, pages 159–188. Springer, 2015. 9, 95

[63] Amedeo Roberto Esposito, Michael Gastpar, and Ibrahim Issa. Generalization error

bounds via rényi-, f -divergences and maximal leakage. 138

[64] Amedeo Roberto Esposito, Diyuan Wu, and Michael Gastpar. On conditional sibson’s

α-mutual information. CoRR, abs/2102.00720, 2021. 12, 138

[65] RM Fano. Class notes for transmission of information. In Course 6.574. MIT, Cambridge,

1952. 142

[66] Serge Fehr and Stefan Berens. On the conditional Rényi entropy. IEEE Trans. Inf. Theory,

60(11):6801–6810, 2014. 138, 152

[67] Julie Ferrigno and Martin Hlavác. When AES blinks: introducing optical side channel.

IET Inf. Secur., 2(3):94–98, 2008. 5

[68] Wieland Fischer and Naofumi Homma, editors. Cryptographic Hardware and Embedded

Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,

2017, Proceedings, volume 10529 of Lecture Notes in Computer Science. Springer, 2017.

190, 193, 198

195



BIBLIOGRAPHY

[69] Aurélien Francillon and Pankaj Rohatgi, editors. Smart Card Research and Advanced

Applications - 12th International Conference, CARDIS 2013, Berlin, Germany, November

27-29, 2013. Revised Selected Papers, volume 8419 of LNCS. Springer, 2014. 197, 207

[70] Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain. Affine

Masking against Higher-Order Side Channel Analysis. In Alex Biryukov, Guang Gong,

and Douglas R. Stinson, editors, Selected Areas in Cryptography, volume 6544 of Lecture

Notes in Computer Science, pages 262–280. Springer, 2010. 28

[71] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis:

Concrete results. In Proceedings of the Third International Workshop on Cryptographic

Hardware and Embedded Systems, CHES ’01, pages 251–261, London, UK, UK, 2001.

Springer-Verlag. 5, 94, 118

[72] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitec-

tural timing attacks and countermeasures on contemporary hardware. J. Cryptographic

Engineering, 8(1):1–27, 2018. 5

[73] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA Key Extraction via Low-Bandwidth

Acoustic Cryptanalysis. In Juan A. Garay and Rosario Gennaro, editors, Advances in

Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,

USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture Notes in Computer

Science, pages 444–461. Springer, 2014. 5

[74] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information analysis.

In CHES, 10th International Workshop, volume 5154 of Lecture Notes in Computer Science,

pages 426–442. Springer, August 10-13 2008. Washington, D.C., USA. 5, 95, 99, 139

[75] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs. Stochastic

Methods. In CHES, volume 4249 of LNCS, pages 15–29. Springer, October 10-13 2006.

Yokohama, Japan. 95

[76] Jovan Dj. Golić and Christophe Tymen. Multiplicative Masking and Power Analysis

of AES. In CHES, volume 2523 of Lecture Notes in Computer Science, pages 198–212.

Springer, August 13-15 2002. San Francisco, USA. 28

[77] Louis Goubin and Ange Martinelli. Protecting AES with Shamir’s Secret Sharing Scheme.

In Preneel and Takagi [125], pages 79–94. 7, 28, 61, 66, 107

196



BIBLIOGRAPHY

[78] Vincent Grosso, François-Xavier Standaert, and Emmanuel Prouff. Low Entropy Masking

Schemes, Revisited. In Francillon and Rohatgi [69], pages 33–43. 89

[79] Vincent Grosso, François-Xavier Standaert, and Sebastian Faust. Masking vs. Multiparty

Computation: How Large Is the Gap for AES? In Guido Bertoni and Jean-Sébastien Coron,

editors, Cryptographic Hardware and Embedded Systems - CHES 2013 - 15th International

Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Proceedings, volume 8086 of

Lecture Notes in Computer Science, pages 400–416. Springer, 2013. 6, 28, 60, 61, 94

[80] Sylvain Guilley, Annelie Heuser, and Olivier Rioul. A Key to Success - Success Exponents

for Side-Channel Distinguishers. In Alex Biryukov and Vipul Goyal, editors, Progress

in Cryptology - INDOCRYPT 2015 - 16th International Conference on Cryptology in

India, Bangalore, India, December 6-9, 2015, Proceedings, volume 9462 of Lecture Notes

in Computer Science, pages 270–290. Springer, 2015. 98, 100, 156

[81] Sylvain Guilley, Philippe Hoogvorst, Renaud Pacalet, and Johannes Schmidt. Improving

Side-Channel Attacks by Exploiting Substitution Boxes Properties. In Presse Universitaire

de Rouen et du Havre, editor, BFCA, pages 1–25, 2007. May 02–04, Paris, France,

http://www.liafa.jussieu.fr/bfca/books/BFCA07.pdf. 100

[82] Neil Hanley, Robert McEvoy, Michael Tunstall, Claire Whelan, Colin Murphy, and

William P. Marnane. Correlation Power Analysis of Large Word Sizes. In ISSC (Irish

Signals and System Conference), pages 145–150. IET, 13-14 Sept 2007. Edinburgh, Scotland,

UK. 95

[83] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES Smart Card Imple-

mentation Resistant to Power Analysis Attacks. In Jianying Zhou, Moti Yung, and Feng

Bao, editors, ACNS, volume 3989 of Lecture Notes in Computer Science, pages 239–252,

2006. 6

[84] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good Is Not Good Enough - Deriving

Optimal Distinguishers from Communication Theory. In Lejla Batina and Matthew

Robshaw, editors, Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th

International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, volume

8731 of Lecture Notes in Computer Science, pages 55–74. Springer, 2014. 95, 99, 119, 121,

139, 150, 157

197

http://www.liafa.jussieu.fr/bfca/
http://www.liafa.jussieu.fr/bfca/books/BFCA07.pdf


BIBLIOGRAPHY

[85] Vincent Immler, Robert Specht, and Florian Unterstein. Your rails cannot hide from

localized EM: how dual-rail logic fails on fpgas. In Fischer and Homma [68], pages 403–424.

6

[86] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware against

Probing Attacks. In CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages

463–481. Springer, August 17–21 2003. Santa Barbara, California, USA. 6, 9, 28, 32, 60,

95, 118

[87] ISO/IEC JTC 1/SC 27/WG 3. ISO/IEC 17825:2016: Information technology – Security

techniques – Testing methods for the mitigation of non-invasive attack classes against

cryptographic modules. https://www.iso.org/standard/60612.html. 9

[88] Ibrahim Issa and Aaron B. Wagner. Operational definitions for some common information

leakage metrics. In 2017 IEEE International Symposium on Information Theory, ISIT

2017, Aachen, Germany, June 25-30, 2017, pages 769–773. IEEE, 2017. 12

[89] Ibrahim Issa, Aaron B. Wagner, and Sudeep Kamath. An Operational Approach to

Information Leakage. CoRR, abs/1807.07878, 2018. 12, 149, 155

[90] Auguste Kerckhoffs. La cryptographie militaire (1). Journal des sciences militaires, 9:5–38,

January 1883. http://en.wikipedia.org/wiki/Kerckhoffs_law. 4

[91] Auguste Kerckhoffs. La cryptographie militaire (2). Journal des sciences militaires,

9:161–191, February 1883. http://en.wikipedia.org/wiki/Kerckhoffs_law. 4

[92] Neal Koblitz. Elliptic curve cryptosystems. Mathematic of Computation, 48:203–209, 1987.

4

[93] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,

Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks:

Exploiting Speculative Execution. CoRR, abs/1801.01203, 2018. 5

[94] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th

Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-

22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 104–113.

Springer, 1996. 5, 94

198

https://www.iso.org/standard/60612.html
http://en.wikipedia.org/wiki/Kerckhoffs_law
http://en.wikipedia.org/wiki/Kerckhoffs_law


BIBLIOGRAPHY

[95] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Wiener

[167], pages 388–397. 5, 25, 94, 98, 118

[96] Juliane Krämer, Dmitry Nedospasov, Alexander Schlösser, and Jean-Pierre Seifert. Differ-

ential Photonic Emission Analysis. In Emmanuel Prouff, editor, Constructive Side-Channel

Analysis and Secure Design - 4th International Workshop, COSADE 2013, Paris, France,

March 6-8, 2013, Revised Selected Papers, volume 7864 of Lecture Notes in Computer

Science, pages 1–16. Springer, 2013. 5

[97] Thanh-Ha Le and Maël Berthier. Mutual Information Analysis under the View of Higher-

Order Statistics. In Isao Echizen, Noboru Kunihiro, and Ryôichi Sasaki, editors, IWSEC,

volume 6434 of Lecture Notes in Computer Science, pages 285–300. Springer, 2010. 38

[98] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders

Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike

Hamburg. Meltdown: Reading Kernel Memory from User Space. In William Enck and

Adrienne Porter Felt, editors, 27th USENIX Security Symposium, USENIX Security 2018,

Baltimore, MD, USA, August 15-17, 2018., pages 973–990. USENIX Association, 2018. 5

[99] Yi Liu, Wei Cheng, Sylvain Guilley, and Olivier Rioul. On conditional α-information and

its application to side-channel analysis. CoRR, abs/2105.07167, 2021. 12, 15, 137, 138,

148, 149, 150, 152, 169

[100] David J. C. MacKay. Information theory, inference, and learning algorithms. Cambridge

University Press, 2003. ISBN-13: 978-0521642989. 124

[101] F. Jessie MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes.

Elsevier, Amsterdam, North Holland, 1977. ISBN: 978-0-444-85193-2. 8, 21, 22, 23, 41, 81

[102] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Revealing

the Secrets of Smart Cards. Springer, December 2006. ISBN 0-387-30857-1, http://www.

dpabook.org/. 6, 30, 34, 94

[103] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully Attacking

Masked AES Hardware Implementations. In LNCS, editor, Proceedings of CHES’05,

volume 3659 of LNCS, pages 157–171. Springer, August 29 – September 1 2005. Edinburgh,

Scotland, UK. 9, 94, 95

199

http://www.dpabook.org/
http://www.dpabook.org/


BIBLIOGRAPHY

[104] Ben Marshall, Dan Page, and James Webb. MIRACLE: micro-architectural leakage

evaluation. IACR Cryptol. ePrint Arch., page 261, 2021. 5

[105] James L Massey. Minimal codewords and secret sharing. In Proceedings of the 6th joint

Swedish-Russian international workshop on information theory, pages 276–279. Citeseer,

1993. 62

[106] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study of deep learning

for side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):348–375,

2020. 6

[107] Luke Mather, Elisabeth Oswald, Joe Bandenburg, and Marcin Wójcik. Does my device

leak information? an a priori statistical power analysis of leakage detection tests. In Kazue

Sako and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013 - 19th

International Conference on the Theory and Application of Cryptology and Information

Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part I, volume 8269 of

Lecture Notes in Computer Science, pages 486–505. Springer, 2013. 94

[108] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract).

In Moni Naor, editor, Theory of Cryptography, First Theory of Cryptography Conference,

TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings, volume 2951 of

Lecture Notes in Computer Science, pages 278–296. Springer, 2004. 5

[109] Victor S. Miller. Use of Elliptic Curves in Cryptography. In Hugh C. Williams, editor,

Advances in Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August 18-22,

1985, Proceedings, volume 218 of Lecture Notes in Computer Science, pages 417–426.

Springer, 1985. 4

[110] Jingdian Ming, Yongbin Zhou, Wei Cheng, Huizhong Li, Guang Yang, and Qian Zhang.

Mind the balance: Revealing the vulnerabilities in low entropy masking schemes. IEEE

Trans. Inf. Forensics Secur., 15:3694–3708, 2020. 89

[111] Amir Moradi, Nima Mousavi, Christof Paar, and Mahmoud Salmasizadeh. A Comparative

Study of Mutual Information Analysis under a Gaussian Assumption. In WISA (Informa-

tion Security Applications, 10th International Workshop), volume 5932 of Lecture Notes in

Computer Science, pages 193–205. Springer, August 25-27 2009. Busan, Korea. 100, 139

200



BIBLIOGRAPHY

[112] Amir Moradi, Bastian Richter, Tobias Schneider, and François-Xavier Standaert. Leakage

Detection with the χ2-Test. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):209–237,

2018. 9, 94

[113] Gary L. Mullen and Daniel Panario. Handbook of Finite Fields. Chapman and Hall/CRC,

June 17 2013. ISBN 9781439873786 - CAT# K13417. 23

[114] Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Danger. RSM: A small

and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs.

In Wolfgang Rosenstiel and Lothar Thiele, editors, 2012 Design, Automation & Test in

Europe Conference & Exhibition, DATE 2012, Dresden, Germany, March 12-16, 2012,

pages 1173–1178. IEEE, 2012. 89

[115] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.

Computational Complexity, 4:301–313, 1994. 25

[116] NIST/ITL/CSD. Data Encryption Standard. FIPS PUB 46-3, Oct 1999.

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf. 4

[117] NIST/ITL/CSD. Advanced Encryption Standard (AES). FIPS PUB 197, Nov 2001.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf (also ISO/IEC 18033-

3:2010). 4

[118] Elisabeth Oswald and Marc Fischlin, editors. Advances in Cryptology - EUROCRYPT 2015

- 34th Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture

Notes in Computer Science. Springer, 2015. 187, 195

[119] Elisabeth Oswald and Stefan Mangard. Template Attacks on Masking — Resistance Is

Futile. In Masayuki Abe, editor, CT-RSA, volume 4377 of Lecture Notes in Computer

Science, pages 243–256. Springer, 2007. 95

[120] Athanasios Papoulis and S Unnikrishna Pillai. Probability, random variables, and stochastic

processes (fourth edition). Tata McGraw-Hill Education, 2002. 34

[121] Guilherme Perin, Lukasz Chmielewski, Lejla Batina, and Stjepan Picek. Keep it unsu-

pervised: Horizontal attacks meet deep learning. IACR Trans. Cryptogr. Hardw. Embed.

Syst., 2021(1):343–372, 2021. 6

201

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf


BIBLIOGRAPHY

[122] Yury Polyanskiy and Sergio Verdú. Arimoto channel coding converse and Rényi divergence.

In 2010 48th Annual Allerton Conference on Communication, Control, and Computing

(Allerton), pages 1327–1333, 2010. 138, 147

[123] Romain Poussier, Qian Guo, François-Xavier Standaert, Claude Carlet, and Sylvain Guilley.

Connecting and Improving Direct Sum Masking and Inner Product Masking. In Thomas

Eisenbarth and Yannick Teglia, editors, Smart Card Research and Advanced Applications

- 16th International Conference, CARDIS 2017, Lugano, Switzerland, November 13-15,

2017, Revised Selected Papers, volume 10728 of Lecture Notes in Computer Science, pages

123–141. Springer, 2017. 7, 29, 30, 31, 32, 36, 37, 40, 41, 46, 60, 62, 66, 68, 86, 101, 167

[124] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple key enumeration

(and rank estimation) using histograms: An integrated approach. In Benedikt Gierlichs

and Axel Y. Poschmann, editors, Cryptographic Hardware and Embedded Systems - CHES

2016 - 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016,

Proceedings, volume 9813 of Lecture Notes in Computer Science, pages 61–81. Springer,

2016. 96

[125] Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and Embedded Systems

- CHES 2011 - 13th International Workshop, Nara, Japan, September 28 – October 1,

2011. Proceedings, volume 6917 of LNCS. Springer, 2011. 196, 203

[126] Thomas Prest, Dahmun Goudarzi, Ange Martinelli, and Alain Passelègue. Unifying leakage

models on a rényi day. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances

in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa

Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume 11692 of Lecture

Notes in Computer Science, pages 683–712. Springer, 2019. 9, 95

[127] Emmanuel Prouff and Matthieu Rivain. Theoretical and practical aspects of mutual

information-based side channel analysis. International Journal of Applied Cryptography

(IJACT), 2(2):121–138, 2010. 100

[128] Emmanuel Prouff and Matthieu Rivain. Masking against Side-Channel Attacks: A

Formal Security Proof. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in

Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,

202



BIBLIOGRAPHY

volume 7881 of Lecture Notes in Computer Science, pages 142–159. Springer, 2013. 6, 9,

28, 60, 94, 95, 118, 131

[129] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical Analysis of Second Order

Differential Power Analysis. IEEE Trans. Computers, 58(6):799–811, 2009. 33

[130] Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. On the Practical Security of

a Leakage Resilient Masking Scheme. In Josh Benaloh, editor, Topics in Cryptology -

CT-RSA 2014 - The Cryptographer’s Track at the RSA Conference 2014, San Francisco,

CA, USA, February 25-28, 2014. Proceedings, volume 8366 of Lecture Notes in Computer

Science, pages 169–182. Springer, 2014. 60

[131] Emmanuel Prouff and Thomas Roche. Higher-Order Glitches Free Implementation of the

AES Using Secure Multi-party Computation Protocols. In Preneel and Takagi [125], pages

63–78. 7, 28, 61, 65, 66, 88, 107

[132] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Measures

and Counter-Measures for Smard Cards. In I. Attali and T. P. Jensen, editors, Smart

Card Programming and Security (E-smart 2001), volume 2140 of LNCS, pages 200–210.

Springer-Verlag, September 2001. Nice, France. ISSN 0302-9743. 5, 94

[133] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. SCAUL: power side-channel

analysis with unsupervised learning. IEEE Trans. Computers, 69(11):1626–1638, 2020. 6

[134] Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally Proved Security of Assembly

Code Against Leakage. IACR Cryptology ePrint Archive, 2013:554, 2013. (Also appears

at PROOFS 2014, Busan, South Korea). 6

[135] Alfréd Rényi. On measures of entropy and information. In Jerzy Neyman, editor, Berkeley

Symposium on Mathematical Statistics and Probability, volume 4.1, pages 547–561. Springer,

1961. 12, 138, 140, 146

[136] Bastian Richter, David Knichel, and Amir Moradi. A comparison of χ 2-test and mutual

information as distinguisher for side-channel analysis. In Sonia Belaïd and Tim Güneysu,

editors, Smart Card Research and Advanced Applications - 18th International Conference,

CARDIS 2019, Prague, Czech Republic, November 11-13, 2019, Revised Selected Papers,

volume 11833 of Lecture Notes in Computer Science, pages 237–251. Springer, 2019. 9

203



BIBLIOGRAPHY

[137] Olivier Rioul. A primer on alpha-information theory with application to leakage in secrecy

systems. In 5th conference on Geometric Science of Information (GSI’21), Paris, France,

21-23 July 2021, Lecture Notes in Computer Science, 2021. 138, 140, 146, 147, 151

[138] Olivier Rioul, Wei Cheng, and Sylvain Guilley. Cumulant expansion of mutual information

for quantifying leakage of a protected secret. In IEEE International Symposium on

Information Theory, ISIT 2021, Melbourne, Australia, July 12-20, 2021, pages 2596–2601.

IEEE, 2021. 15, 169

[139] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking of AES.

In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of LNCS,

pages 413–427. Springer, 2010. 6, 28, 60

[140] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-Order Masking and Shuffling

for Software Implementations of Block Ciphers. In CHES, volume 5747 of Lecture Notes in

Computer Science, pages 171–188. Springer, September 6-9 2009. Lausanne, Switzerland.

6

[141] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126,

1978. 4

[142] Igal Sason and Sergio Verdú. Improved bounds on lossless source coding and guessing

moments via Rényi measures. IEEE Trans. Information Theory, 64(6):4323–4346, 2018.

141, 142, 145

[143] Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for Differential

Side Channel Cryptanalysis. In LNCS, editor, CHES, volume 3659 of LNCS, pages 30–46.

Springer, Sept 2005. Edinburgh, Scotland, UK. 6, 10, 39, 95

[144] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear roadmap for

side-channel evaluations. In Tim Güneysu and Helena Handschuh, editors, Cryptographic

Hardware and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,

France, September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer

Science, pages 495–513. Springer, 2015. 94

[145] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. 7, 61

204



BIBLIOGRAPHY

[146] C. E. Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27(3):379–423, July 1948. 12, 138

[147] Claude E. Shannon. Communication theory of secrecy systems. Bell System Technical

Journal, Vol 28, pp. 656–715, October 1949. 4, 12, 138

[148] Robin Sibson. Information radius. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte

Gebiete, 14(2):149–160, 1969. 12, 138, 146, 147

[149] Richard C. Singleton. Maximum distance q -nary codes. IEEE Trans. Information Theory,

10(2):116–118, 1964. 8

[150] Geoffrey Smith. On the foundations of quantitative information flow. In Luca de Alfaro,

editor, Foundations of Software Science and Computational Structures, 12th International

Conference, FOSSACS 2009, Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume

5504 of Lecture Notes in Computer Science, pages 288–302. Springer, 2009. 12

[151] François-Xavier Standaert, Tal Malkin, and Moti Yung. A Unified Framework for the

Analysis of Side-Channel Key Recovery Attacks. In EUROCRYPT, volume 5479 of LNCS,

pages 443–461. Springer, April 26-30 2009. Cologne, Germany. 10, 42, 95, 96, 100, 118,

139, 150, 156

[152] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel security

evaluations. In Begül Bilgin and Jean-Bernard Fischer, editors, Smart Card Research

and Advanced Applications, 17th International Conference, CARDIS 2018, Montpellier,

France, November 12-14, 2018, Revised Selected Papers, volume 11389 of Lecture Notes in

Computer Science, pages 65–79. Springer, 2018. 94

[153] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt Gier-

lichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The World Is Not Enough:

Another Look on Second-Order DPA. In Masayuki Abe, editor, Advances in Cryptology

- ASIACRYPT 2010 - 16th International Conference on the Theory and Application of

Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings, volume

6477 of Lecture Notes in Computer Science, pages 112–129. Springer, 2010. 76

[154] TELECOM ParisTech SEN research group. DPA Contest (4th edition), 2013–2014.

http://www.DPAcontest.org/v4/. 89

205

http://www.DPAcontest.org/v4/


BIBLIOGRAPHY

[155] Benjamin Timon. Non-Profiled Deep Learning-Based Side-Channel Attacks. IACR

Cryptology ePrint Archive, 2018:196, 2018. 6

[156] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology for a Secure DPA

Resistant ASIC or FPGA Implementation. In 2004 Design, Automation and Test in

Europe Conference and Exposition (DATE 2004), 16-20 February 2004, Paris, France,

pages 246–251. IEEE Computer Society, 2004. 94

[157] Marco Tomamichel and Masahito Hayashi. Operational interpretation of Rényi information

measures via composite hypothesis testing against product and markov distributions. IEEE

Trans. Inf. Theory, 64(2):1064–1082, 2018. 12, 138

[158] University of Sydney (Australia). Magma Computational Algebra System. http://magma.

maths.usyd.edu.au/magma/, Accessed on 2021-06-22. 30, 64, 82

[159] Tim van Erven and Peter Harremoës. Rényi divergence and Kullback-Leibler divergence.

IEEE Trans. Information Theory, 60(7):3797–3820, 2014. 141, 146

[160] Sergio Verdú. α-mutual information. In 2015 Information Theory and Applications

Workshop, ITA 2015, San Diego, CA, USA, February 1-6, 2015, pages 1–6. IEEE, 2015.

138, 146, 147

[161] Sergio Verdú. α-mutual information. In 2015 Information Theory and Applications

Workshop, ITA 2015, San Diego, CA, USA, February 1-6, 2015, pages 1–6, 2015. 141

[162] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-Xavier Stan-

daert. An Optimal Key Enumeration Algorithm and Its Application to Side-Channel

Attacks. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in Cryptography,

volume 7707 of Lecture Notes in Computer Science, pages 390–406. Springer, 2012. 96

[163] Nicolas Veyrat-Charvillon and François-Xavier Standaert. Mutual Information Analysis:

How, When and Why? In Christophe Clavier and Kris Gaj, editors, Cryptographic

Hardware and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,

Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer

Science, pages 429–443. Springer, 2009. 5, 95, 99, 139

[164] Weijia Wang, Pierrick Méaux, Gaëtan Cassiers, and François-Xavier Standaert. Efficient

and Private Computations with Code-Based Masking. IACR Trans. Cryptogr. Hardw.

Embed. Syst., 2020(2):128–171, 2020. 7, 24, 53, 60, 61, 66, 69, 70, 79, 89, 167

206

http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/


BIBLIOGRAPHY

[165] Weijia Wang, François-Xavier Standaert, Yu Yu, Sihang Pu, Junrong Liu, Zheng Guo, and

Dawu Gu. Inner Product Masking for Bitslice Ciphers and Security Order Amplification

for Linear Leakages. In Kerstin Lemke-Rust and Michael Tunstall, editors, Smart Card

Research and Advanced Applications - 15th International Conference, CARDIS 2016,

Cannes, France, November 7-9, 2016, Revised Selected Papers, volume 10146 of Lecture

Notes in Computer Science, pages 174–191. Springer, 2016. 29, 30, 36, 37, 40, 46

[166] Carolyn Whitnall and Elisabeth Oswald. A Comprehensive Evaluation of Mutual Informa-

tion Analysis Using a Fair Evaluation Framework. In Phillip Rogaway, editor, CRYPTO,

volume 6841 of Lecture Notes in Computer Science, pages 316–334. Springer, 2011. 10, 95

[167] Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual Inter-

national Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,

Proceedings, volume 1666 of Lecture Notes in Computer Science. Springer, 1999. 191, 199

[168] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revisiting a

methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr.

Hardw. Embed. Syst., 2020(3):147–168, 2020. 6

[169] Xiang Yang and James L Massey. The condition for a cyclic code to have a complementary

dual. Discrete Mathematics, 126(1):391–393, 1994. 24

[170] Xin Ye and Thomas Eisenbarth. On the Vulnerability of Low Entropy Masking Schemes.

In Francillon and Rohatgi [69], pages 44–60. 89

[171] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Methodology for

efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embed.

Syst., 2020(1):1–36, 2020. 6

[172] Hui Zhao, Yongbin Zhou, François-Xavier Standaert, and Hailong Zhang. Systematic

Construction and Comprehensive Evaluation of Kolmogorov-Smirnov Test Based Side-

Channel Distinguishers. In Robert H. Deng and Tao Feng, editors, ISPEC, volume 7863

of Lecture Notes in Computer Science, pages 336–352. Springer, 2013. 39

207



BIBLIOGRAPHY

208



Titre : Qu’est ce que l’information permet de deviner ? Vers une quantification des fuites d’informations dans
l’analyse de canaux auxiliaires

Mots clés : Analyse des canaux auxiliaires ; Contre-mesure ; Quantification des fuites ; L’informations alpha

Résumé : Les algorithmes cryptographiques jouent
un rôle prédominant pour établir une connectivité
sécurisée dans notre société numérique actuelle. Ces
calculs traitent des informations sensibles telles que
des clés de chiffrement, qui sont généralement très
exposées lors de la manipulation. Dans le domaine
de la sécurité des systèmes embarqués, l’analyse
des canaux auxiliaires est l’une des techniques les
plus puissantes contre les implémentations crypto-
graphiques. Globalement, cette thèse se compose de
deux sujets. L’un est la quantification des fuites de
la forme la plus générale de masquage équipé des
codes linéaires ; l’autre est l’exploration de l’applica-
tion de mesures d’information plus génériques dans
un contexte d’analyse de canaux auxiliaires.
Pour ce qui concerne le premier sujet, nous propo-
sons un cadre théorique de codage unifié pour me-
surer la fuite d’informations dans le masquage basé
sur les codes. Plus précisément, notre cadre établit
des connexions formelles entre les propriétés de co-
dage et les métriques de fuite dans l’analyse des ca-
naux auxiliaires. Ces connexions formelles nous per-
mettent de faire avancer l’évaluation quantitative sur
la façon dont les codes linéaires peuvent affecter la

sécurité concrète de tous les schémas de masquage
basés sur les codes.
Concernant le deuxième sujet, nous proposons d’uti-
liser une mesure plus générale du point de vue de
la théorie de l’information, à savoir l’information al-
pha (alpha-information). Ce qui est remarquable, c’est
qu’avec des choix appropriés, l’information alpha four-
nit des bornes très proches de la réalité ; en particu-
lier, lorsque alpha tend vers l’infini (positif), les limites
seront exactes. En fait, les distingueurs basés sur le
maximum de vraisemblance convergeront vers les li-
mites.
En résumé, notre étude dans cette thèse fait avan-
cer l’évaluation et la consolidation de la sécurité
des canaux auxiliaires des implémentations crypto-
graphiques. Du point de vue de la protection, nous
fournissons un guide des meilleures pratiques pour
l’application du masquage basé sur le code. Du
point de vue de l’évaluation, l’application de l’alpha-
information permet aux évaluateurs et concepteurs
(développeurs) d’avoir une estimation plus précise
(voire exacte) du niveau de sécurité concret des ca-
naux auxiliaires émanant de leurs puces cryptogra-
phiques.

Title : What Can Information Guess? Towards Information Leakage Quantification in Side-Channel Analysis

Keywords : Side-Channel Analysis ; Code-based Masking ; Leakage Quantification ; Alpha-Information

Abstract : Cryptographic algorithms are nowadays
prevalent in establishing secure connectivity in our di-
gital society. Such computations handle sensitive in-
formation like encryption keys, which are usually very
exposed during manipulation. In the field of embed-
ded systems security, side-channel analysis is one
of the most powerful techniques against cryptogra-
phic implementations. Overall, this thesis consists of
two topics. One is the leakage quantification of the
most general form of masking equipped with the li-
near codes, so-called code-based masking ; the other
one is exploration of applying more generic informa-
tion measures in a context of side-channel analysis.
Regarding the former, we propose a unified coding-
theoretic framework for measuring the information
leakage in code-based masking. Specifically, our fra-
mework builds formal connections between coding
properties and leakage metrics in side-channel ana-
lysis. Those formal connections enable us to push
forward the quantitative evaluation on how the linear
codes can affect the concrete security of all code-
based masking schemes.

Regarding the latter, we present a full spectrum of ap-
plication of alpha-information, a generalization of mu-
tual information, for assessing side-channel security.
With proper choices, alpha-information provides very
tight bounds, in particular, when alpha approaches to
positive infinity, the bounds will be exact. As a matter
of fact, maximum-likelihood based distinguishers will
converge to the bounds when alpha approaches to
positive infinity. Therefore, we demonstrate how the
two world, information-theoretic measures (bounds)
and maximum-likelihood based side-channel attacks,
are seamlessly connected in side-channel analysis.
In summary, our study in this thesis pushes forward
the evaluation and consolidation of side-channel se-
curity of cryptographic implementations. From a pro-
tection perspective, we provide a best-practice guide-
line for the application of code-based masking. From
an evaluation perspective, the application of alpha-
information enables practical evaluators and desi-
gners to have a more accurate (or even exact) esti-
mation of concrete side-channel security level of their
cryptographic chips.
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