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Abstract

Deep learning has emerged as a powerful approach for modelling static data
like images and more recently for modelling dynamical systems like those un-
derlying times series, videos or physical phenomena. Yet, neural networks were
observed to not generalize well outside the training distribution, in other words
out-of-distribution. This lack of generalization limits the deployment of deep
learning in autonomous systems or online production pipelines, which are faced
with constantly evolving data. In this thesis, we design new strategies for out-of-
distribution generalization. These strategies handle the specific challenges posed
by two main application tasks, classification of static data and spatiotemporal
dynamics forecasting. The first two parts of this thesis consider the classification
problem. We first investigate how we can efficiently leverage some observed train-
ing data from a target domain for adaptation. We then explore how to generalize
to unobserved domains without access to such data. The last part of this thesis
handles various generalization problems specific to spatiotemporal forecasting.
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Résumé

L’apprentissage profond a émergé comme une approche puissante pour la mo-
délisation de données statiques comme les images et, plus récemment, pour la
modélisation de systèmes dynamiques comme ceux sous-jacents aux séries tem-
porelles, aux vidéos ou aux phénomènes physiques. Cependant, les réseaux neu-
ronaux ne généralisent pas bien en dehors de la distribution d’apprentissage,
en d’autres termes, hors-distribution. Ceci limite le déploiement de l’apprentis-
sage profond dans les systèmes autonomes ou les systèmes de production en
ligne, qui sont confrontés à des données en constante évolution. Dans cette thèse,
nous concevons de nouvelles stratégies d’apprentissage pour la généralisation
hors-distribution. Celles-ci tiennent compte des défis spécifiques posés par deux
tâches d’application principales, la classification de données statiques et la prévi-
sion de dynamiques spatiotemporelles. Les deux premières parties de cette thèse
étudient la classification. Nous présentons d’abord comment utiliser des données
d’entraînement en quantité limitée d’un domaine cible pour l’adaptation. Nous
explorons ensuite comment généraliser à des domaines non observés sans accès
à de telles données. La dernière partie de cette thèse présente diverses tâches de
généralisation, spécifiques à la prévision spatiotemporelle.
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Chapter 1

Introduction

Nature does not shuffle the data, so
we shouldn’t either

Léon Bottou at ICLR 2019

1.1 Context

Deep Learning (DL) has recently emerged as a powerful tool to learn complex pat-
terns from data. DL models are currently trained using large annotated datasets
and have achieved impressive results in domains such as natural language pro-
cessing (Wu et al. 2016), computer vision (Szegedy et al. 2017), recommender
systems (Covington et al. 2016) or games (Silver et al. 2016). They are now widely
used for applications such as language translation and text classification, object
detection and image classification or content recommendation. Their success has
mainly relied on learning better representations of the data at hand, e.g. via pre-
trained models (Ramesh et al. 2022; Brown et al. 2020), trained on a large dataset
and used as a starting point for finetuning on new tasks.

There has also been a growing interest in applying DL to model temporal phenom-
ena e.g. time series (Franceschi et al. 2019) or videos (Denton et al. 2018). More
recently, DL was applied to the physical sciences e.g. climate or biology (Willard
et al. 2020; Thuerey et al. 2021) in applications such as weather forecasting (Pathak
et al. 2022), aerodynamics (Pfaff et al. 2021) or material design (Kirkpatrick et al.
2021). One key problem in these applications is to model complex spatiotempo-
ral dynamical systems. So far, Partial Differential Equation (PDE)s are the main
modeling approach and are used at different scales, from molecules to geophysics
modeling. PDEs are solved explicitly via numerical solvers (Hairer et al. 2000).
DL is being used as a surrogate to these numerical methods or in combination
(Yin et al. 2021b; Avila Belbute-Peres et al. 2020; Kochkov et al. 2021), given some
simulated or real-world observations for training these models. It was found to

3



4 introduction

solve several common limitations of purely physical models: namely, it improves
simulation speed and cost; it handles high dimensionality or partial observations
and it does not require to know the exact underlying physical laws. These ad-
vantages can accelerate scientific discoveries e.g. by reducing the cost and time of
simulation or enabling model discovery.

1.2 Subject

Despite these successes, there are still major challenges for DL. One challenge, is
the ability to generalize to distribution shifts; in other words, to generalize on
target data that lies outside the train distribution. This is the Out-of-distribution
(OOD) generalization problem, handled in this thesis.

OOD generalization is a key requirement for DL models in real-world applications:

• In e-commerce, Click-Through-Rate (CTR) prediction (Kirchmeyer et al. 2021)
or federated learning (Fallah et al. 2020) models should handle new users.

• In health, Covid-19 detectors from chest scans should generalize beyond
training dataset’s biases to be fit for clinical use (DeGrave et al. 2021; Roberts
et al. 2021).

• In autonomous driving, Neural Network (NN)-based perception systems
should generalize to new countries or weather conditions for world-wide
deployment (Michaelis et al. 2019).

• In text, language models should be personalized to different users for better
user privacy (Li et al. 2021a).

• In the physical sciences, simulators should handle different contexts e.g. new
parameters, initial or boundary conditions, spatiotemporal observations.

The standard inference principle to train NNs is Expected Risk Minimization (ERM).
ERM shuffles data assuming it is Independent and Identically Distributed (IID).
Yet, ERM does not guarantee OOD extrapolation and may be prone to spurious
correlations. For instance, image recognition models may fail to correctly classify
cows on the beach, when mostly cows on grassy fields were seen at training time
(Beery et al. 2018a). They have indeed used the background as a predictive feature.
In sciences, physics-based models are not prone to this problem as they come with
generalization guarantees as long as the underlying equations are valid.

The limitations of ERM call for new alternative Machine Learning (ML) approaches
which are more robust to OOD data.
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1.3 Contributions

In this thesis, we propose such alternatives which improve the generalization
of NNs in various problems. We introduce different tasks and problems which
make different assumptions on the train and test domains. A domain corresponds
to a given data acquisition context with a specific probability distribution over
inputs and labels. In most work, the train domain consists of multiple different yet
related domains, from which we can learn domain invariances and specificities.
This direction is motivated by the observation that “nature does not shuffle the
data, so we shouldn’t either” (Léon Bottou).

We consider representative application problems, namely classification of static
data e.g. images and forecasting of spatiotemporal physical dynamics. The former
is well-studied in the ML community with numerous baselines and standard NN

architectures. The latter is a more recent and fast-growing field which still requires
defining new models to handle the space and time continuity of such systems.

1.3.1 Domain Adaptation (DA) (Part ii)

DA models adapt a NN to the target domain by leveraging at training time few
target data and plenty of data from multiple training domains. The access to
target samples helps better model the target labeling function, especially when
it differs from the training domain’s one. Namely, we consider Unsupervised
Domain Adaptation (UDA) for classification, which assumes that some unlabelled
target samples are available at training time. The standard UDA approach learns
domain-invariant representations; yet it fails under missing data and complex
domain shifts. We propose new approaches to handle these two challenging
settings, as introduced below.

1. Missing Data (Chapter 3). Motivated by cold start problems in recommen-
dation, we consider that some data components are systematically missing
on the target domain without available supervision for imputing them. Stan-
dard UDA methods cannot handle this missing information. We propose a
new UDA model that attempts at reconstructing this missing information by
performing imputation in a domain-invariant latent space with a generative
model. It also leverages indirect classification supervision from the com-
plete source domain. We ground our approach theoretically and provide
experimental validation on a real-world dataset.

M. Kirchmeyer, P. Gallinari, A. Rakotomamonjy, and A. Mantrach (2021).
“Unsupervised domain adaptation with non-stochastic missing data”. In:
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Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML-PKDD) & Data Mining and Knowledge Discovery (DMKD)
35.6, pp. 2714–2755

2. Complex Domain Shifts (Chapter 4). We then consider the most challeng-
ing domain shift, Generalized Target Shift (GeTarS), with both conditional
and label shift. This corresponds to a setting where the target labeling func-
tion differs from the training one, yet shares the same classes. Existing
domain-invariant approaches have practical limitations in this setting, in-
cluding strong assumptions that may not hold in practice. Instead of con-
straining representation invariance, we propose to align pretrained repre-
sentations and circumvent existing drawbacks. Our approach OSTAR learns
an Optimal Transport (OT) map, implemented as a NN, which maps fixed
source representations onto target ones. OSTAR is flexible and scalable,
it preserves the problem’s structure and has strong theoretical guarantees
under mild assumptions.

M. Kirchmeyer, A. Rakotomamonjy, E. de Bézenac, and P. Gallinari (2022b).
“Mapping conditional distributions for domain adaptation under gener-
alized target shift”. In: International Conference on Learning Representations
(ICLR)

1.3.2 Domain Generalization (DG) in Classification (Part iii)

We then investigate DG models for classification that do not leverage data from
the target domain at training or test time to generalize. This is an extremely
challenging setting as the problem is ill-posed when the target labeling function
differs from the training domain’s one.

1. Weight Averaging (WA) for OOD Generalization (Chapter 5). We propose
a new model, DiWA, to account for domain shift by ensembling multiple
predictors. DiWA achieves ensembling by averaging weights obtained from
several independent training runs. The main motivation of DiWA is to in-
crease the functional diversity across averaged models. On the competitive
DomainBed classification DG benchmark (Gulrajani et al. 2021a), WA of mul-
tiple NNs recently consistently outperformed representative OOD baselines.
Yet, existing strategies only average models collected along a single run,
which are less diverse than models across runs. We motivate the need for
diversity by a new bias-variance decomposition of the expected error, ex-
ploiting similarities between WA and standard Ensembles (ENS). This de-
composition provides some formal conditions for the success of WA OOD.
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Experimentally, DiWA sets a new state-of-the-art on DomainBed without
any inference overhead.

A. Rame*, M. Kirchmeyer*, T. Rahier, A. Rakotomamonjy, P. Gallinari, and
M. Cord (2022). “Diverse Weight Averaging for Out-of-Distribution Gener-
alization”. In: Neural Information Processing Systems (NeurIPS)

1.3.3 Generalization in Spatiotemporal Forecasting (Part iv)

We then investigate generalization problems in the setting of spatiotemporal
forecasting. These include a variety of settings described in Section 2.2.3 among
which we consider two.

1. Context-Informed Dynamics Adaptation (Chapter 6). First, we consider
the setting where the dynamical system changes at test time e.g. when the
parameters vary. Our approach, CoDA, performs test-time parameter adap-
tation by conditioning them on some observed data from a new domain.
Conditioning is performed via a linear hypernetwork, which defines im-
plicitly a weight subspace to which adaptation is restricted. CoDA is fast,
sample- and data-efficient. We consider the application of CoDA to the
problem of adapting neural dynamics models to new physical parameters.
CoDA leverages for training different domains, each corresponding to a
different physical system. All domains share the same general dynamics
but correspond to different physical parameters. CoDA outperforms re-
lated meta-learning strategies on representative Ordinary Differential Equa-
tion (ODE)/PDE datasets and is grounded theoretically.

M. Kirchmeyer*, Y. Yin*, J. Dona, N. Baskiotis, A. Rakotomamonjy, and P. Gal-
linari (17–23 Jul 2022). “Generalizing to New Physical Systems via Context-
Informed Dynamics Model”. In: Proceedings of the 39th International Confer-
ence on Machine Learning (ICML). vol. 162. Proceedings of Machine Learning
Research. PMLR, pp. 11283–11301

2. Spatiotemporal Generalization in PDE Forecasting (Chapter 7). Finally,
we explore another direction to generalize, by designing NN architectures
better suited to the problem at hand. For PDE forecasting, a key problem
is to generalize to new spatiotemporal observations. Yet, existing neural
PDE surrogates are currently too reliant on the training spatiotemporal dis-
cretization and extrapolate poorly beyond the train conditions. To this end,
we propose to better account for the continuous nature of physical processes
by combining the spatial flexibility of Implicit Neural Representation (INR)s



8 introduction

with the temporal flexibility of neural ODEs in our model DINo. DINo com-
bines the following advantages: it extrapolates at arbitrary spatiotemporal
locations; it can learn from sparse irregular grids or manifolds; at test time,
it generalizes to new grids or resolutions. DINo outperforms alternative
neural PDE forecasters in a variety of challenging generalization scenarios
on representative PDE systems.

Y. Yin*, M. Kirchmeyer*, J-Y Franceschi*, A. Rakotomamonjy, and P. Gallinari
(2023). “Continuous PDE Dynamics Forecasting with Implicit Neural Rep-
resentations”. In: International Conference on Learning Representations (ICLR)

1.3.4 Outline of this Thesis

This document is organized as follows.

• Part i includes the above introduction (Chapter 1) and details the literature
and the necessary background for presenting our contributions (Chapter 2).

• Our contributions are presented in Parts ii to iv:

• Part ii details the proposed methods for UDA: Chapter 3 handles the
missing data setting and Chapter 4 the complex domain shift setting.

• Part iii Chapter 5 details our DG method for classification, based on WA.

• Part iv details our methods for generalization in spatiotemporal fore-
casting. Chapter 6 introduces our context-informed test-time adapta-
tion method for handling changing dynamics. Chapter 7 presents our
new continuous neural PDE forecaster for spatiotemporal generaliza-
tion.

• Finally, Part v with Chapter 8, concludes this document with an overview
of the contributions and a discussion of their perspectives.

• An appendix in Part vi contains supplementary material for Chapters 3 to 7

in Appendices A to E.



Chapter 2

Background and Related Work

We present in this chapter the background and related work of this thesis. We
consider successively our two application domains:

• Section 2.1 covers Chapters 3 to 5, which handle classification.

• Section 2.2 covers Chapters 6 and 7, which handle dynamics forecasting.

These two sections correspond to separate problem settings and models but share
similarities in the techniques used for generalization, originally introduced for
classification.

2.1 Classification

We present the classification problem in Section 2.1.1. Section 2.1.2 introduces
the standard learning strategies for this problem. They were adapted to handle
domain shift as reviewed in Section 2.1.3. The contributions in this thesis build
upon these learning strategies.

2.1.1 Notations and Problem Setting

Setting We consider multi-class classification. X is the input space (e.g. static
images) and Y = {1, ..., K} the label space with K classes. X, Y denote random
variables with values in X ,Y . We consider a Neural Network (NN) h(·, θ) : X → Y
with weights θ. h will be independently trained on some given data and tested
on some other data. It consists of:

• an encoder g : X → Z from X to Z ; Z ⊂ Rd is the latent space with
dimension d and Z is a random variable in the latent space. There are
various choices of architectures usually pretrained on ImageNet (Krizhevsky
et al. 2012) e.g. ResNet-50 (He et al. 2016a) or CLIP (Radford et al. 2021).

9
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• a classifier f : Z → Y , usually shallow and retrained from scratch.

Data In practice, “data” is defined over a domain D, defined by a joint, posterior
or marginal distribution of (X, Y ), denoted pD. DD corresponds to some training
data from domain D. It consists of pairs (xD, yD) of input, label sampled from
the domain’s joint distribution i.e. (xD, yD) ∼ pD or (xD, yD) ∈ (XD × YD) where
XD ≜ {x ∈ X/pD(x) > 0},YD ≜ {y ∈ Y/pD(y) > 0}. We assume that there is
no noise in the data: then, the label on domain D is defined by fD : X → Y , a
labeling function via ∀(xD, yD) ∼ pD, fD(xD) = yD.

Risk Given ℓ : Y2 → R+, we define the risk a.k.a. error of h on D as:

ED(h, ℓ) ≜ Ex∼pD [ℓ(h(x, θ), fD(x))] (2.1)

A standard choice is to take ℓ as the 0-1 loss. This corresponds to the accuracy of
the model, usually used to evaluate different classifiers. Then,

ED(h) ≜ ED(h, ℓ0−1) = Ex∼pD [I(h(x) ̸= fD(x))] = Prx∼pD(h(x) ̸= fD(x)) (2.2)

Another possible choice is to use the Cross Entropy (CE) loss ℓce defined as

ℓce(ŷ,y) = −
K∑
c=1

yc log(ŷc)

with ŷ = h(x) the predictions of h (after applying a softmax activation) and y a
one-hot vector of the label fD(x), output by fD.

Loss We can also define the empirical version of the risk, which we call here loss.
Given an architecture h with parameters θ, L(θ,DD) corresponds to the empirical
loss over a given training dataset DD in domain D with the standard ℓce loss:

L(θ,DD) ≜ Ex∈DD
[ℓce(hθ(x, θ), fD(x))] (2.3)

Learning Setting In the following, D refers to either a source domain S with
distribution pS or a target domain T with distribution pT . We will use indifferently
the terminologies: domain, task and environment.

There are various learning settings summarized in Table 2.1, Supervised Learn-
ing, Semi-Supervised Learning (SSL), Multi-Task Learning (MTL), Unsupervised
Domain Adaptation (UDA), Meta-Learning and Domain Generalization (DG). We
illustrate major training settings in Figure 2.1.
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Table 2.1. – Learning setups. Li and U i denote the labeled and unlabeled distri-
butions from the ith domain, Di. S is the training domain and T the
test domain. dtr ̸= 1 represents the number of available domains for
multi-domain problems. Adapted from Gulrajani et al. 2021a.

Setup Domains Train inputs Test inputs Domain Shift

S T S T T pS = pT ?

Supervised learning D1 L1 ∅ pS = pT
SSL D1 L1, U1 ∅ pS = pT
MTL ∪dtri=1D

i ∪dtri=1L
i ∅ pS = pT

UDA ∪dtri=1D
i Ddtr+1 ∪dtri=1L

i Udtr+1 ∅ pS ̸= pT
Meta-Learning ∪dtri=1D

i Ddtr+1 ∪dtri=1L
i ∅ Ldtr+1 pS ̸= pT

DG ∪dtri=1D
i Ddtr+1 ∪dtri=1L

i ∅ ∅ pS ̸= pT

• All aim at learning θ such that the target generalization error ET (θ) in
Eq. (2.2) is minimized, i.e. h(·, θ) approximates fT on XT .

• They differ by the definition of domains S and T namely:

• domain shift present i.e. pS = pT or not i.e. pS ̸= pT (Table 2.1 column
7),

• single-domain (dtr = 1) or multi-domain (dtr > 1) problem,

• unlabelled or labelled T samples available at train, test time or not
(columns 5 and 6 in Table 2.1).

2.1.2 Standard Classification Strategies

In the standard scenario, represented by the first three rows in Table 2.1 (super-
vised learning, SSL, MTL), we observe plenty of train data with distribution pS and
perform inference on new unlabelled samples from the same distribution pT = pS .
In other words, there is no domain shift between train and test.

2.1.2.1 Supervised Learning and Expected Risk Minimization (ERM)

ERM The most common setting is supervised learning, which leverages some
labeled data from a single domain S (dtr = 1) for inference on unlabeled sam-
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Figure 2.1. – Illustration of various training settings. Li and U i denote the labeled
and unlabeled distributions from the ith domain, Di. S is the training
domain and T the test domain such that pS ̸= pT . In all settings, we
observe samples from S (L1, L2, L3) at training time. In UDA, we
observe unlabelled target samples (U4) at training time. In Meta-
Learning, we observe some labelled target samples (L4) at test-time.
In DG, we do not observe target samples (∅) at training nor test time.

ples from domain T . The inference setting is ERM that considers that data is
Independent and Identically Distributed (IID), where L is defined in Eq. (2.3):

min
θ
L(θ,DS) (2.4)

Regularized ERM Several other strategies extend Eq. (2.4) by including a regu-
larization term R(·,DD), defined over a well-chosen dataset DD over domain D,
weighted by a hyperparameter λ:

min
θ
L(θ,DS) + λR(θ,DD) (2.5)

We detail in the following some standard choices of this regularization term and
of dataset DD over which this term is defined.

2.1.2.2 Self-supervised Learning (SSL)

SSL considers additionally that some unlabeled samples from T are available for
training. The standard SSL strategies consider the regularized form in Eq. (2.5),
where R is defined over these unlabeled samples as:

• A classification CE loss with pseudo-labels as labels, as in Discriminant
Classification Expectation Maximization (CEM) (Amini et al. 2005).

• A conditional-entropy loss (Grandvalet et al. 2005).
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A main assumption for SSL is the cluster assumption (Chapelle et al. 2010), that
states that decision boundaries should not cross high-density regions.

2.1.2.3 Multi-task Learning (MTL)

In the following, all strategies relax the IID assumption by considering that the
train domain consists of multiple domains i.e. dtr > 1.

The standard multi-domain strategy, MTL, aims at learning from multiple domains
to better generalize to these same domains. In this setting, S = T = ∪dtri=1D

i. MTL

does not address adaptation to new domains as inference is limited to the train
domains, although some extensions to this challenging problem were proposed
(Wang et al. 2021a; Requeima et al. 2019).

A standard approach in MTL is hard-parameter sharing, where earlier layers of
the network are shared across domains (Caruana 1997). Several extensions were
proposed to learn more efficiently from a set of related domains (Rebuffi et al.
2017; Rebuffi et al. 2018). Argyriou et al. 2006 makes sparsity assumptions w.r.t.
model parameters, assuming that only a small set of features is shared across
models.

2.1.3 Classification With Domain Shift

In the most challenging setting, we are faced with distribution shifts, a.k.a. Out-
of-distribution (OOD) data. This occurs when pS(X, Y ) ̸= pT (X, Y ). The main
strategies for this setting are listed in the last three rows in Table 2.1 (UDA, Meta-
Learning, DG).

We decompose distribution shifts into different settings, investigated in this thesis:

• Covariate Shift (CovS) a.k.a. diversity shift (Shimodaira 2000; Ye et al. 2022),
when marginal distributions differ (i.e. pS(X) ̸= pT (X))

• Concept shift a.k.a. correlation shift (Ye et al. 2022), when posterior distri-
butions differ (i.e. pS(Y |X) ̸= pT (Y |X) and fS ̸= fT ).

• Target Shift (TarS) (Zhang et al. 2013), when target label proportions differ
(i.e. pS(Y ) ̸= pT (Y ) and pS(X|Y ) = pT (X|Y )).

• Generalized Target Shift (GeTarS) (Zhang et al. 2013), when both marginal
and posterior distributions differ (i.e. pS(X) ̸= pT (X), pS(Y |X) ̸= pT (Y |X)

or equivalently pS(Y ) ̸= pT (Y ), pS(X|Y ) ̸= pT (X|Y ))
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All methods for handling domain shift leverage different labeled domains for
training (dtr > 1) and can be applied to multiple target domains. For simplicity,
we consider the setting where inference is performed on a single target domain
(T = Ddtr+1). They differ by their assumptions:

• UDA (Section 2.1.3.1) and test-time adaptation methods like meta-learning
(Section 2.1.3.2) assume access to some (limited) samples from T (unlabelled
respectively labelled). While UDA uses this additional information at training
time, meta-learning uses it at test time for fast adaptation. This additional
information is necessary for handling concept shift settings as in Chapters 4

and 6 but is also helpful for handling the other shifts e.g. CovS in Chapter 3.

• DG (Section 2.1.3.3) assumes that no samples nor labels from domain T are
available at training or test time. This problem is attractive as it requires less
input, yet, it is ill-posed under concept shift as the target labeling function
cannot be recovered. Interestingly, we were able to provide a DG method
with theoretical guarantees in the covariate shift setting (Chapter 5).

We illustrate both methods in Figure 2.1 and provide some related work for each
of these methods in the following sections.

2.1.3.1 Unsupervised Domain Adaptation (UDA)

In the multi-source UDA setting, we are given unlabelled target samples from
domain T . We consider the standard UDA setting (Pan et al. 2010) with only a
single train domain i.e. dtr = 1. The standard strategy is to train a classifier using
source labels while handling explicitly distribution shifts, using the available
information from T . This strategy was generalized in the multi-source setting
(Zhao et al. 2018).

Learning Domain-Invariant Representations Recent methods proposed to han-
dle distribution shift by aligning the source and target distributions in a joint
latent space and minimizing a classification term on source data embeddings
(Ganin et al. 2016a; Shen et al. 2018; Long et al. 2015). This is performed by defin-
ing R in Eq. (2.5) as a measure of distance between latent distributions pS(Z) and
pT (Z) defined by encoder g. There are two main choices for this distance:

• The seminal work of Ganin et al. 2015 sets it to H-divergence, approximated
via Adversarial (ADV) training. This work has been extended in several
papers (Tzeng et al. 2017; Long et al. 2018a).
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• Another direction is to choose an Integral Probability Metrics, e.g. Maximum
Mean Discrepancy (MMD) (Long et al. 2015) or Wasserstein Distance (Optimal
Transport (OT)) (Shen et al. 2018; Damodaran et al. 2018; Courty et al. 2017a;
Courty et al. 2017b). Wasserstein distance can be computed in the primal
form with linear programing (Courty et al. 2017a; Damodaran et al. 2018)
or in the dual-form form with ADV training as in Shen et al. 2018.

Learning to Transfer Representations While domain-invariant approaches are
state-of-the-art, they are subject to structure issues posed by the invariance con-
straint which may degrade target discriminativity (Liu et al. 2019; Chen et al.
2019b). An alternative to avoid this issue is to learn to map fixed source samples
to target ones (Courty et al. 2017b; Hoffman et al. 2018). This is achieved with a
well-chosen R in Eq. (2.5). It takes one of the two following forms:

• Courty et al. 2017b leverages linear programing to compute a barycentric
mapping in input space.

• Hoffman et al. 2018 leverages CycleGAN mappings, based on Generative
Adversarial Network (GAN).

Existing UDA approaches are mostly designed for standard problems and fail un-
der more complex settings e.g. missing data or complex domain shift. Chapters 3

and 4 handle these limitations.

2.1.3.2 Meta-Learning

Meta-learning (Thrun et al. 1998) is a general framework for fast adaptation to
new domains. It learns to adapt to a new domain T using few observations,
instead of learning a domain-invariant function as in Equations (2.4) and (2.5).

A standard meta-learning approach is Gradient-Based Meta Learning (GBML),
which learns a model initialization θc on a set of training task for fast adaptation
to new tasks. The standard GBML method is MAML (Finn et al. 2017) which
performs bi-level optimization as summarized in Algorithm 2.1.

At training time, it learns the model initialization θc on a set of dtr training do-
mains via the outer-loop:

min
θc

dtr∑
i=1

L(θ′i(θc),DDi)
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where ∀i ∈ {1, · · · , dtr}:

θ′i(θ
c) = θc − η

K∑
k=0

∇θL(θk,DDi) where

{
θk+1 = θk − η∇θL(θk,DDi) k > 0

θ0 = θc k = 0

This is called the inner-loop (which consists of K gradient steps).

At adaptation time for a task dtr + 1, only the inner-loop is performed:

θ′dtr+1 = θc − η
K∑
k=0

∇θL(θk,DDdtr+1) where

{
θk+1 = θk − η∇θL(θk,DDdtr+1) k > 0

θ0 = θc k = 0

MAML was extended in various work. ANIL (Raghu et al. 2020) restricts MAML
to the last layer of the classifier while other work improve adaptation by precon-
ditioning the gradient (Lee et al. 2018; Flennerhag et al. 2020; Park et al. 2019)
e.g. Meta-SGD (Li et al. 2017b) learns dimension-wise inner-loop learning rates.
Contextual meta-learning approaches in Zintgraf et al. (2019) and Garnelo et al.
(2018) partition parameters into context parameters adapted on each task, and
parameters shared across tasks.

Algorithm 2.1 MAML Pseudo-code

Require: dtr training domains {Di}dtri=1 and test domain Ddtr+1.
1: Training:
2: loop
3: for i = 1 to dtr do

4: θ′i(θ
c) = θc−η∑K

k=0∇θL(θk,DDi) where

{
θk+1 = θk − η∇θL(θk,DDi) k > 0

θ0 = θc k = 0

5: end for
6: θc ← θc − η∇θ

∑dtr
i=1 L(θ′i(θ),DDi)

7: end loop
8: Inference:

9: θ′dtr+1 = θc−η∑K
k=0∇θL(θk,DDdtr+1) where

{
θk+1 = θk − η∇θL(θk,DDdtr+1) k > 0

θ0 = θc k = 0

2.1.3.3 Domain Generalization (DG)

In the DG setting, we do not have acces to target samples. We review two common
techniques for DG and refer to the survey (Wang et al. 2021b) for more details.

Learning Domain-Invariants The most standard technique extends the ERM

objective to learn domain invariants. The goal is to detect the causal mechanism
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rather than memorize correlations. One approach is to use robust optimization
(Sagawa et al. 2020) which optimize for worst-case performance to improve ro-
bustness to subpopulation shift. Another is to optimize for ERM with some regu-
larization term to account for the non-IID nature of data. This is achieved with the
objective in Eq. (2.5), where the first term L is the loss summed across labelled
domains and the second term R is expressed either on:

Representations as in multi-source extensions of UDA methods, DANN (Ganin et al.
2016b) and CORAL (Sun et al. 2016) (Section 2.1.3.1). R is set to a distance metric
between latent marginal distributions across domains, which is minimized with
respect to the encoder’s parameters to enforce invariance. The classifier is jointly
trained on these invariant representations such that the encoder and classifier
minimize

∑dtr
i=1 L(θ,DDi).

The predictor as in Invariant Risk Minimization (IRM) (Arjovsky et al. 2019b) or
Risk Extrapolation (REx) (Krueger et al. 2021). IRM aims at finding a predictor
that works well on average across domains, while being also optimal for each
individual environment as in Eq. (2.6). With g the encoder and f the classifier,
this objective writes as:

min
f,g

dtr∑
i=1

L(f ◦ g,DDi)

subject to f ∈ argmin
f̄

L(f̄ ◦ g,DDi) ∀i ∈ {1, · · · , dtr}
(2.6)

This complex bi-level optimization is simplified in IRMv1 into a regularized ERM

objective in Eq. (2.7) which shares the form of Eq. (2.5), whereR is set to the norm
of the gradient of the domain’s risk w.r.t. a fixed "dummy" classifier (a constant
scalar multiplier of 1.0 per output dimension), summed across domains.

min
g

dtr∑
i=1

L(g,DDi) + λ∥∇f |f=1.0L(f ◦ g,DDi)∥2 (2.7)

REx performs robust optimization of the predictor over a perturbation set of
extrapolated domains as in Eq. (2.8), where λmin (which may be negative) controls
how much we extrapolate.

min
θ

max∑
i λi=1;λi≤λmin

dtr∑
i=1

λiL(θ,DDi) (2.8)
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It introduces a simpler variant (V-REx) in Eq. (2.9), which also follows the form
in Eq. (2.5) where R is set to the variance of training risks.

min
θ

dtr∑
i=1

L(θ,DDi) + λVar({L(θ,DDi)}dtri=1) (2.9)

The domain-specific gradients as in Fish (Shi et al. 2021). Fish sets R as the negative
value of the inner product across domains of the expected gradients. The expected
gradient for domain i is denoted Gi.

min
θ

dtr∑
i=1

L(θ,DDi)− λ 2

dtr(dtr − 1)

i ̸=j∑
i,j∈J1,dtrK2

Gi ·Gj (2.10)

This objective aligns gradient direction across domains.

Ensembling However, these domain-invariant approaches do not outperform
ERM on various benchmarks (Gulrajani et al. 2021b; Ye et al. 2022; Koh et al. 2021).
In contrast, ensembling of deep NN (Lakshminarayanan et al. 2017; Hansen et al.
1990; Krogh et al. 1995) consistently increases robustness (Ovadia et al. 2019) and
was successfully applied to DG without explicit domain-invariant regularizations
(Arpit et al. 2021; Thopalli et al. 2021; Mesbah et al. 2022; Li et al. 2022; Lee
et al. 2022; Pagliardini et al. 2022). As highlighted in Ueda et al. 1996, ensembling
works due to the diversity among its members. This diversity comes primarily
from the randomness of the learning procedure (Lakshminarayanan et al. 2017)
and can be increased with different hyperparameters (Wenzel et al. 2020), data
(Breiman 1996; Nixon et al. 2020; Yeo et al. 2021), augmentations (Wen et al. 2021;
Rame et al. 2021b) or with regularizations (Rame et al. 2021a; Lee et al. 2022;
Pagliardini et al. 2022; Pang et al. 2019; Teney et al. 2021).

Recent work (Izmailov et al. 2018; Draxler et al. 2018; Guo et al. 2022; Zhang et al.
2019) combine in weights (rather than in predictions) models collected along a
single run. This was shown suboptimal in IID (Ashukha et al. 2020) but successful
in OOD (Cha et al. 2021; Arpit et al. 2021). Following the linear mode connectivity
(Frankle et al. 2020; Nagarajan et al. 2019) and the fact that many independent
models are connectable (Benton et al. 2021), a second group of works average
weights with fewer constraints (Wortsman et al. 2022b; Matena et al. 2021; Worts-
man et al. 2022a; Gupta et al. 2020; Choshen et al. 2022; Wortsman et al. 2021). To
induce greater diversity, Maddox et al. 2019 used a high constant learning rate;
Benton et al. 2021 explicitly encouraged the weights to encompass more volume
in the weight space; Wortsman et al. 2021 minimized cosine similarity between
weights; Izmailov et al. 2019 used a tempered posterior. From a loss landscape
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perspective (Fort et al. 2019), these methods aimed at “explor[ing] the set of possi-
ble solutions instead of simply converging to a single point”, as stated in Maddox
et al. 2019. Chapter 5 aims at proposing a new Weight Averaging (WA) approach
for OOD generalization by introducing more diversity in the averaged models.

Transition We reviewed the main strategies to handle OOD data for classifica-
tion problems. In the following section, we will consider the probelem of spa-
tiotemporal forecasting which presents some specificities over classification.

2.2 Spatiotemporal Forecasting

We now consider the problem of modeling physical processes. In particular, we
focus in this work on the problem of forecasting these physical processes.

We handle two types of dynamical systems: in Section 2.2.1, we consider tempo-
ral Ordinary Differential Equation (ODE)s and in Section 2.2.2, we consider spa-
tiotemporal Partial Differential Equation (PDE)s. For each dynamical systems, we
present some standard (costly) numerical methods and recent Deep Learning (DL)
alternatives. Finally, we briefly review in Section 2.2.3 some recent methods for
generalizing, inspired from classification.

Preliminary notation and setting We consider the evolution of a state v defined
over a temporal domain R and denote ∀t ∈ R, vt = v(t) for simplicity. As later
descrived, vt is a vector in ODEs and a function of space in PDEs.

We denote F (vt,β) the corresponding dynamics with some parameters β e.g.
physical constants involved in the corresponding differential equation. F defines
the state vt at all times given an initial condition v0 and includes complex trans-
formations of space e.g. spatial derivatives for PDEs.

In all generality, we consider autonomous systems (i.e. the dynamics F do not
depend on the time variable t) which follow a differential equation of the form:

∂vt
∂t

= F (vt,β) (2.11)

We specify the instantiation of Eq. (2.11) in the ODE and PDE settings.
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2.2.1 Ordinary Differential Equations (ODEs)

Given a function v : R → Rn, an ODE with parameters β is defined by an Initial
Value Problem (IVP):

dvt
dt

= F (vt,β)

(IC) v0 ∈ Rd
(2.12)

v0 is called the initial condition (IC) and ensures unicity of a solution to the
differential equation in Eq. (2.11) (Picard–Lindelöf theorem).

Such ODEs are involved in many applications e.g. disease diffusion, reaction rates
in chemistry, stock trends in economics or Newton’s second law in mechanics.

2.2.1.1 Numerical method for solving Ordinary Differential Equations

There is usually no explicit formulas for solutions of IVP. They can however be
approximated using numerical schemes called ODE solvers (Hairer et al. 2000),
with various criteria e.g. numerical stability, convergence, consistency and order.

To integrate in time an ODE with a solver, we need to discretize the temporal
domain, i.e. define T = {tk}nk=1 ⊂ [0, T ] s.t. t0 < t1 < · · · < tn. The step size is the
difference between two consecutive time points i.e. ∆tk = tk+1 − tk. There are two
main ways to define the step size.

Fixed-Step Fixed step solvers set a constant step size ∀k,∆tk = ∆t. The simplest
approach is the explicit Euler method, whose update step writes as:

v(k+1)∆t = vk∆t +∆tF (vk∆t,β)

We also consider higher order methodes such as Runge-Kutta 4 (RK4), which are
more stable as they provide a finer estimation of the temporal derivatives:

v(k+1)∆t = vk∆t +
∆t

6
(k1 + 2k2 + 2k3 + k4) where k1 = F (vk∆t,β),

k2 = F (vk∆t +∆t
k1
2
,β), k3 = F (vk∆t +∆t

k2
2
,β), k4 = F (vk∆t +∆tk3,β)

Adaptive On the other hand, adaptive solvers e.g. Runge-Kutta 5 of Dormand-
Prince-Shampine a.k.a. dopri5, adjust the step size as follows. It first produces an
error estimate of the current step based on multiple different solvers with different
precisions (e.g. the order). Then, if the error is greater than some tolerance, the
step is redone with a smaller step size. This process is repeated until the error is
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smaller than the provided tolerance. Adaptive solvers handle better known ODEs,
especially stiff ones.

2.2.1.2 Neural ODE

Setting Recently, NNs were used as an alternative to numerical solvers for fore-
casting ODEs. They are known as Neural ODE (Chen et al. 2018).

The training data consists of different trajectories i.e. different realizations of a
same ODE with different initial conditions, obtained via a numerical solver. These
trajectories are defined by an initial condition v0 and a fixed time discretization
T ⊂ [0, T ] where T > 0. A trajectory can be formally defined as the fonction
t ∈ T 7→ vt where

∀t ∈ T ,vt = v0 +

∫ t

0

F (vτ ,β)dτ (2.13)

Eq. (2.13) integrates Eq. (2.12) in time from the initial condition v0.

Learning problem We propose to learn F in Eq. (2.13) using a NN, fθ, which
should satisfy the following integral formulation:

vt = v0 +

∫ t

0

fθ(vτ )dτ (2.14)

Note that fθ which satisfies Eq. (2.14) also satisfies the following differential form:

dvt
dt

= fθ(vt) with (IC) v0 (2.15)

with the advantage that it does not require observing derivatives, which are un-
known, but only the state, which is observed.

One way to find θ which satisfies Eq. (2.14) is to relax the equality constraint with
a Mean-Squared Error (MSE). The corresponding loss over a set of trajectory D is
then defined as:

min
θ
L(θ,D) ≜ min

θ

∑
v∈D

∑
t∈T
∥vt − ṽt∥22 where ṽt = v0 +

∫ t

0

fθ(ṽτ )dτ (2.16)

Choosing the solver for integration Any solver in Section 2.2.1.1 can be used
to perform integration in Eq. (2.16). In practice, we observed that adaptive solvers
underperform compared to fixed-step ones as the step size is not correctly esti-
mated at the beginning of training, due to the mismatch between fθ and F .
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Computing gradients There are two different ways to compute gradients w.r.t.
θ in Eq. (2.16) to solve this optimization problem:

• “Differentiate then discretize” (Chen et al. 2018) solves the integration in
Eq. (2.16) forward in time with a chosen numerical solver. Then, the gradi-
ents w.r.t. θ are computed by solving another differential equation backward
in time. This is called the “adjoint state method” (Mathematical Theory of Op-
timal Processes 1962), a time-continuous formulation of backpropagation that
leverages the reversibility of ODEs. It is memory efficient as past states can
be recomputed on the fly without needs for storing them in memory, but is
also prone to numerical errors of ODE solvers e.g. associated with backwards
ODE solve (Gholaminejad et al. 2019).

• “Discretize then differentiate” obtains these gradients by backpropagating
through the steps of the forward pass by a differentiable solver. This is
similar to backpropagation in Recurrent Neural Networks. We adopted this
formulation as it proved to be more stable on some preliminary experiments.
Yet, it presents some limitations, which were not restrictive for us. First, it
can be memory intensive as all states need to be stored in memory. Second,
the solver should be differentiable unlike the first approach 1.

2.2.2 Temporal Partial Differential Equations (PDEs)

We now consider that vt is a function of space i.e. v : R×Ω→ Rn, where Ω ⊂ Rp is
a compact domain of spatial coordinates. In other words, vt is a spatial function of
x ∈ Ω, with vectorial output vt(x) ∈ Rn. A temporal PDE over v, with parameters
β is defined by the following Initial Boundary Value Problem (IBVP):

∂vt
∂t

= F (vt,
∂vt
∂x

,
∂2vt
∂x2

, · · · ,β)
(IC) v0(x) = v0(x) ∀x ∈ Ω

(BC) B[v](x, t) = 0 ∀(x, t) ∈ ∂Ω× R

(2.17)

with some initial and boundary conditions constraints. There are various possible
choices of the boundary operator B including:

• Dirichlet: BD[v] = v − bD for fixed function bD.

1. The adjoint formulation in neural ODE (Chen et al. 2018) is derived with differentiable
solvers; yet it is common to obtain the adjoint for non-differentiable solvers as commonly done
e.g. in CFD applications.
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• Neumann: BN [v] = n⊤∂xv − bN for scalar-valued u, where n is an outward
facing normal on ∂Ω.

• Periodic: in the 2D case, for a period of pi along the ith dimension,BP [v](x, t) =

[v(x1, x2, t)− v(x1 − p1, x2, t), v(x1, x2, t)− v(x1, x2 − p2, t)].

We consider well-posed IBVP, where a unique solution exists which depends
continuously on the input. Often, this requires restrictive constraints such as
multiple boundary conditions to guarantee unicity.

2.2.2.1 Numerical approaches for solving Partial Differential Equations

Method of Lines A common technique to solve numerically a PDE is the method
of lines (Schiesser 1991). It discretizes domain Ω and solution v respectively into
a grid X = {x0, · · · ,xd} and vector vt = [vt(x1), · · · , vt(xd)]⊺ ∈ Rd. X is usually
irregular with a higher density of points where the solution and/or its derivatives
change rapidly for better modeling. The PDE is transformed into an ODE on each
spatial location which can be solved with numerical methods as in Section 2.2.1.

Computing Spatial Derivatives Each ODE follows the dynamics of F . The
temporal derivatives can be formed by approximating spatial derivatives on the
grid X ; there are four classical techniques for this task which we review briefly
below. We refer to Morton et al. 2005 for more details.

• finite difference methods (FDM) uses difference quotients a.k.a. stencils.
FDM are simple and efficient but suffer from instability when the spatial
and time discretizations are not carefully controlled.

• finite volume methods are more stable and accurate than FDM but can only
be applied to conservation form equations.

• pseudospectral methods compute these derivatives in Fourier space, where
they take a simpler form.

• finite element methods (FEM) divide the region of interest into smaller
subregions, called finite elements. They then approximate the solution by
piecewise polynomial functions defined on these elements.

There have been various attemps at replacing (partially) these costly PDE numeri-
cal solvers, which we review in the following sections.
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2.2.2.2 Solving Partial Differential Equations with Neural Networks

An initial attempt is Physics-Informed Neural Networks (PINN) (Raissi et al.
2019). PINN considers that initial / boundary conditions, the PDE and its param-
eters β are known. It parameterizes v by a coordinate-based NN a.k.a. Implicit
Neural Representation (INR), denoted vθ, which takes as input the spatial coordi-
nates x ∈ Ω and time t ∈ R. θ is optimized such that vθ satisfies the given PDE. The
spatial and temporal derivatives are computed using automatic differentiation.
This approach does not require data but is known to suffer from ill-conditioned
gradients (Krishnapriyan et al. 2021).

2.2.2.3 Neural PDE forecasters

An alternative constructs a data-driven estimation of F , via a NN fθ, to model some
observed data without any knowledge of the underlying PDE. Data is obtained
using a numerical solver (Section 2.2.2.1) and is discretized into a free-form spatial
observation grid X ⊂ Ω and on discrete times T ⊂ [0, T ] where T > 0.

We distinguish three main families of neural PDE forecasters, which we review
with their advantages and limitations.

Discretized models Most models use discretized models, e.g. Convolutional
Neural Network (CNN) or Graph Neural Network (GNN) to process the obser-
vations. CNNs require observations on a regular grid but can be extended to
irregular grids through interpolation (Chae et al. 2021). GNNs are more flexible
as they handle irregular grids, at an additional memory and computational cost.
These encoders were extended to account for multi-scale / global information in
UNet-based architectures (Ronneberger et al. 2015). Yet, prediction on new grids
X ′ ̸= X fails experimentally for all these models, as they are not able to generalize
outside the training grid X .

We distinguish two types of temporal models which both extrapolate beyond the
train horizon due to their sequential nature.

• Autoregressive models vt|X 7→ vt+∆t|X (Long et al. 2018b; Bézenac et al.
2018a; Pfaff et al. 2021; Brandstetter et al. 2022; Gupta et al. 2023). These
models predict the sequence from t only at fixed time increments ∆t and
not in between.

• Time-continuous extensions using numerical ODE solvers (vt|X , τ ) 7→ vt+τ |X
(Yin et al. 2021b; Iakovlev et al. 2021) solve this limitation as they provide a
prediction at arbitrary times t+ τ , thus remove dependency on the observed
time discretization T . Time discretization is performed by the solver.
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Operator learning Recently, operator-based models proposed space-continuous
models, which aim at finding a parameterized mapping between functions. Neu-
ral operators (Kovachki et al. 2021) attempt to replace standard convolution with
continuous alternatives. Fourier Neural Operator (FNO, Li et al. 2021c) applies
convolution in the spectral domain via Fast Fourier Transform (FFT). Graph Neu-
ral Operator (GNO, Li et al. 2020b) performs convolution on a local interaction
grid described by a graph. DeepONet (Lu et al. 2021) uses a coordinate-based
NN to output a prediction at arbitrary time and space locations given a function
observed on a fixed grid. Three types of temporal models were used for operators
with some limitations.

• The standard approach, v0 7→ vt, models the output at a given time t ∈ [0, T ]

within the train horizon (Li et al. 2020b);

• A sequential extension, vt 7→ vt+∆t, was proposed in Li et al. 2021b.

• Finally, a time-continuous version v0 7→ (t ∈ [0, T ] 7→ vt) in DeepONet
propose a solution at arbitrary time and space locations.

The first and third approaches cannot generalize beyond the train horizon, i.e.
when t > T as they are not sequential. The second solves this limitation but can
only predict solutions from t at fixed time increments of ∆t and not in-between.

INRs Another class of models is based on coordinate-based NNs, called INR (Sitz-
mann et al. 2020; Fathony et al. 2021; Tancik et al. 2020). These space-continuous
models share a similar objective as operators, despite constituting a separate re-
search field. INRs for spatiotemporal data take time as an input along spatial
coordinates. PINNs (Raissi et al. 2019) in Section 2.2.2.2 use this formulation
to solve PDEs, yet are limited to a single known differential equation and a set
of initial and boundary conditions. Fresca et al. 2020 propose an agnostic INR

approach to build reduced order models for electrophysiology. Extensions for
multi-sequence learning, e.g. for video generation (Yu et al. 2022; Skorokhodov
et al. 2022) or compression (Chen et al. 2021), learn a latent conditioning variable
from an initial condition v0, i.e. take the form v0 7→ (t ∈ [0, T ] 7→ vt). Interest-
ingly, these models can predict at an arbitrary time t in the train horizon without
unrolling a sequential model up to t.
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2.2.3 Generalization Strategies for Spatiotemporal Modeling

Unlike for classification, the topic of generalization in spatiotemporal modeling
is new and not well-defined. Only a few contributions were proposed as of today
and handle some specific generalization settings e.g. when:

1. the system parameters β vary,

2. the initial and boundary conditions vary,

3. the spatiotemporal grid changes e.g. its resolution or regularity,

4. the spatiotemporal evaluation locations differ from training ones.

5. the test time horizon goes beyond the training horizon.

Handling these generalization problems is an emerging research topic, which we
started to adress in this thesis. We review some major existing directions.

Hybrid modeling One way to handle to better generalize is to combine prior
physical knowledge on the PDE and data a.k.a. hybrid modeling. Physical model
generalize in any contexts where the underlying physical law applies unlike NNs.
Yet, they may be incomplete. Combining them to data-driven approaches benefits
both models (Yin et al. 2021b).

Conditioning on known information Often, some external information is avail-
able for adapting to new settings. Brandstetter et al. 2022 proposed to condition its
forecaster on a known boundary condition. Some methods condition on known
system parameters (Gupta et al. 2023; Pan et al. 2022) and time-scales (Gupta et al.
2023). This allows the models to consider changing conditioning information at
test time. Yet this available information may not always be available.

Conditioning on observed data for adaptation A more general strategy is to
condition on observed data to infer the target dynamics. This removes the need for
incorporating external information. This strategy was applied to handle changing
parameters (1). This setting can be assimilated to a concept shift problem as the
target labeling function differs from the training one. Several methods inspired
from classification methods (Section 2.1) were proposed to handle this setting. For
example, LEADS (Yin et al. 2021a) follows a MTL approach. It leverages observed
data across several domains each associated to an unknown system parameter. It
performs adaptation in functional space by expressing a neural dynamics model
as the sum of an invariant model and of a domain-specific function, learned on the
conditioning data. It was demonstrated to learn efficiently from a set of dynamical
systems in the MTL setting and to provide a good initialization for adaptation to
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new environments. Another approach, HANIL (Lee et al. 2021) considers meta-
learning for Hamiltonian systems, a specific instance of dynamical system that
conserves the Hamiltonian. They demonstrated that for modeling such systems, it
is possible to learn a NN that adapts to new system parameters at test time. These
existing work consider restrictive settings, which we resolve in Chapter 6.

Spatiotemporal generalization To handle settings (3,4,5), various methods were
proposed to better account for the continuity of the underlying physical systems.
This is the motivation of neural operators, detailed in Section 2.2.2. The practical
implementation of neural operators does not however satisfy space and time
continuity such that they are unable to handle many spatiotemporal extrapolation
settings. We propose an alternative time and space continuous model in Chapter 7

which leverages the flexibility of INRs and neural ODEs.





Part II

D O M A I N A D A P TAT I O N
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In the following chapters, we consider the problem of Domain Adaptation (DA),
when some data from the target domain are available at training time.

In Chapters 3 and 4, we consider the problem of learning representations for
classification under Unsupervised Domain Adaptation (UDA) between a labelled
source and an unlabelled target domain. We adress the limitations in existing
approaches which learn domain-invariant representations under two problem
settings: missing data (Chapter 3) and complex domain shifts (Chapter 4).

The main contributions are outlined in Section 1.3.1.





Chapter 3

Learning invariant representations un-
der non-stochastic missing data

Chapter abstract

We consider UDA for classification problems in the presence of miss-
ing data in the unlabelled target domain. More precisely, motivated
by practical applications, we analyze situations where distribution
shift exists between domains and where some components are sys-
tematically absent on the target domain without available supervision
for imputing the missing target components. We propose a genera-
tive approach for imputation. Imputation is performed in a domain-
invariant latent space and leverages indirect supervision from a com-
plete source domain. We introduce a single model performing joint
adaptation, imputation and classification which, under our assump-
tions, minimizes an upper bound of its target generalization error and
performs well under various representative divergence families (H-
divergence, Optimal Transport (OT)). Moreover, we compare the target
error of our Adaptation-imputation framework and the “ideal” target
error of a UDA classifier without missing target components. Our model
is further improved with self-training, to bring the learned source and
target class posterior distributions closer. We perform experiments on
three families of datasets of different modalities: a classical digit clas-
sification benchmark, the Amazon product reviews dataset both com-
monly used in UDA and real-world digital advertising datasets. We
show the benefits of jointly performing adaptation, classification and
imputation on these datasets.

The work in this chapter has led to a journal paper presented at a conference:

• M. Kirchmeyer, P. Gallinari, A. Rakotomamonjy, and A. Mantrach (2021).
“Unsupervised domain adaptation with non-stochastic missing data”. In:
Joint European Conference on Machine Learning and Knowledge Discovery in

33
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Databases (ECML-PKDD) & Data Mining and Knowledge Discovery (DMKD)
35.6, pp. 2714–2755.

3.1 Introduction

Motivated by real applications, we consider a classification problem where: (1) a
source and target domain are available with observed source labels and missing
target labels, (2) a distribution shift exists between source and target on joint dis-
tributions in the input and label space, (3) source input data are fully available
while target data have missing input components, which cannot be measured on
this domain and (4) there is no possible supervision in the target domain for
imputation, thus requiring indirect supervision from the source domain. Further-
more, unobserved features contain complementary information not present in the
observed ones so that the former cannot be inferred directly from the latter. (1)
and (2) correspond to the classical setting of UDA, (3) corresponds to a missing
data imputation problem on the target with the difficulty (4). Rubin 1976; Lit-
tle et al. 1986 distinguish three categories of missing data problems based on a
missingness mechanism denoted ϕ. Let m define a pattern of missing data, ϕ de-
fines the conditional distribution pϕ(m|x) where x represents a sample. Missing
Completely at Random (MCAR) problems verify ∀x, pϕ(m|x) = pϕ(m), Missing At
Random, ∀x, pϕ(m|x) = pϕ

(
m|xobs

)
with xobs the observed feature and Missing

Not At Random covers all the other cases. The key idea behind Rubin’s theory
is that m is a random variable with a probability distribution and specific im-
putation approaches were developed for each missingness setting. We consider
the setting where target data have systematically missing input components. This
corresponds to MCAR with the additional difficulty that m is deterministic, not
stochastic. This problem is more difficult than classical MCAR as neither classical
maximum likelihood solutions nor stochasticity in missing features can be used
to reconstruct the missing information. While general adaptation and imputa-
tion problems were considered independently, there are several instances where
they occur simultaneously. This has seldom been analyzed and only for specific
cases. We propose a principled solution to this problem under non-stochastic
missingness and present practical situations where this occurs.

There are many problems where specific features in collected data may be sys-
tematically absent on a domain. In the literature, this setting is mostly considered
when dealing with data with multiple modalities. For example, in disease di-
agnosis in medical imaging (Cai et al. 2018), for some collected dataset, several
modalities are present while they are absent on other datasets for which the
corresponding equipment was unavailable. In multi-lingual text classification
(Doinychko et al. 2020) some collections may be available only for a limited set of
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languages. Similar considerations hold for recommendation in advertising (Wang
et al. 2018) and object recognition with multi-sensor data (Tran et al. 2017). The
situation which initially motivated our investigation, is the prospecting setting in
computational advertising. The classical framework for ads on the internet is re-
targeting: users have already interacted with a set of merchant sites and they are
targeted when they come back on one of these sites. Retargeting makes use of
global user statistics collected on the whole set of merchant sites and of statistics
from the specific site the user is browsing. Prospecting aims at targeting a user
that visits a site for the first time (Aggarwal et al. 2019); while for such a user,
features from his general behavior are available, there is no user information for
the targeted site and the corresponding features are absent. The second issue
considered is the distribution shift between domains. For instance, data may be
collected on different devices as in medical imaging (Chen et al. 2019a) or back-
ground noise may affect each domain differently. This issue has given rise to
the literature of DA when aiming at transferring knowledge from one domain
to the other (Pan et al. 2010). The ads case described above is subject to both
missing data for prospecting users and distribution shift between retargeting and
prospecting users as detailed in Section 3.6.3.

We propose a model addressing the Adaptation-imputation problem defined
by (1) to (4), which learns to perform imputation for the target domain with a
conditional generative model. Imputation makes use of indirect supervision from
the complete source domain. This allows us to handle non-stochastic missing
data, while satisfying the constraints related to adaptation in a latent space and to
classification. The imputation process plays an important role, providing us with
information about the missing target data while contributing to the alignment
and the reconstruction losses. Extensive empirical evidence on handwritten digits,
Amazon product reviews and Click-Through-Rate (CTR) prediction DA problems
illustrate the benefit of our model. The original contributions are the following:

• We propose a new end-to-end model for handling non-stochastic missing
data with DA. It generates relevant missing information in the latent space
conditionally on available information while aligning latent source and tar-
get marginals and classifying labelled instances. The joint missing-data and
adaptation problem has been seldom considered and never in our context.

• We derive an adaptation and an imputation upper bounds. The first one
upper bounds our model’s target generalization error and is minimized ex-
plicitly by our training objective. The second one upper bounds an ideal
target error corresponding to an UDA problem without missing features in
the target domain.
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• We improve this model by bringing the source and target class posteriors
closer to one another with self-training; this is a useful heuristic when class
posteriors mismatch.

• We evaluate the model on academic benchmarks and on challenging real-
world advertising data and illustrate on these datasets that conditional gen-
erative models improve regression-based approaches seen in the literature.

3.2 Related work

Our problem is related to generic Machine Learning (ML) topics usually addressed
separately e.g. UDA and imputation, for which we provide a brief overview.

UDA We present a detailed related work on UDA in Section 2.1.3.1. The major
difference with the setting we consider here is that existing work consider non-
missing data in the target domain while we consider non-stochastic missing data.

Imputation Data imputation is addressed by several methods (Little et al. 1986;
Van Buuren 2018). Most approaches consider a supervised setting where (1)
paired or unpaired complete and incomplete data are available, (2) missingness
corresponds to a stochastic process (e.g. a mask distribution for tabular data) and
(3) imputation is performed in the original feature space. This is different from
our setting when one considers (1) reconstruction in a latent space, (2) imputation
for a classification task, (3) no direct supervision and (4) fixed missingness which
prevents us from exploiting the statistics from different incomplete samples lead-
ing to a much more complex problem. Recently, generative models were adapted
for data imputation, e.g. Yoon et al. 2018 and Mattei et al. 2019 for Generative
Adversarial Network (GAN)s and VAEs respectively. The general approach with
generative models is to learn a distribution over imputed data which is similar to
the one of plain data. This comes in many different instances and usually, genera-
tive training alone is not sufficient; additional loss terms are often used. In paired
problems where each missing datum is associated to a plain version, a reconstruc-
tion term imposed by a Mean-Squared Error (MSE) contraint is added (Isola et al.
2017); in unpaired problems a cycle-consistency loss is imposed (Zhu et al. 2017).
Li et al. 2019; Pajot et al. 2019 are among the very few approaches addressing
unsupervised imputation in which full instances are never directly used. Both
extend AmbientGAN (Bora et al. 2018) and consider stochastic missingness. Our
imputation problem is closer to the one addressed in some forms of inpainting
(Pathak et al. 2016), missing view imputation (Doinychko et al. 2020) or multi-
modality missing data (Cai et al. 2018). These approaches are fully supervised.
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The latter considers, as we do, imputation when one modality is systematically
absent, but on one domain only, i.e. without adaptation. Ding et al. 2014; Wei et al.
2019; Wei et al. 2017 are the only papers we are aware of that consider imputation
as we do. Ding et al. 2014 considers low-rank constraints and dictionary learning
to guide transfer and was not used here as a baseline due to a high complexity
that prevents large-scale experiments. Wei et al. 2019; Wei et al. 2017 are close to
our work but assume that missing data can be reconstructed from the observed
one through regression. In our setting, this is not possible: given the observed
features, there are multiple possible imputations for the missing features; regres-
sion is thus meaningless and one has to learn their distribution or at least some
modes. This motivates learning a generative model. Moreover, in Wei et al. 2019;
Wei et al. 2017 classification occurs as a downstream task whereas our approach
is end-to-end for classification, adaptation and imputation. Finally, our method is
theoretically justified and addresses a challenging large size application motivated
by a concrete real-world problem never handled before.

Cold-start Cold-start occurs when making predictions or recommendations
when data from the item or user of interest is not available or was not observed
in the training set. The standard hypothesis is Independent and Identically Dis-
tributed (IID) data coming from the same domain. In recommender systems,
several papers address cold-start and leverage auxiliary information about users
or items e.g. user attributes, profile, social context or cross-domain information
(Barjasteh et al. 2015; Sahebi et al. 2013). Cold-start is related to zero-shot learn-
ing with unobserved data where usual solutions learn a representation space
using auxiliary knowledge e.g. grounded word embeddings with visual context
(Zablocki et al. 2019). As for our problem, cold-start deals with non-stochastic
missing data, but usually considers only one domain while we deal with distri-
bution shift as well through adaptation.

3.3 Problem definition

Notations We presented the classification and UDA setting in Sections 2.1.1
and 2.1.3.1. In short, we are given a labeled source domain S and an unlabeled
target domain T and D ∈ {S, T} will refer to S or T with distribution pD. The
corresponding datasets are denoted DS,DT (DT is unlabelled). In this paper, we
consider that xD ∼ pD(X) has two components, xD = (xD1 ,xD2); X1, X2 refer to
each component with values in X1,X2. Given input x ∈ Rn, m ∈ {0, 1}n is a binary
mask indicating which entries of x are missing (1 for missing and 0 for observed).
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We define Z = Z1 ×Z2 as the representation space built with a feature extractor
g. Assuming both components (xD1 ,xD2) are observed, we define g as

g : X1 ×X2 → Z1 ×Z2

(xD1 ,xD2) 7→ (g1(xD1), g2(xD2))
(3.1)

where zD1 = g1(xD1), zD2 = g2(xD2). Z1, Z2 are the corresponding random vari-
ables. This is illustrated in Figure 3.1 (b) using digits samples. X2 is available on
the source domain but absent on the target domain. As detailed in Section 7.3.3,
we learn to perform imputation in the latent Z space via a generative Neural
Network (NN) r operating on Z . For this we introduce a mapping ĝ as follows:

ĝ : X1 → Z1 ×Z2

xD1 7→ (g1(xD1), r ◦ g1(xD1))
(3.2)

where g1 : X1 → Z1, r : Z1 → Z2 and ẑD2 = r ◦ g1(xD1). Ẑ2 is the corresponding
random variable built from X1 with r ◦g1 with values in Z2 and Ẑ = (Z1, Ẑ2). This
is illustrated in Figure 3.1 (a). For reasons detailed later, this mapping r ◦g1(·) will
be used on both S and T .

Figure 3.1. – Encoding of an input source digit xS = (xS1 ,xS2) with ĝ (a) and g
(b). g1 encodes the first part of the input xS1 into zS1 . The second
latent component is either built by encoding xS2 with g2 as zS2 (b) or
with reconstruction via r ◦ g1 as ẑS2 (a). These latent components ẑS
(a), zS (b) are fed directly into a classifier f .



3.4 adaptation- imputation model 39

Assumptions Let us now introduce formally the different assumptions under-
lying our context and model. We address UDA with non-stochastic missing target
features and aim at finding a single hypothesis hĝ : X → {0, ..., K} of the form
f ◦ ĝ, with ĝ the feature extractor defined in Eq. (3.2) and f the classifier with low
target risk. Since the problem is under-specified, one has to make assumptions to
define it properly:

Assumption 1. Labelled source data xS are fully observed while unlabelled tar-
get data are partially observed with xT2 missing. The missingness mechanism
corresponds to MCAR (Little et al. 1986) on the target with fixed missingness pat-
tern. Thus the distribution statistics of the missing data cannot be leveraged for
imputation and we can only resort to indirect supervision with adaptation as in
Section 7.3.3: we consider only statistics from the source to infer the imputation
mechanism as later explained.

Assumption 2. The distribution of X2|X1 projected in the latent space with g from
Eq. (3.1), pD(Z2|Z1), is multi-modal and Z1 and Z2 are not statistically indepen-
dent. This allows to impute zD2 given zD1 . However, regression on zD1 cannot
recover all modes as MSE produces blurry reconstructions by averaging modes.
For example, assuming the feature variables Z1, Z2 encode the contour of the top,
respectively bottom of a digit, given the bottom contours of a digit, we can recon-
struct several candidates of the top contours (the bottom half of 7 can either be
reconstructed into 1 or 7; regression will lead to a blurry digit averaging these
two modes). As mentioned, this uncertainty is present for all our datasets.

Assumption 3. The distribution of X2|X1 projected in the latent space with g in
Eq. (3.1) is the same across domains i.e. pS(Z2|Z1) = pT (Z2|Z1). This allows us
to make use of the source domain information (with available supervision) to
infer the target conditional distribution and recover the missing latent component
useful for classification. For example, assuming the feature variables Z1, Z2 encode
the contour of the top, respectively bottom of a digit, p(Z2|Z1) is the distribution
of the contours of the bottom of the digit given those of the top; it is reasonable
to assume that this distribution is the same across domains.

Assumption 4. Covariate Shift (CovS) is valid in the latent space obtained with ĝ

in Eq. (3.2) i.e. pS(Y |Ẑ) = pT (Y |Ẑ) while pS(Ẑ) ̸= pT (Ẑ). Thus, we can find a
classifier f ◦ ĝ with low source and target error; this is a common assumption in
standard UDA.

3.4 Adaptation-Imputation model

As several generative approaches to UDA, we project source and target data onto
a common latent space in which data distributions from the two domains should
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match and learn a classifier using source labels. Our novelty is to offer a so-
lution to deal with datasets with systematically missing data in the target do-
main. Our model, denoted Adaptation-Imputation, is trained to perform three oper-
ations jointly: imputation of missing information, alignment of the distributions
of both domains and classification of source instances. The three operations are
performed in a joint embedding space and all components are trained together
with shared parameters. The term imputation is used here in a specific sense:
our goal is to recover information from xT2 that will be useful for adaptation
and for the target data classification objective and not to reconstruct the whole
missing xT2 . This is achieved via a generative model, which for a given datum
in T and conditionally on the available information xT1 , attempts to generate the
missing information. Because xT2 is systematically missing for T (Assumption 1),
there is no possible supervision with target samples; instead we use indirect su-
pervision from source samples while transferring to the target. We consider two
variants of the same model based on different divergence measures between dis-
tributions: the H-divergence approximated through Adversarial (ADV) training
and the Wasserstein distance (OT) computed through the primal by finding a joint
coupling matrix γ with linear programming (Peyré et al. 2019). Our two models
can be seen respectively as extensions of DANN (Ganin et al. 2015) and DeepJ-
DOT (Damodaran et al. 2018) to the missing data problem. We only describe the
ADV version in the main text, the extension to OT is detailed in Appendix A.1.
Results for both models are in Section 3.6.

3.4.1 Inference

The latent space representations are denoted ẑD = (zD1 , ẑD2). zD1 = g1(xD1) is
the mapping of the observed component xD1 onto the latent space and ẑD2 =

r ◦ g1(xD1) is the second component’s latent representation generated condition-
ally on xD1 through generator r, as later described. At inference, given xT1 , we
generate ẑT = (zT1 , ẑT2) where ẑT2 encodes part of the missing information xT2

in xT (Figure 3.2 (b)). Finally ẑT is fed to the classifier f .

3.4.2 Training

For simplicity, we describe each component in turn but please note that they
all interact and that their parameters are all optimized according to the three
objectives mentioned above. The interaction is discussed after the description of
each individual module. The model’s components are illustrated in Figure 3.2 (a).
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Adaptation Adaptation aligns the distributions of ẑS and ẑT in the latent space.
For ADV, alignment is performed via an adversarial loss operating on the latent
representations

L1 = ExS∈DS
logD1(ẑS) + ExT∈DT

log(1−D1(ẑT)) (3.3)

where D1(ẑ) represents the probability that ẑ comes from S rather than T .

Imputation Imputation generates an encoding ẑT2 for the missing information,
conditioned on the available xT1 thanks to a generative model r. Since we never
have access to xT2 , we develop a distant learning strategy: we learn imputation
on S through ẑS2 = r ◦ g1(xS1) (Figure 3.2) and then transfer to the target domain
(ẑT2 on the figure) via adaptation. For that we perform two operations in parallel.
First, we align the distributions of ẑS2 and zS2 = g2(xS2) which is the encoding
of xS2 , using an adversarial loss and discriminator D2 (LADV on Figure 3.2). As
alignment acts globally on distributions we have no guarantee that ẑS2 will be
associated to the corresponding zS1 . We then enforce a one-to-one relationship
by associating a ẑS2 to its specific zS1 . For that, we use a reconstruction term, the
MSE distance between zS2 and ẑS2 (LMSE on Figure 3.2). This guarantees that the
imputed ẑS2 truly represents information in zS2 . The learned mappings are used
to perform imputation on the target data ẑT2 = r ◦ g1(xT1). The imputation loss
L2 has thus two terms: an adversarial term LADV for aligning zS2 and ẑS2 ; and a
reconstruction term LMSE :

L2 = LADV + λMSE × LMSE (3.4)

LADV = ExS2
∈DS

logD2(ẑS2) + ExS1
∈DS

log(1−D2(zS2)) (3.5)

LMSE = ExS∈DS
∥zS2 − ẑS2∥22 (3.6)

where λMSE weights the regression term over the generative term. Imputation
and adaptation influence each other and both are also influenced by classifica-
tion described below. The latter forces the generated ẑS2 to contain information
about xS2 relevant for the classification task. This information is transferred via
adaptation to the target when generating ẑT2 .

Classification The last component is a classifier f , trained on source mappings
ẑS as in UDA. The corresponding loss, with ℓce a Cross Entropy (CE) loss, is

L3 = E(xS,yS)∈DS
ℓce(f(ẑS), yS) (3.7)
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Overall loss L is the weighted sum of the adaptation, imputation and classifi-
cation losses

L = λ1 × L1 + λ2 × L2 + λ3 × L3 (3.8)

with λ1, λ2, λ3 some hyperparameters and we solve

min
g1,g2,r,f

max
D1,D2

L (3.9)

Figure 3.2. – Adaptation-Imputation model. The first column represents examples
of raw data with missing and non-missing parts. Trapezoidal boxes
represent mapping functions. Triangles in the last column represent
loss functions used only for training. At training, the top-row depicts
how xS2 is mapped into the latent space with g2. The second and
third rows show how ẑS and ẑT are obtained. All these imputed
and mapped source and target samples are then used in training
losses. At inference, we only need the learned g1 and r for mapping
the target example with missing data into the latent space and f for
predicting its class.
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Interaction between the model’s components Mappings g1, g2, r appear in the
three terms of L, meaning that they should learn to perform the three tasks
simultaneously. g1 maps xS1 and xT1 onto the latent space, the embeddings being
denoted respectively zS1 and zT1 . r learns to generate missing information ẑD2

from zD1 . ẑD is generated to fulfill the classification objective. g2 should fulfill the
imputation objective while preserving part of the information present in xS2 . Our
model uses a unique mapping g1 for both S and T ; compared to using separate
mappings, this reduces the number of parameters and performs as well.

Implementation For adversarial training, discriminators D1 (adaptation) and
D2 (imputation) are implemented by binary classifiers. D1 is trained to distinguish
ẑS from ẑT mappings while D2 is trained to separate imputed ẑS2 , generated from
xS1 , and zS2 , a direct embedding of xS2 . We use gradient reversal layers (Ganin
et al. 2015) for implementing the min-max condition on D1 and D2. To stabilize
adversarial training, we update progressively λ1, λ2, respectively the hyperparam-
eter for the adaptation loss L1 and the imputation loss L2, from 0 to 1 when
updating the feature extractors g1, g2. Both λ1 and λ2 are set to 1 when updating
the discriminators D1, D2 per Ganin et al. 2015. Moreover, we decay all learning
rates. We fix λ3 = 1 to avoid additional tuning and only tune λMSE as shown in the
ablation study in Table 3.4 and Figure 3.5. All components are trained jointly after
first initializing the classifier f and feature extractors g1, g2 to minimize L3 replac-
ing ẑS2 with zS2 such that discriminitative components are learned before joint
adaptation and imputation. Appendix A.4 provides details of all architectures
and parameters.

Algorithm 3.1 Adversarial Adaptation-Imputation training procedure
N : number of epochs, k: batch size

1: Initialize f, g1, g2 by minimizing L3 replacing ẑS2 with zS2

2: for nepoch < N do
3: Sample DS = {x(i)

S , y
(i)
S }1≤i≤k from pS(X, Y )

4: Sample DT = {x(j)
T }1≤j≤k from pT (X)

5: Decay learning rate and update gradient scale at each batch
6: Compute L = λ1L1 + λ2L2 + λ3L3 for adaptation-imputation-classification
7: Update D1, D2 by ascending L through Gradient Reversal Layer
8: Update f, g1, g2, h by descending L
9: end for
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3.5 Theoretical insights

3.5.1 Target generalization error

Given the model in Section 7.3.3, we now show that, despite having only unla-
belled target samples, we minimize the model’s target classification error using
source labels with an adaptation upper bound (Theorem 3.1), under our assump-
tions. We then show an imputation upper bound of the "ideal" target error ob-
tained with all components observed (classical UDA) by our model’s target error
times a factor (Proposition 3.2). The analytical expression of this factor highlights
the role of two components: imputation on the source and transfer of this imputa-
tion from the source to the target. In the optimal case, when the model perfectly
recovers these two operations, we show that our model retrieves the ideal target
error. These two bounds thus provide an approach with adaptation and imputa-
tion to minimize our model’s target error and reach the ideal target error, using
only missing target data and source supervision for both labels and imputation.

Definitions First, we recall some definitions. ĝ in Eq. (3.2) maps the first com-
ponent of a sample to its imputed latent representation. ĝ can be applied to both
source and target samples. On the other hand, g in Eq. (3.1) maps both input
components on the latent space and is thus only applicable to source samples. In
practice, ĝ and g share the same encoder for the first component g1; the second
encoder is respectively r ◦ g1 for ĝ and g2 for g. The random variables associated
to these projections are denoted respectively Z2, for the latent missing component
built from X2 with g2 and Ẑ2, for the reconstruction of Z2 from X1 with r ◦ g1. X2

is missing on T but observed on S. Based on these mappings, we consider the
risk of a hypothesis h on domain D ∈ {S, T}, either hg ∈ Hg = {f ◦ g : f ∈ F} or
hĝ ∈ Hĝ = {f ◦ ĝ : f ∈ F}, as its error under the true labeling function fD. In the
following, we describe the adaptation and imputation bounds.

Adaptation bound As target samples are unlabelled, we cannot directly min-
imize our model’s target error, ET (f ◦ ĝ). In practice, we upper bound ET (f ◦ ĝ)
in Theorem 3.1 with adaptation. Adaptation is performed on both components
despite target missingness thanks to imputation which reconstructs the missing
latent component conditionally on the observed one.
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Theorem 3.1 (Proof in Appendix A.2). Given f ∈ F , ĝ in Eq. (3.2) and pS(Ẑ), pT (Ẑ)
the latent marginal distributions obtained with ĝ.

ET (f ◦ ĝ) ≤
[
ES(f ◦ ĝ) + dF∆F(pS(Ẑ), pT (Ẑ)) + λHĝ

]
︸ ︷︷ ︸

Domain Adaptation (DA)

(3.10)

with ES(·), ET (·) the expected error under the labelling function fS, fT on S, T re-
spectively; F∆F the symmetric difference hypothesis space 1; dH the H-divergence for
H = F∆F and λHĝ

= minf ′∈F [ES(f ′ ◦ ĝ) + ET (f ′ ◦ ĝ)], the joint risk of the optimal
hypothesis.

The upper bound in Eq. (3.10) consists of ES(f ◦ ĝ) assessing the discriminative
information of source latent components and dF∆F(pS(Ẑ), pT (Ẑ))+λHĝ

, assessing
the transfer to the target. Our model minimizes this upper bound (DA); L3 in
Eq. (3.7) corresponds to the first term while L1 in Eq. (3.3) to the second. As-
sumption 4 allows us to consider the third term as small. Adaptation affects
both components (Z1, Ẑ2) as the missing component is imputed with r ◦ g1, yet,
imputation here is not supervised with fully observed components.

Imputation bound Given f ∈ F , we compare under our assumptions ET (f ◦ ĝ)
and the ideal target error with full data, ET (f ◦ g), with g = (g1, g2) and ĝ =

(g1, r ◦ g1). This allows us to measure the loss in performance due to missingness
when using f ◦ ĝ instead of f ◦ g. g1 is shared in g and ĝ while r ◦ g1 reconstructs
the missing component on both domains. We first derive Lemma 3.1 used in our
upper bound in Proposition 3.2.

Lemma 3.1 (Proof in Appendix A.2). For any continuous density distributions p, q de-
fined on an input spaceX , such that ∀x ∈ X , q(x) > 0, the inequality supx∈X [p(x)/q(x)] ≥
1 holds. Moreover, the minimum is reached when p = q.

We derive Proposition 3.2. Under Assumption 3, given a classifier f ∈ F and
encoders g, ĝ, this proposition upper bounds ET (f ◦ g) with ET (f ◦ ĝ) multiplied
by a factor (IT ) in Eq. (3.11). Our model minimizes both the Adaptation upper
bound and the term (IT ).

Proposition 3.2 (Proof in Appendix A.2). Under Assumption 3, let f ∈ F , ĝ (Eq. (3.2))
and g (Eq. (3.1)),

ET (f ◦ g) ≤ sup
z∼p(Z)

[
pS(Z2 = z2|z1)
pS(Ẑ2 = z2|z1)

]︸ ︷︷ ︸
Imputation error on S (IS)

× sup
z∼p(Z)

[
pS(Ẑ2 = z2|z1)
pT (Ẑ2 = z2|z1)

]︸ ︷︷ ︸
Transfer error of Imputation (TI)︸ ︷︷ ︸

Imputation error on T (IT )

×ET (f ◦ ĝ) (3.11)

1. h ∈ F∆F ⇐⇒ h(x) = f1(x)⊕ f2(x) for some f1, f2 ∈ F where ⊕ is the XOR function.
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Under Lemma 3.1, (IT ) = 1 is the minimal value reached when pS(Z2|Z1) = pS(Ẑ2|Z1)

and pS(Ẑ2|Z1) = pT (Ẑ2|Z1). In this case, ET (f ◦ g) = ET (f ◦ ĝ).
The upper bound in Eq. (3.11) shows that for any f, ĝ, g, ET (f◦g) is upper bounded
by ET (f ◦ ĝ) times the multiplicative factor (IT ). The optimal situation, equality,
is obtained when (IT ) = 1. (IT ) measures how imputation recovers the missing
target component and is decomposed into two terms. (IS) quantifies how imputa-
tion learns pS(Z2|Z1) with pS(Ẑ2|Z1) i.e. reconstructs the component Z2 = g2(X2)

with Ẑ2 = r(Z1) and Z1 = g1(X1) on the source. (TI) measures the divergence
of Ẑ2|Z1 across domains; the lower, the better indirect imputation supervision
from S transfers to T . The equality case occurs when (IT ) is minimal, i.e when
pS(Z2|Z1) = pS(Ẑ2|Z1) and pS(Ẑ2|Z1) = pT (Ẑ2|Z1). Our model minimizes (IT ) after
first initializing f, g with argminf,g ES(f ◦ g) replacing ĝ with g in L3, Eq. (3.7) to
extract discriminative components (zS1 , zS2). It minimizes (IS) with L2 in Eq. (3.4)
while (TI) is minimized with the adaptation loss L1 in Eq. (3.3). Note that (IT ) is
minimal when L1 = L2 = 0 yielding to the equality ET (f ◦ g) = ET (f ◦ ĝ).

3.5.2 Self-training refinement

We now introduce a heuristic based on pseudo-labels useful for settings where
Assumption 4 is not verified because pS(Y |Ẑ) ̸= pT (Y |Ẑ). Assumption 4 allows
to consider λHĝ

in Eq. (3.10) as small. Indeed, several authors e.g. Zhao et al.
2019; Johansson et al. 2019 recently demonstrated that minimizing the first two
terms in (DA) Eq. (3.10) is not sufficient for successful UDA. They show that (1)
even when CovS is true in the data space, it usually does not hold in the latent
space; (2) even when the first two terms in (DA) in Eq. (3.10) are minimized, the
third, λHĝ

, might increase so that the bound is not minimized. Zhao et al. 2019

shows that in addition to the above conditions, one should enforce the posterior
class distributions pD(Y |X) to be close on the two domains. Since T is unlabeled
there is no direct way to do that. We instead propose a simple heuristic using
pseudo-labels and show how they can be incorporated with a simple adaptation of
Eq. (3.10). Pseudo-labels are tentative labels assigned to target unlabelled samples
by a classifier, denoted hĝ below. As λHĝ

cannot be measured without target labels,
we will approximately evaluate and minimize it with pseudo-labels.

Proposition 3.3 (Proof in Appendix A.2). Assume a joint distribution pT̃ (X, Y ) where
pT̃ (X) = pT (X) and Y = hĝ(X) where hĝ = f ◦ ĝ ∈ Hĝ is a candidate hypothesis. Then,

λHĝ
≤ min

hĝ∈Hĝ

[
ES(hĝ) + ET̃ (hĝ) + ET (fT̃ )

]
(3.12)

ET (fT̃ ) = Prx∼pT (X)(fT̃ (x) ̸= fT (x)) is the T error of the pseudo-labelling function fT̃ .
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The first two terms on the right hand side of Eq. (3.12) may be controlled as we
know source labels and target pseudo-labels; the third term is the error of the
pseudo-labeling function, minimal if pseudo-labels are equal to true target labels.
We cannot measure the last term but propose self-training as a way to heuristically
improve the pseudo-labeling function.

We detail one way to do so in Algorithm 3.2. We start from an initial set of pseudo-
labels, e.g. the pseudo-labels provided by the model in Section 7.3.3 and then refine
them. Many self-training methods have been proposed. We use a combination
of two such methods, initially proposed for Semi-Supervised Learning (SSL): an
adaptation of the semi-supervised discriminant Classification Expectation Maxi-
mization (CEM) in Amini et al. 2005 and SSL by entropy minimization (Grandvalet
et al. 2005). We found that combining these two approaches performed better
than each method used alone.

In the following we assume to have a set DS,DT respectively of labelled S and
unlabelled T samples. Amini et al. 2005 introduce an iterative method which
starts from pseudo-labels provided by an initial classifier and retrains the classifier
with these labels. We start with f(ẑ) trained as in Section 7.3.3 and keep, at each
iteration, all samples in DT whose classification score is above a threshold, this
set of pseudo-labelled instances is denoted DplT . We then minimize a CE loss on
DS ∪ DplT , between the labels for DS or pseudo-labels for DplT and the predicted
scores. Grandvalet et al. 2005 optimizes an entropy loss on the distribution of
the predicted class posteriors output from f for all unlabelled samples; we apply
this loss to DT \ DplT . This entropy loss can be considered as a soft version of the
discriminant CEM loss.

In conclusion, we first train the model without pseudo-labels minimizing L (Sec-
tion 7.3.3). We then use the learned classifier to provide initial pseudo-labels
and minimize jointly discriminant CEM and entropy loss to refine them. Given
hĝ = f ◦ ĝ ∈ Hĝ a hypothesis with ∀k ∈ [1, K], hĝk(x) the probability of predicting
instance x to class k, ℓce a CE loss and λ a weight for entropy, the objective function
of our refinement method is:

LR =
∑

(x,y)∈DS∪Dpl
T

ℓce(hĝ(x), y)

︸ ︷︷ ︸
Discriminant CEM (CEM)

+λ
∑

x∈DT \Dpl
T

K∑
k=1

hĝk(x) log hĝk(x)︸ ︷︷ ︸
Entropy (E)

(3.13)

The first term in Eq. (3.13), (CEM), controls ES(hĝ)+ET̃ (hĝ) while the second term,
(E), heuristically controls ET (fT̃ ) by encouraging separation between classes. We
found that this heuristically brings pseudo-labels closer to the target labels on our
datasets. In practice, we minimize LR w.r.t. f, ĝ.
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Algorithm 3.2 Self-training procedure for Adaptation-Imputation

Input DS = {(x(i)
S , y

(i)
S )}NS

i=1, DT = {x(i)
T }NT

i=1, Adaptation-Imputation method A in
Section 7.3.3
Output Classifier f ; Feature extractor ĝ defined in Eq. (3.2)

1: f, ĝ = A(DS,DT ) ▷ Initialize f, ĝ with Adaptation-Imputation Eq. (3.8)
2: f, ĝ = argminf,ĝ LR ▷ Semi-supervised refinement of f, ĝ Eq. (3.13)

3.6 Experiments

3.6.1 Datasets and experimental setting

Datasets Experiments are performed on three types of datasets. The first one,
digits, is a classical multi-class classification benchmark used in many UDA

studies and adapted to fit our missing data setting. The second one, which ini-
tially motivated our framework, consists of advertising datasets where we aim
at transferring knowledge from retargeting users with full browsing information
to prospecting users with missing information. The task is binary classification
as measured by CTR or Conversion Rate (CR) 2 given user browsing traces. We
use two such datasets: ads-kaggle is a public kaggle dataset 3, while ads-real
was gathered internally. Both correspond to real advertising traffic. Finally, we
performed tests on a text dataset, Amazon reviews, denoted amazon. The initial
problem is transformed into binary classification and to a non-stochastic missing
data problem. For both digits and amazon, a subset of the components are set to
0 to mimic missing data while on ads, data is missing structurally (more details
in Appendix A.3).

Baselines We report results for the following models:

1. Source-Full trained without adaptation on xS and tested on full xT; adapta-
tion is added in Adaptation-Full. Note that this model is only applicable for
our academic benchmark where we have access to full data.

2. Source-ZeroImputation and Adaptation-ZeroImputation do the same but con-
sidering full xS while xT is incomplete. Missing data xT2 is set to 0, xT =

(xT1 , 0).

3. Source-IgnoreComponent and Adaptation-IgnoreComponent are a variant of the
above where only xD1 is considered while xD2 is ignored for both S and T .

2. CTR is the number of clicks made on ads divided by the number of shown ads. CR replaces clicks with purchases.
3. http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
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4. Adaptation-Imputation, our model, considers full xS and xT = (xT1 , 0) adding
imputation with a conditional generative model.

5. We add self-training to Adaptation-Imputation and if possible to Adaptation-
Full.

Note that Adaptation-Full is an upper bound of our imputation model since it uses
full information while xT2 is not available in practice. Adaptation-ZeroImputation
and Adaptation-IgnoreComponent are lower bounds for our model since they only
perform adaptation and do not impute non-zero values.

Hyperparameters Parameters are chosen using the DEV estimator (You et al.
2019). For digits, NN architectures are adapted from Ganin et al. 2015; we use
Adam optimizer with lr = 10−2 decayed; batch size of 128 and 100 epochs. For
ads and amazon, three-layered NN with 128 neurons per layer are used as feature
extractors; the classifier and discriminators are single-layered with 128 neurons;
lr = 10−6 and is decayed; batch size is 500 with 50 epochs. Reported results are
mean value and standard deviation over five runs and best results are indicated
in bold. Further details are given in the Appendix A.4.2.

3.6.2 Digits

Description We consider UDA problems between several datasets: MNIST (Le-
Cun et al. 1998), USPS (Hull 1994), SVHN (Netzer et al. 2011) and MNIST-M
(Ganin et al. 2015) as illustrated in Figure 3.3 (a). MNIST→ SVHN is not consid-
ered as it is difficult for traditional UDA (Ganin et al. 2015). All tasks are 10-class
classification problems. From complete digits datasets, we build datasets with
missing input values by setting corresponding pixel values to zero for horizontal
patches of different sizes as illustrated on Figure 3.3 (b) for MNIST-M digits. It is
clear that there is domain shift on these datasets as the pixel values have different
mean and variance across domains.

Results with half of the digit missing We first removed half of each target
digit, the horizontal bottom part. We report target accuracy in Table 3.1 for both
ADV and OT models. Removing half of the digit leads to a strong performance
decrease for Source-IgnoreComponent and Source-ZeroImputation compared to the
upper-bounds of Source-Full; the performance is partially recovered with adapta-
tion. Adaptation-Imputation clearly improves on Adaptation-IgnoreComponent and
Adaptation-ZeroImputation in all cases which validates the importance of imputa-
tion. However, it does not reach the upper bound performance of Adaptation-Full.
Both ADV and OT versions exhibit the same behavior. In the results in Table 3.1,
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Figure 3.3. – (a) MNIST→MNIST-M adaptation; (b) Digits with missing horizon-
tal patches of increasing size

ADV performance is higher than OT. This is because performance is highly de-
pendent on the NN architectures and we tuned our NNs for ADV. OT models may
reach performance similar to ADV but require an order of magnitude more pa-
rameters. To keep the comparison fair, we use the same NN models for both ADV

and OT. Imputation models achieve their highest performance when adaptation
between domains is complex (MNIST→MNIST-M, SVHN→MNIST) illustrating
the importance of imputation when transfer is difficult. We show in Appendix A.5
the learned latent representations ẑS, ẑT for various digits adaptation problems.

Varying missing patch size We analyze the impact of the size of the missing
patch by removing a percentage p ∈ {30%, 40%, 50%, 60%, 70%} of MNIST digits
when adapting SVHN→ MNIST, with the same hyperparameters. Mean values
over five runs are reported in Figure 3.4 for ADV models. We notice that our
model constantly beats the other baselines regardless of the missing patch size.
The figure exhibits borderline cases when the size of the missing patch becomes
very small (< 30%) or very large (> 65%). When the missing patch is small there
is enough information for predicting the label thus simple models perform well;
when it becomes big, there is not enough information for efficient reconstructions.

3.6.3 Ads

Description The ads datasets are used for solving the binary classification
problem of predicting if a user exposed to an ad from a partner (e.g. Booking.com)
clicks given his browsing history. A row in this dataset is a vector x = (xD1 ,xD2)

specific to a (user-partner) pair where xD1 gathers mean statistics for this user on
all visited partners summarizing the user’s display and click statistics and xD2

corresponds to the user-partner specific traces. The label is the response to an ad
for this (user, partner) pair, a click for ads-kaggle or a purchase for ads-real. We
transfer knowledge from the labelled source domain composed of all user-partner
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Figure 3.4. – ADV target accuracy (↑) on SVHN→MNIST with missing patch size

pairs for which the user has already interacted with the partner (retargeting
users) to the unlabelled target domain composed of all the user-partner pairs
for which the user has never interacted with this partner (prospecting users).
xS2 is known but xT2 is unknown. There are several partners and users per
domain. These datasets are large scale as seen in Table A.2 (1M and 24M source
displays respectively for ads-kaggle, ads-real) with some specificities: there is
class imbalance and five times less data on the target than on the source. For both
datasets besides missingness, there is also an adaptation problem: prospecting
users tend to be less active and their statistics are usually different from those
of retargeting users, with a higher overall activity (e.g. in terms of frequency of
a partner’s website visits); this translates into distribution shifts on xD1 across
domains. We visualize in the Appendix in Table A.3 and Figure A.1 the domain
shift in ads-kaggle which comprises 13 features. Table A.3 reports mean and
standard deviation on each feature’s value over a domain and Figure A.1 plots the
histogram of the distribution of each feature where the y-axis is unnormalized and
corresponds to real counts. Feature 5 is naturally missing on T and distributions
are different in shape, mean and variance across domains. To show the benefit of
modelling additional missing features, we artificially set features 1, 6, 7, 11 and
12 to zero on T such that in total 6 features are missing while 7 are present. On
ads-real, 12 features are missing while 17 are present and we observe the same
domain shift trend; however missing features are naturally missing and we do
not have access to their value.

Results We report results in Table 3.1 only for ADV models as we observed that
the trend is similar for both ADV and OT. Missing features are structurally miss-
ing in the datasets, so we cannot report results for models using full inputs. The
classes being imbalanced, accuracy is not relevant here so we report the log CE
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Dataset MNIST→ USPS USPS→ MNIST SVHN→ MNIST MNIST→ MNIST-M ads-kaggle ads-real

Model w/o R ADV OT ADV OT ADV OT ADV OT ADV ADV
Source-Full 71.5±2.7 74.2±2.7 58.1±1.1 28.3±1.4 NA

Adaptation-Full 85.8±3.2 92.6±1.7 94.6±2.1 93.9±0.6 78.0±3.4 76.1±1.4 60.8±3.8 46.9±3.9 NA
Source-ZeroImputation 25.7±3.7 39.2±2.6 31.5±2. 14.4±1.1 0.545±0.019 0.663±0.011

Adaptation-ZeroImputation 48.4±4.8 60.9±6.3 67.5±2.2 65.3±5.2 47.1±5.7 37.5±6.2 34.7±2.5 20.2±2.5 0.397±0.0057 0.660±0.025

Source-IgnoreComponent 52.9±9.7 54.3±1.6 44.6±1.9 19.1±2.6 0.406±0.00046 0.622±0.0048

Adaptation-IgnoreComponent 71.5±3.2 64.0±5.0 80.0±1.4 72.0±1.8 45.5±1.9 47.9±1.8 29.4±1.6 26.8±4.4 0.403±0.0030 0.634±0.0082

Adaptation-Imputation 74.2±2.3 66.8±1.3 81.4±0.8 72.5±2.7 53.8±1.4 49.2±1.5 57.9±2.3 29.2±1.4 0.389±0.014 0.583±0.013

Table 3.1. – Best target accuracy (↑) on digits and CE (↓) on ads without R

between the predicted values and the true labels. CE is considered to be the most
reliable metric to estimate revenue for the ads problem and for large user bases
small CE improvements can lead to a large revenue increase. For ads-kaggle,
an improvement of 0.001 in CE is considered as significant (Wang et al. 2017).
A first observation is that the imputation model is substantially better than the
baselines on both datasets. For ads-kaggle it improves by 2.3% the best adapta-
tion model i.e. the adaptation model with zero imputation while for ads-real
the improvement reaches 6.3% over the second-best Source-IgnoreComponent. A
second observation is that for any model, adaptation consistently improves over
the model without adaptation. The only exception is the setting ignoring the
missing component in ads-real. A third observation is that there is a benefit of
imputing the missing component for classification: source CE (not reported) shows
that Source-ZeroImputation which exploits xD2 is consistently higher than Source-
IgnoreComponent which does not, leading to relative gains of 5.6% on ads-kaggle
and 8.2% on ads-real. The imputation model is able to generate this information.

3.6.4 Amazon reviews

Description Besides dealing with images and interaction features in the digits
and ads datasets, we also performed experiments on an additional modality, text.
amazon is the Amazon product review dataset (Blitzer et al. 2006) with four do-
mains (Books, DVDs, Electronics, and Kitchen) transformed to binary classifica-
tion with positives referring to reviews with rating above 3 stars and negatives
to reviews with rating below 3 stars. Additional details on data processing can
be found in Appendix A.3. We consider four adaptation problems and simulate
missing features by setting the first half of the features to zero.

Results Results are reported in Table 3.2 and confirm our prior findings i.e.
that jointly performing adaptation and imputation improves our baselines. We
also notice that our model achieves similar performance to models using full data
showing that imputation successfully recovered the missing component.
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Dataset DVD→ Electronics Books→ Kitchen Kitchen→ Electronics DVD→ Books
Source-Full 69.57 73.04 77.88 71.95

Adaptation-Full 73.62 74.09 79.63 72.65
Source-ZeroImputation 58.51 60.52 66.27 61.15

Adaptation-ZeroImputation 64.51 61.08 68.02 62.80
Source-IgnoreComponent 60.21 62.03 67.62 64.35

Adaptation-IgnoreComponent 61.02 64.08 68.47 66.00
Adaptation-Imputation 72.57 72.69 78.18 72.61

Table 3.2. – Best target accuracy (↑) on amazon without R

ADV Model w/ R MNIST→ USPS USPS→ MNIST SVHN→ MNIST MNIST→ MNIST-M ads-kaggle
Adaptation-Full 95.9±0.6 (+12%) 96.8±0.6 (+2.3%) 83.3±3.9 (+6.8%) 60.9±3.7 (+0.2%) NA

Adaptation-Imputation 78.5±1.6 (+5.8%) 82.5±0.5 (+1.4%) 58.6±1.8 (+8.9%) 58.2±2.3 (+0.5%) 0.317±0.0023 (+18.5%)

Table 3.3. – Refinement R with relative gain over Table 3.1; target accuracy (↑) on
digits and CE (↓) on ads

3.6.5 Refinement

Results with pseudo-labels are reported in Table 3.3 on digits and ads-kaggle
for Adaptation-Full and Adaptation-Imputation. We set the threshold score selection
for the discriminative CEM component to 95% i.e. the pseudo labels of all target
instances xT s.t. maxk hĝk(xT) ≥ 0.95 are considered to be true and set the entropy
weight to λ = 0.1 on digits and λ = 1 on ads-kaggle. Learning rates used for
solving Eq. (3.9) are divided by 10 and 10 epochs of successive refinement steps are
applied. We observe a clear global improvement on both datasets showing that our
refinement model is a good heuristic on real-world datasets for which we usually
have pS(Y |Ẑ) ̸= pT (Y |Ẑ). For standard UDA methods such as Adaptation-Full,
performance is significantly improved everywhere with small change on MNIST
→ MNIST-M; Adaptation-Full is not measurable for ads-kaggle. Our imputation
with refinement model follows the same trend with a considerable relative gain
of +18.5% on ads-kaggle.

3.6.6 Ablation analysis

We analyze the importance of each model component on the public datasets
(digits, amazon, ads-kaggle) and report results in Table 3.4 and Figure 3.5.

Adaptation We measure the effect of adaptation term L1 Eq. (3.3) in L in Ta-
ble 3.4 (first row). When removing adaptation, inference is performed as before
by feeding ẑT to f . This means that we only rely on the imputation and classi-
fication losses to learn the parameters of the model. For all datasets, adding L1

considerably increases performance.
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Imputation Imputation ẑS2 = h◦g1(xS1), combines ADV training and condition-
ing on the input datum via MSE (MSE) in L2 Eq. (3.4). ADV aligns the distributions
of zS2 and ẑS2 while MSE can be thought as performing regression. For a given
xS1 , there are possibly several potential xS2 and thus zS2 . ADV allows us to focus
on a specific mode of zS2 , while MSE will favour a mean value of the distribu-
tion. Results in Table 3.4 (second row), show that for our datasets, combining
MSE and ADV leads to improved results compared to using separately each loss.
MSE alone already provides good performance, while using only ADV is clearly
uncompetitive. Note that reconstruction is an ill-posed problem since the task is
inherently ambiguous (different digits may be reconstructed from a half image).
We performed tests with a stochastic input component to recover different modes,
but the performance was broadly similar. We investigate in Figure 3.5 several
weighted combinations of MSE and ADV: for digits and amazon, equal weights
were found to be a good choice, while for ads-kaggle performance is improved
with other weightings. On Figure 3.5, ADV induces a high variance in the results
(left part of x-axis) while MSE stabilizes the performance (right part of x-axis). ADV

allows for better performance at the expense of high variance; a small contribution
from MSE, λMSE = 0.005, stabilizes the results.

Ablation study ADV Model MNIST→ USPS USPS→ MNIST SVHN→ MNIST MNIST→ MNIST-M ads-kaggle
Remove L1 L = λ2L2 + λ3L3 64.2±1.8 (-13%) 51.3±2.5 (-37%) 44.5±1.4 (-17%) 24.1±2.6 (-58%) 0.410±0.0020 (-5.4%)

Weights in L2

LMSE 71.9±3.7 (-3.1%) 81.4±1.2 (0%) 52.5±3.7 (-2.4%) 56.5±2.8 (-2.4%) 0.400±0.0014 (-2.8%)
LADV 28.6±3.2 (-61%) 39.4±5.2 (-52%) 28.8±3.8 (-46%) 30.0±3.7 (-48%) 0.469±0.13 (-21%)

LADV + 5e-3 · LMSE 47.8±3.7 (-36%) 49.6±5.8 (-39%) 46.0±2.6 (-15%) 50.6±2.2 (-13%) 0.389±0.014 (0%)
LADV + LMSE 74.2±2.3 (0%) 81.4±0.8 (0%) 53.8±1.4 (0%) 57.9±2.3 (0%) 0.401±0.0014 (-3.1%)

Ablation study ADV Model DVD→ Electronics Books→ Kitchen Kitchen→ Electronics DVD→ Books

Weights in L2
LMSE 71.47 (-1.5%) 71.39 (-1.8%) 77.58 (-0.77%) 72.02 (-0.81%)

LADV + LMSE 72.57 (0%) 72.69 (0%) 78.18 (0%) 72.61 (0%)

Table 3.4. – Ablation with relative gain over Table 3.1; accuracy (↑) on digits,
amazon and CE (↓) on ads

3.6.7 Discussion

Relationship between theoretical and experimental results We comment on
our experimental results in light of our adaptation Eq. (3.10) and imputation
Eq. (3.11) upper-bounds. Let us first consider Eq. (3.10). The first term in Eq. (3.10),
ES(f ◦ ĝ), is the classification loss L3 in Eq. (3.7). The second term in Eq. (3.10)
dF∆F(pS(Ẑ), pT (Ẑ)) is approximated by a proxy L1 Eq. (3.3) and accounts for
alignment. L1 leads to substantial gains in Table 3.4 (first row) when added to
the loss. The third term λHĝ

in Eq. (3.10) is the optimal joint error heuristically
controlled with self-training as justified by upper-bound Eq. (3.12), with gains
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Figure 3.5. – Adaptation-Imputation target CE (↓) with standard deviations on
ads-kaggle w.r.t. λMSE

shown in Table 3.3. Second, we consider Eq. (3.11). It is the product of two terms,
the target imputation error (IT ) and the error on the target ET (f ◦ ĝ) which is
exactly the left hand side term in bound Eq. (3.10). (IT ) = (IS)× (TI), (IS) is the
source imputation error and is optimized when term L2 Eq. (3.4) is zero. (TI)
is the transfer error, optimized when L1 Eq. (3.3) is zero. Adding L1 to the loss
improves the performance (Table 3.4). L2 Eq. (3.4) explains the gains of Adaptation-
Imputation over Adaptation-ZeroImputation in Table 3.1 as Adaptation-ZeroImputation
does not attempt to impute missing components. To summarize, minimizing our
global error function L in Eq. (3.8) minimizes, according to the approximations
just described, the two upper bounds in Eq. (3.10) and Eq. (3.11).

Limitations Our results are obtained under some assumptions which we are the
first to introduce to our knowledge for our problem. First, if the missing and the
observed components are statistically independent, Assumption 2 is not valid, and
then there is no way to impute this missing data. Second, if pS(Z2|Z1) ̸= pT (Z2|Z1)

i.e. Assumption 3 is not valid, then we cannot transfer imputation from source
to target. Yet, these assumptions are most often met in applications and allow to
build a well-defined model with good empirical results.

3.7 Conclusion

We proposed a new model for UDA with non-stochastic target missingness with
indirect supervision from a complete source. This method uses only labelled
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source instances imputing the missing target values in a latent space. Under
our assumptions, it minimizes an adaptation upper-bound of its target error and
an imputation upper-bound of the ideal target error with full data and leads to
important gains for two representative families of divergences (OT, ADV) on our
benchmarks (digits, amazon) and on real-world advertising datasets, which are
a complex task with missing features. We show that approaches using a pure
regressive generator underperform compared to our approach on our real-world
applications for which distributions are multi-modal. Finally, we introduced a
heuristic refinement method based on self-training to deal with settings where
posterior distributions mismatch. As follow-up, we plan to further investigate
how to generate diverse outputs in our imputation network.



Chapter 4

Transferring representations under Gen-
eralized Target Shift

Chapter abstract
We consider the problem of UDA under conditional and label shift a.k.a.
Generalized Target Shift (GeTarS). Unlike simpler UDA settings, few
works have addressed this challenging problem. Recent approaches
learn domain-invariant representations, yet they have practical limita-
tions and rely on strong assumptions that may not hold in practice. In
this paper, we explore a novel and general approach to align pretrained
representations, which circumvents existing drawbacks. Instead of con-
straining representation invariance, it learns an OT map, implemented
as a NN, which maps source representations onto target ones. Our ap-
proach is flexible and scalable, it preserves the problem’s structure and
it has strong theoretical guarantees under mild assumptions. In partic-
ular, our solution is unique, matches conditional distributions across
domains, recovers target proportions and explicitly controls the tar-
get generalization risk. Through an exhaustive comparison on several
datasets, we challenge the state-of-the-art in GeTarS.
The work in this chapter has led to the publication of a conference paper:

• M. Kirchmeyer, A. Rakotomamonjy, E. de Bézenac, and P. Gallinari (2022b).
“Mapping conditional distributions for domain adaptation under gener-
alized target shift”. In: International Conference on Learning Representations
(ICLR).

4.1 Introduction

UDA methods (Pan et al. 2010) train a classifier with labelled samples from a
source domain S such that its risk on an unlabelled target domain T is low. This
problem is ill-posed and simplifying assumptions were considered. Initial contri-
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butions focused on three settings which decompose differently the joint distribu-
tion over input and label X×Y : CovS (Shimodaira 2000) with pS(Y |X) = pT (Y |X),
pS(X) ̸= pT (X), Target Shift (TarS) (Zhang et al. 2013) with pS(Y ) ̸= pT (Y ),
pS(X|Y ) = pT (X|Y ) and conditional shift (Zhang et al. 2013) with pS(X|Y ) ̸=
pT (X|Y ), pS(Y ) = pT (Y ). These assumptions are restrictive for real-world appli-
cations and were extended into model shift when pS(Y |X) ̸= pT (Y |X), pS(X) ̸=
pT (X) (Wang et al. 2014; Wang et al. 2015) and GeTarS (Zhang et al. 2013) when
pS(X|Y ) ̸= pT (X|Y ), pS(Y ) ̸= pT (Y ). We consider GeTarS where a key challenge
is to map the source domain onto the target one to minimize both conditional
and label shifts, without using target labels. The current SoTA in Gong et al. 2016;
Combes et al. 2020; Rakotomamonjy et al. 2021; Shui et al. 2021 learns domain-
invariant representations and uses estimated class-ratios between domains as
importance weights in the training loss. However, this approach has several limi-
tations. First, it updates representations through adversarial alignment which is
prone to well-known instabilities, especially on applications where there is no es-
tablished Deep Learning (DL) architectures e.g. CTR prediction, spam filtering etc.
in contrast to vision. Second, to transfer representations, the domain-invariance
constraint breaks the original problem structure and it was shown that this may
degrade the discriminativity of target representations (Liu et al. 2019). Existing ap-
proaches that consider this issue (Xiao et al. 2019; Li et al. 2020a; Chen et al. 2019b)
were not applied to GeTarS. Finally, generalization guarantees are derived under
strong assumptions, detailed in Section 4.2.3, which may not hold in practice.

In this paper, we address these limitations with a new general approach, named
Optimal Sample Transformation and Reweight (OSTAR), which maps pretrained
representations using OT. OSTAR proposes an alternative to constraining repre-
sentation invariance and performs jointly three operations: given a pretrained
encoder, (i) it learns an OT map, implemented as a NN, between encoded source
and target conditionals, (ii) it estimates target proportions for sample reweighting
and (iii) it learns a classifier for the target domain using source labels. OSTAR has
several benefits: (i) it is flexible, scalable and preserves target discriminativity and
(ii) it provides strong theoretical guarantees under mild assumptions. In summary,
our contributions are:

• We propose an approach, OSTAR, to align pretrained representations under
GeTarS. Without constraining representation-invariance, OSTAR jointly learns
a classifier for inference on the target domain and an OT map, which maps
representations of source conditionals to those of target ones under class-
reweighting. OSTAR preserves target discriminativity and experimentally chal-
lenges the state-of-the-art for GeTarS.
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• OSTAR implements its OT map as a NN shared across classes. Our approach
is thus flexible and has native regularization biases for stability. Moreover it
is scalable and generalizes beyond training samples unlike standard linear
programming based OT approaches.

• OSTAR has strong theoretical guarantees under mild assumptions: its solution
is unique, recovers target proportions and correctly matches source and target
conditionals at the optimum. It also explicitly controls the target risk with a
new Wasserstein-based bound.

Our paper is organized as follows. In Section 4.2, we define our problem, approach
and assumptions. In Section 4.3, we derive theoretical results. In Section 4.4, we
describe our implementation. We report in Section 4.5 experimental results and
ablation studies. In Section 4.6, we present related work.

4.2 Proposed approach

In this section, we successively define our problem, present our method, OSTAR
and its main ideas and introduce our assumptions, used to provide theoretical
guarantees for our method.

4.2.1 Problem definition

We refer to the UDA setting described in Sections 2.1.1 and 2.1.3.1. In short, we are
given a labeled source domain S and an unlabeled target domain T with distri-
butions pS , respectively pT . The corresponding datasets are denoted DS,DT (DT
is unlabelled). For simplicity, given a domain D ∈ {S, T}, pYD ∈ RK denotes the
label marginal pD(Y ). We consider a NN composed of an encoder g and classifier
f . Given D ∈ {S, T}, ZD denotes the encoded input domain via g.

In all generality, latent conditional distributions and label marginals differ across
domains; this is the GeTarS assumption (Zhang et al. 2013) made in feature space
Z rather than input space X , as in Definition 4.1.

Definition 4.1 (GeTarS). GeTarS is defined by conditional mismatch across domains
i.e. ∃j ∈ {1, · · · , K}, pS(Z|Y = j) ̸= pT (Z|Y = j) and label shift i.e. pYS ̸= pYT .

GeTarS is illustrated in Figure 4.1a and states that representations from a given
class are different across domains with different label proportions. Operating in
the latent space has several practical advantages e.g. improved discriminativity
and dimension reduction. Our goal is to learn a classifier f in Z with low target
risk, using source labels. This is challenging as (i) target labels are unknown
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and (ii) there are two shifts to handle. We will show that this can be achieved
with pretrained representations if we recover two key properties: (i) a map which
matches source and target conditional distributions and (ii) target proportions to
reweight samples by class-ratios and thus account for label shift. Our approach,
OSTAR, achieves this objective.

4.2.2 Mapping conditional distributions under label shift

We now present OSTAR’s components and the various training steps.

Components The main components of OSTAR, illustrated in Figure 4.1b, are
detailed below. These components are learned and estimated using the algorithm
detailed in Section 4.4. They include:

• a fixed encoder g : V → Z , defined in Section 4.2.1.

• a mapping ϕ : Z → Z , acting on source samples encoded by g.

• a label proportion vector pYN on the simplex ∆K .

• a classifier fN : Z → {1, . . . , K} for the target domain in a hypothesis class H
over Z .

Objective g encodes source and target samples in a latent space such that it pre-
serves rich information about the target task and such that the risk on the source
domain is small. g is fixed throughout training to preserve target discriminativity.
ϕ should map encoded source conditionals in ZS onto corresponding encoded
target ones in ZT to account for conditional shift; ZN denotes the mapped space.
pYN should estimate the target proportions pYT to account for label shift. Compo-
nents (ϕ,pYN) define a new labelled domain in latent space N = (ZN ,YN , pN(Z, Y ))

through a Sample Transformation And Reweight operation of the encoded S do-
main, as illustrated in Figure 4.1b. Indeed, the pushforward 1 by ϕ of encoded
source conditionals defines conditionals in domain N , pϕN(Z|Y ):

∀k, pϕN(Z|Y = k) ≜ ϕ#

(
pS(Z|Y = k)

)
Then, pYN weights each conditional in N . This yields a marginal distribution in N ,

pϕN(Z) ≜
K∑
k=1

pY=k
N pϕN(Z|Y = k) (4.1)

1. f#ρ is the push-forward measure f#ρ(B) = ρ
(
f−1(B)

)
, for all measurable set B.
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Class 1
Class 2
𝓩𝑺: Labeled Source 
representations
𝓩𝑻: Unlabeled Target 
representations

𝓩𝑺 = 𝒈(𝓧𝑺)

𝓩𝑻 = 𝒈(𝓧𝑻)
𝑝! 𝑍, 𝑌 ≠ 𝑝"(𝑍, 𝑌)

(a) UDA under GeTarS in latent space

𝓩𝑵:	Source representations mapped 
by 𝜙, reweighted by 𝑝"#/𝑝$#
𝓩𝑻:	Unlabelled Target 
representations
𝝓:	Optimal Transport Mapping
𝒇𝑵:	Target classifier

𝓩𝑻 = 𝒈(𝓧𝑻)
𝑝! 𝑍, 𝑌 ≠ 𝑝"(𝑍, 𝑌)

𝓩𝑵 = 𝝓(𝓩𝑺)

𝓩𝑺 = 𝒈(𝓧𝑺)

𝒇𝑵
𝝓

(b) Mapping & reweighting with OSTAR

Figure 4.1. – Illustration of OSTAR on a 2-class UDA problem. (a) A pretrained
encoder g defines a latent space Z with labelled source samples ×◦
and unlabelled target samples ×◦ under conditional and label shift
(GeTarS). (b) We train a target classifier fN on a new domain N , where
labelled samples ×◦ are obtained by (i) mapping source samples
with ϕ acting on conditional distributions and (ii) reweighting these
samples by estimated class-ratios pYN/p

Y
S . ϕ should match source and

target conditionals and pYN should estimate target proportions pYT .

Finally, classifier fN is trained on labelled samples from domain N . This is possible
as each sample in N is a projection of a labelled sample from S. fN can then be
used for inference on T . We will show that it has low target risk when components
ϕ and pYN achieve their objectives detailed above.

Training We train OSTAR’s components in two stages. First, we train g along a
source classifier fS from scratch by minimizing source classification loss; alterna-
tively, g can be tailored to specific problems with pretraining. Second, we jointly
learn (fN , ϕ,p

Y
N) to minimize a classification loss in domain N and to match tar-

get conditionals and proportions with those in domain N . As target conditionals
and proportions are unknown, we propose a proxy problem for (ϕ,pYN) to match
instead latent marginals pT (Z) and pϕN(Z) Eq. (4.1). We solve this proxy problem
under least action principle measured by a Monge transport cost (Santambrogio
2015), denoted C(ϕ), as in Eq. (OT):

min
ϕ,pY

N∈∆K

C(ϕ) ≜
K∑
k=1

∫
z∈Z
∥ϕ(z)− z∥22 pS(z|Y = k)dz

subject to pϕN(Z) = pT (Z)

(OT)

For any function ϕ e.g. a NN, C(ϕ) is the transport cost of encoded source con-
ditionals by ϕ. It uses a cost function, c(x,y) = ∥x − y∥p2, where without loss of
generality p = 2. The optimal C(ϕ) is the sum of Wasserstein-2 distances between
source conditionals and their mappings. Eq. (OT) seeks to minimize C(ϕ) under
marginal matching. We provide some further background on optimal transport in
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Appendix B.3 and discuss there the differences between our OT problem Eq. (OT)
and the standard Monge OT problem between pS(Z) and pT (Z).

Our OT formulation is key to the approach. First, it is at the basis of our theoretical
analysis. Under Assumption 6 later defined, the optimal transport cost is the sum
of the Wasserstein-2 distance between source and matched target conditionals. We
can then provide conditions on these distances in Assumption 7 to formally define
when the solution to Eq. (OT) correctly matches conditionals. Second, it allows us
to learn the OT map with a NN. This NN approach: (i) generalizes beyond training
samples and scales up with the number of samples unlike linear programming
based OT approaches (Courty et al. 2017b) and (ii) introduces useful stability
biases which make learning less prone to numerical instabilities as highlighted in
Bézenac et al. 2021; Karkar et al. 2020.

4.2.3 Assumptions

In Section 4.3 we will introduce the theoretical properties of our method which
offers several guarantees. As always, this requires some assumptions which are in-
troduced below. We discuss their relations with assumptions used in related work
and detail why they are less restrictive. We provide some additional discussion
on their motivation and validity in Appendix B.4.

Assumption 5 (Cluster Assumption on S). ∀k,pY=k
S > 0 and there is a partition of

the source domain ZS such that ZS = ∪Kk=1Z(k)
S and ∀k pS(Z ∈ Z(k)

S |Y = k) = 1.

Assumption 5, inspired from Chapelle et al. 2010, states that source representa-
tions with the same label are within the same cluster. It helps guarantee that only
one map is required to match source and target conditionals. Assumption 5 is
for instance satisfied when the classification loss on the source domain is zero
which corresponds to the training criterion of our encoder g. Interestingly other
approaches e.g. Combes et al. 2020; Rakotomamonjy et al. 2021 assume that it
also holds for target representations; this is harder to induce as target labels are
unknown.

Assumption 6 (Conditional matching). A mapping ϕ solution to our matching prob-
lem in Eq. (OT) maps a source conditional to a target one i.e. ∀k ∃j ϕ#(pS(Z|Y =

k)) = pT (Z|Y = j).

Assumption 6 guarantees that mass of a source conditional will be entirely trans-
ferred to a target conditional; ϕ solution to Eq. (OT) will then perform optimal
assignment between conditionals. It is less restrictive than alternatives: the ACons
assumption in Zhang et al. 2013; Gong et al. 2016 states the existence of a map
matching the right conditional pairs i.e. j = k in Assumption 6, while the GLS
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assumption of Combes et al. 2020 imposes that pS(Z|Y ) = pT (Z|Y ). GLS is thus
included in Assumption 6 when j = k and ϕ = Id and is more restrictive.

Assumption 7 (Cyclical monotonicity between S and T). For all K elements per-
mutation σ, conditional probabilities in the source and target domains satisfy∑K

k=1W2(pS(Z|Y = k), pT (Z|Y = k)) ≤ ∑K
k=1W2(pS(Z|Y = k), pT (Z|Y = σ(k))

withW2, the Wasserstein-2 distance.

Assumption 7, introduced in Rakotomamonjy et al. 2021, formally defines set-
tings where conditionals are guaranteed to be correctly matched with an optimal
assignment in the latent space under Assumption 6. One sufficient condition
for yielding this assumption is when ∀k, j, W2(pS(Z|Y = k), pT (Z|Y = k)) ≤
W2(pS(Z|Y = k), pT (Z|Y = j)). This last condition is typically achieved when
conditionals between source and target of the same class are “sufficiently near”
to each other.

Assumption 8 (Conditional linear independence on T). {pT (Z|Y = k)}Kk=1 are lin-
early independent implying ∀k,∄α ∈

{
∆K | pT (Z|Y = k) =

∑K
j=1,j ̸=k αjpT (Z|Y = j)

}
.

Assumption 8 is standard and seen in TarS to guarantee correctly estimating target
proportions (Redko et al. 2019; Garg et al. 2020). It discards pathological cases like
when ∃(i, j, k)∃(a, b) s.t. a+b = 1, pT (Z|Y = i) = a×pT (Z|Y = j)+b×pT (Z|Y = k).
It is milder than its alternative A2Cons in Zhang et al. 2013; Gong et al. 2016

which states linear independence of linear combinations of source and target
conditionals, in X respectively Z .

4.3 Theoretical results

We present our theoretical results, with proofs in Appendix B.5, for OSTAR under
our mild assumptions in Section 4.2.3. We first analyze in Section 4.3.1 the prop-
erties of the solution to our problem in Eq. (OT). Then, we show in Section 4.3.2
that given the learned components g, ϕ and pYN , the target generalization error of
a classifier in the hypothesis space H can be upper-bounded by different terms
including its risk on domain N and the Wasserstein-1 distance between marginals
in N and T .

4.3.1 Properties of the solution to the OT alignment problem

Proposition 4.2 (Unicity and match). For any encoder g which defines Z satisfying
Assumption 5, 6, 7, 8, there is a unique solution (ϕ,pYN) to Eq. (OT) and ϕ#(pS(Z|Y )) =

pT (Z|Y ) and pYN = pYT .
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Given an encoder g satisfying our assumptions, Proposition 4.2 shows two strong
results. First, the solution to Eq. (OT) exists and is unique. Second, we prove that
this solution defines a domain N , via the sample transformation and reweight
operation defined in Eq. (4.1), where encoded conditionals and label proportions
are equal to target ones. For comparison, Combes et al. 2020; Shui et al. 2021

recover target proportions only under GLS i.e. when conditionals are already
matched, while we match both conditional and label proportions under the more
general GeTarS.

4.3.2 Controlled target generalization risk

We now characterize the generalization properties of a classifier fN trained on this
domain N with a new general upper-bound. First, we introduce some notations;
given an encoder g onto a latent space Z , we define the risk of a classifier f as
EgD(f) ≜ Ez∼pD(Z,Y )[f(z) ̸= y] with D ∈ {S, T,N}.
Theorem 4.3 (Target risk upper-bound). Given a fixed encoder g defining a latent
space Z , two domains N and T satisfying cyclical monotonicity in Z , assuming that we
have ∀k,pY=k

N > 0, then ∀fN ∈ H where H is a set of M -Lipschitz continuous functions
over Z , we have

EgT (fN) ≤ EgN(fN)︸ ︷︷ ︸
Classification (C)

+
2M

minKk=1 p
Y=k
N

W1

(
pN(Z), pT (Z)

)
︸ ︷︷ ︸

Alignment (A)

+

2M(1 +
1

minKk=1 p
Y=k
N

)W1

( K∑
k=1

pY=k
T pT (Z|Y = k),

K∑
k=1

pY=k
N pT (Z|Y = k)

)
︸ ︷︷ ︸

Label (L)

(4.2)

We first analyze our upper-bound in Eq. (4.2). The target risk of fN is controlled
by three main terms: the first (C) is the risk of fN on domain N , the second (A)
is the Wasserstein-1 distance between latent marginals of domain N and T , the
third term (L) measures a divergence between label distributions using, as a proxy,
two ad-hoc marginal distributions. There are two other terms in Eq. (4.2): first, a
Lipschitz-constant M that can be made small by implementing fN as a NN with
piece-wise linear activations and regularized weights; second the minimum of pYN ,
which says that generalization is harder when a target class is less represented.
We learn OSTAR’s components to minimize the r.h.s of Eq. (4.2). Terms (C) and (A)
can be explicitly minimized, respectively by training a classifier fN on domain
N and by learning (ϕ,pYN) to match marginals of domains N and T . Term (L) is
not computable, yet its minimization is naturally handled by OSTAR. Indeed, term
(L) is minimal when pYN = pYT under Assumption 8 per Redko et al. 2019. With
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OSTAR, this sufficient condition is guaranteed in Proposition 4.2 by the solution
to Eq. (OT) under our mild assumptions in Section 4.2.3. This solution defines a
domain N for which pYN = pYT and term (A) equals zero.

We now detail the originality of this result over existing Wasserstein-based gen-
eralization bounds. First, our upper-bound is general and can be explicitly min-
imized even when target labels are unknown unlike Shui et al. 2021 or Combes
et al. 2020 which require knowledge of pYT or its perfect estimation. Combes et al.
2020 claims that correct estimation of pYT i.e. (L) close to zero, is achieved under
GLS i.e. pS(Z|Y ) = pT (Z|Y ). However, GLS is hardly guaranteed when the latent
space is learned: a sufficient condition in Combes et al. 2020 requires knowing
pYT , which is unrealistic in UDA. Second, our bound is simpler than the one in
Rakotomamonjy et al. 2021: in particular, it removes several redundant terms
which are unmeasurable due to unknown target labels.

4.4 Implementation

Our solution, detailed below, minimizes the generalization bound in Eq. (4.2). It
implements fN , g with NNs and ϕ with a residual NN. Our solution jointly solves
(i) a classification problem to account for term (C) in Eq. (4.2) and (ii) an alignment
problem on pretrained representations Eq. (OT) to account for terms (A) and (L)
in Eq. (4.2). Our pseudo-code and runtime / complexity analysis are presented
in Appendix B.6.

Encoder initialization Prior to learning ϕ,pYN , fN , we first learn the encoder
g jointly with a source classifier fS to yield a zero source classification loss via
Eq. (4.3). With ℓce the CE loss,

min
fS ,g
Lgc(fS,DS) ≜ min

fS ,g

1

n

n∑
i=1

ℓce(fS ◦ g(x(i)
S ), y

(i)
S ) (4.3)

g is then fixed to preserve the original problem structure. This initialization step
helps enforce Assumption 5 and could alternatively be replaced by directly using
a pretrained encoder if available.

Joint alignment and classification We then solve alternatively (i) a classification
problem on domain N w.r.t. fN to account for term (C) in Eq. (4.2) and (ii) the
Eq. (OT) w.r.t. (ϕ,pYN) to account for term (A). Term (L) in Eq. (4.2) is handled
by matching pYN and pYT through the minimization of Eq. (OT). pYN is estimated
with the confusion-based approach in Lipton et al. 2018, while ϕ minimizes the
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Lagrangian relaxation, with hyperparameter λOT , of the constrained optimization
problem Eq. (OT). The equality constraint in Eq. (OT) is measured through a
Wasserstein distance as our bound in Eq. (4.2) is tailored to this distance, however,
we are not restricted by this choice as other discrepancy measures are also possible.
The objective based on Eq. (4.2) corresponds to the optimization problem:

min
ϕ,fN
Lgc(fN ,DN) + λOT LgOT (ϕ) + Lgwd(ϕ,pYN)

subject to pYN = argmin
p≥0,p∈∆K

1

2
∥p̂YT − Ĉ

p

pYS
∥22 [Label proportion estimation]

(CAL)

where Lgc(fN ,DN) ≜
1

n

n∑
i=1

p
y
(i)
S
N

p
y
(i)
S
S

ℓce(fN ◦ ϕ ◦ g(x(i)
S ), y

(i)
S ) [Classification loss in N ] (4.4)

and LgOT (ϕ) ≜
K∑
k=1

1

#{y(i)S = k}i∈J1,nK

∑
y
(i)
S =k,i∈J1,nK

∥ϕ(z(i)S )− z
(i)
S ∥22 [Objective of Eq. (OT)]

(4.5)

and Lgwd(ϕ,pYN) ≜ sup
∥v∥L≤1

1

n

n∑
i=1

p
y
(i)
S
N

p
y
(i)
S
S

v ◦ ϕ(z(i)S )− 1

m

m∑
j=1

v(z
(j)
T ) [Relaxation of Eq. (OT)] (4.6)

Ĉ is the confusion matrix of fN on domain N , p̂YT ∈ ∆K is the target label pro-
portions estimated with fN . Lgc(fN , N) Eq. (4.4) is the classification loss of fN on
N , derived in Appendix B.5, which minimizes term (C) in Eq. (4.2). Note that
samples in domain N are obtained by mapping source samples with ϕ; they are
reweighted to account for label shift. LgOT Eq. (4.5) defines the transport cost of ϕ
on S. Implementing ϕ with a ResNet performed better than standard MLPs, thus
we minimize in practice the dynamical transport cost, better tailored to residual
maps and used in Bézenac et al. 2021; Karkar et al. 2020. Lgwd Eq. (4.6) is the
empirical form of the dual Wasserstein-1 distance between pϕN(Z) and pT (Z) and
seeks at enforcing the equality constraint in Eq. (OT) i.e. minimizing term (A).
OSTAR’s assumptions also guarantee that term (L) is small at the optimum.

Improve target discriminativity OSTAR solves a transfer problem with pre-
trained representations, but cannot change their discriminativity in the target.
This may harm performance when the encoder g is not well suited for the target.
Domain-invariant methods are less prone to this issue as they update target rep-
resentations. In our upper-bound in Eq. (4.2), target discriminativity is assessed
by the value of term (C) at optimum of the alignment problem Eq. (OT). This
value depends on g and may be high since g has been trained with only source
labels. Nevertheless, it can be reduced by updating g using target outputs such
that class separability for target representations is better enforced. To achieve this



4.5 experimental results 67

goal, we propose an extension of Eq. (CAL) using Information Maximization (IM),
not considered in existing domain-invariant GeTarS methods. IM was originally
introduced for source-free adaptation without alignment (Liang et al. 2020). In
this context, target predictions are prone to errors and there is no principled way
to mitigate this problem. In our case, we have access to source samples and OSTAR
minimizes an upper-bound to its target error, which avoids performance degrada-
tion. IM refines the decision boundaries of fN with two terms on target samples.
Lgent(fN , T ) Eq. (4.7) is the conditional entropy of fN which favors low-density
separation between classes. Denoting δk(·) the k-th component of the softmax,

Lgent(fN ,DT ) =
m∑
i=1

K∑
k=1

δk(fN ◦ g(x(i)
T )) log(δk(fN ◦ g(x(i)

T ))) (4.7)

Lgdiv(fN ,DT ) Eq. (4.8) promotes diversity by regularizing the average output of
fN ◦ g to be uniform on T . It avoids predictions from collapsing to the same class
thus softens the effect of conditional entropy.

Lgdiv(fN ,DT ) =
K∑
k=1

p̂k log p̂k = DKL(p̂,
1

K
1K)− logK; p̂ = ExT∈XT

[δ(fN ◦ g(xT))]

(4.8)
Our variant introduces two additional steps in the learning process. First, the
latent space is fixed and we optimize fN with IM in Eq. (SS). Then, we optimize
the representations in Eq. (SSg) while avoiding modifying source representations
by including Lgc(fS,DS) Eq. (4.3) with a fixed source classifier fS .

min
fN
Lgc(fN ,DN) + Lgent(fN ,DT ) + Lgdiv(fN ,DT ) (SS)

min
fN ,g
Lgc(fN ,DN) + Lgent(fN ,DT ) + Lgdiv(fN ,DT ) + Lgc(fS,DS) (SSg)

4.5 Experimental results

We now present our experimental results on several UDA problems under GeTarS

and show that OSTAR outperforms recent SOTA baselines. The GeTarS assumption
is particularly relevant on our datasets as encoded conditional distributions do
not initially match as seen in Appendix Figure B.2.

Setting We consider: (i) an academic benchmark Digits with two adaptation
problems between USPS (Hull 1994) and MNIST (LeCun et al. 1998), (ii) a syn-
thetic to real images adaptation benchmark VisDA12 (Peng et al. 2017) and (iii)
two object categorizations problems Office31 (Saenko et al. 2010), OfficeHome
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(Venkateswara et al. 2017a) with respectively six and twelve adaptation problems.
The original datasets have fairly balanced classes, thus source and target label
distributions are similar. This is why we subsample our datasets to make label
proportions dissimilar across domains as detailed in Appendix Table B.6. For
Digits, we subsample the target domain and investigate three settings - balanced,
mild and high as Rakotomamonjy et al. 2021. For other datasets, we modify the
source domain by considering 30% of the samples coming from the first half of
their classes as Combes et al. 2020. We report a Source model, trained using only
source samples without adaptation, and various UDA methods: two CovS methods
and three recent SOTA GeTarS models. Chosen UDA methods learn invariant rep-
resentations with reweighting in GeTarS models or without reweighting in other
baselines. The two CovS baselines are DANN (Ganin et al. 2016a) which approaches
H-divergence and WDβ=0 (Shen et al. 2018) which computes Wasserstein distance.
The GeTarS baselines are Wu et al. 2019; Rakotomamonjy et al. 2021; Combes
et al. 2020. We use Wasserstein distance to learn invariant representations such
that only the strategy to account for label shift differs. Wu et al. 2019, denoted
WDβ , performs assymetric alignment with parameter β, for which we test different
values (β ∈ {1, 2}). MARSc, MARSg (Rakotomamonjy et al. 2021) and IW-WD (Combes
et al. 2020) estimate target proportions respectively with optimal assignment or
with the estimator in Lipton et al. 2018 also used in OSTAR. We report DI-Oracle,
an oracle which learns invariant representations with Wasserstein distance and
makes use of true class-ratios. Finally, we report OSTAR with and without IM. All
baselines are reimplemented for a fair comparison with the same NN architectures
detailed in Appendix B.7.

Results In Table 4.1, we report, over 10 runs, mean and standard deviations for
balanced accuracy, i.e. average recall on each class. This metric is suited for imbal-
anced problems (Brodersen et al. 2010). For better visibility, results are aggregated
over all imbalance settings of a dataset (line “subsampled“). In the Appendix, full
results are reported in Table B.1 along the ℓ1 target proportion estimation error
for GeTarS baselines and OSTAR+IM in Figure B.3. First, we note that low estima-
tion error of pYT is correlated to high accuracy for all models and that DI-Oracle
upper-bounds domain-invariant approaches. This shows the importance of cor-
rectly estimating pYT . Second, we note that OSTAR improves Source (column 2)
and is competitive w.r.t. IW-WD (column 9) on VisDA, Office31 and OfficeHome
and MARSg (column 7) on Digits although it keeps target representations fixed
unlike these two methods. OSTAR+IM (column 11) is less prone to initial target
discriminativity and clearly outperforms or equals the baselines on both balanced
accuracy and proportion estimation. It even improves DI-Oracle (column 12) for
balanced accuracy despite not using true class-ratios. This (i) shows the benefits
of not constraining domain-invariance which may degrade target discriminativ-
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Table 4.1. – Balanced accuracy (↑) over 10 runs. The best performing model is
indicated in bold. Results are aggregated over all imbalance scenarios
and adaptation problems within a same dataset.

Setting Source DANN WDβ=0 WDβ=1 WDβ=2 MARSg MARSc IW-WD OSTAR OSTAR+IM DI-Oracle

Digits

balanced 74.98± 3.8 90.81± 1.3 92.63± 1.0 82.80± 4.7 76.07± 7.1 92.18± 2.2 94.91± 1.4 95.89± 0.5 91.66± 0.9 97.51± 0.3 96.90± 0.2

subsampled 75.05± 3.1 89.91± 1.5 89.45± 1.0 81.56± 4.8 77.77± 6.5 91.87± 2.0 93.75± 1.4 93.22± 1.1 88.39± 1.5 96.69± 0.7 96.43± 0.3

VisDA12

original 48.63± 1.0 53.72± 0.9 57.40± 1.1 47.56± 0.8 36.21± 1.8 55.62± 1.6 55.33± 0.8 51.88± 1.6 50.37± 0.6 59.24± 0.5 57.61± 0.3

subsampled 42.46± 1.4 47.57± 0.9 47.32± 1.4 41.48± 1.6 31.83± 3.0 55.00± 1.9 51.86± 2.0 50.65± 1.5 49.05± 0.9 58.84± 1.0 55.77± 1.1

Office31

subsampled 74.50± 0.5 76.13± 0.3 76.24± 0.3 74.23± 0.5 72.40± 1.8 80.20± 0.4 80.00± 0.5 77.28± 0.4 76.19± 0.8 82.61± 0.4 81.07± 0.3

OfficeHome

subsampled 50.56± 2.8 50.87± 1.05 53.47± 0.7 52.24± 1.1 49.48± 1.3 56.60± 0.4 56.22± 0.6 54.87± 0.4 54.64± 0.7 59.51± 0.4 57.97± 0.3

ity especially under label estimation errors; (ii) validates our theoretical results
which show that OSTAR controls the target risk and recovers target proportions.
We visualize how OSTAR aligns S and T representations in Appendix Figure B.2.

Ablation studies We perform two studies. We first measure the role of IM in
our model. In Appendix Table B.2, we show the contribution of Eq. (SS) (column
3) and Eq. (SSg) (column 4) to Eq. (CAL) (column 2). We also evaluate the effect
of IM on our baselines in Appendix Table B.3, even if this is not part of their
original work. IM improves performance on VisDA and Office and degrades it
on Digits. The performance remains below the ones of OSTAR+IM. Finally, we
evaluate the impact of IM on our upper-bound in Eq. (4.2) in Appendix Table B.4.
We assume that target conditionals are known to compute term (L). We observe
that term (C), related to target discriminativity, and the alignment terms (A) and
(L) are reduced. This explains the improvements due to IM and shows empirically
that IM helps better optimize the three functions ϕ, g, fN in our upper-bound.
The second study in Table 4.2 measures the effect of the OT transport cost in
our objective Eq. (CAL). Proposition 4.2 showed that OT guarantees recovering
target proportions and matching conditionals. We consider MNIST→USPS under
various shifts (Line 1) and initialization gains i.e. the standard deviation of the
weights of the NN (Line 2). On line 1, we note that λOT ̸= 0 in problem Eq. (CAL)
improves balanced accuracy (left) and ℓ1 estimation error (middle) over λOT = 0

over all shifts, especially high ones. This improvement is correlated with lower
mean and standard deviation of the normalized transport cost per sample (right).
We observe the same trends when changing initialization gains in Line 2. This
confirms our theoretical results and shows the advantages of OT regularization
biases for performance and stability. In Appendix Table B.5, we test additional
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Table 4.2. – OT and balanced accuracy ↑ (left), ℓ1 estimation error ↓ (middle) and
normalized transport cost LgOT/n ↓ (right) for MNIST→USPS. The best
model for accuracy is in bold with a “⋆“. We vary shifts (Line 1) and
initialization gains (standard deviation of NN’s weights) (Line 2)

MNIST→USPS - initialization gain 0.02

Shift λOT = 0 λOT = 10−2

balanced 94.92± 0.6 95.12± 0.6
mild 88.28± 1.5 91.77± 1.2
high 85.24± 1.6 88.55± 1.1

MNIST→USPS - high imbalance

Init Gain λOT = 0 λOT = 10−2

0.02 85.24± 1.6 88.55± 1.1
0.1 84.62± 2.3 88.41± 1.3
0.3 83.11± 2.4 89.41± 1.6

values of λOT and see that OSTAR recovers the Source model under high λOT .
Indeed, the latter constrains ϕ ≈ Id.

4.6 Related Work

Handling label shift in UDA All existing UDA approaches reviewed in Sec-
tion 2.1.3.1 are well-defined under CovS, yet fail under label shift (TarS and GeTarS).
Handling label shift requires estimating pYT to reweight source samples by esti-
mated class-ratios (Zhao et al. 2019). An alternative is to use a fixed weight (Wu et
al. 2019). When conditionals are unchanged i.e. TarS, pYT can be recovered without
needs for alignment (Lipton et al. 2018; Redko et al. 2019). In Redko et al. 2019,
target proportions are estimated through minimization of a reweighted Wasser-
stein distance between marginals. Under GeTarS, there is the additional difficulty
of matching conditionals. The SOTA methods for GeTarS are domain-invariant
with sample reweighting (Rakotomamonjy et al. 2021; Combes et al. 2020; Gong
et al. 2016; Shui et al. 2021). Rakotomamonjy et al. 2021 formulates two separate
OT problems for class-ratio estimation and conditional alignment and Shui et al.
2021 is the OT extension of Combes et al. 2020 to multi-source UDA. An earlier
mapping-based approach was proposed in Zhang et al. 2013 to align conditionals,
also under reweighting. Estimators used in GeTarS are confusion-based in Combes
et al. 2020; Shui et al. 2021; derived from optimal assignment in Rakotomamonjy
et al. 2021 or from the minimization of a reweighted Maximum Mean Discrep-
ancy (MMD) between marginals in Zhang et al. 2013; Gong et al. 2016.
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OSTAR and GeTarS methods OSTAR is a new mapping-based approach for GeTarS,
that does not learn invariant representations. As stated earlier, the invariance
constraint may degrade target discriminativity (Liu et al. 2019; Chen et al. 2019b),
which is not the case for OSTAR. It has several practical (flexibility, scalability, stabil-
ity) and theoretical improvements over prior domain-invariant GeTarS approaches
(Rakotomamonjy et al. 2021; Combes et al. 2020; Gong et al. 2016; Shui et al. 2021)
as detailed in this paper. The existing mapping-based approach for GeTarS, Zhang
et al. 2013, is not flexible, operates on high dimensional input spaces and does
not scale up to large label spaces as it considers a linear map for each pair of
conditionals. OSTAR solves these limitations.

OSTAR and OT UDA methods OSTAR is the first OT mapping-based approach for
GeTarS. Compared to prior OT methods (cf. Section 2.1.3.1) it has several benefits: (i)
representation are kept separate, thus target discriminativity is not deteriorated,
(ii) a single OT problem is solved unlike Rakotomamonjy et al. 2021, (iii) the OT

map is implemented with a NN which generalizes beyond training samples and
scales up with the number of samples unlike barycentric OT maps; (iv) it improves
efficiency of matching by encoding samples, thereby improving discriminativity
and reducing dimensionality, unlike Courty et al. 2017b.

4.7 Conclusion

We introduced OSTAR, a new general approach to align pretrained representations
under GeTarS, which does not constrain representation invariance. OSTAR learns a
flexible and scalable map between conditional distributions in the latent space.
This map, implemented as a ResNet, solves an OT matching problem with native
regularization biases. Our approach provides strong generalization guarantees
under mild assumptions as it explicitly minimizes a new upper-bound to the tar-
get risk. Experimentally, it challenges recent invariant GeTarS methods on several
UDA benchmarks.
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In Chapter 5, we consider the problem of Domain Generalization (DG) for clas-
sification problems, where we do not observe data from the target domain at
train or test time. This is a more complex setting than in Part ii. We propose to
use the links between ensembling and Weight Averaging (WA) to learn a Neural
Network (NN) that generalizes Out-of-distribution (OOD).

The main contributions are outlined in Section 1.3.2.





Chapter 5

Diverse Weight Averaging for Domain
Generalization

Chapter abstract

Standard NNs struggle to generalize under distribution shifts in com-
puter vision. Fortunately, combining multiple networks can consis-
tently improve out-of-distribution generalization. In particular, WA

strategies were shown to perform best on the competitive DomainBed
benchmark; they directly average the weights of multiple networks
despite their nonlinearities. In this paper, we propose Diverse Weight
Averaging (DiWA), a new WA strategy whose main motivation is to
increase the functional diversity across averaged models. To this end,
DiWA averages weights obtained from several independent training
runs: indeed, models obtained from different runs are more diverse
than those collected along a single run thanks to differences in hyper-
parameters and training procedures. We motivate the need for diver-
sity by a new bias-variance-covariance-locality decomposition of the
expected error, exploiting similarities between WA and standard func-
tional ensembling. Moreover, this decomposition highlights that WA

succeeds when the variance term dominates, which we show occurs
when the marginal distribution changes at test time. Experimentally,
DiWA consistently improves the state of the art on DomainBed without
inference overhead.

The work in this chapter has led to the publication of a conference paper:

• A. Rame*, M. Kirchmeyer*, T. Rahier, A. Rakotomamonjy, P. Gallinari,
and M. Cord (2022). “Diverse Weight Averaging for Out-of-Distribution
Generalization”. In: Neural Information Processing Systems (NeurIPS).

77
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5.1 Introduction

Learning robust models that generalize well is critical for many real-world ap-
plications (Zech et al. 2018; DeGrave et al. 2021). Yet, the classical Expected Risk
Minimization (ERM) lacks robustness to distribution shifts (Hendrycks et al. 2019;
Shah et al. 2020; D’Amour et al. 2020). To improve out-of-distribution (OOD)
generalization in classification, several recent works proposed to train models
simultaneously on multiple related but different domains (Muandet et al. 2013).
Though theoretically appealing, domain-invariant approaches (Peters et al. 2016)
either underperform (Arjovsky et al. 2019a; Krueger et al. 2021) or only slightly
improve (Sun et al. 2016; Rame et al. 2022) ERM on the reference DomainBed
benchmark (Gulrajani et al. 2021b). The state-of-the-art strategy on DomainBed
is currently to average the weights obtained along a training trajectory (Izmailov
et al. 2018). Cha et al. 2021 argues that this WA succeeds in OOD because it finds
solutions with flatter loss landscapes.

In this paper, we show the limitations of this flatness-based analysis and provide a
new explanation for the success of WA in OOD. It is based on WA’s similarity with
ensembling (Lakshminarayanan et al. 2017), a well-known strategy to improve
robustness (Ovadia et al. 2019; Ashukha et al. 2020), that averages the predictions
from various models. Based on Ueda et al. 1996, we present a bias-variance-
covariance-locality decomposition of WA’s expected error. It contains four terms:
first the bias that we show increases under shift in label posterior distributions
(i.e. correlation shift (Ye et al. 2022)); second, the variance that we show increases
under shift in input marginal distributions (i.e. diversity shift (Ye et al. 2022));
third, the covariance that decreases when models are diverse; finally, a locality
condition on the weights of averaged models.

Based on this analysis, we aim at obtaining diverse models whose weights are
averageable with our Diverse Weight Averaging (DiWA) approach. In practice,
DiWA averages in weights the models obtained from independent training runs
that share the same initialization. The motivation is that those models are more
diverse than those obtained along a single run (Fort et al. 2019; Gontijo-Lopes et al.
2022). Yet, averaging the weights of independently trained networks with batch
normalization (Ioffe et al. 2015) and ReLU layers (Agarap 2018) may be counter-
intuitive. Such averaging is efficient especially when models can be connected
linearly in the weight space via a low loss path. Interestingly, this linear mode
connectivity property (Frankle et al. 2020) was empirically validated when the
runs start from a shared pretrained initialization (Neyshabur et al. 2020). This
insight is at the heart of DiWA but also of other recent works (Wortsman et al.
2022b; Wortsman et al. 2022a; Matena et al. 2021).

In summary, our main contributions are the following:
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• We propose a new theoretical analysis of WA for OOD based on a bias-variance-
covariance-locality decomposition of its expected error (Section 5.2). By relat-
ing correlation shift to its bias and diversity shift to its variance, we show that
WA succeeds under diversity shift.

• We empirically tackle covariance by increasing the diversity across averaged
models. In our DiWA approach, we decorrelate their training procedures:
in practice, these models are obtained from independent runs (Section 5.3).
We then empirically validate that diversity improves OOD performance (Sec-
tion 5.4) and show that DiWA is state of the art on all real-world datasets from
the DomainBed benchmark (Gulrajani et al. 2021b) (Section 5.5).

5.2 Theoretical insights

We introduce WA in Section 5.2.1 and decompose its expected OOD error in
Section 5.2.2. Then, we separately consider the four terms of this bias-variance-
covariance-locality decomposition in Section 5.2.3. This theoretical analysis will
allow us to better understand when WA succeeds, and most importantly, how to
improve it empirically in Section 5.3.

5.2.1 WA for OOD and limitations of current analysis

Setting. Given the notations and general setting in Section 2.1.1, we recall the
main elements of context.

We consider a NN f(·, θ) : X → Y made of a fixed architecture f with weights θ.
S is the training (source) domain with distribution pS , and T is the test (target)
domain with distribution pT . fS, fT are the labeling functions in S and T . The
weights are typically learned on a training dataset DS from S (composed of
nS Independent and Identically Distributed (IID) samples from pS(X, Y )) with
a configuration c, which contains all other sources of randomness in learning
(e.g. initialization, hyperparameters, training stochasticity, epochs, etc.). We call
lS = {DS, c} a learning procedure on domain S, and explicitly write θ(lS) to refer
to the weights obtained after stochastic minimization of 1/nS

∑
(x,y)∈DS

ℓ(f(x, θ), y)

w.r.t. θ under lS .

We seek θ minimizing the target generalization error ET (θ) ≜ ET (f(·, θ)) in Eq. (2.2).
However, this is complex in the OOD setup because we only have data from do-
main S in training, related yet different from T . The differences between S and
T are due to distribution shifts. These shifts are decomposed per Ye et al. 2022

into diversity shift (a.k.a. covariate shift), when marginal distributions differ
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(i.e. pS(X) ̸= pT (X)), and correlation shift (a.k.a. concept shift), when posterior
distributions differ (i.e. pS(Y |X) ̸= pT (Y |X) and fS ̸= fT ).

WA. We study the benefits of combining M individual member weights {θm}Mm=1 ≜
{θ(l(m)

S )}Mm=1 obtained from M (potentially correlated) Identically Distributed (ID)
learning procedures LMS ≜ {l(m)

S }Mm=1. Under conditions discussed in Section 5.3.2,
these M weights can be averaged despite nonlinearities in the architecture f . WA

(Izmailov et al. 2018), defined as:

fWA ≜ f(·, θWA), where θWA ≜ θWA(L
M
S ) ≜ 1/M

∑M

m=1
θm, (5.1)

is the state of the art (Cha et al. 2021; Arpit et al. 2021) on DomainBed (Gulrajani
et al. 2021b) when the weights {θm}Mm=1 are sampled along a single training
trajectory (a description we refine in Appendix C.2.2 from Appendix C.2.2).

Limitations of the flatness-based analysis. To explain this success, Cha et al.
2021 argue that flat minima generalize better; indeed, WA flattens the loss land-
scape. Yet, as shown in Appendix C.1, this analysis does not fully explain WA’s
spectacular results on DomainBed. First, flatness does not act on distribution shifts
thus the OOD error is uncontrolled with their upper bound (see Appendix C.1.1).
Second, this analysis does not clarify why WA outperforms Sharpness-Aware
Minimizer (SAM) (Foret et al. 2021) for OOD generalization, even though SAM
directly optimizes flatness (see Appendix C.1.2). Finally, it does not justify why
combining WA and SAM succeeds in IID (Kaddour et al. 2022) yet fails in OOD (see
Appendix C.1.3). These observations motivate a new analysis of WA; we propose
one below that better explains these results.

5.2.2 Bias-variance-covariance-locality decomposition

We now introduce our bias-variance-covariance-locality decomposition which
extends the bias-variance decomposition (Kohavi et al. 1996) to WA. In the rest
of this theoretical section, ℓ is the Mean-Squared Error (MSE) for simplicity: yet,
our results may be extended to other losses as in Domingos 2000. In this case, the
expected error of a model with weights θ(lS) w.r.t. the learning procedure lS was
decomposed in Kohavi et al. 1996 into:

ElSET (θ(lS)) = E(x,y)∼pT [bias
2(x, y) + var(x)], (BV)

where bias(x, y), var(x) are the bias and variance of the considered model w.r.t. a
sample (x, y), defined later in Eq. (BVCL). To decompose WA’s error, we leverage
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the similarity as Izmailov et al. 2018 between WA and Ensembles (ENS) (Laksh-
minarayanan et al. 2017; Dietterich 2000), a more traditional way to combine
a collection of weights. More precisely, ENS averages the predictions, fENS ≜
fENS(·, {θm}Mm=1) ≜ 1/M

∑M
m=1 f(·, θm). Lemma 5.1 establishes that fWA is a first-

order approximation of fENS when {θm}Mm=1 are close in the weight space.

Lemma 5.1 (WA and ENS. Proof in Appendix C.2.1. Adapted from Izmailov et
al. 2018; Wortsman et al. 2022a.). Given {θm}Mm=1 with learning procedures LMS ≜
{l(m)
S }Mm=1. Denoting ∆LM

S
= maxMm=1∥θm − θWA∥2, ∀(x, y) ∈ X × Y :

fWA(x) = fENS(x) +O(∆2
LM
S
) and ℓ(fWA(x), y) = ℓ(fENS(x), y) +O(∆2

LM
S
).

This similarity is useful since Eq. (BV) was extended into a bias-variance-covariance
decomposition for ENS in Ueda et al. 1996; Brown et al. 2005. We can then derive
the following decomposition of WA’s expected test error. To take into account the
M averaged weights, the expectation is over the joint distribution describing the
M ID learning procedures LMS ≜ {l(m)

S }Mm=1.

Proposition 5.1 (Bias-variance-covariance-locality decomposition of WA’s expected
OOD generalization error. Proof in Appendix C.2.2.). With f̄S(x) = ElS [f(x, θ(lS))],
under ID learning procedures LMS ≜ {l(m)

S }Mm=1, the expected generalization error on
domain T of θWA(L

M
S ) ≜ 1

M

∑M
m=1 θm over the joint distribution of LMS is:

ELM
S
ET (θWA(L

M
S )) = E(x,y)∼pT

[
bias2(x, y) +

1

M
var(x) +

M − 1

M
cov(x)

]
+O(∆̄2),

where bias(x, y) = y − f̄S(x),
and var(x) = ElS

[(
f(x, θ(lS))− f̄S(x)

)2]
,

and cov(x) = ElS ,l′S
[(
f(x, θ(lS))− f̄S(x)

)(
f(x, θ(l′S)))− f̄S(x)

)]
,

and ∆̄2 = ELM
S
∆2
LM
S

with ∆LM
S
=

M
max
m=1
∥θm − θWA∥2.

(BVCL)
cov is the prediction covariance between two member models whose weights are averaged.
The locality term ∆̄2 is the expected MSE between weights and their average.

Eq. (BVCL) decomposes WA’s OOD error into four terms. Bias is the same as that
of each of its ID members. Variance is split into the variance of each of its ID

members divided by M and a covariance term. The last locality term constrains
the weights to ensure the validity of our approximation. In conclusion, combining
M models divides the variance by M but introduces the covariance and locality
terms which should be controlled along bias to guarantee low OOD error.
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5.2.3 Analysis of the BVCL decomposition

We now analyze the four terms in Eq. (BVCL). We show that bias dominates
under correlation shift (Section 5.2.3) and variance dominates under diversity
shift (Section 5.2.3). Then, we discuss a trade-off between covariance, reduced
with diverse models (Section 5.2.3), and the locality term, reduced when weights
are similar (Section 5.2.3). This analysis shows that WA is effective against diversity
shift when M is large and when its members are diverse but close in the weight space.

Bias and correlation shift (and support mismatch) We relate OOD bias to cor-
relation shift (Ye et al. 2022) under Assumption 9, where f̄S(x) ≜ ElS [f(x, θ(lS))].
As discussed in Appendix C.2.3.2, Assumption 9 is reasonable for a large NN

trained on a large dataset representative of the source domain S. It is relaxed in
Proposition C.2 from Appendix C.2.3.

Assumption 9 (Small IID bias). ∃ϵ > 0 small s.t. ∀x ∈ XS, |fS(x)− f̄S(x)| ≤ ϵ.

Proposition 5.2 (OOD bias and correlation shift. Proof in Appendix C.2.3). With a
bounded difference between the labeling functions fT − fS on XT ∩ XS , under Assump-
tion 9, the bias on domain T is:

E(x,y)∼pT [bias
2(x, y)] = Correlation shift + Support mismatch +O(ϵ),

where Correlation shift =
∫
XT∩XS

(fT (x)− fS(x))2pT (x)dx,

and Support mismatch =

∫
XT \XS

(
fT (x)− f̄S(x)

)2
pT (x)dx.

(5.2)

We analyze the first term by noting that fT (x) ≜ EpT [Y |X = x] and fS(x) ≜
EpS [Y |X = x], ∀x ∈ XT ∩ XS . This expression confirms that our correlation shift
term measures shifts in posterior distributions between source and target, as in Ye
et al. 2022. It increases in presence of spurious correlations: e.g. on ColoredMNIST
(Arjovsky et al. 2019a) where the color/label correlation is reversed at test time.
The second term is caused by support mismatch between source and target. It was
analyzed in Ruan et al. 2022 and shown irreducible in their “No free lunch for
learning representations for DG”. Yet, this term can be tackled if we transpose the
analysis in the feature space rather than the input space. This motivates encoding
the source and target domains into a shared latent space, e.g. by pretraining the
encoder on a task with minimal domain-specific information as Ruan et al. 2022.

This analysis explains why WA fails under correlation shift, as shown on Col-
oredMNIST in Appendix C.7. Indeed, combining different models does not re-
duce the bias. Section 5.2.3 explains that WA is however efficient against diversity
shift.
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Variance and diversity shift Variance is known to be large in OOD (D’Amour
et al. 2020) and to cause a phenomenon named underspecification, when models
behave differently in OOD despite similar test IID accuracy. We now relate OOD

variance to diversity shift (Ye et al. 2022) in a simplified setting. We fix the source
dataset DS (with input support XDS

), the target dataset DT (with input support
XDT

) and the network’s initialization. We get a closed-form expression for the
variance of f over all other sources of randomness under Assumptions 10 and 11.

Assumption 10 (Kernel regime). f is in the kernel regime (Jacot et al. 2018).

This states that f behaves as a Gaussian Process (GP); it is reasonable if f is a
wide network (Jacot et al. 2018; Lee et al. 2017). The corresponding kernel K
is the Neural Tangent Kernel (NTK) (Jacot et al. 2018) depending only on the
initialization. GPs are useful because their variances have a closed-form expres-
sion (Appendix C.2.4.1). To simplify the expression of variance, we now make
Assumption 11.

Assumption 11 (Constant norm, low intra-sample similarity on DS). ∃
0 ≤ ϵ≪ λS s.t. ∀xS ∈ XDS

, K(xS, xS) = λS and ∀x′S ̸= xS ∈ XDS
, |K(xS, x

′
S)| ≤ ϵ.

This states that training samples have the same norm (following standard practice
(Lee et al. 2017; Ah-Pine 2010; Ghojogh et al. 2021; Rennie 2005)) and weakly
interact (He et al. 2020; Seleznova et al. 2022). This assumption is further discussed
and relaxed in Appendix C.2.4.2. We are now in a position to relate variance and
diversity shift when ϵ→ 0.

Proposition 5.3 (OOD variance and diversity shift. Proof in Appendix C.2.4). Given
f trained on source dataset DS (of size nS) with NTK K, under Assumptions 10 and 11,
the variance on dataset dT is:

ExT∈XDT
[var(xT )] =

nS
2λS

MMD2(XDS
, XDT

) + λT −
nS
2λS

βT +O(ϵ), (5.3)

where MMD is the empirical Maximum Mean Discrepancy (MMD) in the RKHS of
K2(x, y) = (K(x, y))2;λT ≜ ExT∈XDT

K(xT , xT ) and βT ≜ E(xT ,x
′
T )∈X2

DT
,xT ̸=x′TK

2(xT , x
′
T )

are the empirical mean similarities respectively measured between identical (w.r.t. K) and
different (w.r.t. K2) samples averaged over XDT

.

The MMD empirically estimates shifts in input marginals, i.e. between pS(X) and
pT (X). Our expression of variance is thus similar to the diversity shift formula in
Ye et al. 2022: MMD replaces the L1 divergence used in Ye et al. 2022. The other
terms, λT and βT , both involve internal dependencies on the target dataset DT :
they are constants w.r.t. XDT

and do not depend on distribution shifts. At fixed
DT and under our assumptions, Eq. (5.3) shows that variance on DT decreases
when XDS

and XDT
are closer (for the MMD distance defined by the kernel K2)

and increases when they deviate. Intuitively, the further XDT
is from XDS

, the less
the model’s predictions on XDT

are constrained after fitting DS .
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This analysis shows that WA reduces the impact of diversity shift as combining
M models divides the variance per M . This is a strong property achieved without
requiring data from the target domain.

Covariance and diversity The covariance term increases when the predictions
of {f(·, θm)}Mm=1 are correlated. In the worst case where all predictions are identi-
cal, covariance equals variance and WA is no longer beneficial. On the other hand,
the lower the covariance, the greater the gain of WA over its members; this is
derived by comparing Equations (BV) and (BVCL), as detailed in Appendix C.2.5.
It motivates tackling covariance by encouraging members to make different pre-
dictions, thus to be functionally diverse. Diversity is a widely analyzed concept
in the ensemble literature (Lakshminarayanan et al. 2017), for which numerous
measures have been introduced (Kuncheva et al. 2003; Aksela 2003; Kornblith
et al. 2019). In Section 5.3, we aim at decorrelating the learning procedures to
increase members’ diversity and reduce the covariance term.

Locality and linear mode connectivity To ensure that WA approximates ENS,
the last locality term O(∆̄2) constrains the weights to be close. Yet, the covari-
ance term analyzed in Section 5.2.3 is antagonistic, as it motivates functionally
diverse models. Overall, to reduce WA’s error in OOD, we thus seek a good trade-
off between diversity and locality. In practice, we consider that the main goal
of this locality term is to ensure that the weights are averageable despite the
nonlinearities in the NN such that WA’s error does not explode. This is why in
Section 5.3, we empirically relax this locality constraint and simply require that
the weights are linearly connectable in the loss landscape, as in the linear mode
connectivity (Frankle et al. 2020). We empirically verify later in Figure 5.1 that the
approximation fWA ≈ fENS remains valid even in this case.

5.3 DiWA: Diverse Weight Averaging

5.3.1 Motivation: different runs for more diversity

Limitations of previous WA approaches. Our analysis in Section 5.2.3 showed
that the bias and the variance terms are mostly fixed by the distribution shifts at
hand. In contrast, the covariance term can be reduced by enforcing diversity across
models (Section 5.2.3) obtained from learning procedures {l(m)

S }Mm=1. Yet, previous
methods (Cha et al. 2021; Arpit et al. 2021) only average weights obtained along
a single run. This corresponds to highly correlated procedures sharing the same
initialization, hyperparameters, batch orders, data augmentations and noise, that



5.3 diwa : diverse weight averaging 85

only differ by the number of training steps. The models are thus mostly similar:
this does not leverage the full potential of WA.

DiWA. Our Diverse Weight Averaging approach seeks to reduce the OOD ex-
pected error in Eq. (BVCL) by decreasing covariance across predictions: DiWA
decorrelates the learning procedures {l(m)

S }Mm=1. Our weights are obtained from
M ≫ 1 different runs, with diverse learning procedures: these have different
hyperparameters (learning rate, weight decay and dropout probability), batch
orders, data augmentations (e.g. random crops, horizontal flipping, color jitter,
grayscaling), stochastic noise and number of training steps. Thus, the correspond-
ing models are more diverse on domain T per Gontijo-Lopes et al. 2022 and
reduce the impact of variance when M is large. However, this may break the
locality requirement analyzed in Section 5.2.3 if the weights are too distant. Em-
pirically, we show that DiWA works under two conditions: shared initialization
and mild hyperparameter ranges.

5.3.2 Approach

Shared initialization. The shared initialization condition follows Neyshabur
et al. 2020: when models are fine-tuned from a shared pretrained model, their
weights can be connected along a linear path where error remains low (Frankle et
al. 2020). Following standard practice on DomainBed (Gulrajani et al. 2021b), our
encoder is pretrained on ImageNet (Krizhevsky et al. 2012); this pretraining is key
as it controls the bias (by defining the feature support mismatch, see Section 5.2.3)
and variance (by defining the kernel K, see Appendix C.2.4.4). Regarding the
classifier initialization, we test two methods. The first is the random initialization,
which may distort the features (Kumar et al. 2022). The second is Linear Probing
(LP) (Kumar et al. 2022): it first learns the classifier (while freezing the encoder) to
serve as a shared initialization. Then, LP fine-tunes the encoder and the classifier
together in the M subsequent runs; the locality term is smaller as weights remain
closer (see Kumar et al. 2022).

Mild hyperparameter search. As shown in Figure 5.5, extreme hyperparameter
ranges lead to weights whose average may perform poorly. Indeed, weights ob-
tained from extremely different hyperparameters may not be linearly connectable;
they may belong to different regions of the loss landscape. In our experiments,
we thus use the mild search space defined in Table C.5, first introduced in SWAD
(Cha et al. 2021). These hyperparameter ranges induce diverse models that are
averageable in weights.
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Weight selection. The last step of our approach (summarized in Algorithm B.1)
is to choose which weights to average among those available. We explore two
simple weight selection protocols, as in Wortsman et al. 2022a. The first uniform
equally averages all weights; it is practical but may underperform when some
runs are detrimental. The second restricted (greedy in Wortsman et al. 2022a) solves
this drawback by restricting the number of selected weights: weights are ranked
in decreasing order of validation accuracy and sequentially added only if they
improve DiWA’s validation accuracy.

In the following sections, we experimentally validate our theory. First, Section 5.4
confirms our findings on the OfficeHome dataset (Venkateswara et al. 2017b)
where diversity shift dominates (Ye et al. 2022) (see Appendix C.4.5 for a similar
analysis on PACS (Li et al. 2017a)). Then, Section 5.5 shows that DiWA is state of
the art on DomainBed (Gulrajani et al. 2021b).

Algorithm 5.1 DiWA Pseudo-code

Require: θ0 pretrained encoder and initialized classifier; {hm}Hm=1 hyperparame-
ter configurations.

1: Training: ∀m = 1 to H , θm ≜ FineTune(θ0, hm)
2: Weight selection:
3: Uniform:M = {1, · · · , H}.
4: Restricted: Rank {θm}Hm=1 by decreasing ValAcc(θm).M← ∅.
5: for m = 1 to H do
6: If ValAcc(θM∪{m}) ≥ ValAcc(θM)
7: M←M∪ {m}
8: end for
9: Inference: with f(·, θM), where θM =

∑
m∈M θm/|M|.

5.4 Empirical validation of our theoretical insights

We consider several collections of weights {θm}Mm=1 (2 ≤ M < 10) trained on the
“Clipart”, “Product” and “Photo” domains from OfficeHome (Venkateswara et
al. 2017b) with a shared random initialization and mild hyperparameter ranges.
These weights are first indifferently sampled from a single run (every 50 batches)
or from different runs. They are evaluated on “Art”, the last domain.

WA vs. ENS. Figure 5.1 validates Lemma 5.1 and that fWA ≈ fENS. More precisely,
fWA slightly but consistently improves fENS: we discuss this in Appendix C.3.
Moreover, a larger M improves the results; in accordance with Eq. (BVCL), this
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Figure 5.1. – Each dot displays the ac-
curacy (↑) of WA vs. accu-
racy (↑) of ENS for M mod-
els.

Figure 5.2. – Each dot displays the ac-
curacy (↑) gain of WA over
its members vs. the pre-
diction diversity (Aksela
2003) (↑) for M models.

motivates averaging as many weights as possible. In contrast, large M is compu-
tationally impractical for ENS at test time, requiring M forwards.

Diversity and accuracy. We validate in Figure 5.2 that fWA benefits from diver-
sity. Here, we measure diversity with the ratio-error (Aksela 2003), i.e. the ratio
Ndiff/Nsimul between the number of different errors Ndiff and of simultaneous er-
rors Nsimul in test for a pair in {f(·, θm)}Mm=1. A higher average over the

(
M
2

)
pairs

means that members are less likely to err on the same inputs. Specifically, the
gain of Acc(θWA) over the mean individual accuracy 1

M

∑M
m=1 Acc(θm) increases

with diversity. Moreover, this phenomenon intensifies for larger M : the linear
regression’s slope (i.e. the accuracy gain per unit of diversity) increases with M .
This is consistent with the (M − 1)/M factor of cov(x) in Eq. (BVCL), as further
highlighted in Appendix C.4.2. Finally, in Appendix C.4.1, we show that the con-
clusion also holds with CKAC (Kornblith et al. 2019), another established diversity
measure.

Increasing diversity thus accuracy via different runs. Now we investigate the
difference between sampling the weights from a single run or from different runs.
Figure 5.3 first shows that diversity increases when weights come from different
runs. Second, in Figure 5.4, this is reflected on the accuracies in OOD. Here, we
rank by validation accuracy the 60 weights obtained (1) from 60 different runs and
(2) along 1 well-performing run. We then consider the WA of the top M weights as
M increases from 1 to 60. Both have initially the same performance and improve
with M ; yet, WA of weights from different runs gradually outperforms the single-
run WA. Finally, Figure 5.5 shows that this holds only for mild hyperparameter
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Figure 5.3. – Frequencies
of prediction
diversities
(↑) across 2
weights.

Figure 5.4. – WA’s accu-
racy (↑) as
the number
of weights M
increases.

Figure 5.5. – WA’s accu-
racy gain vs.
prediction
diversity (↑) -
2 ≤M < 10.

ranges and with a shared initialization. Otherwise, when hyperparameter distri-
butions are extreme (as defined in Table C.5) or when classifiers are not similarly
initialized, DiWA may perform worse than its members due to a violation of the
locality condition. These experiments confirm that diversity is key as long as the
weights remain averageable.

5.5 Experimental results on DomainBed

Datasets. We now present our evaluation on DomainBed (Gulrajani et al. 2021b).
By imposing the code, the training procedures and the ResNet50 (He et al. 2016b)
architecture, DomainBed is arguably the fairest benchmark for OOD generalization.
It includes 5 multi-domain real-world datasets: PACS (Li et al. 2017a), VLCS (Fang
et al. 2013), OfficeHome (Venkateswara et al. 2017b), TerraIncognita (Beery et al.
2018b) and DomainNet (Peng et al. 2019). Ye et al. 2022 showed that diversity shift
dominates in these datasets. Each domain is successively considered as the target
T while other domains are merged into the source S. The validation dataset is
sampled from S, i.e. we follow DomainBed’s training-domain model selection.
The experimental setup is further described in Appendix C.6.1.

Baselines. ERM is the standard Empirical Risk Minimization. Coral (Sun et al.
2016) is the best approach based on domain invariance. SWAD (Stochastic Weight
Averaging Densely) (Cha et al. 2021) and MA (Moving Average) (Arpit et al. 2021)
average weights along one training trajectory but differ in their weight selection
strategy. SWAD (Cha et al. 2021) is the current state of the art (SoTA) thanks to
it “overfit-aware” strategy, yet at the cost of three additional hyperparameters (a
patient parameter, an overfitting patient parameter and a tolerance rate) tuned
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per dataset. In contrast, MA (Arpit et al. 2021) is easy to implement as it simply
combines all checkpoints uniformly starting from batch 100 until the end of train-
ing. Finally, we report the scores obtained in Arpit et al. 2021 for the costly Deep
Ensembles (DENS) (Lakshminarayanan et al. 2017) (with different initializations):
we discuss other ensembling strategies in Appendix C.3.

Our runs. ERM and DiWA share the same training protocol in DomainBed: yet,
instead of keeping only one run from the grid-search, DiWA leverages M runs.
In practice, we sample 20 configurations from the hyperparameter distributions
detailed in Table C.5 and report the mean and standard deviation across 3 data
splits. For each run, we select the weights of the epoch with the highest valida-
tion accuracy. ERM and MA select the model with highest validation accuracy
across the 20 runs, following standard practice on DomainBed. ENS averages the
predictions of all M = 20 models (with shared initialization). DiWA-restricted
selects 1 ≤M ≤ 20 weights with Algorithm B.1 while DiWA-uniform averages all
M = 20 weights. DiWA† averages uniformly the M = 3 × 20 = 60 weights from
all 3 data splits. DiWA† benefits from larger M (without additional inference cost)
and from data diversity (see Appendix C.4.3). However, we cannot report stan-
dard deviations for DiWA† for computational reasons. Moreover, DiWA† cannot
leverage the restricted weight selection, as the validation is not shared across all
60 weights that have different data splits.

5.5.1 Results on DomainBed

We report our main results in Table 5.1, detailed per domain in Appendix E.1.
With a randomly initialized classifier, DiWA†-uniform is the best on PACS, VLCS
and OfficeHome: DiWA-uniform is the second best on PACS and OfficeHome. On
TerraIncognita and DomainNet, DiWA is penalized by some bad runs, filtered in
DiWA-restricted which improves results on these datasets. Classifier initialization
with LP (Kumar et al. 2022) improves all methods on OfficeHome, TerraIncog-
nita and DomainNet. On these datasets, DiWA† increases MA by 1.3, 0.5 and 1.1

points respectively. After averaging, DiWA† with LP establishes a new SoTA of 68.0%,
improving SWAD by 1.1 points.

DiWA with different objectives. So far we used ERM that does not leverage the
domain information. Table 5.2 shows that DiWA-uniform benefits from averaging
weights trained with Interdomain Mixup (Yan et al. 2020) and Coral (Sun et al.
2016): accuracy gradually improves as we add more objectives. Indeed, as high-
lighted in Appendix C.4.3, DiWA benefits from the increased diversity brought by
the various objectives. This also suggests a new kind of linear connectivity across
models despite being trained with different objectives; the complete analysis of
this is left for future research.
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Table 5.1. – Accuracy (%, ↑) on DomainBed with ResNet50 (best in bold and
second best underlined).

Method Weight selection Init PACS VLCS OfficeHome TerraInc DomainNet Avg

ERM N/A

Random

85.5 ± 0.2 77.5 ± 0.4 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
Coral N/A 86.2 ± 0.3 78.8 ± 0.6 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.6
SWAD Overfit-aware 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
MA Uniform 87.5 ± 0.2 78.2 ± 0.2 70.6 ± 0.1 50.3 ± 0.5 46.0 ± 0.1 66.5
DENS Uniform: M = 6 87.6 78.5 70.8 49.2 47.7 66.8

O
ur

ru
ns

ERM N/A

Random

85.5 ± 0.5 77.6 ± 0.2 67.4 ± 0.6 48.3 ± 0.8 44.1 ± 0.1 64.6
MA Uniform 87.9 ± 0.1 78.4 ± 0.1 70.3 ± 0.1 49.9 ± 0.2 46.4 ± 0.1 66.6
ENS Uniform: M = 20 88.0 ± 0.1 78.7 ± 0.1 70.5 ± 0.1 51.0 ± 0.5 47.4 ± 0.2 67.1
DiWA Restricted: M ≤ 20 87.9 ± 0.2 79.2 ± 0.1 70.5 ± 0.1 50.5 ± 0.5 46.7 ± 0.1 67.0
DiWA Uniform: M = 20 88.8 ± 0.4 79.1 ± 0.2 71.0 ± 0.1 48.9 ± 0.5 46.1 ± 0.1 66.8
DiWA† Uniform: M = 60 89.0 79.4 71.6 49.0 46.3 67.1

ERM N/A

LP

85.9 ± 0.6 78.1 ± 0.5 69.4 ± 0.2 50.4 ± 1.8 44.3 ± 0.2 65.6
MA Uniform 87.8 ± 0.3 78.5 ± 0.4 71.5 ± 0.3 51.4 ± 0.6 46.6 ± 0.0 67.1
ENS Uniform: M = 20 88.1 ± 0.3 78.5 ± 0.1 71.7 ± 0.1 50.8 ± 0.5 47.0 ± 0.2 67.2
DiWA Restricted: M ≤ 20 88.0 ± 0.3 78.5 ± 0.1 71.5 ± 0.2 51.6 ± 0.9 47.7 ± 0.1 67.5
DiWA Uniform: M = 20 88.7 ± 0.2 78.4 ± 0.2 72.1 ± 0.2 51.4 ± 0.6 47.4 ± 0.2 67.6
DiWA† Uniform: M = 60 89.0 78.6 72.8 51.9 47.7 68.0

Table 5.2. – Accuracy (%, ↑) on OfficeHome domain “Art” with various objectives.

Algorithm No WA MA DiWA DiWA†

ERM 62.9 ± 1.3 65.0 ± 0.2 67.3 ± 0.2 67.7
Mixup 63.1 ± 0.7 66.2 ± 0.3 67.8 ± 0.6 68.4
Coral 64.4 ± 0.4 64.4 ± 0.4 67.7 ± 0.2 68.2
ERM/Mixup N/A N/A 67.9 ± 0.7 68.9
ERM/Coral N/A N/A 68.1 ± 0.3 68.7
ERM/Mixup/Coral N/A N/A 68.4 ± 0.4 69.1
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5.6 Discussion

Limitations of DiWA Despite this success, DiWA has some limitations. First,
DiWA cannot benefit from additional diversity that would break the linear con-
nectivity between weights — as discussed in Appendix C.3. Second, DiWA (like all
WA approaches) can tackle diversity shift but not correlation shift: this property
is explained for the first time in Section 5.2.3 and illustrated in Appendix C.7 on
ColoredMNIST.

Related work We provided the related work for ensembling and DG in Sec-
tion 2.1.3.3. We detail here more specifically the differences with the recent “Model
soups” (Wortsman et al. 2022a), which developed a WA algorithm similar to Al-
gorithm B.1. Yet, the task, the theoretical analysis and most importantly the goals
of these two works are different. Regarding the task, Wortsman et al. 2022a and
our work complement each other. Wortsman et al. 2022a demonstrates the robust-
ness of “Model soups” out-of-distribution by evaluating it on several ImageNet
variants with distribution shift. We illustrate that DiWA achieves state-of-the-art
OOD performance against other established OOD methods via a thorough and
fair comparison on the multi-domain DomainBed benchmark. Theoretically, we
explain why WA succeeds under diversity shift. The bias/correlation shift, vari-
ance/diversity shift and diversity-based findings are novel; they are confirmed
empirically. DiWA aims at combining weights from diverse models: our work
may be analyzed as a general framework to average in weights models which
can be obtained in various ways, as traditionally done in ensembling. In contrast,
Wortsman et al. 2022a challenges the standard model selection after a grid search.
Thus, DiWA and Wortsman et al. 2022a are theoretically complementary and
applied successfully in different contexts.

5.7 Conclusion

In this paper, we propose a new explanation for the success of WA in OOD by
leveraging its ensembling nature. Our analysis is based on a new bias-variance-
covariance-locality decomposition for WA, where we theoretically relate bias to
correlation shift and variance to diversity shift. It also shows that diversity is key
to improve generalization. This motivates our DiWA approach that averages in
weights models trained independently. DiWA improves the state of the art on
DomainBed, the reference benchmark for OOD generalization. Critically, DiWA
has no additional inference cost — removing a key limitation of standard ensem-
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bling. Our work may encourage the community to further create diverse learning
procedures and objectives — whose models may be averaged in weights.
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In the following chapters, we consider the problem of generalization for spa-
tiotemporal forecasting and adress two different settings.

In Chapter 6, we consider the problem of generalizing at test-time to new dy-
namics, e.g. when the parameters change. CoDA is a new approach to perform
domain-conditioning for test-time parameter adaptation. CoDA can be seen as
the adaptive extension of DiWA in Chapter 5: both approaches use the weights of
multiple independent NNs, DiWA uses these weights explicitly while CoDA uses
them implicitly via a linear hypernetwork.

In Chapter 7, we consider an alternative approach of generalizing, by designing
better NN architectures for the problem at hand. We consider the problem of
spatiotemporal generalization in Partial Differential Equation (PDE) modeling
and propose a new solution that better accounts for the continuous nature of
these dynamical systems.

The main contributions are outlined in Section 1.3.3.





Chapter 6

Context-Informed Dynamics Adapta-
tion

Chapter abstract

Data-driven approaches to modeling physical systems fail to gener-
alize to unseen systems that share the same general dynamics with
the learning domain, but correspond to different physical contexts.
We propose a new framework for this key problem, context-informed
dynamics adaptation (CoDA), which takes into account the distribu-
tional shift across systems for fast and efficient adaptation to new dy-
namics. CoDA leverages multiple environments, each associated to
a different dynamic, and learns to condition the dynamics model on
contextual parameters, specific to each environment. The condition-
ing is performed via a hypernetwork, learned jointly with a context
vector from observed data. The proposed formulation constrains the
search hypothesis space for fast adaptation and better generalization
across environments with few samples. We theoretically motivate our
approach and show state-of-the-art generalization results on a set of
nonlinear dynamics, representative of a variety of application domains.
We also show, on these systems, that new system parameters can be
inferred from context vectors with minimal supervision.

The work in this chapter has led to the publication of a conference paper:

• M. Kirchmeyer*, Y. Yin*, J. Dona, N. Baskiotis, A. Rakotomamonjy, and
P. Gallinari (17–23 Jul 2022). “Generalizing to New Physical Systems via
Context-Informed Dynamics Model”. In: Proceedings of the 39th International
Conference on Machine Learning (ICML). vol. 162. Proceedings of Machine
Learning Research. PMLR, pp. 11283–11301.

97
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6.1 Introduction

NN approaches to modeling dynamical systems have recently raised the interest of
several communities leading to an increasing number of contributions. This topic
was explored in several domains, ranging from simple dynamics e.g. Hamiltonian
systems (Greydanus et al. 2019; Chen et al. 2020b) to more complex settings
e.g. fluid dynamics (Kochkov et al. 2021; Li et al. 2021c; Wandel et al. 2021),
earth system science and climate (Reichstein et al. 2019), or health (Fresca et al.
2020). NN emulators are attractive as they may for example provide fast and low
cost approximations to complex numerical simulations (Duraisamy et al. 2019;
Kochkov et al. 2021), complement existing simulation models when the physical
law is partially known (Yin et al. 2021b) or even offer solutions when classical
solvers fail e.g. with very high number of variables (Sirignano et al. 2018).

A model of a real-world dynamical system should account for a wide range
of contexts resulting from different external forces, spatio-temporal conditions,
boundary conditions, sensors characteristics or system parameters. These contexts
characterize the dynamics phenomenon. For instance, in cardiac electrophysiology
(Neic et al. 2017; Fresca et al. 2020), each patient has its own specificities and
represents a particular context. In the study of epidemics’ diffusion (Shaier et al.
2021), computational models should handle a variety of spatial, temporal or even
sociological contexts. The same holds for most physical problems, e.g. forecasting
of spatial-location-dependent dynamics in climate (de Bézenac et al. 2018b), fluid
dynamics prediction under distinct external forces (Li et al. 2021c), etc.

The physics approach for modeling dynamical systems relies on a strong prior
knowledge about the underlying phenomenon. This provides a causal mechanism
which is embedded in a physical dynamics model, usually a system of differen-
tial equations, and allows the physical model to handle a whole set of contexts.
Moreover, it is often possible to adapt the model to new or evolving situations,
e.g. via data assimilation (Kalman 1960; Courtier et al. 1994).

In contrast, ERM based Machine Learning (ML) fails to generalize to unseen dy-
namics. Indeed, it assumes IID data for training and inference while dynamical
observations are non-IID due to changing initial conditions or physical contexts.

Thus any ML framework that handles this question should consider other as-
sumptions. A common one used e.g. in DG (Wang et al. 2021b), states that data
come from several environments a.k.a. domains, each with a different distribu-
tion. Training is performed on a sample of the environments and test corresponds
to new ones. DG methods attempt to capture problem invariants via a unique
model, assuming that there exists a representation space suitable for all the en-
vironments. This might be appropriate for classification, but not for dynamical
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systems where the underlying dynamics differs for each environment. For this
problem, we need to learn a function that adapts to each environment, based on
a few observations, instead of learning a single domain-invariant function. This
is the objective of meta-learning (Thrun et al. 1998), a general framework for fast
adaptation to unknown contexts. The standard gradient-based methods (e.g. Finn
et al. 2017) are unsuitable for complex dynamics due to their bi-level optimization
and are known to overfit when little data is available for adaptation, as in the few-
shot learning setting explored in this paper (Mishra et al. 2018). Like invariant
methods, meta-learning usually handles basic tasks e.g. classification; regression
on static data or simple sequences and not challenging dynamical systems.

Generalization for modeling real-world dynamical systems is a recent topic. Sim-
ple simulated dynamics were considered in Reinforcement Learning (Lee et al.
2020; Clavera et al. 2019) while physical dynamics were modeled in recent works
(Yin et al. 2021a). These approaches consider either simplified settings or addi-
tional hypotheses e.g. prior knowledge and do not offer general solutions to our
adaptation problem (details in Section 6.6).

We propose a new ML framework for generalization in dynamical systems, called
COntext-informed Dynamics Adaptation (CoDA). Like in DG, we assume avail-
ability of several environments, each with its own specificity, yet sharing some
physical properties. Training is performed on a sample of the environments. At
test time, we assume access to example data from a new environment, here a tra-
jectory. Our goal is to adapt to the new environment distribution with this trajec-
tory. More precisely, CoDA assumes that the underlying system is described by a
parametrized differential equation, either an Ordinary Differential Equation (ODE)
or a PDE. The environments share the parametrized form of the equation but differ
by the values of the parameters or initial conditions. CoDA conditions the dynam-
ics model on learned environment characteristics a.k.a. contexts and generalizes
to new environments and trajectories with few data. Our main contributions are:

• We introduce a multi-environment formulation of the generalization problem
for dynamical systems.

• We propose a novel context-informed framework, CoDA, to this problem. It
conditions the dynamics model on context vectors via a hypernetwork. CoDA
introduces a locality and a low-rank constraint, which enable fast and efficient
adaptation with few data.

• We analyze theoretically the validity of our low-rank adaptation setting for
modeling dynamical systems.

• We evaluate two variations of CoDA on several ODEs/PDEs representative of a
variety of application domains, e.g. chemistry, biology, physics. CoDA achieves
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SOTA generalization results on in-domain and one-shot adaptation scenarios.
We also illustrate how, with minimal supervision, CoDA infers accurately new
system parameters from learned contexts.

The paper is organized as follows. In Section 6.2, we present our multi-environment
problem. In Section 6.3, we introduce the CoDA framework. In Section 6.4, we
detail implementation. In Section 6.5, we present our experimental results.

6.2 Generalization for Dynamical Systems

We present our generalization problem for dynamical systems, then introduce our
multi-environment formalization.

6.2.1 Problem Setting

We recall the setting presented in Sections 2.2.1 and 2.2.2. We consider dynamical
systems that are driven by unknown temporal differential equations of the form:

∂vt
∂t

= f(vt), (6.1)

where t ∈ R is a time index, vt is a time-dependent state in a space V and
f : V → TV a function that maps vt ∈ V to its temporal derivatives in the tangent
space TV . f belongs to a class of vector fields F . V ⊆ Rd (d ∈ N⋆) for ODEs or V
is a space of functions defined over a spatial domain X (e.g. 2D or 3D Euclidean
space) for PDEs.

Functions f ∈ F define a space Df of state trajectories v : T → V , mapping t in
an interval T including 0, to the state vt ∈ V . Trajectories are defined by the initial
condition v0 ∼ p(V0) and take the form:

∀t ∈ T , vt = v0 +

∫ t

0

f(vτ )dτ ∈ V (6.2)

In the following, we assume that f ∈ F is parameterized by unknown attributes
e.g. physical parameters, external forcing terms which affect the trajectories.
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6.2.2 Multi-Environment Learning Problem

We propose to learn the class of functions F with a data-driven dynamics model gθ
parametrized by θ ∈ Rdθ . Given f ∈F , we observe N trajectories in Df .

The standard ERM objective considers that all trajectories are IID. Here, we propose
a multi-environment learning formulation where observed trajectories of f form
an environment e ∈ E . We denote f e and De the corresponding function and set
of N trajectories. We assume that we observe training environments Etr, consisting
of several trajectories from a set of known functions {f e}e∈Etr .

The goal is to learn gθ that adapts easily and efficiently to new environments
Ead, corresponding to unseen functions {f e}e∈Ead (“ad” stands for adaptation). We
define ∀e ∈ E the MSE loss, over De as

L(θ,De) ≜
∑
ve∈De

∫
t∈T
∥f e(vet )− gθ(vet )∥22dt (6.3)

In practice, f e is unavailable and we can only approximate it from discretized
trajectories. We detail later in Eq. (6.10) our approximation method based on an
integral formulation. It fits observed trajectories directly in state space.

6.3 The CoDA Learning Framework

We introduce CoDA, a new context-informed framework for learning dynamics
on multiple environments. It relies on a general adaptation rule (Section 6.3.1) and
introduces two key properties: locality, enforced in the objective (Section 6.3.2) and
low-rank adaptation, enforced in the proposed model via hypernetwork-decoding
(Section 6.3.3). The validity of this framework for dynamical systems is analyzed
in Section 6.3.4 and its benefits are discussed in Section 6.3.5.

6.3.1 Adaptation Rule

The dynamics model gθ should adapt to new environments. Hence, we propose
to condition gθ on observed trajectories De,∀e ∈ E . Conditioning is performed via
an adaptation network Aπ, parametrized by π, which adapts the weights of gθ to an
environment e ∈ E according to

θe ≜ Aπ(De) ≜ θc + δθe, π ≜ {θc, {δθe}e∈E} (6.4)
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θc ∈ Rdθ are shared parameters, used as an initial value for fast adaptation to new
environments. δθe ∈ Rdθ are environment-specific parameters conditioned on De.

6.3.2 Constrained Optimization Problem

Given the adaptation rule in Eq. (6.4), we introduce a constrained optimization
problem which learns parameters π such that ∀e ∈ E , δθe is small and g fits
observed trajectories. It introduces a locality constraint with a norm ∥ · ∥:

min
π

∑
e∈E
∥δθe∥2 s.t. ∀ve ∈ De,∀t ∈ R,

∂vet
∂t

= gθc+δθe(v
e
t )

We consider an approximation of this problem which relaxes the equality con-
straint with the MSE loss L in Eq. (6.3).

min
π

∑
e∈E

(
L(θc + δθe,De) + λ∥δθe∥2

)
(6.5)

λ is a hyperparameter. For training, we minimize Eq. (6.5) w.r.t. π over training en-
vironments Etr. After training, θc is freezed. For adaptation, we minimize Eq. (6.5)
over new environments Ead w.r.t. {δθe}e∈Ead .

The locality constraint in the training objective Eq. (6.5) enforces δθe to remain
close to the shared θc solutions. It plays several roles. First, it fosters fast adapta-
tion by acting as a constraint over θc ∈ Rdθ during training s.t. minimas {θe⋆}e∈E
are in a neighborhood of θc i.e. can be reached from θc with few update steps.
Second, it constrains the hypothesis space at fixed θc. Under some assumptions,
it can simplify the resolution of the optimization problem w.r.t. δθe by turning op-
timization to a quadratic convex problem with an unique solution. We show this
property for our solution in Proposition 6.1. The positive effects of this constraint
will be illustrated on an ODE system in Section 6.3.3.

6.3.3 Context-Informed Hypernetwork

Eq. (6.5) involves learning δθe for each environment. For adaptation, δθe should
be inferred from few observations of the new environment. Learning such high-
dimensional parameters is prone to over-fitting, especially in low data regimes.
We propose a hypernetwork-based solution (Figure 6.1) to solve efficiently this
problem. It operates on a low-dimensional space, yields fixed-cost adaptation and
shares efficiently information across environments.
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Figure 6.1. – Context-Informed Dynamics Adaptation (CoDA).

Formulation We estimate δθe through a linear mapping of conditioning informa-
tion, called context, learned from De and denoted ξe ∈ Rdξ . W = (W1, · · · ,Wdξ) ∈
Rdθ×dξ is the weight matrix of the linear decoder s.t.

Aπ(De) ≜ θc +Wξe, π ≜ {W, θc, {ξe}e∈E} (6.6)

W is shared across environments and defines a low-dimensional subspaceW ≜
Span(W1, ...,Wdξ), of dimension at most dξ, to which the search space of δθe is
restricted. ξe is specific to each environment and can be interpreted as learning
rates along the rows of W . In our experiments, dξ ≪ dθ is small, at most 2. Thus,
adaptation to new environments only requires to learn very few parameters, which define
a completely new dynamics model g.

Aπ corresponds to an affine mapping of ξe parametrized by {W, θc}, a.k.a. a linear
hypernetwork. Note that hypernetworks (Ha et al. 2017) have been designed to
handle single-environment problems and learn a separate context per layer. Our
formalism involves multiple environments and defines a context per environment
for all layers of g.

Linearity of the hypernetwork is not restrictive as contexts are directly learned
through an inverse problem detailed in Equations (6.7) and (6.8), s.t. expressivity
is similar to a nonlinear hypernetwork with a final linear activation.

Objectives We derive the training and adaptation objectives by inserting Eq. (6.6)
into Eq. (6.5). For training, both contexts and hypernetwork are learned with:

min
θc,W,{ξe}e∈Etr

∑
e∈Etr

(
L(θc +Wξe,De) + λ∥Wξe∥2

)
(6.7)
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After training, θc is kept fixed and for adaptation to a new environment, only the
context vector ξe is learned with:

min
{ξe}e∈Ead

∑
e∈Ead

(
L(θc +Wξe,De) + λ∥Wξe∥2

)
(6.8)

Implementation of Equations (6.7) and (6.8) is detailed in Section 6.4. We apply
gradient descent. In Proposition 6.1, we show for ∥·∥ = ℓ2, that Eq. (6.8) admits an
unique solution, recovered from initialization at 0 with a single preconditioned
gradient step, projected onto subspaceW defined by W .

Proposition 6.1 (Proof in Appendix D.2). Given {θc,W} fixed, if ∥ · ∥ = ℓ2, then
Eq. (6.8) is quadratic. If λ′W⊤W or H̄e(θc) = W⊤∇2

θL(θc,De)W are invertible then
H̄e(θc) + λ′W⊤W is invertible except for a finite number of λ′ values. The problem in
Eq. (6.8) is then also convex and admits an unique solution, {ξe⋆}e∈Ead . With λ′ ≜ 2λ,

ξe∗ = −
(
H̄e(θc) + λ′W⊤W

)−1

W⊤∇θL(θc,De) (6.9)

Interpretation We now interpret CoDA by visualizing its loss landscape in Fig-
ure 6.2a and comparing it to ERM’s loss landscape in Figure 6.2b. We use the
package in Li et al. (2018b) to plot loss landscapes around θc and consider the
Lotka-Volterra system, described in Section 6.5.1.

In Figure 6.2a, loss values of CoDA are projected onto subspaceW , where dξ = 2.
We make three observations. First, across environments, the loss is smooth and
has a single minimum around θc. Second, the local optimum of the loss is close
to θc across environments. Finally, the minimal loss value on W around θc is
low across environments. The two first properties were discussed in Section 6.3.2
and are a direct consequence of the locality constraint on W . When ∥ · ∥ = ℓ2, it
makes the optimization problem in Eq. (6.7) quadratic w.r.t. ξe and convex under
invertibility of H̄e(θc) + λ′W⊤W as detailed in Proposition 6.1. We provided in
Eq. (6.9) the closed form expression of the solution. It also imposes small ∥ξe∥
s.t. when minimizing the loss in Eq. (6.7), θc remains close to local optimas of
all training environments. The final observation illustrates that CoDA finds a
subspace W with environment-specific parameters of low loss values i.e. low-
rank adaptation performs well.

In Figure 6.2b, loss values of ERM are projected onto the span of the two principal
gradient directions. We observe that, unlike CoDA, ERM does not find low loss
values. Indeed, it aims at finding θc with good performance across environments,
thus cannot model several dynamics.
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Figure 6.2. – Loss landscapes centered in θc, marked with ×, for 3 environments
on the Lotka-Volterra ODE. ∀e, → points to the local optimum θe⋆ with
loss value reported in yellow.

6.3.4 Validity for Dynamical Systems

We further motivate low-rank decoding in our context-informed hypernetwork
approach by providing some evidence that gradients at θc across environments
define a low-dimensional subspace. We consider the loss L in Eq. (6.3) and define
the gradient subspace in Definition 6.2.

Definition 6.2 (Gradient directions). With L in Eq. (6.3), ∀θc ∈ Rdθ parametrizing
a dynamics model gθc , the subspace generated by gradient directions at θc across
environments E is denoted Gθc ≜ Span({∇θL(θc,De)}e∈E).

We show, in Proposition 6.3, low-dimensionality of Gθc for linearly parametrized
systems.

Proposition 6.3 (Low-rank under linearity. Proof in Appendix D.2). Given a class
of linearly parametrized dynamics F with dp varying parameters, ∀θc∈Rdθ, subspace Gθc
in Definition 6.2 is low-dimensional and dim(Gθc)≤dp≪dθ.

The linearity assumption is not restrictive as it is present in a wide variety of
real-world systems e.g. Burger or Korteweg–De Vries PDE (Raissi et al. 2019),
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convection-diffusion (Long et al. 2018b), wave and reaction diffusion equations
(Yin et al. 2021b) etc.

Under nonlinearity, we do not have the same theoretical guarantee, yet, we show
empirically in Appendix D.4 that low-dimensionality of parameters of the dy-
namics model still holds for several systems. This property is comforted by recent
work that highlighted that gradients are low-rank throughout optimization in
single-domain settings, i.e. that the solution space is low-dimensional (Gur-Ari et
al. 2019; Li et al. 2018a; Li et al. 2018b). In the same spirit as CoDA, this property
was leveraged to design efficient solutions to the learning problems (Frankle et al.
2019; Vogels et al. 2019).

6.3.5 Benefits of CoDA

We highlight the benefits of CoDA. CoDA is a general time-continuous frame-
work that can be used with any approximator gθ of the derivative Eq. (6.3). It
can be trained with a given temporal resolution and tested on another; it han-
dles irregularly-sampled sequences. The choice of the approximator gθ defines
the ability to handle different spatial resolutions for PDEs, as further detailed in
Section 6.5.3.

Compared to related adaptation methods, CoDA presents several advantages.
First, as detailed in Appendix D.1.1, the adaptation rule in Eq. (6.4) is similar to
the one used in Gradient-Based Meta Learning (GBML); yet, our first order joint
optimization problem in Eq. (6.5) simplifies the complex bi-level optimization
problem (Antoniou et al. 2019). Second, CoDA introduces the two key prop-
erties of locality constraint and low-rank adaptation which guarantee efficient
adaptation to new environments as discussed in Section 6.3.3. Third, it general-
izes contextual meta-learning methods (Garnelo et al. 2018; Zintgraf et al. 2019),
which also perform low-rank adaptation, via the hypernetwork decoder (details in
Appendix D.1.2). Our decoder learns complex environment-conditional dynamics
models while controlling their complexity. Finally, CoDA learns context vectors
through an inverse problem as Zintgraf et al. (2019). This decoder-only strategy is
particularly efficient and flexible in our setting. An alternative is to infer them via
a learned encoder of De as Garnelo et al. (2018). Yet, the latter was observed to
underfit (Kim et al. 2019a), requiring extensive tuning of the encoder and decoder
architecture. Overall, CoDA is easy to implement and maintains expressivity with
a linear decoder.
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6.4 Framework Implementation

We detail how to perform trajectory-based learning with CoDA and describe two
instantiations of the locality constraint. We detail the pseudo-code.

Trajectory-Based Formulation As derivatives in Eq. (6.3) are not directly ob-
served, we use in practice for training a trajectory-based formulation of Eq. (6.3).
We consider a set of N trajectories, De. Each trajectory is discretized over a uni-
form temporal grid T and spatial grid X for PDEs. Our loss writes as:

L(θ,De) =
∑
ve∈De

∑
x∈X

∑
t∈T
∥vet (x)− ṽet (x)∥22 where ṽet = ve0 +

∫ t

t0

gθ(ṽ
e
τ )dτ (6.10)

vet (x) is the state value in the considered trajectory from environment e at spatial
coordinate x and time t. vet ≜ [vet (x)]

⊤
x∈X is the state vector in the considered

trajectory from environment e over the spatial domain X at time t and ve0 is
the corresponding initial condition. To compute ṽet , we apply for integration a
numerical solver (Hairer et al. 2000) as detailed later.

Locality Instead of penalizing λ∥Wξe∥2 in Eq. (6.7), we found it more efficient
to penalize separately W and ξe. We thus use the following regularization:

R(W, ξe) ≜ λξ∥ξe∥22 + λΩΩ(W ) (6.11)

It involves hyperparameters λξ, λΩ and a norm Ω(W ) which depends on the choice
of ∥·∥ in Eq. (6.5). Minimizing R(W, ξe) minimizes an upper-bound to ∥·∥, derived
in Appendix D.5 for the two considered variations of ∥ · ∥:

• CoDA-ℓ2 sets ∥ · ∥ ≜ ℓ2(·) and Ω ≜ ℓ22, constraining Wξe to a sphere.

• CoDA-ℓ1 sets ∥ · ∥ ≜ ℓ1(·) and Ω = ℓ1,2 over rows i.e. Ω(W ) ≜
∑dθ

i=1 ∥Wi,:∥2
to induce sparsity and find most important parameters for adaptation. ℓ1,2
constrainsW to be axis-aligned; then the number of solutions is finite as dim(W)

is finite.

Pseudo-Code We solve Eq. (6.7) for training and Eq. (6.8) for adaptation using
Equations (6.10) and (6.11) and Algorithm 6.1. We back-propagate through the
solver with torchdiffeq (Chen 2021) and apply exponential Scheduled Sampling
(Bengio et al. 2015) to stabilize training.
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Algorithm 6.1 CoDA Pseudo-code
1: Training:

Require: Etr ⊂ E , {Detr}etr∈Etr with ∀etr ∈ Etr,#Detr = Ntr;
2: π = {W, θc, {ξetr}etr∈Etr} where W ∈ Rdθ×dξ , θc ∈ Rdθ randomly initialized and
∀etr ∈ Etr, ξ

etr = 0 ∈ Rdξ .
3: loop
4: π ← π − η∇π

( ∑
etr∈Etr

L(θc +Wξetr ,Detr)+R(W, ξetr)
)

5: end loop
6: Adaptation:

Require: ead ∈ Ead; Dead with #Dead = Nad;
7: Trained W ∈ Rdθ×dξ , θc ∈ Rdθ and ξead = 0 ∈ Rdξ .
8: loop
9: ξead←ξead− η∇ξead

(
L(θc +Wξead ,Dead) +R(W, ξead)

)
10: end loop

Table 6.1. – Test MSE (↓) in training environments Etr (In-Domain), new environ-
ments Ead (Adaptation). Best in bold; second underlined.

LV (×10−5) GO (×10−4) GS (×10−3) NS (×10−4)

In-domain Adaptation In-domain Adaptation In-domain Adaptation In-domain Adaptation

MAML 60.3±1.3 3150±940 57.3±2.1 1081±62 3.67±0.53 2.25±0.39 68.0±8.0 51.1±4.0
ANIL 381±76 4570±2390 74.5±11.5 1688±226 5.01±0.80 3.95±0.11 61.7±4.3 48.6±3.2
Meta-SGD 32.7±12.6 7220±4580 42.3±6.9 1573±413 2.85±0.54 2.68±0.20 53.9±28.1 44.3±27.1
LEADS 3.70±0.27 47.61±12.47 31.4±3.3 113.8±41.5 2.90±0.76 1.36±0.43 14.0±1.55 28.6±7.23

CAVIA-FiLM 4.38±1.15 8.41±3.20 4.44±1.46 3.87±1.28 2.81±1.15 1.43±1.07 23.2±12.1 22.6±9.88

CAVIA-Concat 2.43±0.66 6.26±0.77 5.09±0.35 2.37±0.23 2.67±0.48 1.62±0.85 25.5±6.31 26.0±8.24

CoDA-ℓ2 1.52±0.08 1.82±0.24 2.45±0.38 1.98±0.06 1.01±0.15 0.77±0.10 9.40±1.13 10.3±1.48

CoDA-ℓ1 1.35±0.22 1.24±0.20 2.20±0.26 1.86±0.29 0.90±0.057 0.74±0.10 8.35±1.71 9.65±1.37

6.5 Experiments

We validate our approach on four classes of challenging nonlinear temporal and
spatiotemporal physical dynamics, representative of various fields e.g. chemistry,
biology and fluid dynamics. We evaluate in-domain and adaptation prediction
performance and compare them to related baselines. We also investigate how
learned context vectors can be used for system parameter estimation. We consider
a few-shot adaptation setting where only few trajectories (Nad) are available at
adaptation time on new environments.

6.5.1 Dynamical Systems

We consider four ODEs and PDEs described in Appendix D.6.1. ODEs include
Lotka-Volterra (LV, Lotka 1925) and Glycolitic-Oscillator (GO, Daniels et al. 2015),
modelling respectively predator-prey interactions and the dynamics of yeast gly-
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colysis. PDEs are defined over a 2D spatial domain and include Gray-Scott (GS,
Pearson 1993), a reaction-diffusion system with complex spatiotemporal patterns
and the challenging Navier-Stokes system (NS, Stokes 1851) for incompressible
flows. All systems are nonlinear w.r.t. system states and all but GO are linearly
parametrized. The analysis in Section 6.3.4 covers all systems but GO. Experiments
on the latter show that CoDA also extends to nonlinearly parametrized systems.

6.5.2 Experimental Setting

We consider forecasting: only the initial condition is used for prediction. We per-
form two types of evaluation: in-domain generalization on Etr (In-domain) and
out-of-domain adaptation to new environments Ead (Adaptation). Each environ-
ment e ∈ E is defined by system parameters and pe ∈ Rdp denotes those that
vary across E . dp represents the degrees of variations in F ; dp = 2 for LV, GO,
GS and dp = 1 for NS. Appendix D.6.1 defines for each system the number of
training and adaptation environments (#Etr and #Ead) and the corresponding pa-
rameters. Appendix D.6.1 also reports the number of trajectories Ntr per training
environment in Etr and the distribution p(v0) from which are sampled all initial
conditions (including adaptation and evaluation initial conditions). For Adaptation,
we consider Nad = 1 trajectory per new environment in Ead to infer the context
vector with Eq. (6.8). We consider more trajectories per adaptation environment
in Section 6.5.7.

Evaluation is performed on 32 new test trajectories per environment. We re-
port, in our tables, mean and standard deviation of MSE across test trajectories
(Eq. (6.10)) over four different seeds. We report, in our figures, Mean Absolute
Percentage Error (MAPE) in % over trajectories, as it allows to better compare
performance across environments and systems. We define MAPE(z, y) between
a d-dimensional input z and target y as 1

d

∑
j=1...d:yj ̸=0

|zj−yj |
|yj | . Over a trajectory, it

extends into
∫
t∈T MAPE(ṽt, vt)dt, with ṽ defined in Eq. (6.10).

6.5.3 Implementation of CoDA

We used for gθ MLPs for ODEs, a resolution-dependent ConvNet for GS and a
resolution-agnostic FNO (Li et al. 2021c) for NS that can be used on new reso-
lutions. Architecture details are provided in Appendix D.6.2. We tuned dξ and
observed that dξ = dp, the number of system parameters that vary across environ-
ments, performed best (cf. Section 6.5.6). We use Adam optimizer Kingma et al.
2015 for all datasets; RK4 solver for LV, GS, GO and Euler solver for NS. Optimization
and regularization hyperparameters are detailed in Appendix D.6.2.
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6.5.4 Baselines

We consider three families of baselines, compared in Appendix Figure D.1 and
detailed in Section 2.1. First, GBML methods MAML (Finn et al. 2017), ANIL (Rusu
et al. 2019) and Meta-SGD (Li et al. 2017b). Second, the Multi-Task Learning (MTL)
method LEADS (Yin et al. 2021a). Finally, the contextual meta-learning method
CAVIA (Zintgraf et al. 2019), with conditioning via concatenation (Concat) or
linear modulation of final hidden features (FiLM, (Perez et al. 2018)). All baselines
are adapted to be dynamics-aware i.e. time-continuous: they consider the loss in
Eq. (6.10), as CoDA. Moreover, they share the same architecture for gθ as CoDA.

6.5.5 Generalization Results

In Table 6.1, we observe that CoDA improves significantly test MSE w.r.t. our base-
lines for both In-Domain and Adaptation settings. For PDE systems and a given
test trajectory, we visualize in Figures D.3 and D.4 in Appendix D.7 the predicted
MSE by these models along the ground truth. We also notice improvements for
CoDA over our baselines. Across datasets, all baselines are subject to a drop in
performance between In-Domain and Adaptation while CoDA maintains remark-
ably the same level of performance in both cases. In more details, GBML methods
(MAML, ANIL, Meta-SGD) overfit on training In-Domain data especially when
data is scarce. This is the case for ODEs which include less system states for train-
ing than PDEs. LEADS performs better than GBML but overfits for Adaptation as it
does not adapt efficiently. CAVIA-Concat/FiLM perform better than GBML and
LEADS, as they leverage a context, but are less expressive than CoDA. Both varia-
tions of CoDA perform best as they combine the benefits of low-rank adaptation
and locality constraint. CoDA-ℓ1 is better than CoDA-ℓ2 as it induces sparsity,
further constraining the hypothesis space.

We evaluate in Figure 6.3 CoDA-ℓ1 on LV for Adaptation over a wider range of
adaptation environments (#Ead = 51× 51 = 2601). We report mean MAPE over Ead

(top). We observe three regimes: inside the convex hull of training environments
Etr, MAPE is very low; outside the convex-hull, MAPE remains low in a neighbor-
hood of Etr; beyond this neighborhood, MAPE increases. CoDA thus generalizes
efficiently in the neighborhood of training environments and degrades outside
this neighborhood. We plot reconstructed phase space portraits (bottom) on four
selected environments and observe that the learned solution (green) closely fol-
lows the target trajectories (blue).
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Figure 6.3. – Adaptation results with CoDA-ℓ1 on LV. Parameters (β, δ) are sampled

in [0.25, 1.25]2 on a 51× 51 uniform grid, leading to 2601 adaptation
environments Ead. • are training environments Etr. We report MAPE
(↓) across Ead (top). On the bottom, we choose four of them (×, e1–e4),
to show the ground-truth (blue) and predicted (green) phase space
portraits. x, y are respectively the quantity of prey and predator in
the system in Eq. (D.4).

Table 6.2. – Locality and In-Domain test MSE (↓). Best in bold.

LV (×10−5) GO (×10−4)

CoDA W/o ℓ2 With ℓ2 W/o ℓ2 With ℓ2

Full 2.28±0.29 1.52±0.08 2.98±0.71 2.45±0.38

FirstLayer 2.25±0.29 2.41±0.23 2.38±0.71 2.12±0.55

LastLayer 1.86±0.24 1.27±0.03 28.4±0.60 28.4±0.64

6.5.6 Ablation Studies

We perform two studies on LV and GO. In a first study in Table 6.2, we evaluate the
gains due to using ℓ2 locality constraint on In-Domain evaluation. On line 1 (Full),
we observe that CoDA-ℓ2 performs better than CoDA without locality constraint.
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Figure 6.4. – Dimension of the context vectors (dξ) and test In-Domain MAPE (↓)
with CoDA-ℓ1. “⋆” is the smallest MAPE.

Prior work perform adaptation only on the final layer with some performance
improvements on classification or Hamiltonian system modelling (Raghu et al.
2020; Chen et al. 2020a). In order to evaluate this strategy, we manually restrict
hypernetwork-decoding to only one layer in the dynamics model gθ, either the first
layer (line 2) or the last layer (line 3). We observe that the importance of the layer
depends on the parametrization of the system: for LV, linearly parametrized, the
last layer is better while for GO, nonlinearly parametrized, the first layer is better.
CoDA-ℓ1 generalizes this idea by automatically selecting the useful adaptation
subspace via ℓ1,2 regularization, offering a more flexible approach for sparsity.

In a second study in Figure 6.4, we analyze the impact on MAPE of the dimension
of context vectors dξ for CoDA-ℓ1. We recall that dξ upper-bounds the dimen-
sion of the adaptation subspace W and was cross-validated in Table 6.1. In the
following, dp is the number of parameters that vary across environments. We
illustrate the effect of the cross-validation on MAPE for dp = 2 on LV and GO as in
Section 6.5.5 and additionally for dp = 4 on LV. We observe in Figure 6.4 that the
minimum of MAPE is reached for dξ = dp with two regimes: when dξ < dp, per-
formance decreases as some system dimensions cannot be learned; when dξ > dp,
performance degrades slightly as unnecessary directions of variations are added,
increasing the hypothesis search space. This study shows the validity of the low-
rank assumption and illustrates how the unknown dp can be recovered through
cross-validation.

6.5.7 Sample Efficiency

We handled originally one-shot adaptation (Nad = 1), the most challenging set-
ting. We vary the number of adaptation trajectories Nad on LV in Table 6.3. With
more trajectories, performance improves significantly for MAML; moderately for
LEADS; while it remains flat for CoDA. This highlights CoDA’s sample-efficiency
and meta-overfitting for GBML (Mishra et al. 2018).
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Table 6.3. – Test MSE ×10−5 (↓) in new environments Ead (Adaptation) on Lotka-
Volterra. Best for each setting in bold.

Number of adaptation trajectories Nad

1 5 10

MAML 3150±940 239±16 173±10

LEADS 47.61±12.47 19.89±7.23 19.42±3.52

CoDA-ℓ1 1.24±0.20 1.21±0.18 1.20±0.17

Table 6.4. – Parameter estimation MAPE (↓) for CoDA-ℓ1 on LV (#Etr = 9), GS
(#Etr = 4) and NS (#Etr = 5).

In-convex-hull Out-of-convex-hull Overall

MAPE (%) #Ead MAPE (%) #Ead MAPE (%)

LV 0.15±0.11 625 0.73±1.33 1976 0.59±1.33

GS 0.37±0.25 625 0.74±0.67 1976 0.65±0.62

NS 0.10±0.08 40 0.51±0.35 41 0.30±0.33

6.5.8 Parameter Estimation

We use CoDA to perform parameter estimation, leveraging the links between
learned context and system parameters.

6.5.9 Empirical observations

In Figure 6.5a (left), we visualize on LV the learned context vectors ξe (red) and
the system parameters pe (black), ∀e ∈ Etr ∪ Ead. We observe empirically a linear
bijection between these two sets of vectors. Such a correspondence being learned
on the training environments, we can use the correspondence to verify if it still
applies to new adaptation environments. Said otherwise, we can check if our
model is able to infer the true parameters for new environments.

We evaluate in Table 6.4 the parameter estimation MAPE over LV, GS and NS. Fig-
ure 6.5 displays estimated parameters along estimation MAPE. Experimentally, we
observe low MAPE inside and even outside the convex-hull of training environ-
ments. Thus, CoDA identifies accurately the unknown system parameters with
little supervision.
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Figure 6.5. – Parameter estimation with CoDA-ℓ1 in new adaptation environ-
ments on (a) LV, (b) GS and (c) NS. In (a), we visualize: on the left,
context vectors ξ (red); on the right, true parameters (β, δ) (black). In
(b) and (c), we visualize estimated parameters with corresponding
estimation MAPE (↓). • are training environments Etr with known
parameters. - - delimits the convex hull of Etr.

Theoretical motivation We justify these empirical observations theoretically in
Proposition 6.4 under the following conditions:

Assumption 12. The dynamics in F are linear w.r.t. inputs and system parameters.

Assumption 13. Dynamics model g, hypernet A are linear.

Assumption 14. ∀e ∈ E , parameters pe ∈ Rdp are unique.

Assumption 15. Context vectors have dimension dξ = dp.

Assumption 16. System parameters p of all dynamics f in a basis B of F are known.

Proposition 6.4 (Identification under linearity. Proof in Appendix D.3). Under
Assumptions 12 to 16, system parameters are perfectly identified on new environments if
the dynamics model g and hypernetwork A satisfy ∀f ∈ B with parameter p, gA(p) = f .

Intuitively, Proposition 6.4 says that given some observations representative of
the degrees of variation of the data (a basis of F) and given the system param-
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eters for these observations (Assumption 16), we are guaranteed to recover the
parameters of new environments for a family systems. This strong guarantee
requires strong conditions. Assumptions 12 and 13 state that the systems should
be linear w.r.t. inputs and that the dynamics model should be linear too. Linearity
of the hypernetwork is not an issue as detailed in Section 6.3.3. Assumption 14

applies to several real-world systems used in our experiments (cf. Appendix D.3
Lemmas D.1 and D.2). Assumption 15 is not restrictive as we showed that dp is
recovered through cross-validation (Figure 6.4).

We propose an extension of Proposition 6.4 in Proposition 6.5 to nonlinear sys-
tems w.r.t. inputs and nonlinear dynamics model g. This alleviates the linearity
assumption in Assumptions 12 and 13 and better fits our experimental setting.

Proposition 6.5 (Local identification under non-linearity. Proof in Appendix D.3).
For linearly parametrized systems, nonlinear w.r.t. inputs and nonlinear dynamics model
gθ with parameters output by a linear hypernetwork A, ∃α > 0 s.t. system parameters
are perfectly identified ∀e ∈ E where ∥ξe∥ ≤ α if ∀f ∈ B with parameter p, gA(α p

∥p∥ )
= f .

Proposition 6.5 states that system parameters are recovered for environments
with context vectors of small norm, under a rescaling condition on true system
parameters. Proposition 6.5 explains why estimation error increases when system
parameters differ greatly from training ones, as these systems are more likely to
violate the norm condition.

6.6 Related Work

OOD methods extend the ERM objective to learn domain invariants e.g. via robust
optimization (Sagawa et al. 2020) or Invariant Risk Minimization (IRM) (Arjovsky
et al. 2019b) as reviewed in Section 2.1.3.3. However, they are not adapted to our
problem as an unique model is learned. CoDA is closer to meta-learning and MTL.
CoDA follows the same objective than contextual meta-learning methods (Zint-
graf et al. 2019; Garnelo et al. 2018) of learning a low-dimensional representation
of each task but generalizes these approaches with hypernetworks. MTL does not
address adaptation to new tasks, which is the focus of CoDA, although some
extensions have also considered this problem, mainly for classification (Wang
et al. 2021a; Requeima et al. 2019). Only few work have considered adaptation
for dynamical systems. LEADS (Yin et al. 2021a) is a MTL approach that per-
forms adaptation in functional space. CoDA operates in parameter space, making
adaptation more expressive and efficient, and scales better with the number of
environments as it does not require training a full new network per environment
as LEADS does.
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6.7 Conclusion

We introduced CoDA, a new framework to learn context-informed data-driven
dynamics models on multiple environments. CoDA generalizes with little retrain-
ing and few data to new related physical systems and outperforms prior methods
on several real-world nonlinear dynamics. Many promising applications of CoDA
are possible, notably for spatiotemporal problems, e.g. partially observed systems,
reinforcement learning, or NN-based simulation.



Chapter 7

Spatiotemporal Generalization with Im-
plicit Neural Representations

Chapter abstract

Effective data-driven PDE forecasting methods often rely on fixed spa-
tial and / or temporal discretizations. This raises limitations in real-
world applications like weather prediction where flexible extrapolation
at arbitrary spatiotemporal locations is required. We address this prob-
lem by introducing a new data-driven approach, DINo, that models
a PDE’s flow with continuous-time dynamics of spatially continuous
functions. This is achieved by embedding spatial observations indepen-
dently of their discretization via Implicit Neural Representation (INR)s
in a small latent space temporally driven by a learned ODE. This sep-
arate and flexible treatment of time and space makes DINo the first
data-driven model to combine the following advantages. It extrapolates
at arbitrary spatial and temporal locations; it can learn from sparse ir-
regular grids or manifolds; at test time, it generalizes to new grids or
resolutions. DINo outperforms alternative neural PDE forecasters in a
variety of challenging generalization scenarios on representative PDE

systems.
The work in this chapter has led to the publication of a conference paper:

• Y. Yin*, M. Kirchmeyer*, J-Y Franceschi*, A. Rakotomamonjy, and P. Gal-
linari (2023). “Continuous PDE Dynamics Forecasting with Implicit Neu-
ral Representations”. In: International Conference on Learning Representations
(ICLR).

7.1 Introduction

Modeling the dynamics and predicting the temporal evolution of physical phe-
nomena is paramount in many fields, e.g. climate modeling, biology, fluid mechan-

117
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ics and energy (Willard et al. 2022). Classical solutions rely on a well-established
physical paradigm: the evolution is described by differential equations derived
from physical first principles, and then solved using numerical analysis tools,
e.g. finite elements, finite volumes or spectral methods (Olver 2014). The avail-
ability of large amounts of data from observations or simulations has motivated
data-driven approaches to this problem (Brunton et al. 2022), leading to a rapid
development of the field with deep learning.

The main motivations for this research track include developing surrogate or
reduced order models that can approximate high-fidelity full order models at re-
duced computational costs (Kochkov et al. 2021), complementing classical solvers,
e.g. to account for additional components of the dynamics (Yin et al. 2021b), or
improving low fidelity models (De Avila Belbute-Peres et al. 2020).

Most of these attempts rely on workhorses of deep learning like Convolutional
Neural Network (CNN)s (Ayed et al. 2020) or Graph Neural Network (GNN)s (Li
et al. 2020b; Pfaff et al. 2021; Brandstetter et al. 2022). They all require prior space
discretization either on regular or irregular grids, such that they only capture the
dynamics on the train grid and cannot generalize outside it. Neural operators, a
recent trend, learn mappings between function spaces (Li et al. 2021c; Lu et al.
2021) and thus alleviate some limitations of prior discretization approaches. Yet,
they still rely on fixed grid discretization for training and inference: e.g., regular
grids for Li et al. 2021c or a free-form but predetermined grid for Lu et al. 2021.
Hence, the number and / or location of the sensors has to be fixed across train
and test which is restrictive in many situations (Prasthofer et al. 2022). Mesh-
agnostic approaches for solving canonical PDEs are another trend (Raissi et al.
2019; Sirignano et al. 2018). In contrast to physics-agnostic grid-based approaches,
they aim at solving a known PDE as usual solvers do, and cannot cope with
unknown dynamics. This idea was concurrently developed for computer graphics,
e.g. for learning 3D shapes (Sitzmann et al. 2020; Mildenhall et al. 2020; Tancik et
al. 2020) and coined as INRs. When used as solvers, these methods can only tackle
a single initial value problem and are not designed for long-term forecasting
outside the training horizon.

Because of these limitations, none of the above approaches can handle situations
encountered in many practical applications such as: different geometries, e.g. phe-
nomena lying on a Euclidean plane or an Earth-like sphere; variable sampling, e.g.
irregular observation grids that may evolve at train and test time as in adaptive
meshing (Berger et al. 1984); scarce training data, e.g. when observations are only
available at a few spatiotemporal locations; multi-scale phenomena, e.g. in large
scale-dynamics systems as climate modeling, where integrating intertwinned sub-
grid scales a.k.a. the closure problem is ubiquitous (Zanna et al. 2021). These
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Table 7.1. – Data-driven approaches to spatiotemporal PDE forecasting.
Space Time 7. PDE agnos-

tic prediction
on new initial

conditions
Model Ref.

1. Train / test grid
independence

2. Free-form grid
and topology

4. Evaluation at un-
observed locations

5. Time
continuous

6. Time
extrapolation

Discre-
tized

{
NODE Chen et al. 2018 ✗ ✗ ✗ ✓ ✓ ✓
MP-PDE Brandstetter et al. 2022 ✗ ✓ ✗ ✗ ✓ ✓

NO
{

MNO Li et al. 2021c ✓ ✗ ✗ ✗ ✓ ✓
DeepONet Lu et al. 2021 ✗ ✓ ✓ ✓ ✗ ✓

INRs
{

SIREN Sitzmann et al. 2020 ✓ ✓ ✓ ✓ ✗ ✗
DINo Ours ✓ ✓ ✓ ✓ ✓ ✓

considerations motivate the development of new machine learning models that
improve existing approaches on several of these aspects.

In our work, we aim at forecasting PDE-based spatiotemporal physical processes
with a versatile model tackling the aforementioned limitations. We adopt an
agnostic approach, i.e. not assuming any prior knowledge on the physics. We
introduce DINo (Dynamics-aware Implicit Neural representations), a model op-
erating continuously in space and time, with the following contributions.

continuous flow learning . DINo aims at learning the PDE’s flow to fore-
cast its solutions, in a continuous manner so that it can be trained on any spatial
and temporal discretization and applied to another. To this end, DINo embeds
spatial observations into a small latent space via INRs; then it models continuous-
time evolution by a learned latent ODE.

space -time separation . To efficiently encode different sequences, we pro-
pose a novel INR parameterization, amplitude modulation, implementing a space-
time separation of variables. This simplifies the learned dynamics, reduces the
number of parameters and greatly improves performance.

spatiotemporal versatility. DINo combines the benefits of prior models
(Table 7.1). It handles new sequences via amplitude modulation. Sequential mod-
eling with an ODE makes it extrapolate to unseen times within or beyond the train
horizon. With INRs’ spatial flexibility, it generalizes to new grids or resolutions,
predicts at arbitrary positions and handles sparse irregular grids or manifolds.

empirical validation . We demonstrate DINo’s versatility and state-of-the-
art performance v.s. prior neural PDE forecasters, representative of grid-based,
operator and INR-based methods, via thorough experiments on challenging multi-
dimensional PDEs in various spatiotemporal generalization settings.
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Figure 7.1. – (Left) We represent time contexts. The train trajectory consists of
training snapshots (■), observed in a train interval [0, T ] denoted In-t.
The line (—) in continuation is a forecasting of this trajectory beyond
In-t, in (T, T ′] denoted Out-t. The line below (—, test) is a forecasting
from a new initial condition v0 (■) on In-t and Out-t. (Middle and
right) We illustrate spatial contexts. (Middle) Dots (•) correspond
to the train observation grid Xtr, denoted In-s. Out-s denotes the
complementary domain Ω \ Xtr. (Right) New test observation grid
Xts, used as an initial point for forecasting (left).

7.2 Problem description

Problem setting. We aim at modeling, via a data-driven approach, the temporal
evolution of a continuous fully-observed spatiotemporal phenomenon. It is de-
scribed by trajectories v : R→ V in a set Γ ; we use vt ≜ v(t) ∈ V . Trajectories share
the same dynamics but differ by their initial condition v0 ∈ V . R is the temporal
domain and V is the functional space of the form Ω → Rn, where Ω ⊂ Rp is a
compact domain of spatial coordinates and n the number of observed values. In
other words, vt is a spatial function of x ∈ Ω, with vectorial output vt(x) ∈ Rn;
cf. examples of Section 7.4.1. To this end, we consider the setting illustrated in
Figure 7.1. We observe a training set of trajectories D, with a free-form spatial
observation grid Xtr ⊂ Ω and on discrete times t ∈ T ⊂ [0, T ]. At test time, we are
only given a new initial condition v0, with observed values v0|Xts restricted to a new
observation grid Xts, potentially different from Xtr. Inference is performed on both
train and test trajectories given only the initial condition, on a new free-formed
grid X ′ ⊂ Ω and times t ∈ T ′ ⊂ [0, T ′]. Inference grid X ′ comprises observed
positions (respectively Xtr and Xts for train and test trajectories) and unobserved
positions corresponding to spatial extrapolation. The inference temporal horizon
is larger than the train one: T < T ′. For simplicity, In-s refers to data in X ′ on
the observation grid (Xtr for train /Xts for test), Out-s to data in X ′ outside the
observation grid; In-t refers to times within the train horizon T ⊂ [0, T ], and Out-t
to times in T ′ \ T ⊂ (T, T ′], beyond T , up to inference horizon T ′.
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Figure 7.2. – Proposed DINo model. Inference (left): given a new initial condi-
tion observed on a grid Xts, v0|Xts , forecasting amounts at decoding αt
to ṽt, by unrolling α0 with a time-continuous ODE dynamics model fψ.
Train (right): given an observation grid Xtr and a space-continuous
decoder Dϕ, αt is learned by auto-decoding s.t. Dϕ(αt)|Xtr = vt|Xtr

. Its
evolution is then modelled with fψ.

Evaluation scenarios. The desired properties in Section 7.1 call for spatiotem-
porally continuous forecasting models. We select six criteria that our approach
should meet; cf. column titles of Table 7.1. First, the model should be robust to
the change of initial condition v0, i.e. generalize to test trajectories (col. 1). Second,
it should extrapolate beyond the train conditions: in space, on a test observation
grid that differs from the train one, i.e. X ′ = Xts ̸= Xtr (In-s) (col. 2), and outside the
observed train and test grid, i.e. on X ′ \Xts,X ′ \Xtr (Out-s, col. 3); in time, between
train snapshots (col. 5) and beyond the observed train horizon T (Out-t, col. 6).
Finally, it should adapt to free-form spatial domains, i.e. to various geometries
(e.g. manifolds) or irregular grids (col. 4). See also Figure 7.1.

Objective. To satisfy these requirements, we learn the system’s flow Φ:

Φ: (V × R)→ V , (vt, τ) 7→ Φτ (vt) = vt+τ ∀v ∈ Γ, t ∈ R. (7.1)

Learning the flow is a common strategy in sequential models to better generalize
beyond the train time horizon. Yet, so far, it has always been learned with dis-
cretized models, which poses generalization issues violating our requirements.
We describe these issues in Section 2.2.2.

7.3 Model

We present DINo, the first space / time-continuous model that tackles all pre-
diction tasks of Section 7.2, without the above limitations. We specify DINo’s
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inference procedure (Section 7.3.1), illustrated in Figure 7.2 (left), then introduce
each of its components (Section 7.3.2) and how they are trained (Section 7.3.3, Fig-
ure 7.2 (right)). Finally, we detail our implementation based on amplitude mod-
ulation, a novel INR parameterization for spatiotemporal data which performs
separation of variables (Section 7.3.4).

7.3.1 Inference model

As explained in Section 7.2, we aim at estimating the flow Φ in Eq. (7.1), so that
our model can be trained on an observed grid Xtr and perform inference given
a new one Xts, both possibly irregular. To this end, we leverage a space- and
time-continuous formulation, independent of a given data discretization.

At inference, DINo starts from an initial condition v0 ∈ V and uses a flow to
forecast its dynamics. DINo first embeds spatial observations from v0 into a latent
vector α0 of small dimension dα via an encoder of spatial functions Eφ : V → Rdα

(enc ). Then, it unrolls a latent time-continuous dynamics model fψ : Rdα → Rdα

given v0 (dyn). Finally, it decodes latent vectors via a decoder Dϕ : Rdα → V into
a function of space (dec ). At any time t, Dϕ takes as input αt and outputs a
function ṽt : Ω→ Rn. This results in the following model (Figure 7.2 left):

(enc ) α0 = Eφ(v0), (dyn ) dαt

dt
= fψ(αt), (dec ) ∀t, ṽt = Dϕ(αt). (7.2)

7.3.2 Components

We now further detail each component involved at inference from Eq. (7.2).

Encoder: αt = Eφ(vt). The encoder computes a latent vector αt given observa-
tion vt at any time t. It is used in two different contexts, respectively for train and
test. At train time, given an observed trajectory vT = {vt}t∈T , it will encode any vt
into αt (see Section 7.3.3). At inference time, only v0 is available, and then only α0

is computed to be used as initial value for the dynamics. Given the decoder Dϕ,
αt is a solution to the inverse problem Dϕ(αt) = vt. We solve this inverse problem
with auto-decoding (Park et al. 2019). Denoting ℓdec(ϕ, αt; vt) = ∥Dϕ(αt)− vt∥22 the
decoding loss where ∥·∥2 is the euclidean norm of a function and K the number
of update steps, auto-decoding defines Eφ as:

Eφ(vt) = αKt , where ∀k > 1, αkt = αk−1
t − η∇αtℓdec(ϕ, α

k−1
t ; vt) and φ = ϕ. (7.3)
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In practice, we observe a discretization (Xtr,Xts) and accordingly approximate the
norm in ℓdec as in Eq. (7.6). Compared to auto-encoding, auto-decoding underfits
less (Kim et al. 2019b) and is more flexible: without requiring specialized encoder
architecture, it handles free-formed (irregular or on a manifold) observation grids
as long as the decoder shares the same property.

Figure 7.3. – Decoding
via INR
Eq. (7.4)

Decoder: ṽt = Dϕ(αt). We define a flexible decoder
using a coordinate-based INR network with parame-
ters conditioned on αt. An INR I : Rdθ → (Ω → Rn)

is a space-continuous model parameterized by θ ∈ Rdθ

which outputs a spatial function Iθ defined on domain
Ω. It approximates functions independently of the ob-
servation grid, e.g. it handles irregular grids and chang-
ing observation positions unlike FNO and DeepONet.
Thus, it constitutes a flexible alternative to operators
suitable to auto-decoding. To implement the condition-
ing of the INR’s parameters, we use a hypernetwork (Ha
et al. 2017) hϕ : Rdα → Rdθ , as illustrated in Figure 7.3. It
generates high-dimensional parameters θt ∈ Rdθ of the
INR given the low-dimensional latent vector αt ∈ Rdα .
In summary, the decoder Dϕ, parameterized as h by ϕ,
is defined as:

∀x ∈ Ω, ṽt(x) = Dϕ(αt)(x) ≜ Ihϕ(αt)(x). (7.4)

We provide further details on the precise implementation in Section 7.3.4.

Dynamics model: dαt

dt
= fψ(αt). Finally, the dynamics model fψ : Rdα → Rdα

defines a flow via an ODE in the latent space. The initial condition can be defined
at any time t by encoding with Eφ the corresponding input function vt.

Overall flow. Combined altogether, our components define the following flow
in the input space that can approximate the data flow Φ in Eq. (7.1):

∀(t, τ), (vt, τ) 7→ Dϕ(Eφ(vt) +
∫ t+τ
t

fψ(ατ ′)dτ
′) where αt = Eφ(vt). (7.5)

To summarize, DINo defines a time-continuous latent temporal model with a
space-continuous emission function Dϕ, combining the flexibility of space and
time continuity. This is fully novel to our knowledge, as prior latent approaches
are discretized (cf. Fraccaro 2018 for state-space models).
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7.3.3 Training

Given these three components (enc ), (dec ), (dyn), we now present their train-
ing procedure, illustrated in Figure 7.2 (right). We use a fast and simple two-stage
optimization, close to recent works in video prediction (Yan et al. 2021), and pro-
vide implementation details in Appendix E.4. Given the train sequences D, we
first apply auto-decoding across times to obtain the corresponding latent vectors
αT = {αvt }t∈T ,v∈D, as well as the decoder parameters ϕ. We then learn the parame-
ters of the dynamics model ψ by modeling the latent flow over αvt for each v ∈ D.
We detail this procedure in Appendix E.4.1, which can be formalized as a bi-level
optimization problem solved in parallel:

minψ ℓdyn(ψ, αT ) ≜ Ev∈D,t∈T ∥αvt − (αv0 +
∫ t
0
fψ(α

v
τ )dτ)∥22

s.t. αT , ϕ = argminαT ,ϕ
ℓdec(ϕ, αT ) ≜ Ev∈D,x∈Xtr,t∈T ∥vt(x)−Dϕ(α

v
t )(x)∥22

. (7.6)

7.3.4 Decoder implementation via amplitude-modulated INRs

We now specify our implementation of decoder Dϕ in Eq. (7.4). This includes the
definition of the INR architecture Iθ and of the hypernetwork hϕ. We introduce
for the latter a new method called amplitude modulation, which implements a
space-time separation of variables.

Iθ as FourierNet. We implement Iθ as a FourierNet, a state-of-the-art INR ar-
chitecture, which instantiates a Multiplicative Filter Network (MFN, Fathony et
al. 2021). A FourierNet relies on the recursion in Eq. (7.7), where x ∈ Ω is an
input spatial location, z(l)(x) is the hidden feature vector at layer l for x and
sω(l)(x) = [cos(ω(l)x), sin(ω(l)x)] is a Fourier basis:

z(0)(x) = sω(0)(x)

z(l)(x) =
(
W (l−1)z(l−1)(x) + b(l−1)

)
⊙ sω(l)(x) for l ∈ J1, L− 1K

z(L)(x) = W (L−1)z(L−1)(x) + b(L−1)

, (7.7)

where we fix W (0) = 0, b(0) = 1, sω(0)(x) = x. Denoting W = [W (l)]L−1
l=1 , b =

[b(l)]L−1
l=1 , ω = [ω(l)]L−1

l=1 , we fit a FourierNet to an input function v observed on
a grid X by learning {W, b, ω} s.t. ∀x ∈ X , z(L)(x) = v(x). In practice, we ob-
serve that fixing ω uniformly sampled performs similarly to learning them, so we
exclude them from training parameters.

FourierNets are interpretable, a property we leverage to separate time and space
via amplitude modulation. Fathony et al. 2021 show that ∃M ≫ L ∈ N,∃{c(m)

j }Mm=1
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a set of coefficients that depend individually on {W, b} and ∃{γ(m)}Mm=1 a set of
parameters that depend individually on those of the filters ω s.t. the jth dimension
of z(L)(x) can be expressed as:

z
(L)
j (x) =

∑M
m=1 c

(m)
j sγ(m)(x) + bias (7.8)

Eq. (7.8) involves a basis of spatial functions {sγ(m)}Mm=1 evaluated on x and the
amplitudes of this basis {c(m)

j }Mm=1. Note that Eq. (7.8) can be extended to other
choices of sω(l) (Fathony et al. 2021).
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Figure 7.4. – Amplitude modu-
lation - Eq. (7.9). In-
put z

(l−1)
t to layer

l is combined with
sω(l) via Hadamard
product.

h as amplitude modulation. h generates the
INR’s parameters θt given αt to model a target
input function vt. We propose to implement h
as elementwise shift and scale transformations
(FiLM, Perez et al. 2018) of the linear layers pa-
rameters W, b (excluding those of the filters ω).
Then, in Eq. (7.8), amplitudes c(m)

j only depend
on time while the basis functions sγ(m) only de-
pend on space: this corresponds to separation
of variable (Le Dret et al. 2016). We call our
technique amplitude modulation. In practice,
as Dupont et al. 2022, we consider latent shift
transformations as illustrated in Figure 7.4 and
detailed in Eq. (7.9). Eq. (7.9) extends Eq. (7.7)
by introducing a shift term, µ(l−1)

t = W ′(l−1)αt at
each layer l, where W ′ = [W ′(l−1)]L−1

l=1 is another
weight matrix:

z
(l)
t (x) =

(
W (l−1)z

(l−1)
t (x)+b(l−1)+µ

(l−1)
t

)
⊙sω(l)(x).

(7.9)
The INR’s parameters are defined as hϕ(αt) =
{W ; b +W ′αt;ω} where ϕ = {W, b,W ′} are h’s
parameters. Thus, amplitude modulation sepa-
rates time and space. We show in Table E.1 that
it significantly improves performance, particularly time extrapolation.

7.4 Experiments

We assess the spatiotemporal versality of DINo, following Section 7.2. We intro-
duce our experimental setting (Section 7.4.1), which includes a variety of chal-
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lenging PDE datasets, state-of-the-art baselines and forecasting tasks. Then, we
present and comment the experimental results (Section 7.4.2).

7.4.1 Experimental setting

Datasets. We consider the following PDEs defined over a spatial domain Ω, with
further details in Appendix E.3. • 2D Wave equation (Wave) is a second-order
PDE d2ut

dt2
= c2∆ut. u is the displacement w.r.t. the rest position and c is the wave

traveling speed. We consider its first-order form, so that vt = (ut,
dut
dt
) has a two-di-

mensional output (n = 2). • 2D Navier Stokes (Navier-Stokes, Stokes 1851) corre-
sponds to an incompressible fluid dynamics dvt

dt
= −u∇v + ν∆v + f , v = ∇× u,

∇u = 0, where u is the velocity field and v the vorticity. ν is the viscosity and f

is a constant forcing term; n = 1. • 3D Spherical shallow water (Shallow-Water,
Galewsky et al. 2004): it involves the vorticity w, tangent to the sphere’s surface,
and the thickness of the fluid h. The input is vt = (wt, ht) (n = 2).

Baselines. We reimplement representative neural PDE forecasters from Table 7.1
and adapt them to our multi-dimensional datasets. • CNODE (Ayed et al. 2020)
combines a CNN and an ODE solver to handle regular grids. • MP-PDE (Brand-
stetter et al. 2022) uses a GNN to handle free-formed grids, yet is unable to predict
outside the observation grid. We developed an interpolative extension, I-MP-PDE,
to handle this limitation; it performs bicubic interpolation on the observed grid
and training is done on the resulting interpolation. • MNO (Li et al. 2021b):
an autoregressive version of FNO (Li et al. 2021c) for regular grids; MNO can
be evaluated on new uniform grids. • DeepONet (Lu et al. 2021), considered
autoregressively (Wang et al. 2021c) where we remove time from the trunk net’s
input. DeepONet can be evaluated on new spatial locations without interpolation.
• SIREN (Sitzmann et al. 2020) and MFN (Fathony et al. 2021) are two INR meth-
ods which we extend to fit our setting. We consider an agnostic setting, i.e. without
the knowledge of the differential equation and perform sequence conditioning to
generalize to more than a trajectory. This is achieved by learning a latent vector
with auto-decoding; it is then concatenated to the spatial coordinates.

Tasks. We evaluate models on various forecasting tasks which combine the
evaluation scenarios of Section 7.2. Performance is measured by the prediction
MSE given only an initial condition. • Space and time extrapolation. We consider
a uniform grid X ′ for inference. Training is performed on different observations
grids Xtr subsampled from X ′ with different ratios, s ∈ {5%, 25%, 50%, 100%}
where s = 100% corresponds to the full inference grid, i.e. Xtr = X ′. In this setting,
we consider that all trajectories (train and test) share the same observation grid
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Table 7.2. – Space and time extrapolation. Train and test observation grids are
equal and subsampled from an uniform 64×64 grid, used for infer-
ence. We report MSE (↓) on the inference time interval T ′, divided
within training horizon (In-t, T ) and beyond (Out-t, outside T ) across
subsampling ratios.

Model

Navier-Stokes Wave

Train Test Train Test

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

s = 5% subsampling ratio
Discrete

{
I-MP-PDE 8.154e−3 8.166e−3 7.926e−3 8.225e−3 7.055e−4 7.097e−4 1.138e−3 1.116e−3

Operator
{

DeepONet 3.330e−3 7.370e−3 1.346e−2 1.408e−2 8.331e−4 9.295e−3 1.692e−2 3.256e−2

INR
{

SIREN 8.741e−3 1.767e−1 4.303e−2 2.126e−1 2.738e−3 1.818e−2 3.339e−2 6.964e−2

DINo 1.029e−3 1.655e−3 1.326e−3 1.813e−3 4.088e−5 4.121e−5 6.415e−5 7.392e−5

s = 25% subsampling ratio
Discrete

{
I-MP-PDE 3.135e−4 7.245e−4 3.476e−4 7.658e−4 3.293e−5 1.108e−4 5.142e−5 1.545e−4

Operator
{

DeepONet 9.016e−4 5.936e−3 9.376e−3 1.328e−2 5.722e−4 1.061e−2 1.757e−2 3.221e−2

INR
{

SIREN 5.180e−3 2.175e−1 2.436e−1 3.861e−1 8.995e−4 1.292e−2 1.783e−2 5.143e−2

DINo 1.020e−4 4.504e−4 2.646e−4 5.951e−4 3.949e−6 4.436e−6 1.089e−5 1.174e−5

s = 100% subsampling ratio

Discrete
{

CNODE 2.319e−2 9.652e−2 2.305e−2 1.143e−1 2.337e−5 5.280e−4 3.057e−5 7.288e−4

MP-PDE 1.140e−4 5.500e−4 1.785e−4 5.856e−4 1.718e−7 1.993e−5 9.256e−7 4.261e−5

Operator
{

MNO 3.190e−5 8.678e−4 2.763e−4 8.946e−4 9.381e−6 4.890e−3 1.993e−4 6.128e−3

DeepONet 1.375e−3 6.573e−3 9.704e−3 1.244e−2 6.431e−4 1.293e−2 1.847e−2 3.317e−2

INR


SIREN 1.066e−3 4.336e−1 3.874e−1 1.037e0 3.674e−4 9.956e−3 3.013e−2 7.842e−2

MFN 1.651e−3 1.037e0 2.106e−1 1.059e0 1.408e−4 1.763e−1 4.735e−3 2.274e−1

DINo (no sep.) 3.235e−4 1.593e−3 7.850e−4 1.889e−3 2.641e−6 4.081e−5 5.977e−5 2.979e−4

DINo 8.339e−5 3.115e−4 2.092e−4 4.311e−4 3.309e−6 3.506e−6 9.495e−6 9.946e−6

Xtr = Xts. We evaluate MSE error on X ′ over the train time interval (In-t) and
beyond (Out-t) at each subsampling ratio. • Flexibility w.r.t. input grid. We vary
the test observation grid, i.e. Xts ̸= Xtr and perform inference on X ′ = Xts, i.e.
on the test observation grid (In-s) under two settings. Generalizing across grids:
Xtr,Xts are subsampled differently from the same uniform grid; str (resp. sts) is
the train (resp. test) subsampling ratio. Generalizing across resolutions: Xtr,Xts

are subsampled with the same ratio s from two uniform grids with different
resolutions; the train resolution is fixed to rtr = 64 while we vary the test resolu-
tion rts ∈ {32, 64, 256}. • Data on manifold. We consider a PDE on a sphere and
combine several evaluation scenarios, as described later. • Finer time resolution.
The inference time grid T ′ has a finer resolution than the train one T .

7.4.2 Results

Space and time extrapolation. We report prediction MSE in Table 7.2 for varying
subsampling ratios s ∈ {5%, 25%, 100%} on Navier-Stokes and Wave. Appendix E.1
provides a fine-grained evaluation inside the train observation grid (In-s) or
outside (Out-s) and reports additionally the results for s = 50%. We visualize
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Table 7.3. – Flexibility w.r.t. input grid. Observed test / train grid differ (Xts ̸=
Xtr). We report test MSE (↓) for Navier-Stokes on X ′ = Xts (In-s).
Green Yellow Red mean excellent, good, poor MSE.

Subsampling Test→ sts = 5% sts = 50% sts = 100%

Train ↓ In-t Out-t In-t Out-t In-t Out-t

str = 5%
MP-PDE 1.330e−1 3.852e−1 1.859e−1 6.680e−1 2.105e−1 7.120e−1

DINo 1.494e−3 2.291e−3 1.257e−3 1.883e−3 1.287e−3 1.947e−3

str = 50%
MP-PDE 4.494e−2 9.403e−2 4.793e−3 1.997e−2 6.330e−3 3.712e−2

DINo 2.470e−4 4.697e−4 2.073e−4 4.284e−4 2.058e−4 4.361e−4

str = 100%
MP-PDE 1.358e−1 3.355e−1 1.182e−2 2.664e−2 1.785e−4 5.856e−4

DINo 2.495e−4 4.805e−4 2.109e−4 4.325e−4 2.092e−4 4.311e−4

(a) Generalization across grids: Xtr,Xts are subsampled with ratios
str ̸= sts among {5, 50, 100}% from the same uniform 64×64 grid.

Test resolution → rts = 32 - Xts ̸= Xtr rts = 64 - Xts = Xtr rts = 256 - Xts ̸= Xtr

Subsampling ↓ In-t Out-t In-t Out-t In-t Out-t

s = 5%
MP-PDE 3.209e−1 6.472e−1 2.465e−4 1.105e−3 2.239e−1 8.253e−1

DINo 5.308e−3 9.544e−3 2.533e−4 8.832e−4 1.991e−3 2.942e−3

s = 100%
MNO 4.547e−3 9.281e−3 1.277e−4 8.525e−4 2.174e−3 4.975e−3

MP-PDE 4.194e−2 9.109e−2 1.597e−4 6.483e−4 4.648e−2 1.381e−1

DINo 2.321e−4 6.386e−4 2.320e−4 6.385e−4 2.322e−4 6.385e−4

(b) Generalization across resolutions: Xts (resp. Xtr) are subsampled
at the same ratio s ∈ {5, 100}% from different uniform grids with
resolution rts ∈ {32, 64, 256} (resp. rtr = 64).

some predictions in Appendix E.2. DINo is compared to all baselines when
s = 100%, i.e. X ′ = Xtr = Xts, and otherwise it is compared only to models which
handle irregular grids and prediction at arbitrary spatial locations (DeepONet,
SIREN, MFN, I-MP-PDE). • General analysis. We observe that all models de-
grade when the subsampling ratio s decreases. DINo performs competitively
overall: it achieves the best Out-t performance on all subsampling settings, it out-
performs all the baselines on low subsampling ratios and performs comparably to
the competitive discretized alternatives (MP-PDE, CNODE) and operator (MNO)
when s = 100%, i.e. when observation and inference grids are equal. Note that
this fully observed setting is favorable for CNODE, MP-PDE and MNO, designed
to perform inference on the observation grid. This can be seen in Table 7.2, where
DINo is slightly outperformed only for few settings. MP-PDE is significantly bet-
ter only on Wave for In-t. Overall, CNNs and GNNs exhibit good performance for
spatially local dynamics like Wave, while INRs (like DINo) and MNO are more
adapted to global dynamics like Navier-Stokes. • Analysis per model. MP-PDE is
the most competitive baseline across datasets as it combines a strong and flexible
encoder (GNNs) to a good dynamics model; however, it cannot predict outside the
observation grid (Out-s). To keep a strong competitor, we extend this baseline into
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its interpolative version I-MP-PDE on subsampled settings. I-MP-PDE is compet-
itive for high subsampling ratios, e.g. s ∈ {50%, 100%} but underperforms w.r.t.
DINo at lower subsampling ratios due to the accumulated interpolation error.
MNO is a competitive baseline on Navier-Stokes, performing on par with MP-PDE
and DINo inside the training horizon (In-t); its performance on Out-t degrades
more significantly compared to other models, especially DINo. DeepONet is
more flexible than MP-PDE as it can predict at arbitrary locations. As no interpo-
lation error is introduced, it outperforms I-MP-PDE for s = 5% on train data. Yet,
we observe that it underperforms especially on Out-t w.r.t. its alternatives. Finally,
we observe that SIREN and MFN fit correctly the train horizon In-t on train, yet
generalize poorly outside this horizon Out-t or on new initial conditions (test).
We highlight that this is not the case for DINo which extrapolates temporally
and generalizes to new initial conditions thanks to its sequential modeling of
the flow. Thus, DINo is currently the state-of-the-art INR model for spatiotemporal
data. • Modulation. We observe that modulating both amplitudes and frequen-
cies (row DINo (no sep.) in Table 7.2) degrades performance w.r.t. DINo (row
DINo in Table 7.2) that only modulates amplitudes. Amplitude modulation en-
ables long temporal extrapolation and reduces the number of parameters. Hence,
as opposed to DINo (no sep.) which is outperformed by some baselines, time-s-
pace variable separation in DINo is an essential ingredient of the model to reach
state-of-the-art levels.

Flexibility w.r.t. input grid. We consider in Table 7.3 Navier-Stokes and compare
DINo to the most competitive baselines, MP-PDE and MNO (with s = 100% sub-
sampling ratio). • Generalizing across grids. In Table 7.3a, we consider that the
test observation grid Xts is different from the train one Xtr. This occurs when sen-
sors differ between two observed trajectories. We vary the subsampling ratio for
the train observation grid str and the test one sts. We report test MSE on new grids
X ′ = Xts. We observe that DINo is very robust to changing grids between train
and test, while MP-PDE’s performance degrades, especially for low subsampling
ratios, e.g. 5%. For reference, we report in Table E.2 Appendix E.1 (col. 3) the per-
formance when X ′ = Xtr, where MP-PDE is substantially better. • Generalizing
across spatial resolutions. In Table 7.3b we vary the test resolution rts. We train
at a resolution rtr = 64 and perform inference at resolutions rts ∈ {32, 64, 256}.
For that, we build a high-fidelity 256×256 simulation dataset and downscale it to
obtain the other resolutions. We observe that DINo’s performance is the stablest
across resolutions in the uniform or irregular setting. MNO is also relatively sta-
ble but is only applicable to uniform grids while MP-PDE is particularly brittle,
especially for a 5% ratio.
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I-MP-PDE 1.908e−3 7.240e−3

DINo 1.063e−4 6.466e−4

Figure 7.5. – Data on manifold. Shallow-Water superresolution test prediction for
DINo (top) and reference (middle); test MSE (↓) (bottom).

Data on manifold. We consider in Figure 7.5 Shallow-Water in a super-resolution
setting: test resolution is twice the train one, close to weather prediction applica-
tions. We observe an irregular 3D Euclidean coordinate grid Xtr = Xts ⊂ R3 shared
for train and test. It samples uniformly Euclidean positions on the sphere, via the
quasi-uniform skipped latitude-longitude grid (Weller et al. 2012). We predict the
PDE on test trajectories with a conventional latitude-longitude inference grid X ′.
At Earth scale, Xtr corresponds to a resolution of about 300 km, and X ′ to 150 km.
DINo significantly outperforms I-MP-PDE, making it a viable candidate for this
complex setting.

Table 7.4. – Finer time resolution. Test
MSE (↓) under T ′ for Navier-
Stokes.

Model In-t Out-t

I-DINo (linear) 3.459e−4 5.598e−4

I-DINo (quadratic) 2.165e−4 4.473e−4

DINo (ODE solve) 2.151e−4 4.388e−4

Finer time resolution. We consider
in Table 7.4 a longer and 10 times finer
test time grid T ′ than the train grid T
on Navier-Stokes. We observe the same
spatial uniform grid across train and
test and perform inference on this grid.
We compare DINo that uses an ODE

solver, to interpolating coarser predic-
tions obtained at the train resolution
(I-DINo). We report the corresponding test MSE. We observe that the ODE solver
accurately extrapolates outside the train temporal grid, outperforming interpola-
tion. This confirms that DINo benefits from its continuous-time modeling of the
flow, providing consistency and stability across temporal resolutions.
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7.5 Related Work

We reviewed in Section 2.2.2 various neural PDE forecasters, based on discretized,
neural operator and INR. We highlight the advantages of DINo over existing ap-
proaches. The all make restrictive assumptions on the space discretization. Neural
operators lack flexibility when encoding spatial observations: FNO is limited to
uniform Cartesian observation grids due to Fast Fourier Transform (FFT); GNO
does not adapt well to changing observation grids as for the GNN-based models
in the previous paragraph; DeepONet is limited to input observations on fixed ob-
servation locations. The latter are chosen at random spatial positions but should
remain fixed throughout training and testing. Spatiotemporal INR only learn map-
pings from an initial condition v0 to a function of time vt in the train domain,
they fail to predict beyond train conditions, as we show in Section 7.4. DINo is a
new instance of INR which solves this limitation via a time-continuous dynamics
model of the underlying flow.

7.6 Conclusion

We propose DINo, a novel space- and time-continuous data-driven forecast-
ing model for PDEs. DINo handles settings encountered in many applications,
where existing methods fail. We assess its extensive spatiotemporal extrapolation
abilities on a variety of PDEs and its generalization to unseen sparse irregular
meshes and resolutions. Its competitive results over recent PDE forecasters make
it a strong alternative for real-world settings with free-formed spatiotemporal
conditions. There are many promising extensions e.g. improving generalization
to new parameters (Kirchmeyer et al. 2022a).
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Chapter 8

Concluding Remarks

8.1 Overview

We now conclude this work by briefly summarizing the main contributions of
this thesis, detailed in Section 1.3.

Problems In this thesis, we proposed new algorithms for improving the ro-
bustness of Neural Network (NN)s to distribution shift. We considered learning
settings which consider access to some data of the test domain, at training time, at
test-time or not. Observing some target samples allows to better model the target
labeling function when it differs from the training one (concept shift setting).

Applications We tailored our methods to two representative problems with
their similarities and differences, classification and forecasting of spatiotemporal
dynamics. These two problems cover a variety of applications, from computer
vision to numerical simulation in science. They are fundamentally different: while
classification was considered for static data, spatiotemporal forecasting requires
learning some underlying temporal dynamics, a challenging problem. Yet, the
corresponding Machine Learning (ML) approaches share some similarities.

Modeling contributions Our new models can be grouped into two different
categories. A first group proposes some alternatives to the standard Expected Risk
Minimization (ERM) inference principle which assumes all data to be Independent
and Identically Distributed (IID). It leverages to this end multiple domains for
training. We operated on representations in the Unsupervised Domain Adap-
tation (UDA) setting, where we explored two failure cases of standard meth-
ods that learn domain-invariant representations, namely missing data and com-
plex domain shifts. To handle these problems, we respectively introduced a
joint imputation-UDA model and proposed to transfer latent representations with
Optimal Transport (OT). We also proposed two separate models operating in
the NN parameter space. We first adapted parameters in the test-time adapta-
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tion setting by performing environmnent-conditioning via linear hypernetworks.
This approach defines a low-dimensional parameter subspace to which adapta-
tion is restricted. We then proposed to average independent weights for Out-of-
distribution (OOD) generalization, introducing diversity considerations in prior
weight averaging techniques. A second direction is to improve the NN architec-
tures at hand. In the context of Partial Differential Equation (PDE) modeling, we
better accounted for the continuous space and time nature of PDEs to achieve bet-
ter generalization to new spatiotemporal discretizations. We leveraged Implicit
Neural Representation (INR)s and proposed a new model which extrapolates bet-
ter in time than existing INRs.

Theoretical contributions We made various theoretical throughout these work.
In the classification setting, we derived new generalization bounds which allowed
to rigourously define which assumptions are required for each of our models to
achieve OOD generalization. In the UDA setting, we leveraged unlabelled target
samples to define generalization guarantees in the challenging settings where
some target components are missing and under Generalized Target Shift (GeTarS)
(i.e. covariate shift combined to concept shift). In the Domain Generalization (DG)
setting, we extended the bias-variance decomposition to the OOD setting and
related variance to covariate shift and bias to concept shift. We also extended
this decomposition to weight averaging strategies, proposing for the first time an
empirically verified analysis of weight averaging, centered around the concept of
diversity. In the dynamics forecasting setting, we justified the validity of using lin-
ear hypernetworks for environment-conditioning when system parameters vary
across domains.

Experimental contributions Experimentally, we were able to outperform the
state-of-the-art in all our contributions and open-sourced our implementations.
In the classification setting, we compared our models to representative baselines
on well-established computer vision image benchmarks. On the competitive OOD

DomainBed benchmark (Gulrajani et al. 2021a), our model DiWA is currently the
state-of-the-art based on a thorough and fair comparison. In the spatiotemporal
setting, we were able to outperform recent approaches on challenging simulations
of Ordinary Differential Equation (ODE)/PDEs e.g. the Navier-Stokes equations
involved in fluid dynamics.
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8.2 Other work

Apart from these main contributions, we also explored regression problems in
Aggarwal et al. 2019 which proposed to use conditional Generative Adversarial
Network (GAN) for regression as an alternative to other approaches.

Karan Aggarwal, Matthieu Kirchmeyer, Pranjul Yadav, S. Sathiya Keerthi, and
Patrick Gallinari (2019). “Regression with Conditional GAN”. in: CoRR abs/1905.12868.
arXiv: 1905.12868. url: http://arxiv.org/abs/1905.12868

8.3 Perspectives

We now discuss various open questions raised by these contributions for our two
applications: first classification, then spatiotemporal modeling.

8.3.1 Classification

Architecture vs. dataset vs. learning objective Classification is one of the most
explored ML problems, especially on images where highly curated benchmarks
are available. A variety of architectures were proposed, from simple ResNet-50

used in this thesis to complex foundation models e.g. the multi-modal CLIP
architecture (Radford et al. 2021). Some recent work confirmed that these more
complex architectures and the size and variety of the training datasets have a big
if not the most important impact on OOD performance (Ruan et al. 2022; Arpit
et al. 2021). The question of the relative importance of learning objective over
architecture and data curation remains to be answered.

For less explored problems, there is no such choice of large architectures or large
and well-curated datasets for pretraining / training these models. The design
of new training objectives, which is the focus of this thesis, then plays a more
important role for these problems. This calls for new real-world benchmarks to
better evaluate Domain Adaptation (DA) and DG methods. This is particularly
relevant as current benchmarks such as DomainBed (Gulrajani et al. 2021a) are
now reaching a saturation point where performance gains are incremental. With
colleagues, we made a first step towards that objective by organizing a challenge
at ECML-PKDD 2022 on DG. We introduced a new benchmark for computational
advertising (Click-Through-Rate (CTR) prediction) to better assess how existing
strategies fare on tabular data, without available pretrained models. We evaluated
our UDA model for imputation on a similar dataset, which inspired our initial

https://arxiv.org/abs/1905.12868
http://arxiv.org/abs/1905.12868
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research problem of handling missing data in UDA. The definition of such new
benchmarks is currently one of the most important future direction for the field.

8.3.2 Spatiotemporal modeling

More real-world applications We modeled, with NNs, simulated data of com-
plex PDEs involved in many physical phenomena. Most current papers on the
topic of ODE / PDE modeling, if not all, also consider simulated data for learning
NN-based surrogates. Yet, there is a big gap between models that work on simula-
tions and models usable on real-world data. Exploring applications of NN-based
surrogates to more real-world problems e.g. weather prediction (Pathak et al. 2022;
Lam et al. 2022) is an important future research direction. These real-world appli-
cations require scaling up the architectures to handle massive amounts of data,
multiple interacting vector and scalar fields and requires additional engineering
effort.

Defining neural ODE/PDE surrogates with extensive generalization capabilities
Finally, although we made several steps towards building neural ODE/PDE surro-
gates that generalize, there are still many open generalization problems. Indeed,
currently no single model is able to handle all generalization problems, detailed
in Section 2.2.3, but only few of these problems. There is still a long way before
designing general purpose neural surrogates, able to replace state-of-the-art nu-
merical tools, which are not subject to these generalization problems. This topic
is still open and we made some initial attempts at adressing it.
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A.1 OT formulation for Adaptation-Imputation

We present here in more details our model using Optimal Transport (OT) as a
divergence metric. The formulation is slightly different compared to Adversarial
(ADV) models. We replace the H-divergence approximation given by the discrimi-
nators D1 and D2 by the Wasserstein distance between source and target instances
(D1) and true and imputed feature representations (D2), following the original
ideas in Shen et al. 2018; Damodaran et al. 2018. In practice, we compute the
Wasserstein distance using its primal form by finding a joint coupling matrix γ,
using a linear programming approach Peyré et al. 2019. In Damodaran et al. 2018;
Courty et al. 2017a, the OT problem is formulated on the joint p(X, Y ) distribu-
tions. Similarly to Shen et al. 2018, in our case, we focus on a plan that acts only
on the feature space without taking care of the labels. This leads to:

L1 =
∑
ij

(
∥z(i)S1

− z
(j)
T1
∥2 + ∥ẑ(i)S2

− ẑ
(j)
T2
∥2
)
γ1ij (A.1)

where γ1ij is the alignment value between source instance i and target instance j.

For the imputation part, we keep the reconstruction Mean-Squared Error (MSE)
component in Eq. (3.6) and derive the distribution matching loss as:

LOT =
∑
ij

∥z(i)S2
− ẑ

(j)
S2
∥2γ2ij (A.2)

where γ2ij is the alignment value between source instance i and j. The final
imputation loss is:

L2 = λOT × LOT + λMSE × LMSE (A.3)

The classification term in Eq. (3.7) is unchanged.

The optimization problem in Eq. (3.9) is solved in two stages following an alter-
nate optimization strategy:
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• We fix all parameters but γ1 and γ2 and find the joint coupling matrices γ1 and
γ2 using EMD minγ1,γ2 L

• We fix γ1 and γ2 and solve ming1,g2,r,f L

In practice, we first minimize L3 for a couple of epochs (taken to be 10 for digits)
then minimize λ1L1 + λ2L2 + λ3L3 in the remaining epochs. Learning rate and
parameters are detailed further in Appendix A.4.

A.2 Proofs

Theorem (3.1). Given f ∈ F , ĝ in Eq. (3.2) and pS(Ẑ), pT (Ẑ) the latent marginal
distributions obtained with g.

ET (f ◦ ĝ) ≤
[
ES(f ◦ ĝ) + dF∆F(pS(Ẑ), pT (Ẑ)) + λHĝ

]
︸ ︷︷ ︸

Domain Adaptation DA

with ES(·), ET (·) the expected error w.r.t. to the labelling function fS, fT on S, T re-
spectively; F∆F the symmetric difference hypothesis space; dH the H-divergence
for H = F∆F and λHĝ

= minf ′∈F [ES(f ′ ◦ ĝ) + ET (f ′ ◦ ĝ)], the joint risk of the opti-
mal hypothesis.

Proof. We apply Ben-David et al. 2010 to form the bound in Z using ĝ.

Lemma (3.1). For any continuous density distribution p, q defined on an input
space X , such that ∀x ∈ X , q(x) > 0, the inequality supx∈X [p(x)/q(x)] ≥ 1 holds.
Moreover, the minimum is reached when p = q.

Proof. Suppose that ∄x ∈ X s.t. supx p(x)/q(x) ≥ 1. This means that ∀x, p(x) <
q(x). By integrating those positive and continuous functions on their domains,
we are lead to the contradiction that the integral of one of them is not equal
to 1. Thus, ∃x ∈ X s.t.p(x)/q(x) ≥ 1. Thus, supx∈X [p(x)/q(x)] ≥ 1, with equality
trivially when p = q.

Proposition (3.2). Under Assumption 3, given f ∈ F , ĝ in Eq. (3.2) and g in Eq. (3.1),

ET (f ◦ g) ≤ sup
z∼p(Z)

[
pS(Z2 = z2|z1)
pS(Ẑ2 = z2|z1)

]︸ ︷︷ ︸
Imputation error on S (IS)

× sup
z∼p(Z)

[
pS(Ẑ2 = z2|z1)
pT (Ẑ2 = z2|z1)

]︸ ︷︷ ︸
Transfer error of Imputation TI︸ ︷︷ ︸

Imputation error on T IT

×ET (f ◦ ĝ)
(3.11)
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Under Lemma 3.1, IT = 1 is the minimal value reached when pS(Z2|Z1) =

pS(Ẑ2|Z1) and pS(Ẑ2|Z1) = pT (Ẑ2|Z1). In this case, ET (f ◦ g) = ET (f ◦ ĝ).

Proof. We denote f zT , the latent target labeling function. Moreover, for simplicity,

we write hĝ = f ◦ ĝ, hg = f ◦ g and ∀z ∼ p(Z), SD(z) =
pD(Z2 = z2|z1)
pD(Ẑ2 = z2|z1)

ET (hg) = ExT∼pT (X)[I(hg(xT ) ̸= fT (xT ))]

= EzT1
∼pT (Z1),zT2

∼pT (Z2|Z1)[I(f(zT1 , zT2) ̸= f zT (zT1 , zT2))]

= EzT1
∼pT (Z1),ẑT2

∼pT (Ẑ2|Z1)
[
pT (Z2 = ẑT2 |zT1)

pT (Ẑ2 = ẑT2 |zT1)
I(f(zT1 , ẑT2) ̸= f zT (zT1 , ẑT2))]

≤ sup
z∼p(Z)

[ST (z)]ExT∼pT (X)[I(hĝ(xT ) ̸= fT (xT ))]

= sup
z∼p(Z)

[ST (z)]ET (hĝ)

However, ∀z ∈ Z, ST (z) cannot be computed as there is not supervision possible
on T . We will instead apply Assumption 3 and use source data for which we can
compute SS(z).

∀z ∈ Z ST (z) =
pT (Z2 = z2|z1)
pT (Ẑ2 = z2|z1)

=
pS(Z2 = z2|z1)
pT (Ẑ2 = z2|z1)

Assumption 3

=
pS(Z2 = z2|z1)
pS(Ẑ2 = z2|z1)

× pS(Ẑ2 = z2|z1)
pT (Ẑ2 = z2|z1)

= SS(z)×
pS(Ẑ2 = z2|z1)
pT (Ẑ2 = z2|z1)

Thus by applying sup,

sup
z∼p(Z)

[ST (z)] = sup
z∼p(Z)

[SS(z)]× sup
z∼p(Z)

[
pS(Ẑ2 = z2|z1)
pT (Ẑ2 = z2|z1)

]

This yields Eq. (3.11).

If IT = 1 when pS(Z2|Z1) = pS(Ẑ2|Z1) and pS(Ẑ2|Z1) = pT (Ẑ2|Z1) per Lemma 3.1,
then ST (z) = 1 and ET (f ◦ g) = ET (f ◦ ĝ).
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Proposition (3.3). Assume a joint distribution pT̃ (X, Y ) where pT̃ (X) = pT (X) and
Y = hĝ(X) where hĝ = f ◦ ĝ ∈ Hĝ is a candidate hypothesis. Then,

λHĝ
≤ min

hĝ∈Hĝ

[
ES(hĝ) + ET̃ (hĝ) + ET (fT̃ )

]
with ET (fT̃ ) = Prx∼pT (X)(fT̃ (x) ̸= fT (x)) the error of the pseudo-labelling function
fT̃ on T .

Proof. We know that pT̃ (X) = pT (X) as instances are not changed by applying the
pseudo-labelling function. Thus, given hĝ ∈ Hĝ

ET (hĝ) = ET (hĝ, fT ) = ET̃ (hĝ, fT )

Applying the triangle inequality for classification error (Crammer et al. 2008),

ET̃ (hĝ, fT ) ≤ ET̃ (hĝ, fT̃ ) + ET̃ (fT̃ , fT )

Finally, we can rewrite ET̃ (hĝ, fT̃ ) = ET̃ (hĝ) and ET̃ (fT̃ , fT ) = ET (fT̃ , fT ) = ET (fT̃ ).

A.3 Dataset description

A.3.1 Digits

We scale all images to 32 × 32 and normalize the input in [−1, 1]. When adapta-
tion involves a domain with three channels (SVHN or MNIST-M) and a domain
with a single channel, we simply triplicate the channel of the latter domain. As
in Damodaran et al. 2018 we use balanced source batches which proves to in-
crease performance especially when the source dataset is imbalanced (e.g. SVHN
and USPS datasets) while the target dataset (usually MNIST derived) is balanced.
Scaling the input images enables us to use the same architecture across datasets.
In practice the embedding size is 2048 after preprocessing. For missing versions,
we set pixel values to zero in a given patch as shown in Figure 3.3. The digits
datasets are provided with a predefined train / test split. We report accuracy
results on the target test set and use the source test set as validation set (Ap-
pendix A.4.2). The number of instances in each dataset is reported in Table A.1.
We run each model five times.
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USPS MNIST SVHN MNIST-M
Train 7438 60k 73257 60k
Test 1860 10k 26032 10k
Size 28 × 28 28 × 28 32 × 32 28 × 28

Channels 1 1 3 3

Table A.1. – Statistics on digits datasets

Dataset ads-kaggle ads-real
Domain Source Target Source Target

Split Train Test Train Test Train Test Train Test
Positive 246 872 61 841 92 333 22 943 X X X X

Negative 699 621 174 783 854 160 213 681 X X X X
Total 946 493 236 624 946 493 236 624 24 465 756 3 760 233 819 073 147 358

p(Y = 1) 0,2608 0,2613 0,0976 0,0970 X X X X

Table A.2. – Statistics on ads datasets

A.3.2 Amazon

Each domain has around 2000 samples and we use pretrained features https://
github.com/jindongwang/transferlearning/tree/master/data#amazon-review which
follows the data processing pipeline in Chen et al. 2012. Each review is prepro-
cessed as a feature vector of unigrams and bigrams keeping only the 5000 most
frequent features. In practice, we consider the dense version of these features after
projection onto a low-dimensional sub-space of dimension 400 with PCA as in
Chen et al. 2012. Datasets with missing features are built by setting the first half
of the features to 0.

A.3.3 Ads

Table A.2 lists statistics on the traffic for the two ads datasets; we now describe
how they are preprocessed. On both datasets the train and test sets are fixed. We
run each model five times.

ads-kaggle The Criteo Kaggle dataset is a reference dataset for Click-Through-
Rate (CTR) prediction and groups one week of log data. The objective is to model
the probability that a user will click on a given ad given his browsing behaviour.
Positives refer to clicked ads and negatives to non-clicked ads. For each datum,

https://github.com/jindongwang/transferlearning/tree/master/data#amazon-review
https://github.com/jindongwang/transferlearning/tree/master/data#amazon-review
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there are 13 continuous and 26 categorical features. We divide the traffic into two
domains using feature number 30 corresponding to an engagement feature; for a
given value for this categorical feature, all instances have a single missing numeric
feature (feature number 5). We then construct an artificial dataset simulating
transfer between known and new users. We process the original Criteo Kaggle
dataset to have an equal number of source and target data. We then perform
train / test split on this dataset keeping 20% of data for testing. We used in our
experiments only continuous features; to show the benefit of modelling additional
missing features, we extend the missing features list to features 1, 5, 6, 7, 11 and 12

by setting them to zero on the target domain. After these operations, 6 features are
missing and 7 are non-missing. Preprocessing consists in normalizing continuous
features using a log transform.

ads-real This private dataset is similar to ads-kaggle. We filter out non-clicks
and the final task is to model the sale probability for a clicked ad given an user’s
browsing history. Positives refer to clicked ads which lead to a sale; negatives
to clicked ads which did not lead to a sale. We use one week of sampled logs
as a training set and use the following day data as the test set. This train / test
definition is used so to better correlate with the performance of a production
model. Features are aggregated across user timelines and describe the clicking
and purchase behavior of a user. In comparison to ads-kaggle more continuous
features are used. The count features can be User-centric i.e. describe the global
activity of the user (number of clicks, displays, sales done globally across partners)
or User-partner features i.e. describing the history of the user on the given partner
(number of clicks, sales... on the partner). The latter are missing for prospecting
users. Counts are aggregated across varying windows of time and categories
of partner catalog. We bucketize these count features using log transforms and
project the features into an embedding space of size 596 with 29 features. 12

features are missing and 17 are non-missing.

A.4 Implementation details

A.4.1 Neural Net architecture

digits We use the ADV and OT versions of our imputation model. For ADV

models, we use the DANN model description in Ganin et al. 2015; for OT we use
the DeepJDOT model description in Damodaran et al. 2018. Both models can be
considered as simplified instances of our corresponding ADV and OT imputation
models when no imputation is performed. Performance of the adaptation models
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Figure A.1. – Source (blue) and Target (red) distributions on ads-kaggle for each
feature (1 to 13)
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Table A.3. – Feature mean and standard deviation on ads-kaggle. We set features
1, 6, 7, 11, 12 to zero on T .

Domain Source Target
feature 1 0.80±2.21 4.4 ×10−4±0.041

feature 2 9.16±13.04 9.01±13.42

feature 3 4.40±6.32 3.44±6.19

feature 4 2.58±3.27 0.94±2.31

feature 5 61.09±37.67 0.0±0.0
feature 6 11.26±12.24 0.090±1.69

feature 7 4.10±6.23 0.0034±0.13

feature 8 5.12±4.50 1.91±4.26

feature 9 14.32±11.57 3.273±5.36

feature 10 0.046±0.22 1.35 ×10−5±0.0037

feature 11 1.08±2.11 4.25 ×10−4±0.029

feature 12 0.083±0.78 6.68 ×10−5±0.018

feature 13 2.74±3.59 1.21±3.36

is highly dependent on the Neural Network (NN) architectures used for adaptation
and classification. In order to perform fair comparisons and since our goal is to
evaluate the potential of joint Adaptation-imputation-classification, we selected
these architectures through preliminary tests and use them for both the ADV and
OT models. The two models are described below and illustrated in Figure A.2.

• Feature extractors g1 and g2 consists of three convolutional layers with 5 × 5

kernel and 64 filters interleaved with max pooling layers with a stride of 2 and
2×2 kernel. The final layer has 128 filters. We use batch norm on convolutional
layers and ReLU as an activation after max pooling. As in Damodaran et al.
2018 we find that adding a sigmoid activation layer as final activation is helpful.

• Classifier f consists of two fully connected layers with 100 neurons with batch
norm and ReLU activation followed by the final softmax layer. We add Dropout
as an activation for the first layer of the classifier.

• Discriminator D1 and D2 is a single layer NN with 100 neurons, batch norm
and ReLU followed by the final softmax layer. On USPS→MNIST and MNIST
→ USPS dataset we use a stronger discriminator network which consists of
two fully connected layers with 512 neurons.

• Generator r consists of two fully connected layers with 512 neurons, batch norm
and ReLU activation. This architecture is used for ADV and OT imputation
models. In practice using wider and deeper networks increases classification
performance with the more complicated classification tasks (SVHN→ MNIST,
MNIST → MNIST-M); in these cases we add an additional fully connected
network with 512 neurons. The final activation function is a sigmoid.
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We use the same architecture described above for all our models to guarantee fair
comparison. As a side note, the input to the imputation model’s classifier is twice
bigger as in the standard adaptation models.

Figure A.2. – Base architecture for the ADV DANN model

ads-kaggle and amazon We experiment with ADV models only. As input data
is numeric and low dimensional, architectures are simpler than in digits. Our
feature extractor is a three layered NN with 128 neurons and with a final sigmoid
activation. The classifier is taken to be a single layered NN with 128 neurons and a
final softmax layer. Activations are taken to be ReLUs. The domain discriminator
is taken to be a two layered NN with 128 neurons and a final softmax layer. Finally
the reconstructor is taken to be a two-layered NN with 256 neurons and final
sigmoid activation.

ads-real We experiment with ADV models only. Input features after processing
are fed directly into the feature extractors g1, g2 consisting of two fully connected
layers with 128 neurons. The classifier and discriminator is taken to be single-
layered NN with 25 neurons. The reconstructor is taken to be a two-layered NN

with 128 neurons. Inner activations are taken to be ReLUs and the final activation
of the feature extractor is taken to be a sigmoid.

A.4.2 Network parameters

Hyperparameter tuning Tuning hyperparameters for Unsupervised Domain
Adaptation (UDA) is tricky as we do not have access to target labels and thus
cannot choose parameters minimizing the target risk on a validation set. Several
papers set hyperparameters through reverse cross-validation Ganin et al. 2015.
Other approaches developed for model selection are based on risk surrogates
obtained by estimating an approximation of the risk value on the source based
on the similarity of source and target distributions (without the labels). In the
experiments, we used a recent estimator, Deep Embedded Validation (DEV) You et
al. 2019 for tuning the initial learning rate and for the OT imputation model, tuning
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λ1 and λOT . For other parameters, we used heuristics and typical hyperparameter
values from UDA papers (such as batch size) without further tuning. We use
a cross entropy link function on the source validation set; this value provides
a proxy for the target test risk. Using parameters from the original paper, this
estimator helps select parameter ranges which perform reasonably well. We keep
the estimator unchanged for our baseline models. In the imputation case, the
discriminator used for computing importance sampling weights discriminates
between ẑS and ẑT i.e. D1 (Figure 3.2).

Digits We find that the results are highly dependent on the NN architecture
and the training parameter setting. In order to evaluate the gain obtained with
Adaptation-Imputation, we use the same NN architecture for all models (ADV and
OT) but fine tune the learning rates for each model using the DEV estimator (other
parameters do not have a significant impact on the classification performance).

ADV We use an adaptive approach as in Ganin et al. 2015 for decaying the
learning rate lr and updating the gradient’s scale s between 0 and 1 for the
domain discriminators. We choose the decay values used in Ganin et al. 2015

ie. s =
2

1 + exp(−10× p) − 1 and lr =
lri

(1 + 10× p)0,75 where p is ratio of cur-

rent batches processed over the total number of batches to be processed with-
out further tuning. We tune the initial learning rate lri, chosen in the range
{10−2, 10−2.5, 10−3, 10−3.5, 10−4} following Appendix A.4.2. In practice we take
lri = 10−2 for ADV Adaptation-Imputation, Adaptation-Full, Adaptation-IgnoreComponent
and lri = 10−2.5 for ADV Adaptation-ZeroImputation. We use Adam as the optimizer
with momentum parameters β1 = 0.8 and β2 = 0.999 and use the same decay
strategy and initial learning rate for all components (feature extractor, classifier,
reconstructor). Batch size is chosen to be 128; we see in practice that initializing
the adaptation models with a source model with smaller batch size (such as 32)
can be beneficial.

OT We choose parameter λOT = 0.1 in Eq. (A.3) after tuning in the range
{10−1, 10−2, 10−3} using DEV. We weight L1 in Eq. (3.8) by λ1 = 0.1. Following
Damodaran et al. 2018, batch size is taken to be 500 and we use EMD a.k.a.
Wasserstein-2 distance. We initialize adaptation models with a source model
in the first 10 epochs and divide the initial learning rate by two as adaptation
starts for non-imputation models. For Adaptation-Imputation we follow a decaying
strategy on the learning rate and on the adaptation weight as explained in the
next item. We choose lri in the range {10−2, 10−2.5, 10−3, 10−3.5, 10−4}. In practice
we fix lri = 10−2 for all models.
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Imputation parameters Ablation studies are conducted in Section 3.6.6 on
weights in Eq. (3.4); in digits experiments we choose L2 = LMSE + LADV for
ADV and OT to reduce the burden of additional feature tuning. For ADV model,
we fix λ1 = λ2 = λ3 = 1 in Eq. (3.8). In the OT model, we vary λ1 between 0 and
0.1 and λ2 between 0 and 1 following the same schedule as the gradient scale
update for ADV models to reduce variance.

Ads We use an adaptive strategy for updating the gradient scale and the learn-
ing rate with the same parameters as in the digits dataset. Optimizer is taken
to be Adam. Batch size is taken to be big so that target batches include sufficient
positive instances.

ads-kaggle The initial learning rate is chosen in the range {10−4, 10−5, 10−6, 10−7}
using DEV and fixed to be 10−6 for all models. Batch size is taken to be 500 and we
initialize models with a simple classification loss for five epochs. We run models
for 50 epochs after which we notice that models reach a plateau. We find that
adding a weighted MSE term allows to achieve higher stability (as measured by
variance) as further studied in Section 3.6.6. In a similar fashion to Pathak et al.
2016, we tune this weight in the range {1, 10−1, 10−2, 7.5 × 10−3, 5 × 10−3, 10−3}.
We find that 0.005 offers the best compromise between mean loss and variance.
Moreover on this dataset we use a faster decaying strategy for the discriminator’s

D2 and the reconstructor’s r learning rate, lr =
lri

(1 + 30× p)0,75 to achieve higher

stability in the training curves while the feature extractor g1, g2 and D1’s learning
rate are unchanged.

ads-real The initial learning rate is chosen in the range {10−4, 10−5, 10−6} and
fixed to be 10−6 for all models. The learning rate is decayed with the same param-
eters as digits for all models. We run models for ten epochs which provides a
good trade-off between learning time and classification performance. Batch size
is taken to be 500. We choose L2 = LMSE + LADV without further tuning; this
achieves already good results.

A.4.3 Amazon

We use the same hyperparameters as ads-kaggle. λMSE is set to 1 without further
tuning.
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A.5 Latent space visualization on digits

In this section we visualize the embeddings ẑ = ĝ(z) learned by the various mod-
els on digits by projecting the embeddings in a 2D space using ĝ with t-SNE
(the original embedding size being 2048). Figure A.3 represents the embeddings
learned for ADV models on MNIST→ MNIST-M. Figures A.4 and A.5 represent
these embeddings for OT models respectively on MNIST→MNIST-M and MNIST
→ USPS. On these figures, we see that Adaptation-Imputation generates feature
representations that overlap better between source and target examples per class
than the adaptation counterparts (although Adaptation-IgnoreComponent does a
good job at overlapping feature representations). This correlates with the accu-
racy performance on the target test set. Moreover we notice, as expected, that
Adaptation-IgnoreComponent and Adaptation-ZeroImputation perform badly com-
pared to Adaptation-Full which justifies the use of Adaptation-Imputation when
confronted to missing non-stochastic data.
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Figure A.3. – Embeddings for MNIST→ MNIST-M dataset for ADV models on a
batch. Figures on the left represent the source (red) and target (blue)
clusters; Figures on the right represent the classes on source and
target.
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Figure A.4. – Embeddings for MNIST → MNIST-M dataset for OT models on a
batch. Figures on the left represent the source (red) and target (blue)
clusters; Figures on the right represent the classes on source and
target.
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Figure A.5. – Embeddings for MNIST→ USPS dataset for OT models on a batch.
Figures on the left represent the source (red) and target (blue) clus-
ters; Figures on the right represent the classes on source and target.
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Supplementary Material of Chapter 4

B.1 Additional visualisation

We visualize in Figure B.2 how OSTAR maps source representations onto tar-
get ones under Generalized Target Shift (GeTarS). We note that OSTAR (i) maps
source conditionals to target ones (blue and green points are matched c.f. left),
(ii) matches conditionals of the same class ("v" and "o" of the same colour are
matched c.f. right).

B.2 Additional results

We report our full results below. Aggregated results for balanced accuracy over
a dataset and imbalance scenarios are reported in Table 4.1. Prefix "s" refers to
subsampled datasets defined in Table B.6.

Additional ablation studies We detail the full results for our ablation studies.

157
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Table B.1. – Balanced accuracy (↑) over 10 runs. The best performing model is
indicated in bold.

Setting Source DANN WDβ=0 WDβ=1 WDβ=2 MARSg MARSc IW-WD OSTAR+IM DI-Oracle

Digits - MNIST→USPS

balanced 86.94± 1.1 93.97± 0.9 94.42± 0.6 82.05± 6.3 75.14± 6.7 94.19± 1.8 96.44± 0.3 96.10± 0.3 96.91± 0.3 96.95± 0.2

mild 87.10± 2.0 93.23± 1.2 91.52± 0.6 84.07± 5.0 78.29± 7.2 94.78± 1.0 95.18± 0.9 94.72± 0.4 96.18± 1.0 97.22± 0.2

high 86.23± 2.8 93.03± 1.0 91.14± 0.7 85.15± 2.9 78.90± 3.8 94.50± 1.3 95.07± 0.6 94.60± 0.8 96.06± 0.6 96.87± 0.4

Digits - USPS→MNIST

balanced 63.01± 6.5 87.64± 1.7 90.84± 1.3 83.54± 3.0 77.00± 7.6 90.16± 2.5 93.37± 2.5 95.68± 0.6 98.11± 0.2 96.84± 0.2

mild 62.81± 2.3 87.00± 2.1 88.07± 1.2 77.83± 5.4 79.41± 7.4 89.93± 2.4 93.20± 2.8 92.73± 1.5 97.44± 0.5 95.75± 0.3

high 64.04± 5.4 86.37± 1.4 87.04± 1.4 79.17± 6.0 74.47± 7.4 88.24± 3.3 91.54± 0.9 90.81± 1.5 97.08± 0.6 95.87± 0.3

VisDA12

VisDA 48.63± 1.0 53.72± 0.9 57.40± 1.1 47.56± 0.8 36.21± 1.8 55.62± 1.6 55.33± 0.8 51.88± 1.6 59.24± 0.5 57.61± 0.3

sVisDA 42.46± 1.4 47.57± 0.9 47.32± 1.4 41.48± 1.6 31.83± 3.0 55.00± 1.9 51.86± 2.0 50.65± 1.5 58.84± 1.0 55.77± 1.1

Office31

sA-D 80.71± 0.5 82.39± 0.4 81.76± 0.4 75.98± 1.2 68.64± 2.4 84.54± 1.0 84.10± 0.8 81.83± 0.5 84.17± 0.7 87.74± 0.6

sD-W 89.08± 0.4 88.70± 0.2 88.98± 0.2 88.53± 0.2 88.97± 0.1 91.03± 0.4 90.76± 0.4 88.17± 0.3 94.13± 0.2 91.31± 0.2

sW-A 58.91± 0.2 58.87± 0.1 59.18± 0.2 60.70± 0.3 60.95± 0.2 63.94± 0.1 63.80± 0.3 60.25± 0.2 69.99± 0.1 63.92± 0.2

sW-D 95.64± 0.2 97.26± 0.3 97.13± 0.3 95.99± 0.3 95.57± 0.5 97.96± 0.1 98.16± 0.2 97.53± 0.2 98.47± 0.2 98.35± 0.0

sD-A 53.41± 0.9 57.45± 0.2 57.81± 0.2 58.24± 0.2 58.61± 0.3 62.12± 0.2 62.13± 0.4 60.03± 0.2 65.00± 0.5 62.57± 0.3

sA-W 69.23± 0.5 72.09± 0.5 72.60± 0.3 65.94± 0.9 61.64± 7.2 81.60± 0.5 81.05± 0.7 75.84± 0.7 83.91± 0.5 82.51± 0.5

OfficeHome

sA-C 44.44± 0.3 46.08± 0.3 41.74± 1.7 40.90± 0.8 39.22± 1.1 47.19± 0.3 46.94± 0.2 45.29± 0.1 48.43± 0.2 48.09± 0.2

sA-P 58.96± 0.3 59.96± 0.2 54.67± 1.8 52.18± 2.3 46.29± 1.4 62.17± 0.2 61.97± 0.2 59.46± 0.3 69.52± 0.4 63.59± 0.2

sA-R 67.10± 0.2 67.42± 0.2 65.40± 0.6 62.52± 1.7 60.51± 1.9 68.66± 0.3 68.62± 0.3 67.76± 0.2 73.29± 0.3 69.85± 0.1

sC-A 35.54± 2.3 35.47± 1.7 37.34± 2.0 36.81± 1.5 33.15± 2.3 46.03± 0.2 46.10± 0.2 44.18± 0.1 46.47± 0.3 46.94± 0.2

sC-P 52.48± 2.1 50.56± 0.9 53.53± 0.1 49.96± 1.4 44.67± 1.5 59.82± 0.1 59.82± 0.1 58.67± 0.1 63.37± 0.1 60.14± 0.1

sC-R 54.99± 1.7 54.22± 0.8 54.69± 0.5 51.34± 2.5 45.16± 3.5 62.69± 0.1 62.41± 0.1 60.74± 0.2 63.12± 0.2 62.80± 0.2

sP-A 38.10± 4.5 36.36± 3.3 48.24± 0.2 47.24± 0.3 48.20± 0.3 47.78± 0.3 46.10± 0.9 45.68± 0.3 50.84± 0.3 50.11± 0.4

sP-C 34.16± 4.6 33.00± 1.9 39.10± 0.2 40.36± 0.4 37.41± 0.3 42.41± 0.3 41.92± 0.3 38.22± 0.2 44.15± 0.3 43.10± 0.2

sP-R 66.28± 3.4 59.19± 0.8 70.01± 0.1 68.78± 0.2 66.61± 0.3 70.00± 0.4 69.37± 0.9 69.43± 0.4 73.95± 0.3 71.26± 0.4

sR-P 66.67± 5.4 70.97± 0.6 73.47± 0.3 72.66± 0.7 71.76± 0.7 72.62± 0.9 72.72± 1.1 72.90± 0.7 75.58± 0.6 74.17± 0.7

sR-A 48.59± 6.7 51.90± 1.1 56.97± 0.3 57.02± 0.5 55.38± 1.1 54.02± 0.7 53.37± 1.3 53.44± 0.6 56.28± 0.5 57.68± 0.6

sR-C 39.36± 2.5 45.33± 0.8 46.47± 0.4 47.11± 0.5 45.38± 1.3 45.81± 1.2 45.30± 1.2 42.66± 1.0 49.07± 0.9 47.86± 0.3

Table B.2. – Semi-supervised learning for OSTAR and balanced accuracy (↑). Best
results are in bold.

Setting \ Objective Eq. (CAL) + Eq. (SS) + Eq. (SSg)

MNIST→USPS

balanced 95.12± 0.6 96.68± 0.1 96.91± 0.3
mild 91.77± 1.2 95.39± 1.4 96.18± 1.0
high 88.55± 1.1 95.70± 0.8 96.06± 0.6

USPS→MNIST

balanced 88.19± 1.1 97.16± 0.3 98.11± 0.2
mild 88.34± 1.3 96.34± 0.2 97.44± 0.5
high 84.87± 2.3 95.61± 0.4 97.08± 0.6

VisDA12

original 50.37± 0.6 52.54± 0.3 59.24± 0.5
subsampled 49.05± 0.9 53.37± 0.6 58.84± 1.0

Office31

sA-D 81.52± 0.7 83.18± 0.2 84.17± 0.7
sD-W 89.94± 0.8 89.50± 0.8 94.13± 0.2
sW-A 59.62± 0.6 60.06± 0.4 69.99± 0.1
sW-D 96.39± 0.6 97.44± 0.2 98.47± 0.2
sD-A 54.38± 1.1 56.58± 0.6 65.00± 0.5
sA-W 75.30± 1.0 81.32± 0.8 83.91± 0.5
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(a) MNIST→USPS balanced

(b) MNIST→USPS subsampled high imbalance

(c) USPS→MNIST balanced
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(a) USPS→MNIST subsampled high imbalance

(b) VisDA

(c) VisDA subsampled

Figure B.2. – t-SNE feature visualizations for OSTAR on various datasets and la-
bel imbalance. Crosses "x" denote source samples, circles "o" target
samples and triangles "v" transported source samples. On the left,
source samples are red, target samples blue and transported source
samples green. On the right, samples from the same class have the
same colour regardless of domain.
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Figure B.3. – ℓ1 estimation error of pYT (↓). The best model for balanced accuracy
is indicated with "⋆".

Table B.3. – IM for MARSc, IW-WD and OSTAR on balanced accuracy (↑). Best results
are in bold.

Setting \ Model MARSc MARSc+IM IW-WD IW-WD+IM OSTAR OSTAR+IM

MNIST→USPS

balanced 96.44± 0.3 97.92± 0.2 96.10± 0.3 97.91± 0.1 95.12± 0.6 96.91± 0.3
mild 95.18± 0.9 95.47± 1.1 94.72± 0.4 95.74± 0.6 91.77± 1.2 96.18± 1.0
high 95.07± 0.6 93.76± 0.5 94.60± 0.8 91.73± 0.6 88.55± 1.1 96.06± 0.6

USPS→MNIST

balanced 93.37± 2.5 93.03± 1.9 95.68± 0.6 96.17± 0.5 88.19± 1.1 98.11± 0.2
mild 93.20± 2.8 94.60± 1.7 92.73± 1.5 92.65± 1.0 88.34± 1.3 97.44± 0.5
high 91.54± 0.9 90.16± 2.0 90.81± 1.5 91.26± 1.1 84.87± 2.3 97.08± 0.6

VisDA12

VisDA 55.33± 0.8 57.57± 0.8 51.88± 1.6 57.63± 0.1 50.37± 0.6 59.24± 0.5
sVisDA 51.86± 2.0 57.06± 0.8 50.65± 1.5 57.62± 0.7 49.05± 0.9 58.84± 1.0

Office31

sW-A 63.80± 0.3 68.12± 0.5 60.25± 0.2 67.42± 0.8 59.62± 0.6 69.99± 0.1
sA-W 81.05± 0.7 81.83± 1.9 75.84± 0.7 82.34± 1.6 75.30± 1.0 83.91± 0.5

OfficeHome

sR-P 72.72± 1.1 75.17± 0.6 72.90± 0.7 74.94± 0.6 71.77± 0.4 75.58± 0.6
sR-A 53.37± 1.3 54.20± 1.3 53.44± 0.6 54.50± 1.1 55.15± 0.8 56.28± 0.5
sR-C 45.30± 1.2 48.17± 1.2 42.66± 1.0 47.93± 1.7 43.02± 3.1 49.07± 0.9



162 supplementary material of Chapter 4

Table B.4. – Best value over training epochs of term (A) (↓), term (C) (↓) and term
(L) (↓) without and with IM in OSTAR. Best results are in bold. Terms
(A) and (L) are computed with the primal formulation of OT using
the POT package https://pythonot.github.io/.

Alignment Discriminativity

Term (A) Term (L) Term (C)

Setting OSTAR OSTAR+IM OSTAR OSTAR+IM OSTAR OSTAR+IM

MNIST→USPS

balanced 49.83 16.56 1.45 0.18 2.19× 10−3 0.918× 10−3

mild 39.31 19.13 10.78 0.24 1.65× 10−3 0.931× 10−3

high 38.60 21.10 12.78 0.74 1.76× 10−3 0.510× 10−3

USPS→MNIST

balanced 235.43 86.65 7.08 0.52 4.46× 10−3 0.495× 10−3

mild 188.67 104.66 20.99 1.05 3.98× 10−3 0.399× 10−3

high 181.64 123.83 21.62 0.82 4.51× 10−3 0.616× 10−3

Table B.5. – Detailed analysis of the impact of λOT on balanced accuracy (↑). Best
results are in bold.

MNIST→USPS - initialization gain 0.02

Shift \ λOT λOT = 0 λOT = 10−3 λOT = 10−2 λOT = 10−1 λOT = 1 λOT = 104 Source

balanced 94.92± 0.6 96.02± 0.2 95.12± 0.6 89.76± 1.2 91.95± 1.2 87.03± 1.8 86.02± 1.4
mild 88.28± 1.5 88.63± 1.3 91.77± 1.2 90.17± 1.7 88.51± 1.2 88.42± 1.6 89.08± 0.5
high 85.24± 1.6 85.38± 1.4 88.55± 1.1 89.10± 1.2 88.82± 1.1 86.94± 1.1 86.73± 1.9

MNIST→USPS high imbalance

Gain \ λOT λOT = 0 λOT = 10−3 λOT = 10−2 λOT = 10−1 λOT = 1 λOT = 104

0.02 85.24± 1.6 85.38± 1.4 88.55± 1.1 89.10± 1.2 88.82± 1.1 86.94± 1.1
0.1 84.62± 2.3 85.84± 1.1 88.41± 1.3 88.79± 1.2 87.90± 1.2 87.10± 1.0
0.3 83.11± 2.4 84.45± 1.4 89.41± 1.6 91.00± 1.3 89.65± 0.7 86.23± 1.8

https://pythonot.github.io/


B.3 details on ot 163

B.3 Details on OT

Background OT was introduced to find a transportation map minimizing the
cost of displacing mass from one configuration to another (Villani 2008). For a
comprehensive introduction, we refer to Peyré et al. 2019. Formally, let α and β

be absolutely continuous distributions compactly supported in Rd and c : Rd ×
Rd → R a cost function. Consider a map ϕ : Rd → Rd that satisfies ϕ#α = β,
i.e. that pushes α to β. We remind that for a function f , f#ρ is the push-forward
measure f#ρ(B) = ρ(f−1(B)), for all measurable set B. The total transportation
cost depends on the contributions of costs for transporting each point x to ϕ(x)

and the Monge OT problem is:

min
ϕ
Cmonge(ϕ) =

∫
Rd

c(x, ϕ(x))dα(x)

s.t. ϕ#α = β

(B.1)

c(x,y) = ∥x−y∥p2 induces the p-Wasserstein distance,Wp(α, β) = minϕ#α=β Cmonge(ϕ)
1/p.

When p = 1,W1 can be expressed in the dual formW1(α, β) = sup∥v∥L≤1 Ex∼αv(x)−
Ey∼βv(y) where ∥v∥L is the Lipschitz constant of function v.

Relationship between Eq. (OT) and the Monge OT problem Eq. (B.1) Eq. (OT)
is the extension of Eq. (B.1) to the setting where pYS ̸= pYT with pYT unknown.
This extension aims at matching conditional distributions regardless of how their
mass differ and learns a weighting term pYN for source conditional distributions
which addresses label shift settings. When pYS = pYT , these two formulations are
equivalent under Assumption 5 if we fix pYN = pYS = pYT .

B.4 Discussion

Our four assumptions are required for deriving our theoretical guarantees. All
GeTarS papers that propose theoretical guarantees also rely on a set of assump-
tions, either explicit or implicit. Assumptions 5 and 8 are common to several
papers. Assumption 5 is easily met in practice since it could be forced by training
a classifier on the source labels. Assumption 8 is said to be met in high dimen-
sions (Redko et al. 2019; Garg et al. 2020). Assumption 7 says that source and
target clusters from the same class are globally (there is a sum in the condition)
closer one another than clusters from two different classes. This assumption is
required to cope with the absence of target labels. Because of the sum, it could be
considered as a reasonable hypothesis. It is milder than the hypotheses made in
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papers offering guarantees similar to ours (Zhang et al. 2013; Gong et al. 2016).
Assumption 6 is new to this paper. It states that ϕ maps a j source conditional to
a unique k target conditional i.e. it guarantees that mass of a source conditional
will be entirely transferred to a target conditional and will not be split across sev-
eral target conditionals. This property is key to show that OSTAR matches source
conditionals and their corresponding target conditionals, which is otherwise very
difficult to guarantee under GeTarS as both target conditionals and proportions
are unknown. This assumption has some restrictions, despite being milder than
existing assumptions in GeTarS. First, mass from a source conditional might in
practice be split across several target conditionals. In practice, our optimization
problem in Eq. (CAL) mitigates this problem by learning how to reweight source
conditionals to improve alignment. We could additionally apply Laplacian regu-
larization (Ferradans et al. 2013; Carreira-Perpiñán et al. 2014) into our OT map
ϕ but this was not developed in the paper. Second, it assumes a closed-set UDA

problem i.e. label domains are the same YS = YT . The setting where YS ̸= YT is
more realistic in large scale image pretraining and is another interesting follow-
up. Note that OSTAR can address empirically open-set UDA (YT ⊂ YS) by simply
applying L1 regularization on pYN in our objective function Eq. (CAL). This forces
sparsity and allows "loosing" mass when mapping a source conditional. It avoids
the unwanted negative transfer setting when source clusters, with labels absent
on the target, are aligned with target clusters.

B.5 Proofs

Proposition (4.2). For any encoder g which defines Z satisfying Assumption 5, 6,
7 , 8, there is an unique solution (ϕ,pYN) to Eq. (OT) and ϕ#(pS(Z|Y )) = pT (Z|Y )

and pYN = pYT .

Proof. Fixing Z satisfying Assumptions 5, 7 and 8, we first show that there ex-
ists a solution (ϕ,pYN) to Eq. (OT). Following Brenier 1991 as Z ⊂ Rd, we can
find K unique Monge maps {ϕ̂(k)}Kk=1 s.t. ∀k ϕ̂(k)

# (pS(Z|Y = k)) = pT (Z|Y = k)

with respective transport costs W1(pS(Z|Y = k), pT (Z|Y = k)). Let’s define ϕ̂ as
∀k ϕ̂|Z(k)

S
= ϕ̂(k) where ∪Kk=1Z(k)

S is the partition of ZS in Assumption 5. (ϕ̂,pYT )
satisfies the equality constraint to Eq. (OT), thus we easily deduce existence.

Now, let (ϕ,pYN) be a solution to Eq. (OT), let’s show unicity. We first show that
ϕ = ϕ̂. Under Assumption 6, Eq. (OT) is the Monge formulation of the optimal
assignment problem between {pS(Z|Y = k)}Kk=1 and {pT (Z|Y = k)}Kk=1 with C

the cost matrix defined by Cij =W2(pS(Z|Y = i), pT (Z|Y = j)). At the optimum,
the transport cost is related to the Wasserstein distance between source condition-
als and their corresponding target conditionals i.e. C(ϕ) =

∑K
k=1W2(pS(Z|Y =
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k), ϕ#(pS(Z|Y = k))). Suppose ∃(i, j), j ̸= i s.t. ϕ#(pS(Z|Y = i)) = pT (Z|Y =

j) and ϕ#(pS(Z|Y = j)) = pT (Z|Y = i) and ∀k ̸= i, j, ϕ#(pS(Z|Y = k)) =

pT (Z|Y = k). Assumption 7 implies
∑K

k=1W2(pS(Z|Y = k), pT (Z|Y = k)) ≤∑
k ̸=i,jW2(pS(Z|Y = k), pT (Z|Y = k))+W2(pS(Z|Y = i), pT (Z|Y = j))+W2(pS(Z|Y =

j), pT (Z|Y = i)). Thus C(ϕ̂,Z) ≤ C(ϕ,Z) whereas ϕ, solution to Eq. (OT), has min-
imal transport cost. Thus ϕ = ϕ̂.

Now let’s show pYN = pYT under Assumption 8. We inject ϕ#(pS(Z|Y )) = pT (Z|Y )

into Eq. (OT),

K∑
k=1

pY=k
N pT (Z|k) =

K∑
k=1

pY=k
T pT (Z|k)⇔

K∑
k=1

(
pY=k
N − pY=k

T

)
pT (Z|k) = 0⇔ pYN = pYT

Theorem (4.3). Given a fixed encoder g defining a latent space Z , two domains N
and T satisfying cyclical monotonicity in Z , assuming that we have ∀k,pY=k

N > 0,
then ∀fN ∈ H where H is a set of M -Lipschitz continuous functions over Z ,

EgT (fN) ≤ EgN(fN)︸ ︷︷ ︸
Classification (C)

+
2M

minKk=1 p
Y=k
N

W1

(
pN(Z), pT (Z)

)
︸ ︷︷ ︸

Alignment (A)

+2M
(
1 +

1

minKk=1 p
Y=k
N

)
W1

( K∑
k=1

pY=k
N pT (Z|Y = k),

K∑
k=1

pY=k
T pT (Z|Y = k)

)
︸ ︷︷ ︸

Label (L)

(4.2)

Proof. We first recall that EgD(fN) = E(z,y)∈pD(Z,Y )L(fN(z), y) where L is the 0/1

loss. For conciseness, ∀z ∈ Z , pz|Y
T ,p

z|Y
N ,Lz,k will refer to the vector of [pT (z|k)]Kk=1,
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[pN(z|k)]Kk=1, [L(fN(z), k)]Kk=1 respectively. In the following, ⊙ denotes the element-
wise product operator between two vectors of the same size.

∀fN , EgT (fN) = EgN(fN) + EgT (fN)− EgN(fN)

≤ EgN(fN) +
∫
Z

K∑
k=1

(
pT (z, k)− pN(z, k)

)
× L

(
fN(z), k

)
dzdy

≤ EgN(fN) +
∫
Z

K∑
k=1

[
pY=k
T pT (z|k)− pY=k

N pN(z|k)
]
× L

(
fN(z), k

)
dz

≤ EgN(fN) +
∫
Z
pYT

⊺
(
p
z|Y
T ⊙ Lz,k

)
− pYN

⊺
(
p
z|Y
N ⊙ Lz,k

)
dz

≤ EgN(fN) +
∫
Z
pYT

⊺
(
p
z|Y
T ⊙ Lz,k

)
− pYN

⊺
(
p
z|Y
T ⊙ Lz,k

)
+ pYN

⊺
(
p
z|Y
T ⊙ Lz,k

)
− pYN

⊺
(
p
z|Y
N ⊙ Lz,k

)
dz

≤ EgN(fN) +
∫
Z

(
pYT

⊺ − pYN
⊺
)(

p
z|Y
T ⊙ Lz,k

)
+ pYN

⊺
(
(p

z|Y
T − p

z|Y
N )⊙ Lz,k

)
dz

≤ EgN(fN) +
∫
Z

(
pYT

⊺ − pYN
⊺
)(

p
z|Y
T ⊙ Lz,k

)
dz+

∫
Z
pYN

⊺
(
(p

z|Y
T − p

z|Y
N )⊙ Lz,k

)
dz

We now introduce a preliminary result from Shen et al. 2018. ∀fN ∈ H M -
Lipschitz continuous,

EgN(fN)− EgT (fN) ≤ 2M · W1(p
g
N(Z), p

g
T (Z))

Assuming that h is M -Lipschitz continuous we apply this result in the following

∫
Z

(
pYT

⊺ − pYN
⊺
)(

p
z|Y
T ⊙ Lz,k

)
dz =

∫
Z

K∑
k=1

(
pY=k
T − pY=k

N

)
pT (z|k)× L

(
fN(z), k

)
dz

= EgT (fN)− EgT̃ (fN) where pT̃ (Z) =
K∑
k=1

pY=k
N pT (Z|k)

≤ 2M · W1(pT̃ (Z), pT (Z))

∫
Z
pYN

⊺
(
(p

z|Y
T − p

z|Y
N )⊙ Lz,k

)
dz =

∫
Z

K∑
k=1

pY=k
N

(
pT (z|k)− pN(z|k)

)
× L

(
fN(z), k

)
dz

≤
K∑
k=1

∫
Z

(
pT (z|k)− pN(z|k)

)
× L

(
fN(z), k

)
dz ∀k pY=k

N ≤ 1

≤ 2M
K∑
k=1

W1

(
pT (Z|k), pN(Z|k)

)
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Thus, ∀fN M -Lipschitz continuous

EgT (fN) ≤ EgN(fN) + 2M ×
K∑
k=1

W1

(
pT (Z|k), pN(Z|k)

)
+ 2M ×W1

(
pT̃ (Z), pT (Z)

)
We rewrite the second term to involve latent marginals. Proposition 2 in Rako-
tomamonjy et al. 2021 shows that under cyclical monotonicity, if ∀k,pY=k

N > 0,

W1

( K∑
k=1

pY=k
N pT (Z|k), pN(Z)

)
=

K∑
k=1

pY=k
N W1

(
pN(Z|k), pT (Z|k)

)
This allows to write

K

min
k=1

pY=k
N

K∑
k=1

W1

(
pN(Z|k), pT (Z|k)

)
≤

K∑
k=1

pY=k
N W1

(
pN(Z|k), pT (Z|k)

)
=W1

( K∑
k=1

pY=k
N pT (Z|k), pN(Z)

)
=W1

(
pT̃ (Z), pN(Z)

)

We then use the triangle inequality for the Wasserstein distanceW1

EgT (fN) ≤ EgN(fN) +
2M

minKk=1 p
Y=k
N

W1

(
pT̃ (Z), pN(Z)

)
+ 2M ×W1

(
pT̃ (Z), pT (Z)

)
≤ EgN(fN) +

2M

minKk=1 p
Y=k
N

W1

(
pN(Z), pT (Z)

)
+ 2M(1 +

1

minKk=1 p
Y=k
N

)W1

(
pT̃ (Z), pT (Z)

)

Derivation of the reweighted classification loss (C) EgN(fN) Let ℓce be the Cross
Entropy (CE) loss. Given a classifier h, feature extractor g and domain N , the
mapping of domain S by (ϕ,pYN),

EgN(fN) =
∫
Z,Y

pϕN(z, y)ℓce

(
fN(z), y

)
dzdy =

∫
Z,Y

pY=y
N pϕN(z|y)ℓce

(
fN(z), y

)
dzdy

=

∫
Z,Y

pY=y
N

pY=y
S

pY=y
S pϕN(z|y)ℓce

(
fN(z), y

)
dzdy =

∫
Z,Y

pY=y
N

pY=y
S

pY=y
S ϕ#(pS(z|y))ℓce

(
fN(z), y

)
dzdy
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B.6 Pseudo-code and runtime / complexity analysis

We detail in Algorithm B.1 our pseudo-code and in Algorithm B.2 how we min-
imize Eq. (CAL) with respect to (ϕ, fN) using the dual form of Wasserstein-1
distance Eq. (4.6). Our method is based on a standard backpropagation strategy
with gradient descent and uses gradient penalty (Gulrajani et al. 2017).

Algorithm B.1 Training and inference procedure for OSTAR
Training:
DS = {x(i)

S , y
(i)
S }ni=1, DT = {x(i)

T }mi=1, ZDN
= {ϕ ◦ g(x(i)

S ), y
(i)
S }ni=1, ZDT

=

{g(x(i)
T )}mi=1

fS, fN ∈ H classifiers; g feature extractor; ϕ latent domain-mapping, v critic.
Ne: number of epochs, Nu: epoch to update pYN , Ng: epoch to update g

1: Train fS, g on DS to minimize source classification loss ▷ Eq. (4.3)

2: Initialize pYN =
1

K
1K

3: for nepoch ≤ Ne do
4: if nepoch mod Nu = 0 then
5: Compute pYN with estimator in Lipton et al. 2018 on (ZDN

, ZDT
) ▷

Eq. (CAL) w.r.t.. pYN
6: Average pYN with cumulative moving average
7: end if
8: if nepoch ≤ Ng then Train ϕ, v, fN with (DS,DT ) ▷ Eq. (CAL) + Eq. (SS)

w.r.t.. ϕ, fN
9: else Train ϕ, v, fN , g with (DS,DT ) ▷ Eq. (CAL) + Eq. (SSg) w.r.t.. ϕ, fN

10: end if
11: end for

Inference: Score xT with fN ◦ g(xT)

Complexity / Runtime analysis In practice on USPS → MNIST, the runtimes
in seconds on a NVIDIA Tesla V100 GPU machine are the following: DANN: 22.75s,
WDβ=0: 59.25s, MARSc: 72.87s, MARSg: 2769.06s, IW-WD: 74.17s, OSTAR+IM: 89.72s. We
observe that (i) computing Wasserstein distance (WDβ=0) is slower than comput-
ing H-divergence (DANN), (ii) runtimes for domain-invariant GeTarS baselines are
slightly higher than for WDβ=0 as proportions are additionally estimated, (iii)
domain-invariant GeTarS baselines have similar runtimes apart from MARSg which
uses GMM, (iv) our model, OSTAR+IM, has slightly higher runtime than GeTarS base-
lines other than MARSg. We now provide some further analysis on computational
cost and memory in OSTAR. We denote K the number of classes, d the dimension
of latent representations, n and m the number of source and target samples.
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Algorithm B.2 Minimize Eq. (CAL) w.r.t.. (ϕ, fN)

DS = {x(i)
S , y

(i)
S }ni=1, DT = {x(i)

T }mi=1, g feature extractor, ϕ domain-mapping, v critic,
fN classifier.
Parameters of ϕ, v, fN : θϕ, θv, θfN and learning rates αϕ, αv, αfN .
Niter: batches per epoch, Nb: batch size, Nv: critic iterations

1: for niter < Niter do
2: Sample minibatches xB

S , y
B
S = {x(i)

S , y
(i)
S }Nb

i=1, xB
T = {z(i)T }Nb

i=1 from DS,DT
3: Compute zBS = g(xB

S ), z
B
N = ϕ ◦ g(xB

S ) and zBT = g(xB
T)

4: Compute class ratios: wY = pYN/p
Y
S

5: for nv < Nv do
6: Sample random points zB

′ from the lines between (zBN, z
B
T) pairs

7: Compute gradient penalty Lgrad with zBN, z
B
T, z

B′ (Gulrajani et al. 2017)

8: Compute Lgwd =
∑Nb

i=1wy
(i)
S
v(z

(i)
N )− 1

Nb

∑Nb

i=1 v(z
(i)
T ) Eq. (4.6)

9: θv ← θv − αv∇θv

[
Lgwd − Lgrad

]
10: end for
11: Compute LgOT =

∑K
k=1

1

#{y(i)S = k}i∈J1,NbK

∑
y
(i)
S =k, i∈J1,NbK

∥ϕ(z(i)S )− z
(i)
S ∥22

12: θϕ ← θϕ − αϕ∇θϕ

[
Lgwd + LgOT

]
13: Compute Lgc(fN , N) =

1

Nb

∑Nb

i=1wy
(i)
S
ℓce(fN ◦ ϕ ◦ g(x(i)

S ), y
(i)
S )

14: θfN ← θfN − αfN∇θfN
Lgc(fN , N)

15: end for
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• Memory: Proportion estimation is based on the method in Lipton et al. 2018

and requires storing the confusion matrix Ĉ and predictions p̂YT with a memory
cost of O(K2). Encoding is performed by a deep NN g into Rd and classification
by a shallow classifier from Rd to RK . Alignment is performed with a ResNet
ϕ : Rd → Rd in the latent space which has an order magnitude less parameters
than g. Globally, memory consumption is mostly defined by the number of
parameters in the encoder g.

• Computational cost comes from: (i) proportion estimation, which depends on
K,n+m and is solved once every 5 epochs with small runtime; (ii) alignment
between source and target representations, which depends on d, n+m and Nv

(the number of critic iterations). This step updates less parameters than domain-
invariant methods which align with g instead of ϕ; this may lead to speedups
for large encoders. The transport cost LgOT depends on n, d and adds small
additional runtime; (iii) classification with fN using labelled source samples,
which depends on d,K, n. In a second stage, we improve target discriminativity
by updating the encoder g with semi-supervised learning; this depends on
d,K, n+m.

B.7 Experimental setup

Datasets We consider the following UDA problems:

• Digits is a synthetic binary adaptation problem. We consider adaptation be-
tween MNIST and USPS datasets. We consider a subsampled version of the
original datasets with the following number of samples per domain: 10000-
2609 for MNIST→USPS, 5700-20000 for USPS→MNIST. The feature extractor is
learned from scratch.

• VisDA12 is a 12-class adaptation problem between simulated and real images.
We consider a subsampled version of the original problem using 9600 samples
per domain and use pre-trained ImageNet ResNet-50 features http://csr.bu.
edu/ftp/visda17/clf/.

• Office31 is an object categorization problem with 31 classes. We do not sample
the original dataset. There are 3 domains: Amazon (A), DSLR (D) and WebCam
(W) and we consider all pairwise source-target domains. We use pre-trained Im-
ageNet ResNet-50 features https://github.com/jindongwang/transferlearning/
blob/master/data/dataset.md.

• OfficeHome is another object categorization problem with 65 classes. We do not
sample the original dataset. There are 4 domains: Art (A), Product (P), Clipart

http://csr.bu.edu/ftp/visda17/clf/
http://csr.bu.edu/ftp/visda17/clf/
https://github.com/jindongwang/transferlearning/blob/master/data/dataset.md
https://github.com/jindongwang/transferlearning/blob/master/data/dataset.md
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(C), Realworld (R) and we consider all pairwise source-target domains. We
use pre-trained ImageNet ResNet-50 features https://github.com/jindongwang/
transferlearning/blob/master/data/dataset.md.

Imbalance settings We consider different class-ratios between domains to sim-
ulate label-shift and denote with a "s" prefix, the subsampled datasets. For Digits,
we explicitly provide the class-ratios as Rakotomamonjy et al. 2021 (e.g. for high
imbalance, class 2 accounts for the 7% of target samples while class 4 accounts
for 22% of target samples). For Visda12, Office31 and OfficeHome, subsampled
datasets only consider a small percentage of source samples for the first half
classes as Combes et al. 2020 (e.g. Office31 considers 30% of source samples in
classes below 15 and uses all source samples from other classes and all target
samples).

Table B.6. – Label imbalance settings
Dataset Configuration pYS pYT

Digits balanced { 1
10 , · · · , 1

10 } { 1
10 , · · · , 1

10 }
subsampled mild { 1

10 , · · · , 1
10 } {0, 1, 2, 3, 6} = 0.06, {4, 5} = 0.2, {7, 8, 9} = 0.1

subsampled high { 1
10 , · · · , 1

10 } {0, 1, 2, 3, 6, 7, 8, 9} = 0.07, {4, 5} = 0.22

VisDA12 original {0− 11} : 100% {0− 11} : 100%
subsampled {0− 5} : 30% {5− 11} : 100% {0− 11} : 100%

Office31 subsampled {0− 15} : 30% {15− 31} : 100% {0− 31} : 100%
OfficeHome subsampled {0− 32} : 30% {33− 64} : 100% {0− 64} : 100%

Hyperparameters Domain-invariant methods weight alignment over classifica-
tion; we tuned the corresponding hyperparameter for WDβ=0 in the range [10−4, 10−2]

and used the one that achieves the best performance on other models. We also
tuned λOT in problem Eq. (CAL) and fixed it to 10−2 on Digits and 10−5 on
VisDA12, Office31 and OfficeHome. Batch size is Nb = 200 and all models are
trained using Adam with learning rate tuned in the range [10−4, 10−3]. We initial-
ize NN for classifiers and feature extractors with a normal prior with zero mean
and gain 0.02 and ϕ with orthogonal initialization with gain 0.02.

Training procedure We fix Ne the number of epochs to 50 on Digits, 150 on
VisDA12 and 100 on Office31, OfficeHome; OSTAR requires smaller Ne to converge.
Critic iterations are fixed to Nv = 5 which worked best for all baseline models;
for OSTAR higher values performed better. For all models, we initialize fS, g for
10 epochs with Eq. (4.3). Then, we perform alignment either through domain-
invariance or with a domain-mapping until we reach the total number of epochs.
GeTarS models IW-WD, MARSc, MARSg, OSTAR perform reweighting with estimates
refreshed every Nu = 2 epochs in the first 10 alignment epochs, every Nu = 5

https://github.com/jindongwang/transferlearning/blob/master/data/dataset.md
https://github.com/jindongwang/transferlearning/blob/master/data/dataset.md
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epochs after. OSTAR minimizes Eq. (CAL) + Eq. (SS) for 10 epochs on Digits,
Office31, OfficeHome and 5 epochs on VisDA12, then minimizes Eq. (CAL) +
Eq. (SSg) for remaining epochs.

Architectures For Digits, our feature extractor g is composed of three convo-
lutional layers with respectively 64, 64, 128 filters of size 5 × 5 interleaved with
batch norm, max-pooling and ReLU. Our classifiers (fS, fN ) are three-layered
fully-connected networks with 100 units interleaved with batch norm, ReLU. Our
discriminators are three-layered NN with 100 units and ReLU activation. For
VisDA12 and Office31, OfficeHome, we consider pre-trained 2048 features ob-
tained from a ResNet-50 followed by 2 fully-connected networks with ReLU and
100 units for VisDA12, 256 units for Office31, OfficeHome. Discriminators are 2-
layer fully-connected networks with respectively 100/1 units on VisDA12, 256/1

units on Office31, OfficeHome interleaved with ReLU. Classifiers are 2-layer fully-
connected networks with 100/K units on VisDA12, single layer fully-connected
network with K units on Office31, OfficeHome. ϕ is a ResNet with 10 blocks of
two fully-connected layers with ReLU and batch-norm.

Implementation of target proportion estimators OSTAR and IW-WD use the con-
fusion based estimator in Lipton et al. 2018 and solve a convex optimization prob-
lem ((4) in Combes et al. 2020 and CAL w.r.t. pYN for OSTAR) which has an unique
solution if the soft confusion matrix C is of full rank. We implement the same
optimization problem using the parallel proximal method from Pustelnik et al.
2011 instead of cvxopt 1 used in Combes et al. 2020. MARSc and MARSg (Rakotoma-
monjy et al. 2021) use linear programming with POT 2 to estimate proportions with
optimal assignment between conditional distributions. Target conditionals are ob-
tained with hierarchical clustering or with a Gaussian Mixture Model (GMM)
using sklearn 3. MARSg has some computational overhead due to the GMM.

1. http://cvxopt.org/
2. https://pythonot.github.io/
3. https://scikit-learn.org/

http://cvxopt.org/
https://pythonot.github.io/
https://scikit-learn.org/


Appendix C

Supplementary Material of Chapter 5

This supplementary material complements the main paper. It is organized as
follows:

1. Appendix C.1 points out the limitations of existing flatness-based analysis of
Weight Averaging (WA) and shows how our analysis solves these limitations.

2. Appendix C.2 details all the proofs of the propositions and lemmas found in our
work. Appendices C.2.1 and C.2.2 derive the bias-variance-covariance-locality
decomposition for WA (Proposition 5.1). Appendix C.2.3 establishes the link
between bias and correlation shift (Proposition 5.2). Appendix C.2.4 establishes
the link between variance and diversity shift (Proposition 5.3). Appendix C.2.5
compares WA with one of its member (Lemma C.2).

3. Appendix C.3 empirically compares WA to Ensembles (ENS).

4. Appendix C.4 presents some additional diversity results on OfficeHome and
PACS.

5. Appendix C.5 ablates the importance of the number of training runs.

6. Appendix C.6 describes our experiments on DomainBed and our per-domain
results.

7. Appendix C.7 empirically confirms a limitation of WA approaches expected
from our theoretical analysis: they do not tackle correlation shift on ColoredM-
NIST.

8. Appendix C.8 suggests DiWA’s potential when some target data is available for
training (Kirichenko et al. 2022).

C.1 Limitations of OOD flatness-based analysis

Theorem C.1 (Equation 21 from Cha et al. 2021, simplified version of their Theo-
rem 1). Consider a set of N covers {Θk}Nk=1 s.t. the parameter space Θ ⊂ ∪Nk Θk where

173
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diam(Θ) ≜ supθ,θ′∈Θ∥θ − θ′∥2, N ≜
⌈
(diam(Θ)/γ)d

⌉
and d is the dimension of Θ. Then,

∀θ ∈ Θ with probability at least 1− δ:

ET (θ) ≤
1

2
Div(pS, pT ) + ES(θ)

≤ 1

2
Div(pS, pT ) + EγDS

(θ) + max
k

√
(vk[ln(nS/vk) + 1] + ln(N/δ))

2nS
,

(C.1)

where:

• ET (θ) ≜ E(x,y)∼pT (X,Y )[ℓ(fθ(x); y)] is the expected risk on the target domain,

• Div(pS, pT ) ≜ 2 supA|pS(A)− pT (A)| is a divergence between the source and target
marginal distributions pS and pT : it measures diversity shift.

• ES(θ) ≜ E(x,y)∼pS(X,Y )[ℓ(fθ(x); y)] is the expected risk on the source domain,

• EγDS
(θ) ≜ max∥∆∥≤γ EDS

(θ+∆) (where EDS
(θ+∆) ≜ E(x,y)∈DS

[ℓ(fθ+∆(x); y)]) is the
robust empirical loss on source training dataset DS from S of size nS ,

• vk is a VC dimension of each Θk.

Previous understanding of WA’s success in Out-of-distribution (OOD) relied on
this upper-bound, where EγDS

(θ) involves the solution’s flatness. This is usually
empirically analyzed by the trace of the Hessian (Dinh et al. 2017; Petzka et al.
2021; Yao et al. 2020): indeed, with a second-order Taylor approximation around
the local minima θ and h the Hessian’s maximum eigenvalue, EγDS

(θ) ≈ EDS
(θ) +

h× γ2.
In the following subsections, we show that this inequality does not fully explain
the exceptional performance of WA on DomainBed (Gulrajani et al. 2021b). More-
over, we illustrate that our bias-variance-covariance-locality addresses these limi-
tations.

C.1.1 Flatness does not act on distribution shifts

The flatness-based analysis is not specific to OOD. Indeed, the upper-bound in
Eq. (C.1) sums up two noninteracting terms: a domain divergence Div(pS, pT )

that grows in OOD and EγDS
(θ) that measures the Independent and Identically

Distributed (IID) flatness. The flatness term can indeed be reduced empirically
with WA: yet, it does not tackle the domain gap. In fact, Eq. (C.1) states that
additional flatness reduces the upper bound of the error similarly no matter
the strength of the distribution shift, thus as well OOD than IID. In contrast, our
analysis shows that variance (which grows with diversity shift, see Section 5.2.3)
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(a) Hessian trace (↓) in
train.

(b) Hessian trace (↓) in test
OOD.

(c) Accuracy (↑) in test
OOD.

Figure C.1. – MA (Arpit et al. 2021) (a WA strategy) and SAM (Foret et al. 2021)
similarly improve flatness. When combined, they further improve
flatness. Yet, MA outperforms SAM and beats MA + SAM in OOD
accuracy on domain “Art” from OfficeHome.

is tackled for large M : our error is controlled even under large diversity shift. This
is consistent with our experiments in Table 5.1. Our analysis also explains why
WA cannot tackle correlation shift (where bias dominates, see Appendix C.7), a
limitation Cha et al. 2021 does not illustrate.

C.1.2 SAM leads to flatter minimas but worse OOD performance

The flatness-based analysis does not explain why WA outperforms other flatness-
based methods in OOD. We consider Sharpness-Aware Minimizer (SAM) Foret
et al. 2021, another popular method to find flat minima based on minimax opti-
mization: it minimizes the maximum loss around a neighborhood of the current
weights θ. In Figure C.1, we compare the flatness (i.e. the Hessian trace computed
with the package in Yao et al. 2020) and accuracy of Expected Risk Minimiza-
tion (ERM), MA (Arpit et al. 2021) (a WA strategy) and SAM (Foret et al. 2021)
when trained on the “Clipart”, “Product” and “Photo” domains from OfficeHome
Venkateswara et al. 2017b: they are tested OOD on the fourth domain “Art”. Ana-
lyzing the second and the third rows of Figure C.1a and Figure C.1b, we observe
that SAM indeed finds flat minimas (at least comparable to MA), both in train-
ing (IID) and test (OOD). However, this is not reflected in the OOD accuracies in
Figure C.1c, where MA outperforms SAM. As reported in Table C.1, similar ex-
periments across more datasets lead to the same conclusions in Cha et al. 2021.
In conclusion, flatness is not sufficient to explain why WA works so well in OOD,
because SAM has similar flatness but worse OOD results. In contrast, we highlight
in this paper that WA succeeds in OOD by reducing the impact of variance thanks
to its similarity with prediction ensembling Lakshminarayanan et al. 2017 (see
Lemma 5.1), a privileged link that SAM does not benefit from.
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Table C.1. – Accuracy (↑) on DomainBed for SWAD, taken from Table 4 in Cha
et al. 2021

PACS VLCS OfficeHome TerraInc DomainNet Avg. ( ∆)

ERM 85.5 ± 0.2 77.5 ± 0.4 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
SWAD + ERM 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9(+3.6)

SAM 85.8 ± 0.2 79.4 ± 0.1 69.6 ± 0.1 43.3 ± 0.7 44.3 ± 0.0 64.5
SWAD + SAM 87.1 ± 0.2 78.5 ± 0.2 69.9 ± 0.1 45.3 ± 0.9 46.5 ± 0.1 65.5(+1.0)

Table C.2. – Accuracy (↑) impact of including SAM (Foret et al. 2021) on domain
“Art” from OfficeHome.

Algorithm Weight selection ERM SAM

No DiWA N/A 62.9 ± 1.3 63.5 ± 0.5
DiWA Restricted: M ≤ 20 66.7 ± 0.1 65.4 ± 0.1
DiWA Uniform: M = 20 67.3 ± 0.3 66.7 ± 0.2
DiWA† Uniform: M = 60 67.7 67.4

C.1.3 WA and SAM are not complementary in OOD when vari-
ance dominates

We investigate a similar inconsistency when combining these two flatness-based
methods. As argued in Kaddour et al. 2022, we confirm in Figures C.1a and C.1b
that MA + SAM leads to flatter minimas than MA alone (i.e. with ERM) or SAM
alone. Yet, MA does not benefit from SAM in Figure C.1c. Cha et al. 2021 showed
an even stronger result in Table C.1: SWAD + ERM performs better than SWAD +
SAM. We recover similar findings in Table C.2: DiWA performs worse when SAM
is applied in each training run.

This behavior is not explained by Theorem C.1, which states that more flatness
should improve OOD generalization. Yet it is explained by our diversity-based
analysis. Indeed, we observe in Figure C.2 that the diversity across two check-
points along a SAM trajectory is much lower than along a standard ERM trajectory
(with SGD). We speculate that this is related to the recent empirical observation
made in Ramesh et al. 2022: “the rank of the CLIP representation space is dras-
tically reduced when training CLIP with SAM”. Under diversity shift, variance
dominates (see Eq. (5.3)): in this setup, the gain in accuracy of models trained
with SAM cannot compensate the decrease in diversity. This explains why WA

and SAM are not complementary under diversity shift where variance is large.
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Figure C.2. – Prediction diversity in ratio-error (Aksela 2003) (↑) on domain “Art”
from OfficeHome. Checkpoints along a SAM run are less diverse
than along an ERM run.

C.2 Proof

C.2.1 WA loss derivation

Lemma (5.1). Given {θm}Mm=1 with learning procedures LMS ≜ {l(m)
S }Mm=1. Denoting

∆LM
S
= maxMm=1∥θm − θWA∥2, ∀(x, y) ∈ X × Y :

fWA(x) = fENS(x) +O(∆2
LM
S
) and ℓ(fWA(x), y) = ℓ(fENS(x), y) +O(∆2

LM
S
).

Proof. This proof has two components:

• to establish the functional approximation, as Izmailov et al. 2018, it performs
Taylor expansion of the models’ predictions at the first order.

• to establish the loss approximation, as Wortsman et al. 2022a, it performs Taylor
expansion of the loss at the first order.

Functional approximation With a Taylor expansion at the first order of the
models’ predictions w.r.t. parameters θ:

fθm = fWA +∇f⊺
WA∆m +O

(
∥∆m∥22

)
fENS − fWA =

1

M

M∑
m=1

(
∇f⊺

WA∆m +O
(
∥∆m∥22

))
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Therefore, because
∑M

m=1∆m = 0,

fENS − fWA = O
(
∆2
)

where ∆ =
M

max
m=1
∥∆m∥2. (C.2)

Loss approximation With a Taylor expansion at the zeroth order of the loss
w.r.t. its first input and injecting Eq. (C.2):

ℓ(fENS(x); y) = ℓ(fWA(x); y) +O(∥fENS(x)− fWA(x)∥2)
ℓ(fENS(x); y) = ℓ(fWA(x); y) +O

(
∆2
)
.

C.2.2 Bias-variance-covariance-locality decomposition

Remark. Our result in Proposition 5.1 is simplified by leveraging the fact that
the learning procedures LMS = {l(m)

S }Mm=1 are Identically Distributed (ID). This
assumption naturally holds for DiWA which selects weights from different runs
with i.ID hyperparameters. It may be less obvious why it applies to MA (Arpit
et al. 2021) and SWAD (Cha et al. 2021). It is even false if the weights {θ(l(m)

S )}Mm=1

are defined as being taken sequentially along a training trajectory, i.e. when 0 ≤
i < j ≤ M implies that l(i)S has fewer training steps than l

(j)
S . We propose an

alternative indexing strategy to respect the ID assumption. Given M weights
selected by the weight selection procedure, we draw without replacement the
M weights, i.e. θ(l(i)S ) refers to the ith sampled weights. With this procedure, all
weights are ID as they are uniformly sampled. Critically, their WA are unchanged
for the two definitions.

Proposition (5.1). Denoting f̄S(x) = ElS [f(x, θ(lS))], under ID learning procedures
LMS ≜ {l(m)

S }Mm=1, the expected generalization error on domain T of θWA(L
M
S ) ≜

1
M

∑M
m=1 θm over the joint distribution of LMS is:

ELM
S
ET (θWA(L

M
S )) = E(x,y)∼pT

[
bias2(x, y) +

1

M
var(x) +

M − 1

M
cov(x)

]
+O(∆̄2),

where bias(x, y) = y − f̄S(x),
and var(x) = ElS

[(
f(x, θ(lS))− f̄S(x)

)2]
,

and cov(x) = ElS ,l′S
[(
f(x, θ(lS))− f̄S(x)

)(
f(x, θ(l′S)))− f̄S(x)

)]
,

and ∆̄2 = ELM
S
∆2
LM
S

with ∆LM
S
=

M
max
m=1
∥θm − θWA∥2.

(BVCL)
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cov is the prediction covariance between two member models whose weights
are averaged. The locality term ∆̄2 is the expected squared maximum distance
between weights and their average.

Proof. This proof has two components:

• it follows the bias-variance-covariance decomposition from Ueda et al. 1996;
Brown et al. 2005 for functional ensembling. It is tailored to WA by assuming
that learning procedures are ID.

• it injects the obtained equation into Lemma 5.1 to obtain the Proposition 5.1 for
WA.

BVC for ensembling with ID learning procedures With f̄S(x) = ElS [f(x, θ(lS))],
we recall the bias-variance decomposition Kohavi et al. 1996 (Eq. (BV)):

ElSET (θ(lS)) = E(x,y)∼pT

[
bias(x, y)2 + var(x)

]
,

where bias(x, y) = Bias{f |(x, y)} = y − f̄S(x),
and var(x) = Var{f |x} = ElS

[(
f(x, θ(lS))− f̄S(x)

)2]
.

Using fENS ≜ fENS(·, {θ(l(m)
S )}Mm=1) ≜ 1

M

∑M
m=1 f(·, θ(l

(m)
S )) in this decomposition

yields,

ELM
S
ET ({θ(l(m)

S )}Mm=1) = Ex∼pT
[
Bias{fENS | (x, y)}2 +Var{fENS | x}

]
. (C.3)

As fENS depends on LMS , we extend the bias into:

Bias{fENS | (x, y)} = y − ELM
S

[
1

M

M∑
m=1

f(x, θ(l
(m)
S ))

]
= y − 1

M

M∑
m=1

E
l
(m)
S

[
f(x, θ(l

(m)
S ))

]
Under ID LMS ≜ {l(m)

S }Mm=1,

1

M

M∑
m=1

E
l
(m)
S

[
y − f(x, θ(l(m)

S ))
]
= ElS [y − f(x, θ(lS))] = Bias{f |(x, y)}.

Thus the bias of ENS is the same as for a single member of the WA.
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Regarding the variance:

Var{fENS | x} = ELM
S

( 1

M

M∑
m=1

f(x, θ(l
(m)
S ))− ELM

S

[
1

M

M∑
m=1

f(x, θ(l
(m)
S ))

])2
.

Under ID LMS ≜ {l(m)
S }Mm=1,

Var{fENS | x} =
1

M2

M∑
m=1

ElS
[
(f(x, θ(lS))− ElS [f(x, θ(lS))])

2]+
1

M2

∑
m

∑
m′ ̸=m

ElS ,l′S
[
(f(x, θ(lS))− ElS [f(x, θ(lS))])

(
f(x, θ(l′S))− El′S [f(x, θ(l

′
S))]
)]

=
1

M
ElS
[
(f(x, θ(lS))− ElS [f(x, θ(lS))])

2]+
M − 1

M
ElS ,l′S

[
(f(x, θ(lS))− ElS [f(x, θ(lS))])

(
f(x, θ(l′S))− El′S [f(x, θ(l

′
S))]
)]

=
1

M
var(x) +

(
1− 1

M

)
cov(x).

The variance is split into the variance of a single member (divided by M ) and a
covariance term.

Combination with Lemma 5.1 We recall that per Lemma 5.1,

ℓ(fWA(x), y) = ℓ(fENS(x), y) +O(∆2
LM
S
).

Then we have:

ET (θWA(L
M
S )) = E(x,y)∼pT [ℓ(fWA(x), y)]

= E(x,y)∼pT [ℓ(fENS(x), y)] +O(∆2
LM
S
) = ET ({θ(l(m)

S )}Mm=1) +O(∆2
LM
S
),

ELM
S
ET (θWA(L

M
S )) = ELM

S
ET ({θ(l(m)

S )}Mm=1) +O(ELM
S
[∆2

LM
S
]).

We eventually obtain the result:

ELM
S
ET (θWA(L

M
S )) = E(x,y)∼pT

[
bias(x, y)2 +

1

M
var(x) +

M − 1

M
cov(x)

]
+O(∆̄2).
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C.2.3 Bias, correlation shift and support mismatch

We first present in Appendix C.2.3.1 a decomposition of the OOD bias without any
assumptions. We then justify in Appendix C.2.3.2 the simplifying Assumption 9

from Section 5.2.3.

C.2.3.1 OOD bias

Proposition C.2 (OOD bias). Denoting f̄S(x) = ElS [f(x, θ(lS))], the bias is:

E(x,y)∼pT [bias
2(x, y)] =

∫
XT∩XS

(fT (x)− fS(x))2pT (x)dx (Correlation shift)

+

∫
XT∩XS

(
fS(x)− f̄S(x)

)2
pT (x)dx (Weighted IID bias)

+

∫
XT∩XS

2(fT (x)− fS(x))
(
fS(x)− f̄S(x)

)
pT (x)dx (Interaction IID bias and corr. shift)

+

∫
XT \XS

(
fT (x)− f̄S(x)

)2
pT (x)dx. (Support mismatch)

Proof. This proof is original and based on splitting the OOD bias in and out of XS :

E(x,y)∼pT [bias
2(x, y)] = E(x,y)∼pT

(
y − f̄S(x)

)2
=

∫
XT

(
fT (x)− f̄S(x)

)2
pT (x)dx

=

∫
XT∩XS

(
fT (x)− f̄S(x)

)2
pT (x)dx+

∫
XT \XS

(
fT (x)− f̄S(x)

)2
pT (x)dx.

To decompose the first term, we write ∀x ∈ XS ,−f̄S(x) = −fS(x)+
(
fS(x)− f̄S(x)

)
.∫

XT∩XS

(
fT (x)− f̄S(x)

)2
pT (x)dx =

∫
XT∩XS

(
(fT (x)− fS(x)) +

(
fS(x)− f̄S(x)

))2
pT (x)dx

=

∫
XT∩XS

(fT (x)− fS(x))2pT (x)dx+
∫
XT∩XS

(
fS(x)− f̄S(x)

)2
pT (x)dx

+

∫
XT∩XS

2(fT (x)− fS(x))
(
fS(x)− f̄S(x)

)
pT (x)dx.

The four terms can be qualitatively analyzed:

• The first term measures differences between train and test labelling function. By
rewriting ∀x ∈ XT ∩ XS , fT (x) ≜ EpT [Y |X = x] and fS(x) ≜ EpS [Y |X = x], this
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term measures whether conditional distributions differ. This recovers a similar
expression to the correlation shift formula from Ye et al. 2022.

• The second term is exactly the IID bias, but weighted by the marginal distribu-
tion pT (X).

• The third term
∫
XT∩XS

2(fT (x)− fS(x))
(
fS(x)− f̄S(x)

)
pT (x)dx measures to what

extent the IID bias compensates the correlation shift. It can be negative if (by
chance) the IID bias goes in opposite direction to the correlation shift.

• The last term measures support mismatch between test and train marginal
distributions. It lead to the “No free lunch for learning representations for DG”
in Ruan et al. 2022. The error is irreducible because “outside of the source
domain, the label distribution is unconstrained”: “for any domain which gives
some probability mass on an example that has not been seen during training,
then all [. . .] labels for that example” are possible.

C.2.3.2 Discussion of the small IID bias Assumption 9

Assumption 9 states that ∃ϵ > 0 small s.t. ∀x ∈ XS, |fS(x) − f̄S(x)| ≤ ϵ where
f̄S(x) = ElS [f(x, θ(lS))]. f̄S is the expectation over the possible learning procedures
lS = {DS, c}. Thus Assumption 9 involves:

• the network architecture f which should be able to fit a given dataset DS . This
is realistic when the network is sufficiently parameterized, i.e. when the number
of weights |θ| is large.

• the expected datasets DS which should be representative enough of the under-
lying domain S; in particular the dataset size nS should be large.

• the sampled configurations c which should be well chosen: the network should
be trained for enough steps, with an adequate learning rate ...

For DiWA, this is realistic as it selects the weights with the highest training vali-
dation accuracy from each run. For SWAD (Cha et al. 2021), this is also realistic
thanks to their overfit-aware weight selection strategy. In contrast, this assumption
may not perfectlty hold for MA (Arpit et al. 2021), which averages weights start-
ing from batch 100 until the end of training: indeed, 100 batches are not enough
to fit the training dataset.

C.2.3.3 OOD bias when small IID bias

We now develop our equality under Assumption 9.
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Proposition (5.2. OOD bias when small IID bias). With a bounded difference between
the labeling functions fT−fS on XT ∩XS , under Assumption 9, the bias on domain
T is:

E(x,y)∼pT [bias
2(x, y)] = Correlation shift + Support mismatch +O(ϵ),

where Correlation shift =
∫
XT∩XS

(fT (x)− fS(x))2pT (x)dx,

and Support mismatch =

∫
XT \XS

(
fT (x)− f̄S(x)

)2
pT (x)dx.

(5.2)

Proof. We simplify the second and third terms from Proposition C.2 under As-
sumption 9.

The second term is
∫
XT∩XS

(
fS(x)− f̄S(x)

)2
pT (x)dx. Under Assumption 9, |fS(x)−

f̄S(x)| ≤ ϵ. Thus the second term is O(ϵ2).

The third term is
∫
XT∩XS

2(fT (x)− fS(x))
(
fS(x)− f̄S(x)

)
pT (x)dx. As fT − fS is

bounded on XS ∩ XT , ∃K ≥ 0 such that ∀x ∈ XS ,

|(fT (x)− fS(x))
(
fS(x)− f̄S(x)

)
pT (x)| ≤ K

∣∣fS(x)− f̄S(x)∣∣pT (x) = O(ϵ)pT (x).

Thus the third term is O(ϵ).

Finally, note that we cannot say anything about f̄S(x) when x ∈ XT \ XS .

To prove the previous equality, we needed a bounded difference between labeling
functions fT − fS on XT ∩ XS . We relax this bounded assumption to obtain an
inequality in the following Proposition C.3.

Proposition C.3 (OOD bias when small IID bias without bounded difference be-
tween labeling functions). Under Assumption 9,

E(x,y)∼pT [bias
2(x, y)] ≤ 2× Correlation shift + Support mismatch +O(ϵ2) (C.4)

Proof. We follow the same proof as in Proposition C.2, except that we now use:
(a+ b)2 ≤ 2(a2 + b2). Then,∫

XT∩XS

(
fT (x)− f̄S(x)

)2
pT (x)dx =

∫
XT∩XS

(
(fT (x)− fS(x)) +

(
fS(x)− f̄S(x)

))2
pT (x)dx

≤ 2×
∫
XT∩XS

(fT (x)− fS(x))2 +
(
fS(x)− f̄S(x)

)2
pT (x)dx

≤ 2×
∫
XT∩XS

(fT (x)− fS(x))2pT (x)dx+ 2×
∫
XT∩XS

ϵ2pT (x)dx

≤ 2×
∫
XT∩XS

(fT (x)− fS(x))2pT (x)dx+O(ϵ2)
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C.2.4 Variance and diversity shift

We prove the link between variance and diversity shift. Our proof builds upon
the similarity between Neural Network (NN)s and Gaussian Process (GP)s in the
kernel regime, detailed in Appendix C.2.4.1. We discuss our simplifying Assump-
tion 11 in Appendix C.2.4.2. We present our final proof in Appendix C.2.4.3. We
discuss the relation between variance and initialization in Appendix C.2.4.4.

C.2.4.1 Neural Networks as Gaussian Processes

We fix DS,DT and denote XDS
= {xS}(xS ,yS)∈DS

, XDT
= {xT}(xT ,yT )∈DT

their re-
spective input supports. We fix the initialization of the network. lS encapsulates
all other sources of randomness.

Lemma C.1 (Inspired from Rasmussen 2003). Given a NN f(·, θ(lS)) under Assump-
tion 10, we denoteK its neural tangent kernel andK(XDS

, XDS
) ≜ (K(xS, x

′
S))xS ,x′S∈X2

DS
∈

RnS×nS . Given x ∈ X , we denote K(x,XDS
) ≜ [K(x, xS)]xS∈XDS

∈ RnS . Then:

var(x) = K(x, x)−K(x,XDS
)K(XDS

, XDS
)−1K(x,XDS

)⊺. (C.5)

Proof. Under Assumption 10, NNs are equivalent to GPs. var(x) is the formula of
the variance of the GP posterior given by Eq. (2.26) in Rasmussen 2003, when
conditioned on DS . This formula thus also applies to the variance f(·, θ(lS)) when
lS varies (at fixed DS and initialization).

Figure C.3. – Mean and variance of a Gaussian process’s prediction. Image from
Pérez-Cruz et al. 2013. Intuitively, variance grows when samples are
distant from training samples.
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C.2.4.2 Discussion of the same norm and low similarity Assumption 11 on
source dataset

Lemma C.1 shows that the variance only depends on the input distributions p(X)

without involving the label distributions p(Y |X). This formula highlights that
the variance is related to shifts in input similarities (measured by K) between
XDS

and XDT
. Yet, a more refined analysis of the variance requires additional

assumptions, in particular to obtain a closed-form expression of K(XDS
, XDS

)−1.
Assumption 11 is useful because then K(XDS

, XDS
) is diagonally dominant and

can be approximately inverted (see Appendix C.2.4.3).

The first part of Assumption 11 assumes that ∃λS such that all training inputs
xS ∈ XDS

verify K(xS, xS) = λS . Note that this equality is standard in some kernel
machine algorithms Ah-Pine 2010; Ghojogh et al. 2021; Rennie 2005 and is usually
achieved by replacing K(x, x′) by λS

K(x,x′)√
K(x,x)

√
K(x′,x′)

,∀(x, x′) ∈ (XDS
∪XDT

)2. In

the Neural Tangent Kernel (NTK) literature, this equality is achieved without
changing the kernel by normalizing the samples of XDS

such that they lie on
the hypersphere; this input preprocessing was used in Lee et al. 2017. This is
theoretically based: for example, the NTK K(x, x′) for an architecture with an
initial fully connected layer only depends on ∥x∥, ∥x′∥, ⟨x, x′⟩ Yang et al. 2019.
Thus in the case where all samples from XDS

are preprocessed to have the same
norm, the value of K(xS, xS) does not depend on xS ∈ XDS

; we denote λS the
corresponding value.

The second part of Assumption 11 states that ∃0 ≤ ϵ≪ λS, s.t. ∀xS, x′S ∈ X2
DS
, xS ̸=

x′S ⇒ |K(xS, x
′
S)| ≤ ϵ, i.e. that training samples are dissimilar and do not interact.

This diagonal structure of the NTK Jacot et al. 2018, with diagonal values larger
than non-diagonal ones, is consistent with empirical observations from Seleznova
et al. 2022 at initialization. Theoretically, this is reasonable if K is close to the RBF
kernel Kh(x, x

′) = exp(−∥x− x′∥22/h) where h would be the bandwidth: in this
case, Assumption 11 is satisfied when training inputs are distant in pixel space.

We now provide an analysis of the variance where the diagonal assumption is
relaxed. Specifically, we provide the sketch for proving an upper-bound of the
variance when the NTK has a block-diagonal structure. This is indeed closer to the
empirical observations in Seleznova et al. 2022 at the end of training, consistently
with the local elasticity property of NNs He et al. 2020. We then consider the
dataset dS′ ⊂ DS made of one sample per block, to which Assumption 11 applies.
As decreasing the size of a training dataset empirically reduces variance Brain
et al. 1999, the variance of f trained on DS is upper-bounded by the variance of
f trained on dS′ ; the latter is given by applying Proposition 5.3 to dS′ . We believe
that the proper formulation of this idea is beyond the scope of this article and
best left for future theoretical work.
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C.2.4.3 Expression of OOD variance

Proposition (5.3). Given f trained on source dataset DS (of size nS) with NTK K,
under Assumptions 10 and 11, the variance on dataset DT is:

ExT∈XDT
[var(xT )] =

nS
2λS

MMD2(XDS
, XDT

) + λT −
nS
2λS

βT +O(ϵ), (5.3)

with MMD the empirical Maximum Mean Discrepancy (MMD) in the RKHS of
K2(x, y) = (K(x, y))2;λT ≜ ExT∈XDT

K(xT , xT ) and βT ≜ E(xT ,x
′
T )∈X2

DT
,xT ̸=x′TK

2(xT , x
′
T )

the empirical mean similarities resp. measured between identical (w.r.t. K) and
different (w.r.t. K2) samples averaged over XDT

.

Proof. Our proof is original and is based on the posterior form of GPs in Lemma C.1.
Given DS , we recall Eq. (C.5) that states ∀x ∈ X :

var(x) = K(x, x)−K(x,XDS
)K(XDS

, XDS
)−1K(x,XDS

)⊺.

Denoting B = K(XDS
, XDS

)−1 with symmetric coefficients bi,j = bj,i, then

var(x) = K(x, x)−
∑

1≤i≤nS
1≤j≤nS

bi,jK(x, xiS)K(x, xjS). (C.6)

Assumption 11 states that K(XDS
, XDS

) = A + H where A = λSInS
and H =

(hij)1≤i≤nS
1≤j≤nS

with hi,i = 0 and maxi,j |hi,j| ≤ ϵ.

We fix xT ∈ XDT
and determine the form of B−1 in two cases: ϵ = 0 and ϵ ̸= 0.

Case when ϵ = 0 We first derive a simplified result, when ϵ = 0.

Then, bi,i = 1
λS

and bi,j = 0 s.t.

var(xT ) = K(xT , xT )−
∑

xS∈XDS

K(xT , xS)
2

λS
= K(x, x)− nS

λS
ExS∈XDS

[K2(x, xS)]

We can then write:

ExT∈XDT
[var(xT )] = ExT∈XDT

[K(xT , xT )]−
nS
λS

ExT∈XDT
[ExS∈XDS

[K2(xT , xS)]]

ExT∈XDT
[var(xT )] = λT −

nS
λS

ExS∈XDS
,xT∈XDT

[K2(xT , xS)].
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We now relate the second term on the r.h.s. to a MMD distance. As K is a kernel,
K2 is a kernel and its MMD between XDS

and XDT
is per Gretton et al. 2012:

MMD2(XDS
, XDT

) =ExS ̸=x′S∈X2
DS

[K2(xS, x
′
S)] + ExT ̸=x′T∈X2

DT
[K2(xT , x

′
T )]

− 2ExS∈XDS
,xT∈XDT

[K2(xT , xS)].

Finally, because ϵ = 0, ExS ̸=x′S∈X2
DS
K2(xS, x

′
S) = 0 s.t.

ExT∈XDT
[var(xT )] =

nS
2λS

MMD2(XDS
, XDT

) + λT

− nS
2λS

(
ExT ̸=x′T∈X2

DT
K2(xT , x

′
T ) + ExS ̸=x′S∈X2

DS
K2(xS, x

′
S)
)

=
nS
2λS

MMD2(XDS
, XDT

) + λT −
nS
2λS

ExT ̸=x′T∈X2
DT
K2(xT , x

′
T )

=
nS
2λS

MMD2(XDS
, XDT

) + λT −
nS
2λS

βT .

We recover the same expression with a O(ϵ) in the general setting where ϵ ̸= 0.

Case when ϵ ̸= 0 We denote I :

{
GLnS

(R) → GLnS
(R)

A 7→ A−1 the inversion func-

tion defined on GLnS
(R), the set of invertible matrices ofMnS

(R).
The function I is differentiable Magnus et al. 2019 in all A ∈ GLnS

(R) with its

differentiate given by the linear application dIA :

{ MnS
(R) →MnS

(R)
H 7→ −A−1HA−1 .

Therefore, we can perform a Taylor expansion of I at the first order at A:

I(A+H) = I(A) + dIA(H) + o(∥H∥),
(A+H)−1 = A−1 − A−1HA−1 + o(∥H∥).

where ∥H∥ ≤ nSϵ = O(ϵ). Thus,

(λSInS
+H)−1 = (λSInS

)−1 − (λSInS
)−1H(λSInS

)−1 +O(ϵ) =
1

λS
InS
− 1

λ2S
H +O(ϵ),

∀i ∈ J1, nSK, bii =
1

λS
− 1

λ2S
hi,i + o(ϵ) =

1

λS
+O(ϵ),

∀i ̸= j ∈ J1, nSK, bij = −
1

λ2S
hi,j + o(ϵ) = O(ϵ).
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Therefore, when ϵ is small, Eq. (C.6) can be developed into:

var(xT ) = K(xT , xT )−
∑

xS∈XDS

(
1

λS
+O(ϵ))K(xT , xS)

2 +O(ϵ)

= K(xT , xT )−
nS
λS

ExS∈XDS
[K(xT , xS)

2] +O(ϵ)

Following the derivation for the case ϵ = 0, and remarking that under Assump-
tion 11 we have ExS ̸=x′S∈X2

DS
K2(xS, x

′
S) = O(ϵ2), yields:

ExT∈XDT
[var(xT )] =

nS
2λS

MMD2(XDS
, XDT

) + λT −
nS
2λS

βT +O(ϵ).

C.2.4.4 Variance and initialization

The MMD depends on the kernel K, i.e. only on the initialization of f in the
kernel regime per Jacot et al. 2018. Thus, to reduce variance, we could act on the
initialization to match pS(X) and pT (X) in the RKHS of K2. This is consistent
with Section 5.2.3 that motivated matching the train and test in features. In our
paper, we used the standard pretraining from ImageNet Krizhevsky et al. 2012,
as commonly done on DomainBed Gulrajani et al. 2021b. The Linear Probing
(Kumar et al. 2022) initialization of the classifier was shown in Kumar et al. 2022

to prevent the distortion of the features along the training. This could be improved
by pretraining the encoder on a task with fewer domain-specific information, e.g.
CLIP Radford et al. 2021 image-to-text translation as in Ruan et al. 2022.

C.2.5 WA vs. its members

We validate that WA’s expected error is smaller than its members’ error under the
locality constraint.

Lemma C.2 (WA vs. its members.).

ELM
S
ET (θWA(L

M
S ))−ElSET (θ(lS)) =

M − 1

M
Ex∼pT [cov(x)− var(x)]+O(∆̄2) ≤ O(∆̄2).

(C.7)

Proof. The proof builds upon Eq. (BVCL):

ELM
S
ET (θWA) = E(x,y)∼pT

[
bias(x, y)2 +

1

M
var(x) +

M − 1

M
cov(x)

]
+O(∆̄2),
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Figure C.4. – fWA performs similarly or better than fENS on domain “Art” on
PACS.

and the expression of the standard bias-variance decomposition in Eq. (BV) from
Kohavi et al. 1996,

ElSET (θ) = E(x,y)∼pT

[
bias(x, y)2 + var(x)

]
.

The difference between the two provides:

ELM
S
ET (θWA)− ElSET (θ) =

M − 1

M
E(x,y)∼pT

[
cov(x)− var(x)

]
+O(∆̄2).

Cauchy Schwartz inequality states |cov(Y, Y ′)| ≤
√
var(Y )var(Y ′) , thus cov(x) ≤

var(x). Then:
ELM

S
ET (θWA)− ElSET (θ) ≤ O(∆̄2).

C.3 WA versus functional ensembling

We further compare the following two methods to combine M weights {θ(l(m)
S )}Mm=1:

fWA that averages the weights and fENS Lakshminarayanan et al. 2017 that averages
the predictions. We showed in Lemma 5.1 that fWA ≈ fENS when maxMm=1 ∥θ(l(m)

S )−
θWA∥2 is small.

In particular, when {l(m)
S }Mm=1 share the same initialization and the hyperparam-

eters are sampled from mild ranges, we empirically validate our approximation
on OfficeHome in Figure 5.1. This is confirmed on PACS dataset in Figure C.4.
For both datasets, we even observe that fWA performs slightly but consistently
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better than fENS. The observed improvement is non-trivial; we refer to Equation 1

in Wortsman et al. 2022a for some initial explanations based on the value of OOD

Hessian and the confidence of fWA. The complete analysis of this second-order
difference is left for future work.

Yet, we do not claim that fWA is systematically better than fENS. In Table C.3, we
show that this is no longer the case when we relax our two constraints, consis-
tently with Figure 5.5. First, when the classifiers’ initializations vary, ENS improves
thanks to this additional diversity; in contrast, DiWA degrades because weights
are no longer averageable. Second, when the hyperparameters are sampled from
extreme ranges (defined in Table C.5), performance drops significantly for DiWA,
but much less for ENS. As a side note, the downward trend in this second setup
(even for ENS) is due to inadequate hyperparameters that degrade the expected
individual performances.

This highlights a limitation of DiWA, which requires weights that satisfy the
locality requirement or are at least linearly connectable. In contrast, Deep En-
sembles Lakshminarayanan et al. 2017 are computationally expensive (and even
impractical for large M ), but can leverage additional sources of diversity. An in-
teresting extension of DiWA for future work would be to consider the functional
ensembling of several DiWAs trained from different initializations or even with
different network architectures Singh et al. 2016. Thus the Ensemble of Averages
(EoA) strategy introduced in Arpit et al. 2021 is complementary to DiWA and
could be extended into an Ensemble of Diverse Weight Averages.

Table C.3. – DiWA’s vs. ENS’s accuracy (%, ↑) on domain “Art” from OfficeHome
when varying initialization and hyperparameter ranges. Best on each
setting is in bold.

Configuration M = 20 M = 60

Shared classifier init Mild hyperparameter ranges DiWA ENS DiWA ENS

✓ ✓ 67.3 ± 0.2 66.1 ± 0.1 67.7 66.5
✗ ✓ 65.0 ± 0.5 67.5 ± 0.3 65.9 68.5
✓ ✗ 56.6 ± 0.9 64.3 ± 0.4 59.5 64.7

C.4 Additional diversity analysis

C.4.1 Feature diversity on OfficeHome

In Section 5.4, our diversity-based theoretical findings were empirically validated
using the ratio-error Aksela 2003, a common diversity measure notably used in
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Rame et al. 2021a; Rame et al. 2021b. In Figure C.5, we recover similar conclusions
with another diversity measure: the Centered Kernel Alignment Complement
(CKAC) Kornblith et al. 2019, also used in Neyshabur et al. 2020; Wortsman
et al. 2022b. CKAC operates in the feature space and measures to what extent
the pairwise similarity matrices (computed on domain T ) are aligned — where
similarity is the dot product between penultimate representations extracted from
two different networks.

(a) Same as Figure 5.2. (b) Same as Figure 5.3. (c) Same as Figure 5.5.

Figure C.5. – Same analysis as Section 5.4, where diversity is measured with
CKAC (Kornblith et al. 2019) in features rather than with ratio-error
(Aksela 2003) in predictions.

C.4.2 Accuracy gain per unit of diversity on OfficeHome

In Figures 5.2 and C.5a, we indicated the slope of the linear regressions relating
diversity to accuracy gain at fixed M (between 2 and 9). For example, when
M = 9 weights are averaged, the accuracy gain increases by 0.297 per unit of
additional diversity in prediction Aksela 2003 (see Figure 5.2) and by 0.179 per
unit of additional diversity in features Kornblith et al. 2019 (see Figure C.5a).
Most importantly, we note that the slope increases with M . To make this more
visible, we plot slopes w.r.t. M in Figure C.6. Our observations are consistent with
the (M − 1)/M factor in front of cov(x) in Eq. (BVCL). This shows that diversity
becomes more important for large M . Yet, large M is computationally impractical
in standard functional ensembling, as one forward step is required per model.
In contrast, WA has a fixed inference time which allows it to consider larger M .
Increasing M from 20 to 60 is the main reason why DiWA† improves DiWA.
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Figure C.6. – The slopes of linear regression — relating diversity to accuracy gain
in Figure 5.2 and Figure C.5a — increases with M .

C.4.3 Diversity comparison across a wide range of methods on
OfficeHome

Inspired by Gontijo-Lopes et al. 2022, we further analyze in Figure C.7 the di-
versity between two weights obtained from different (more or less correlated)
learning procedures.

• In the upper part, weights are obtained from a single run. They share the same
initialization/hyperparameters/data/noise in the optimization procedure and
only differ by the number of training steps (which we choose to be a multiple
of 50). They are less diverse than the weights in the middle part of Figure C.7,
that are sampled from two ERM runs.

• When sampled from different runs, the weights become even more diverse
when they have more extreme hyperparameter ranges, they do not share the
same classifier initialization or they are trained on different data. The first two
are impractical for WA, as it breaks the locality requirement (see Figures 5.5
and C.5c). Luckily, the third setting “data diversity” is more convenient and
is another reason for the success of DiWA†; its 60 weights were trained on 3

different data splits. Data diversity has provable benefits Efron 1992, e.g. in
bagging Breiman 1996.

• Finally, we observe that diversity is increased (notably in features) when two
runs have different objectives, for example, Interdomain Mixup (Yan et al. 2020)
and Coral Sun et al. 2016. Thus incorporating weights trained with different
invariance-based objectives have two benefits that explain the strong results in
Table 5.2: (1) they learn invariant features by leveraging the domain information
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and (2) they enrich the diversity of solutions by extracting different features.
These solutions can bring their own particularity to WA.

In conclusion, our analysis confirms that “model pairs that diverge more in train-
ing methodology display categorically different generalization behavior, produc-
ing increasingly uncorrelated errors”, as stated in Gontijo-Lopes et al. 2022.

(a) Prediction diversity (Aksela 2003). (b) Feature diversity (Kornblith et al.
2019).

Figure C.7. – Diversity analysis across weights, which are per default trained
with ERM, with a mild hyperparameter range (see Table C.5), with
a shared random classifier initialization, on a given data split. First,
it confirms Figures 5.3 and C.5b: weights obtained from two dif-
ferent runs are more different than those sampled from a single
run (even with extreme hyperparameters). Second, this shows that
weights from two runs are more diverse when the two runs have dif-
ferent hyperparameters/data/classifier initializations/training ob-
jectives. Domain “Art” on OfficeHome.

C.4.4 Trade-off between diversity and averageability on Office-
Home

We argue in Section 5.2.3 that our weights should ideally be diverse functionally
while being averageable (despite the nonlinearities in the network). We know
from Neyshabur et al. 2020 that models fine-tuned from a shared initialization
with shared hyperparameters can be connected along a linear path where error re-
mains low; thus, they are averageable as their WA also has a low loss. In Figure 5.5,
we confirmed that averaging models from different initializations performs poorly.
Regarding the hyperparameters, Figure 5.5 shows that hyperparameters can be
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selected slightly different but not too distant. That is why we chose mild hyper-
parameter ranges (defined in Table C.5) in our main experiments.

A complete analysis of when the averageability holds when varying the different
hyperparameters is a promising lead for future work. Still, Figure C.8 is a pre-
liminary investigation of the impact of different learning rates (between learning
procedures of each weight). First, we validate that more distant learning rates
lead to more functional diversity in Figure C.8a. Yet, we observe in Figure C.8b
that if learning rates are too different, weight averaging no longer approximates
functional ensembling because the O(∆2

LM
S
) term in Lemma 5.1 can be large.

(a) Prediction diversity (↑) (Aksela 2003)
between models.

(b) Accuracy (↑) difference between
DiWA and ENS.

Figure C.8. – Trade-off between diversity and averageability for various differ-
ences in learning rates. Considering M = 2 weights obtained from
two learning procedures with learning rates lr1 and lr2 (sampled
from the extreme distribution in Table C.5), we plot in Figure C.8a
the prediction diversity for these M = 2 models vs. |lr1−lr2|. Then, in
Figure C.8b, we plot the accuracy differences Acc(DiWA)−Acc(ENS)
vs. |lr1 − lr2|.

C.4.5 On PACS

We perform in Figure C.9 on domain “Art” from PACS the same core diversity-
based experiments than on OfficeHome in Section 5.4. We recover the same con-
clusions.



C.5 number of training runs 195

(a) Same as Figure 5.2. (b) Same as Figure C.5a. (c) Same as Figure C.6.

Figure C.9. – Same analysis on PACS as previously done on OfficeHome.

(a) Same as Figure 5.3. (b) Same as Figure C.5b. (c) Same as Figure 5.4.

Figure C.10. – Same analysis on PACS as previously done on OfficeHome.

C.5 Number of training runs

In our experiments, we train 20 independent training runs per data split. We
selected this value as 20 is the standard number of hyperparameter trials in
DomainBed Gulrajani et al. 2021b. In Figure C.11 we ablate this choice on the
OOD domain “Art” of OfficeHome. We observe that a larger number of runs
leads to improved performance and reduced standard deviation. These results
are consistent with our theoretical analysis, as the variance is divided per M in
Proposition 5.1. If reducing the training time is critical, one could benefit from
significant gains over ERM even with a smaller number of runs: for example, 10
runs seem sufficient in this case. This analysis complements Figure 5.4 — where
60 runs were launched then sorted in increasing validation accuracy.
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Figure C.11. – Mean and standard deviation of DiWA-uniform’s accuracy (↑)
on OfficeHome when increasing the number of training runs and
uniformly averaging all weights. OOD accuracy is computed on
domain “Art”, while IID accuracy is computed on validation data
from the “Clipart”+“Product”+“Photo” domains.

Moreover, in Table C.4 we report DiWA’s results when considering only 5 runs,
with uniform weight selection. Interestingly, it shows that M = 5 is enough to be
competitive against SWAD (Cha et al. 2021), the previous state of the art.

Table C.4. – Accuracy (%, ↑) on DomainBed. DiWA-uniform and Linear Probing
(LP) initialization Kumar et al. 2022.

Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg

SWAD (Cha et al. 2021) 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
DiWA: M = 5 87.9 ± 0.2 78.3 ± 0.3 71.5 ± 0.2 51.0 ± 0.7 46.9 ± 0.3 67.1
DiWA: M = 20 88.7 ± 0.2 78.4 ± 0.2 72.1 ± 0.2 51.4 ± 0.6 47.4 ± 0.2 67.6
DiWA†: M = 60 89.0 78.6 72.8 51.9 47.7 68.0

C.6 DomainBed

C.6.1 Description of the DomainBed benchmark

We now further detail our experiments on the DomainBed benchmark Gulrajani
et al. 2021b.

Data. DomainBed includes several computer vision classification datasets di-
vided into multiple domains. Each domain is successively considered as the test
domain while other domains are used in training. In practice, the data from each
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domain is split into 80% (used as training and testing) and 20% (used as valida-
tion for hyperparameter selection) splits. This random process is repeated with 3

different seeds: the reported numbers are the means and the standard errors over
these 3 seeds.

Training protocol. We follow the training protocol from https://github.com/
facebookresearch/DomainBed. For each dataset, domain and seed, we perform
a random search of 20 trials on the hyperparameter distributions described in
Table C.5. Our mild distribution is taken directly from Cha et al. 2021, yet could
be adapted by dataset for better results. Even though these distributions are
more restricted than the extreme distributions introduced Gulrajani et al. 2021b,
our ERM runs perform better. It leads to a total amount of 2640 runs only for
Table 5.1. In Appendix C.1, the ρ hyperparameter for SAM is sampled from
[0.001, 0.002, 0.005, 0.01, 0.02, 0.05]. In Table 5.2, hyperparameters specific to In-
terdomain Mixup (Yan et al. 2020) (“mixup_alpha”) and Coral Sun et al. 2016

(“mmd_gamma”) are sampled from the distributions defined in Gulrajani et al.
2021b. We use a ResNet50 (He et al. 2016b) pretrained on ImageNet, with a
dropout layer before the newly added dense layer and fine-tuned with frozen
batch normalization layers. The optimizer is Adam (Kingma et al. 2015). Our
classifier is either initialized randomly or with Linear Probing (Kumar et al. 2022);
in the latter case, we first learn only the classifier (with the encoder frozen) with
the default hyperparameters defined in Table C.5; the classifier’s weights are then
used to initialize all subsequent runs. All runs are trained for 5k steps, except on
DomainNet with 15k steps as done in concurrent works (Cha et al. 2021; Arpit
et al. 2021). As in Cha et al. 2021, validation accuracy is calculated every 50 steps
for VLCS, 500 steps for DomainNet and 100 steps for others.

Table C.5. – Hyperparameters, their default values and distributions for random
search.

Hyperparameter Default value
Random distribution

Extreme Mild
(DomainBed Gulrajani et al. 2021b) (DiWA as Cha et al. 2021)

Learning rate 5 · 10−5 10U(−5,−3.5) [1, 3, 5] · 10−5

Batch size 32 2U(3,5.5) 32
ResNet dropout 0 [0, 0.1, 0.5] [0, 0.1, 0.5]

Weight decay 0 10U(−6,−2) [10−6, 10−4]

Model selection and scores. We consider the training-domain validation set
protocol. From each run, we thus take the weights of the epoch with maximum
accuracy on the validation dataset — which follows the training distribution. Our
restricted weight selection is also based on this training-domain validation set.

https://github.com/facebookresearch/DomainBed
https://github.com/facebookresearch/DomainBed
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This strategy is not possible for DiWA† as it averages M = 20× 3 weights trained
with different data splits: they do not share a common validation dataset. The
scores for ERM and Coral are taken from DomainBed (Gulrajani et al. 2021b).
Scores for SWAD (Cha et al. 2021) and MA (Arpit et al. 2021) are taken from
their respective papers. Note that MA and SWAD perform similarly even though
SWAD introduced three additional hyperparameters tuned per dataset: “an opti-
mum patient parameter, an overfitting patient parameter, and the tolerance rate
for searching the start iteration and the end iteration”. Thus we reproduced MA
(Arpit et al. 2021) which was much easier to implement, and closer to our uniform
weight selection.

C.6.2 DomainBed results detailed per domain for each real-world
dataset

Tables below detail results per domain for the 5 multi-domain real-world datasets
from DomainBed: PACS Li et al. 2017a, VLCS Fang et al. 2013, OfficeHome
Venkateswara et al. 2017b, TerraIncognita Beery et al. 2018b and DomainNet
Peng et al. 2019. Critically, Ye et al. 2022 showed that diversity shift dominates in
these datasets.

Table C.6. – Accuracy (%, ↑) on PACS with ResNet50 (best in bold and second
best underlined).

Algorithm Weight selection Init A C P S Avg

ERM N/A

Random

84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5 ± 0.2
Coral N/A 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2 ± 0.3
SWAD Overfit-aware 89.3 ± 0.5 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.8 88.1 ± 0.1
MA Uniform 89.1 ± 0.1 82.6 ± 0.2 97.6 ± 0.0 80.5 ± 0.9 87.5 ± 0.2
DENS Uniform: M = 6 88.3 83.6 96.5 81.9 87.6

O
ur

ru
ns

ERM N/A

Random

87.6 ± 0.4 80.1 ± 1.5 97.7 ± 0.3 76.7 ± 1.2 85.5 ± 0.5
MA Uniform 89.9 ± 0.1 83.3 ± 0.4 97.8 ± 0.2 80.6 ± 0.3 87.9 ± 0.1
ENS Uniform: M = 20 88.9 ± 0.4 82.3 ± 0.5 97.4 ± 0.3 83.2 ± 0.3 88.0 ± 0.1
DiWA Restricted: M ≤ 20 90.0 ± 0.3 82.0 ± 0.5 97.5 ± 0.1 82.0 ± 0.6 87.9 ± 0.2
DiWA Uniform: M = 20 90.1 ± 0.6 83.3 ± 0.6 98.2 ± 0.1 83.4 ± 0.4 88.8 ± 0.4
DiWA† Uniform: M = 60 90.5 83.7 98.2 83.8 89.0

ERM N/A

LP

86.8 ± 0.8 80.6 ± 1.0 97.4 ± 0.4 78.7 ± 2.0 85.9 ± 0.6
MA Uniform 89.5 ± 0.1 82.8 ± 0.2 97.8 ± 0.1 80.9 ± 1.3 87.8 ± 0.3
ENS Uniform: M = 20 89.6 ± 0.2 81.6 ± 0.3 97.8 ± 0.2 83.5 ± 0.5 88.1 ± 0.3
DiWA Restricted: M ≤ 20 89.3 ± 0.2 82.8 ± 0.2 98.0 ± 0.1 82.0 ± 0.9 88.0 ± 0.3
DiWA Uniform: M = 5 89.9 ± 0.5 82.3 ± 0.3 97.7 ± 0.4 81.7 ± 0.8 87.9 ± 0.2
DiWA Uniform: M = 20 90.1 ± 0.2 82.8 ± 0.6 98.3 ± 0.1 83.3 ± 0.4 88.7 ± 0.2
DiWA† Uniform: M = 60 90.6 83.4 98.2 83.8 89.0
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Table C.7. – Accuracy (%, ↑) on VLCS with ResNet50 (best in bold and second
best underlined).

Algorithm Weight selection Init C L S V Avg

ERM N/A

Random

97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5 ± 0.4
Coral N/A 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8 ± 0.6
SWAD Overfit-aware 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1 ± 0.1
MA Uniform 99.0 ± 0.2 63.0 ± 0.2 74.5 ± 0.3 76.4 ± 1.1 78.2 ± 0.2
DENS Uniform: M = 6 98.7 64.5 72.1 78.9 78.5

O
ur

ru
ns

ERM N/A

Random

97.9 ± 0.5 64.2 ± 0.3 73.5 ± 0.5 74.9 ± 1.2 77.6 ± 0.2
MA Uniform 98.5 ± 0.2 63.5 ± 0.2 74.4 ± 0.8 77.3 ± 0.3 78.4 ± 0.1
ENS Uniform: M = 20 98.6 ± 0.1 64.9 ± 0.2 73.5 ± 0.3 77.7 ± 0.3 78.7 ± 0.1
DiWA Restricted: M ≤ 20 98.3 ± 0.1 63.9 ± 0.2 75.6 ± 0.2 79.1 ± 0.3 79.2 ± 0.1
DiWA Uniform: M = 20 98.4 ± 0.1 63.4 ± 0.1 75.5 ± 0.3 78.9 ± 0.6 79.1 ± 0.2
DiWA† Uniform: M = 60 98.4 63.3 76.1 79.6 79.4

ERM N/A

LP

98.1 ± 0.3 64.4 ± 0.3 72.5 ± 0.5 77.7 ± 1.3 78.1 ± 0.5
MA Uniform 98.9 ± 0.0 62.9 ± 0.5 73.7 ± 0.3 78.7 ± 0.6 78.5 ± 0.4
ENS Uniform: M = 20 98.5 ± 0.1 64.9 ± 0.1 73.4 ± 0.4 77.2 ± 0.4 78.5 ± 0.1
DiWA Restricted: M ≤ 20 98.4 ± 0.0 64.1 ± 0.2 73.3 ± 0.4 78.1 ± 0.8 78.5 ± 0.1
DiWA Uniform: M = 5 98.8 ± 0.0 63.8 ± 0.5 72.9 ± 0.2 77.6 ± 0.5 78.3 ± 0.3
DiWA Uniform: M = 20 98.8 ± 0.1 62.8 ± 0.2 73.9 ± 0.3 78.3 ± 0.1 78.4 ± 0.2
DiWA† Uniform: M = 60 98.9 62.4 73.9 78.9 78.6

C.7 Failure of WA under correlation shift on ColoredM-
NIST

Based on Eq. (BVCL), we explained that WA is efficient when variance dominates;
we showed in Section 5.2.3 that this occurs under diversity shift. This is confirmed
by our state-of-the-art results in Table 5.1 and Appendix E.1 on PACS, OfficeHome,
VLCS, TerraIncognita and DomainNet. In contrast, we argue that WA is inefficient
when bias dominates, i.e. in the presence of correlation shift (see Section 5.2.3).
We verify this failure on the ColoredMNIST Arjovsky et al. 2019a dataset, which
is dominated by correlation shift Peng et al. 2019.

Colored MNIST is a colored variant of the MNIST handwritten digit classification
dataset LeCun et al. 2010 where the correlation strengths between color and label
vary across domains. We follow the protocol described in Appendix C.6.1 except
that (1) we used the convolutional neural network architecture introduced in
DomainBed Gulrajani et al. 2021b for MNIST experiments and (2) we used the test-
domain model selection in addition to the train-domain model selection. Indeed,
as stated in Ye et al. 2022, “it may be improper to apply training-domain validation
to datasets dominated by correlation shift since under the influence of spurious
correlations, achieving excessively high accuracy in the training environments
often leads to low accuracy in novel test environments”.
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Table C.8. – Accuracy (%, ↑) on OfficeHome with ResNet50 (best in bold and
second best underlined).

Algorithm Weight selection Init A C P R Avg

ERM N/A

Random

61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5 ± 0.3
Coral N/A 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7 ± 0.3
SWAD Overfit-aware 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6 ± 0.2
MA Uniform 66.7 ± 0.5 57.1 ± 0.1 78.6 ± 0.1 80.0 ± 0.0 70.6 ± 0.1
DENS Uniform: M = 6 65.6 58.5 78.7 80.5 70.8

O
ur

ru
ns

ERM N/A

Random

62.9 ± 1.3 54.0 ± 0.2 75.7 ± 0.9 77.0 ± 0.8 67.4 ± 0.6
MA Uniform 65.0 ± 0.2 57.9 ± 0.3 78.5 ± 0.1 79.7 ± 0.1 70.3 ± 0.1
ENS Uniform: M = 20 66.1 ± 0.1 57.0 ± 0.3 79.0 ± 0.2 80.0 ± 0.1 70.5 ± 0.1
DiWA Restricted: M ≤ 20 66.7 ± 0.1 57.0 ± 0.3 78.5 ± 0.3 79.9 ± 0.3 70.5 ± 0.1
DiWA Uniform: M = 20 67.3 ± 0.2 57.9 ± 0.2 79.0 ± 0.2 79.9 ± 0.1 71.0 ± 0.1
DiWA† Uniform: M = 60 67.7 58.8 79.4 80.5 71.6

ERM N/A

LP

63.9 ± 1.2 54.8 ± 0.6 78.7 ± 0.1 80.4 ± 0.2 69.4 ± 0.2
MA Uniform 67.4 ± 0.4 57.3 ± 0.9 79.7 ± 0.1 81.7 ± 0.6 71.5 ± 0.3
ENS Uniform: M = 20 67.0 ± 0.1 57.9 ± 0.4 80.0 ± 0.2 81.7 ± 0.3 71.7 ± 0.1
DiWA Restricted: M ≤ 20 67.8 ± 0.5 57.2 ± 0.5 79.6 ± 0.1 81.4 ± 0.4 71.5 ± 0.2
DiWA Uniform: M = 5 68.4 ± 0.4 57.4 ± 0.5 79.2 ± 0.2 80.9 ± 0.4 71.5 ± 0.3
DiWA Uniform: M = 20 68.4 ± 0.2 58.2 ± 0.5 80.0 ± 0.1 81.7 ± 0.3 72.1 ± 0.2
DiWA† Uniform: M = 60 69.2 59.0 80.6 82.2 72.8

In Tables C.11 and C.12, we observe that DiWA-uniform and MA both perform
poorly compared to ERM. Note that DiWA-restricted does not degrade ERM as it
selects only a few models for averaging (low M ). This confirms that our approach
is useful to tackle diversity shift but not correlation shift, for which invariance-
based approaches as IRM Arjovsky et al. 2019a or Fishr Rame et al. 2022 remain
state-of-the-art.

C.8 Last layer retraining when some target data is
available

The traditional OOD generalization setup does not provide access to target samples
(labelled or unlabelled). The goal is to learn a model able to generalize to any kind
of distributions. This is arguably the most challenging generalization setup: under
these strict conditions, we showed that DiWA outperforms other approaches on
DomainBed. Yet, in real-world applications, some target data is often available for
training; moreover, last layer retraining on these target samples was shown highly
efficient in Kirichenko et al. 2022; Rosenfeld et al. 2022. The complete analysis of
DiWA for this new scenario should be properly addressed in future work; yet, we
now hint that a DiWA strategy could be helpful.

Specifically, in Table C.13, we consider that after a first training phase on the
“Clipart”, “Product” and “Photo” domains, we eventually have access to some
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Table C.9. – Accuracy (%, ↑) on TerraIncognita with ResNet50 (best in bold and
second best underlined).

Algorithm Weight selection Init L100 L38 L43 L46 Avg

ERM N/A

Random

49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1 ± 1.8
Coral N/A 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6 ± 1.0
SWAD Overfit-aware 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0 ± 0.3
MA Uniform 54.9 ± 0.4 45.5 ± 0.6 60.1 ± 1.5 40.5 ± 0.4 50.3 ± 0.5
DENS Uniform: M = 6 53.0 42.6 60.5 40.8 49.2

O
ur

ru
ns

ERM N/A

Random

56.3 ± 2.9 43.1 ± 1.6 57.1 ± 1.0 36.7 ± 0.7 48.3 ± 0.8
MA Uniform 53.2 ± 0.4 46.3 ± 1.0 60.1 ± 0.6 40.2 ± 0.8 49.9 ± 0.2
ENS Uniform: M = 20 56.4 ± 1.5 45.3 ± 0.4 61.0 ± 0.3 41.4 ± 0.5 51.0 ± 0.5
DiWA Restricted: M ≤ 20 55.6 ± 1.5 47.5 ± 0.5 59.5 ± 0.5 39.4 ± 0.2 50.5 ± 0.5
DiWA Uniform: M = 20 52.2 ± 1.8 46.2 ± 0.4 59.2 ± 0.2 37.8 ± 0.6 48.9 ± 0.5
DiWA† Uniform: M = 60 52.7 46.3 59.0 37.7 49.0

ERM N/A

LP

59.9 ± 4.2 46.9 ± 0.9 54.6 ± 0.3 40.1 ± 2.2 50.4 ± 1.8
MAML Uniform 54.6 ± 1.4 48.6 ± 0.4 59.9 ± 0.7 42.7 ± 0.8 51.4 ± 0.6
ENS Uniform: M = 20 55.6 ± 1.4 45.4 ± 0.4 61.0 ± 0.4 41.3 ± 0.3 50.8 ± 0.5
DiWA Restricted: M ≤ 20 58.5 ± 2.2 48.2 ± 0.3 58.5 ± 0.3 41.1 ± 1.2 51.6 ± 0.9
DiWA Uniform: M = 5 56.0 ± 2.5 48.9 ± 0.8 58.4 ± 0.2 40.6 ± 0.8 51.0 ± 0.7
DiWA Uniform: M = 20 56.3 ± 1.9 49.4 ± 0.7 59.9 ± 0.4 39.8 ± 0.5 51.4 ± 0.6
DiWA† Uniform: M = 60 57.2 50.1 60.3 39.8 51.9

samples from the target “Art” domain (20% or 80% of the whole domain). Follow-
ing Kirichenko et al. 2022, we re-train only the last layer of the network on these
samples before testing. We observe improved performance when the (frozen)
feature extractor was obtained via DiWA (from the first stage) rather than from
ERM. It suggests that features extracted by DiWA are more adapted to last layer
retraining/generalization than those of ERM. In conclusion, we believe our DiWA
strategy has great potential for many real-world applications, whether some target
data is available for training or not.
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Table C.10. – Accuracy (%, ↑) on DomainNet with ResNet50 (best in bold and
second best underlined).

Algorithm Weight selection Init clip info paint quick real sketch Avg

ERM N/A

Random

58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9 ± 0.1
Coral N/A 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5 ± 0.1
SWAD Overfit-aware 66.0 ± 0.1 22.4 ± 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5 ± 0.1
MA Uniform 64.4 ± 0.3 22.4 ± 0.2 53.4 ± 0.3 15.4 ± 0.1 64.7 ± 0.2 55.5 ± 0.1 46.0 ± 0.1
DENS Uniform: M = 6 68.3 23.1 54.5 16.3 66.9 57.0 47.7

O
ur

ru
ns

ERM N/A

Random

62.6 ± 0.4 21.6 ± 0.3 50.4 ± 0.1 13.8 ± 0.2 63.6 ± 0.4 52.5 ± 0.4 44.1 ± 0.1
MA Uniform 64.5 ± 0.2 22.7 ± 0.1 53.8 ± 0.1 15.6 ± 0.1 66.0 ± 0.1 55.7 ± 0.1 46.4 ± 0.1
ENS Uniform: M = 20 67.3 ± 0.4 22.9 ± 0.1 54.2 ± 0.2 15.5 ± 0.2 67.7 ± 0.2 56.7 ± 0.2 47.4 ± 0.2
DiWA Restricted: M ≤ 20 65.2 ± 0.3 23.0 ± 0.3 54.0 ± 0.1 15.9 ± 0.1 66.2 ± 0.1 55.5 ± 0.1 46.7 ± 0.1
DiWA Uniform: M = 20 63.4 ± 0.2 23.1 ± 0.1 53.9 ± 0.2 15.4 ± 0.2 65.5 ± 0.2 55.1 ± 0.2 46.1 ± 0.1
DiWA† Uniform: M = 60 63.5 23.3 54.3 15.6 65.7 55.3 46.3

ERM N/A

LP

63.4 ± 0.2 21.1 ± 0.4 50.7 ± 0.3 13.5 ± 0.4 64.8 ± 0.4 52.4 ± 0.1 44.3 ± 0.2
MA Uniform 64.8 ± 0.1 22.3 ± 0.0 54.2 ± 0.1 16.0 ± 0.1 67.4 ± 0.0 55.2 ± 0.1 46.6 ± 0.0
ENS Uniform: M = 20 66.7 ± 0.4 22.2 ± 0.1 54.1 ± 0.2 15.1 ± 0.2 68.4 ± 0.1 55.7 ± 0.2 47.0 ± 0.2
DiWA Restricted: M ≤ 20 66.7 ± 0.2 23.3 ± 0.2 55.3 ± 0.1 16.3 ± 0.2 68.2 ± 0.0 56.2 ± 0.1 47.7 ± 0.1
DiWA Uniform: M = 5 65.7 ± 0.5 22.6 ± 0.2 54.4 ± 0.4 15.5 ± 0.5 67.7 ± 0.0 55.5 ± 0.4 46.9 ± 0.3
DiWA Uniform: M = 20 65.9 ± 0.4 23.0 ± 0.2 55.0 ± 0.3 16.1 ± 0.2 68.4 ± 0.1 55.7 ± 0.4 47.4 ± 0.2
DiWA† Uniform: M = 60 66.2 23.3 55.4 16.5 68.7 56.0 47.7

Table C.11. – Accuracy (%, ↑) on ColoredMNIST. WA does not improve perfor-
mance under correlation shift. Random initialization of the classifier.
Training-domain model selection.

Algorithm Weight selection +90% +80% -90% Avg

ERM N/A 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5 ± 0.1
Coral N/A 71.6 ± 0.3 73.1 ± 0.1 9.9 ± 0.1 51.5 ± 0.1
IRM N/A 72.5 ± 0.1 73.3 ± 0.5 10.2 ± 0.3 52.0 ± 0.1
Fishr N/A 72.3 ± 0.9 73.5 ± 0.2 10.1 ± 0.2 52.0 ± 0.2

O
ur

ru
ns

ERM N/A 71.5 ± 0.4 73.3 ± 0.2 10.3 ± 0.2 51.7 ± 0.2
MA Uniform 68.9 ± 0.0 71.8 ± 0.1 10.0 ± 0.1 50.3 ± 0.0
ENS Uniform: M = 20 71.0 ± 0.2 72.9 ± 0.2 9.9 ± 0.0 51.3 ± 0.1
DiWA Restricted: M ≤ 20 71.3 ± 0.2 72.9 ± 0.1 10.0 ± 0.1 51.4 ± 0.1
DiWA Uniform: M = 20 69.1 ± 0.8 72.6 ± 0.4 10.6 ± 0.1 50.8 ± 0.4
DiWA† Uniform: M = 60 69.3 72.3 10.3 50.6

Table C.12. – Accuracy (%, ↑) on ColoredMNIST. WA does not improve perfor-
mance under correlation shift. Random initialization of the classifier.
Test-domain model selection.

Algorithm Weight selection +90% +80% -90% Avg

ERM N/A 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8 ± 0.2
Coral N/A 71.1 ± 0.2 73.4 ± 0.2 31.1 ± 1.6 58.6 ± 0.5
IRM N/A 72.0 ± 0.1 72.5 ± 0.3 58.5 ± 3.3 67.7 ± 1.2
Fishr N/A 74.1 ± 0.6 73.3 ± 0.1 58.9 ± 3.7 68.8 ± 1.4

O
ur

ru
ns

ERM N/A 71.5 ± 0.3 74.1 ± 0.4 21.5 ± 1.9 55.7 ± 0.4
MA Uniform 68.8 ± 0.2 72.1 ± 0.2 10.2 ± 0.0 50.4 ± 0.1
ENS Uniform: M = 20 71.0 ± 0.2 72.9 ± 0.2 9.9 ± 0.0 51.3 ± 0.1
DiWA Restricted: M ≤ 20 71.9 ± 0.4 73.6 ± 0.2 21.5 ± 1.9 55.7 ± 0.8
DiWA Uniform: M = 20 69.1 ± 0.8 72.6 ± 0.4 10.6 ± 0.1 50.8 ± 0.4
DiWA† Uniform: M = 60 69.3 72.3 10.3 50.6
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Table C.13. – Accuracy (↑) on domain “Art” from OfficeHome when some tar-
get samples are available for last layer retraining (LLR) (Kirichenko
et al. 2022). The feature extractor is either pre-trained only on Im-
ageNet (✗), fine-tuned on the source domains “Clipart”, “Product”
and “Photo” (ERM), or obtained by averaging multiple runs on these
source domains (DiWA-uniform M = 20).

Training on source domains LLR on target domain (% domain in training)
✗ (0%) ✓ (20%) ✓ (80%)

✗ - 61.2 ± 0.6 74.4 ± 1.2
ERM 62.9 ± 1.3 68.0 ± 0.7 74.7 ± 0.6
DiWA 67.3 ± 0.3 70.4 ± 0.1 78.1 ± 0.6





Appendix D

Supplementary Material of Chapter 6

D.1 Discussion

We discuss in more details the originality and differences of CoDA w.r.t. several
Multi-Task Learning (MTL) and gradient-based or contextual meta-learning meth-
ods illustrated in Figure D.1. We consider CAVIA (Zintgraf et al. 2019), MAML
(Finn et al. 2017), ANIL (Raghu et al. 2020), hard-parameter sharing MTL (Caruana
1997; Ruder 2017), LEADS (Yin et al. 2021a).

D.1.1 Adaptation Rule

We compare the adaptation rule in Eq. (6.4) w.r.t. these work.

GBML Given k gradient steps, MAML defines

θe = θc + (−η
k∑
i=0

∇θL(θei ,De)) where

{
θei+1 = θei − η∇θL(θei ,De) i > 0

θe0 = θc i = 0
(D.1)

With δθe ≜ −η∑k
i=0∇θL(θei ,De), Eq. (6.4) thus includes MAML. ANIL and related

Gradient-Based Meta Learning (GBML) methods (Lee et al. 2019; Bertinetto et al.
2019) restrict Eq. (D.1) to parameters of the final layer, while remaining parameters
are shared.

MTL MTL models can be identified to Eq. (D.1). They fix θc ≜ 0, removing the
ability of performing fast adaptation as parameters are retrained from scratch
instead of being initialized to θc. Hard-parameter sharing MTL restricts the sum
in Eq. (D.1) to the final layer, as ANIL. LEADS sums the outputs of a shared and
an environment specific network, thus splits parameters into two independent
blocks that do not share connections.
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Figure D.1. – Illustration of representative baselines for multi-environment learn-
ing. Shared parameters are blue, environment-specific parameters
are red. (a) CAVIA-Concat acts upon the bias of the first layer with
conditioning via concatenation. (b) MAML acts upon all parameters
without penalization nor prior structure information. (c) ANIL re-
stricts meta-learning to the final layer. (d) Hard-sharing MTL train
the final layer from scratch, while the remaining is hard-shared. (e)
LEADS sums the output of a common and a environment-specific
network. (f) CoDA acts upon a subspace of the parameter space
with a locality constraint.



D.1 discussion 207

D.1.2 Decoding for Context-Informed Adaptation

We show that conditioning strategies in contextual meta-learning for decoding
context vectors ξe into δθe are a special case of hypernetwork-decoding. The two
main approaches are conditioning via concatenation and conditioning via feature
modulation a.k.a. FiLM (Perez et al. 2018).

Conditioning via Concatenation We show that conditioning via concatenation
is equivalent to a linear hypernetwork Aϕ : ξe 7→ Wξe + θc with ϕ = {θc,W} that
only predicts the bias of the first layer of gθ.

We assume that gθ has N layers and analyze the output of the first layer of gθ,
omitting the nonlinearity, when the input x ∈ Rdx in an environment e ∈ E is
concatenated to a context vector ξe ∈ Rdξ . We denote x∥ξe the concatenated vector,
nh the number of hidden units of the first layer, W 1 ∈ Rnh×(dx+dξ) and b1 ∈ Rnh the
weight matrix and bias term of the first layer, W 2, · · · ,WN and b2, · · · , bN those
of the following layers. The output of the first layer is

y1 = W 1 · x∥ξe + b1

We split W 1 along rows into two weight matrices, W 1
x ∈ Rnh×dx ;W 1

ξ ∈ Rnh×dξ s.t.

y1 = W 1
x · x+W 1

ξ · ξe + b1

b1ξ ≜ W 1
ξ ·ξe+b1 does not depend on x and corresponds to an environment-specific

bias. Thus, concatenation is included in Eq. (6.4) when

θc ≜ {W 1
x , b

1,W 2, b2, · · · ,WN , bN}
δθe ≜ { 0 , b1ξ , 0 , 0 , · · · , 0 , 0}

δθe is decoded via a hypernetwork with parameters {θc,W ≜ (0,W 1
ξ , 0, · · · , 0)}.

Conditioning via Feature Modulation We show that conditioning via FiLM is
equivalent to a linear hypernetwork Aϕ : ξe 7→ Wξe + θc with ϕ = {θc,W} that
only predicts the batch norm (BN) statistics of gθ.

For simplicity, we focus on a single BN layer and denote {hi}Mi=1, M feature maps
output by preceding convolutional layers. These feature maps are first normalized
then rescaled with an affine transformation. Rescaling is similar to a FiLM layer
that transforms linearly {hi}Mi=1 with:

∀i ∈ {1, · · · ,M},FiLM(hi) = γi ⊙ hi + β
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where γ, β ∈ RM are output by a NN fψ conditioned on the context vectors ξe i.e.
[γ, β] = fψ(ξ

e). In general, fψ is linear s.t. fψ(ξe) ≜ Wξξ
e + bξ, with ψ = {Wξ, bξ}.

Then γ = W γ
ξ ξ

e + bγξ , β = W β
ξ ξ

e + bβξ .

Thus, for this layer, modulation is included in Eq. (6.4) when

δθe ≜ Wξe = {W γ
ξ ξ

e,W β
ξ ξ

e}
θc ≜ bξ = {bγξ , bβξ }

δθe is decoded via hypernetwork fψ ≜ Aϕ with parameters ϕ = {θc ≜ bξ,W ≜ Wξ}.

D.2 Proofs

Proposition 6.3. Given a class of linearly parametrized dynamics F with dp varying
parameters, ∀θc ∈ Rdθ , subspace Gθc in Definition 6.2 is low-dimensional and
satisfies dim(Gθc) ≤ dp ≪ dθ.

Proof. We define the linear mapping ψ : p ∈ Rdp → f ∈ F from parameters to
dynamics s.t. ψ(Rdp) = F . Given this linear mapping, we first prove the following
lemma: dim(F) ≤ dp. The proof is based on surjectivity of ψ onto F , given by
definition. We define {bi}dpi=1 a basis of Rdp . Given f ∈ F , ∃p ∈ Rdp , ψ(p) = f . We
note p =

∑dp
i=1 λibi where ∀i, λi ∈ R. Then ψ(p) =

∑dp
i=1 λiψ(bi). We extract a basis

from {ψ(bi)}dpi=1 and denote df ≤ dp the number of elements in this basis. This
basis forms a basis of F i.e. df = dim(F) ≤ dp.

Now, given θ ∈ Rdθ and f e ∈ F . We precise that given a (probability) measure ρV
on V ⊂ Rd, the function space F ⊂ L2(ρx,Rd), then

L(θ,De) ≜
∫
V
∥(f e − gθ)(v)∥22dρV(v) = ∥f e − gθ∥22

The gradient of L(θ,De) is then

∇θL(θc,De) = ∇θ

∫
V
∥f e(v)− gθc(v)∥22dρV(v)

=

∫
V
∇θ∥f e(v)− gθc(v)∥22dρV(v)

= −2
∫
V
Jθgθc(v)

⊤(f e(v)− gθc(v))dρV(v)

= −2Dθg
⊤
θc(f

e − gθc)

where Jθgθ(v) is the Jacobian matrix of gθc w.r.t. θ at point x. θ 7→ Dθgθc is the
differential of gθ. Note that Dθgθc : Rdθ → F is a linear map (analogue of Jacobian
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matrix). Dθg
⊤
θc : F⋆ → Rdθ denotes its adjoint (analogue of transposed matrix),

which is also a linear map.

As Gθc ⊆ Im(Dθg
⊤
θ ), then according to Rank-nullity theorem,

dim(Gθc) ≤ dim(Im(Dθg
⊤
θc)) = dim(F)− dim(Ker(Dθg

⊤
θc)) ≤ dim(F) ≤ dp

Proposition 6.1. Given {θc,W} fixed, if ∥ · ∥ = ℓ2, then Eq. (6.8) is quadratic. If
λ′W⊤W or H̄e(θc) = W⊤∇2

θL(θc,De)W are invertible then H̄e(θc) + λ′W⊤W is
invertible except for a finite number of λ′ values. The problem in Eq. (6.8) is then
also convex and admits an unique solution, {ξe⋆}e∈Ead . With λ′ ≜ 2λ,

ξe∗ = −
(
H̄e(θc) + λ′W⊤W

)−1

W⊤∇θL(θc,De)

H̄e(θc) + λ′W⊤W is invertible ∀λ′ except a finite number of values if H̄e(θc) or
λ′W⊤W is invertible.

Proof. When ∥ · ∥ = ℓ2, we consider the following second order Taylor expansion
of Lr(θ,De) ≜ L(θ,De) + λ∥θ − θc∥22 at θc, where δθe = θ − θc = Wξe.

Lr(θ
c + δθe,De) = L(θc,De) +∇θL(θc,De)⊤δθe+

1

2
δθe⊤

(
∇2
θL(θc,De) + 2λId

)
δθe + o(∥δθe∥32) (D.2)

With δθe = Wξe, we expand Eq. (D.2) into

Lr(θ
c +Wξe,De) = L(θc,De) + (W⊤∇θL(θc,De))⊤ξe

+
1

2
ξe⊤(W⊤∇2

θL(θc,De)W + 2λW⊤W )ξe + o(∥δθe∥32)

i.e. with H̄e(θc) = W⊤∇2
θL(θc,De)W and λ′ = 2λ

Lr(θ
c +Wξe,De) = L(θc,De) + (W⊤∇θL(θc,De))⊤ξe

+
1

2
ξe⊤
(
H̄e(θc) + λ′W⊤W

)
ξe + o(∥δθe∥32) (D.3)

Eq. (D.3) is quadratic. If H̄e(θc) + λ′W⊤W is invertible, then the problem is also
convex with unique solution

ξe∗ = −
(
H̄e(θc) + λ′W⊤W

)−1

W⊤∇θL(θc,De)



210 supplementary material of Chapter 6

H̄e(θc) and λ′W⊤W are two square matrices. The application p : λ′ 7→ det(H̄e(θc)+

λ′W⊤W ) is well-defined and forms a continuous polynomial. Thus either it equals
zero or it has a finite number of roots. If H̄e(θc) or λ′W⊤W is invertible, then
p(0) = det(H̄e(θc)) ̸= 0 or p(∞) ∼ det(λ′W⊤W ) ̸= 0. Thus p ̸= 0 has a finite
number of roots i.e. H̄e(θc) + λ′W⊤W is invertible ∀λ′ except a finite number of
values corresponding to the roots of p.

D.3 System Parameter Estimation

Proposition 6.4. Under Assumptions 12 to 16, system parameters are perfectly
identified on new environments if the dynamics model g and hypernetwork A

satisfy ∀f ∈ B with system parameter p, gA(p) = f .

Proof. We define the linear mapping ψ : p ∈ Rdp → f ∈ F from parameters
to dynamics s.t. ψ(Rdp) = F (Assumption 12). Unicity of parameters (Assump-
tion 14) implies that ψ is bijective with inverse ψ−1, thus dim(F) = dim(Rdp) = dp.
Given a basis B = {fi}dpi=1 of F , we denote pi = ψ−1(fi). We fix g, A s.t. ∀i ∈
{1, ..., dp}, gA(pi) = fi = ψ(pi). This is possible as fi and g are linear w.r.t. inputs
(Assumptions 12 and 13) and pi are known (Assumption 16).

g, A are linear (Assumption 13), thus gA(·) is linear with inputs in Rdξ . Then,
dim(Im(gA(·))) ≤ dξ. Moreover, ∀i ∈ {1, ..., dp}, fi ∈ Im(gA(·)), thus F ⊂ Im(gA(·))

i.e. dp ≤ dim(Im(gA(·))). Thus, dp ≤ dim(Im(gA(·))) ≤ dξ. Assumption 15 states that
dξ = dp, s.t. dim(Im(gA(·))) = dp. As F ⊂ Im(gA(·)) and dim(F) = dim(Im(gA(·))),
F = Im(gA(·)) i.e. gA(·) is surjective onto F . As dim(F) = dξ, the dimension of the
input space, gA(·) is bijective.

By bijectivity of ψ, {pi}dpi=1 forms a basis of Rdp . gA(·) and ψ map this basis to
the same basis {fi}dpi=1 of F . As both mappings are bijective, this implies that
gA(·) = ψ(·). This means that ∀e ∈ E , gA−1(f e) = ψ−1(f e) i.e. system parameters pe

are recovered.

Proposition 6.5. For linearly parametrized systems, nonlinear w.r.t. inputs and
nonlinear dynamics model gθ with parameters output by a linear hypernetwork
A, ∃α > 0 s.t. system parameters are perfectly identified ∀e ∈ E where ∥ξe∥ ≤ α if
∀f ∈ B with parameter p, gA(α p

∥p∥ )
= f .

Proof. On environment e ∈ E , gθe is differentiable w.r.t. θe = A(ξe) = θc +Wξe ∈
Rdθ . We perform a first order Taylor expansion of gA(·) around 0. We note α > 0,

s.t. ∀ξe ∈ Rdξ that satisfy ∥ξe∥ < α, we have gθe = gθc + ∇θgθcWξe. gA(·) is then
linear in the neighborhood of 0 defined by α. ∀i ∈ J1, dpK, α pi

∥pi∥ belongs to this
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neighborhood s.t. the proof of Proposition 6.4 applies to this neighborhood if
∀i ∈ J1, dpK, gA(α pi

∥pi∥
) = fi, where B = {fi}dpi=1 is a basis of F .

We now show the validity of the unicity condition (Assumption 14) for two lin-
early parametrized systems.

Lemma D.1. There is an unique set of parameters in R4 for a Lotka-Volterra (LV) system.

Proof. With ψ : c ≜ (α, β, δ, γ) 7→ [(
x

y
) 7→ (

αx− βxy
δxy − γy )] a surjective linear

mapping from R4 to F (all LV systems are parametrized). Injectivity of ψ i.e.
ψ(c1) = ψ(c2) ⇐⇒ c1 = c2 will imply bijectivity i.e. unicity of parameters for a
LV system. As ψ is linear, injectivity is equivalent to ψ(c) = 0 ⇐⇒ c = 0, shown
below:

ψ(c) = 0 ⇐⇒ ∀
( x

y

)
,
( x(α− βy)

(δx− γ)y
)
=
( 0

0

)
⇐⇒ ∀

( x

y

)
,
( α− βy
δx− γ

)
=
( 0

0

)
⇐⇒ c = (α, β, δ, γ) = (0, 0, 0, 0)

Lemma D.2. There is an unique set of parameters in Rd+1, where d is the grid size, for a
Navier-Stokes (NS) system.

Proof. With ψ : c ≜ (ν, f) 7→
[
w 7→ −v∇w+ ν∆w+ f

]
, a surjective linear mapping

from Rd+1 to F (all NS systems are parametrized), bijectivity of ψ is induced by
injectivity i.e. ψ(c1) = ψ(c2) ⇐⇒ c1 = c2, shown below:

ψ(c1) = ψ(c2)

⇐⇒ ∀w,−v∇w + ν1∆w + f1 = −v∇w + ν2∆w + f2

⇐⇒ ∀w, (ν1 − ν2)∆w = −(f1 − f2)
⇐⇒ (ν1, f1) = (ν2, f2) ⇐⇒ c1 = c2
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(a) GO: k1 and K1 vary across E . (b) Sin.

Figure D.2. – Ranked singular values of the gradients across environments Etr, Gθc
for CoDA-ℓ1.

D.4 Low-Rank Assumption

When the systems are nonlinearly parametrized, we show empirically with Fig-
ure D.2 that the low-rank assumption is still reasonable for two different systems.

Glycolitic-Oscillator (GO) We consider the Glycolitic-Oscillator system (GO), de-
scribed in Appendix D.6.1, which is nonlinear w.r.t. K1. We vary parameters k1, K1

in Eq. (D.5) across environments. We observe in Figure D.2a that there are three
main gradient directions with SVD. The first is the most significant one while the
second and third ones are orders of magnitude smaller.

Sinusoidal (Sin) We consider a sinusoidal family of functions S(n) = {f : R→
R|f(x) =∑N

i=1 λi sin(ωix+ϕi)} (Sin). We sample 20 environments that correspond
each to different amplitudes (uniformly sampled in [0, 1]), frequencies (uniformly
sampled in [0, 10])) and phases (uniformly sampled in [0, 3.14]). We depict in
Figure D.2b the evaluation of the singular values at initialization. Figure D.2b
shows that the number of directions to consider for convergence is small and
that a single direction accounts for a significant amount of the variance in the
gradients. This corroborates the low-rank assumption.

D.5 Locality Constraint

We derive the upper-bounds to ∥ · ∥ for two variations.

∥ · ∥ = ℓ2: we apply triangle inequality to obtain Ω = ℓ22

∥Wξe∥22 ≤ ∥W∥22∥ξe∥22
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∥ · ∥ = ℓ1: we apply Cauchy-Schwartz inequality to obtain Ω(W ) = ℓ1,2(W ) ≜∑dθ
i=1 ∥Wi,:∥2

∥Wξe∥1 =
dθ∑
i=1

|Wi,:ξ
e| ≤ ∥ξe∥2

dθ∑
i=1

∥Wi,:∥2

Eq. (6.11) minimizes the log of the above upper-bounds.

D.6 Experimental Settings

We present in Appendix D.6.1 the equations and the data generation specificities
for all considered dynamical systems.

D.6.1 Dynamical Systems

Lotka-Volterra (LV, (Lotka 1925)) The system describes the interaction between
a prey-predator pair in an ecosystem, formalized into the following Ordinary
Differential Equation (ODE):

dx

dt
= αx− βxy

dy

dt
= δxy − γy

(D.4)

where x, y are respectively the quantity of the prey and the predator, α, β, δ, γ
define how two species interact.

We generate trajectories on a temporal grid with ∆t = 0.5 and temporal hori-
zon T = 10. We sample on each training environment Ntr = 4 initial condi-
tions for training from a uniform distribution p(V0) = Unif([1, 3]2). We sam-
ple for evaluation 32 initial conditions from p(V0). Across environments, α =

0.5, γ = 0.5. For training, we consider #Etr = 9 environments with parameters
β, δ ∈ {0.5, 0.75, 1.0}2. For adaptation, we consider #Ead = 4 environments with
parameters β, δ ∈ {0.625, 1.125}2.
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Glycolytic-Oscillator (GO, (Daniels et al. 2015)) GO describes yeast glycolysis
dynamics with the ODE:

dS1

dt
= J0 −

k1S1S6

1 + (1/Kq
1)S

q
6

dS2

dt
= 2

k1S1S6

1 + (1/Kq
1)S

q
6

− k2S2(N − S5)− k6S2S5

dS3

dt
= k2S2(N − S5)− k3S3(A− S6)

dS4

dt
= k3S3(A− S6)− k4S4S5 − κ(S4 − S7)

dS5

dt
= k2S2(N − S5)− k4S4S5 − k6S2S5

dS6

dt
= −2 k1S1S6

1 + (1/Kq
1)S

q
6

+ 2k3S3(A− S6)− k5S6

dS7

dt
= ψκ(S4 − S7)− kS7

(D.5)

where S1, S2, S3, S4, S5, S6, S7 represent the concentrations of 7 biochemical species.
We generate trajectories on a temporal grid with ∆t = 0.05 and temporal horizon
T = 1. We sample on each training environment Ntr = 32 initial conditions for
training from a uniform distribution p(V0) defined in Table 2 in (Daniels et al.
2015). Across environments, J0 = 2.5, k2 = 6, k3 = 16, k4 = 100, k5 = 1.28, k6 =

12, q = 4, N = 1, A = 4, κ = 13, ψ = 0.1, k = 1.8. For training, we consider #Etr = 9

environments with parameters k1 ∈ {100, 90, 80}, K1 ∈ {1, 0.75, 0.5}. For adapta-
tion, we consider #Ead = 4 environments with parameters k1 ∈ {85, 95}, K1 ∈
{0.625, 0.875}.

Gray-Scott (GS, (Pearson 1993)) The Partial Differential Equation (PDE) descibes
a reaction-diffusion system with complex spatiotemporal patterns through the
following 2D PDE:

∂u

∂t
= Du∆u− uv2 + F (1− u)

∂v

∂t
= Dv∆v + uv2 − (F + k)v

(D.6)

where u, v represent the concentrations of two chemical components in the spa-
tial domain S with periodic boundary conditions. Du, Dv denote the diffusion
coefficients respectively for u, v and F, k are the reaction parameters.

We generate trajectories on a temporal grid with ∆t = 40 and temporal horizon
T = 400. S is a 2D space of dimension 32×32 with spatial resolution of ∆s = 2.
We define initial conditions (u0, v0) ∼ p(V0) by uniformly sampling three two-by-
two squares in S. These squares trigger the reactions. (u0, v0) = (1 − ϵ, ϵ) with
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ϵ = 0.05 inside the squares and (u0, v0) = (0, 1) outside the squares. We sample on
each training environment Ntr = 1 initial conditions for training. Across environ-
ments, Du = 0.2097, Dv = 0.105. For training, we consider #Etr = 4 environments
with parameters F ∈ {0.30, 0.39}, k ∈ {0.058, 0.062}. For adaptation, we consider
#Ead = 4 environments with parameters F ∈ {0.33, 0.36}, k ∈ {0.59, 0.61}.

Navier-Stokes (NS, (Stokes 1851)) NS describes the dynamics of incompressible
flows with the 2D PDE:

∂w

∂t
= −v∇w + ν∆w + f where w = ∇× v

∇v = 0
(D.7)

where v is the velocity field, w = ∇× v is the vorticity. Both v, w lie in a spatial
domain S with periodic boundary conditions, ν is the viscosity and f is the
constant forcing term in the domain S. We generate trajectories on a temporal
grid with ∆t = 1 and temporal horizon T = 10. S is a 2D space of dimension
32×32 with spatial resolution of ∆s = 1. We sample on each training environment
Ntr = 16 initial conditions for training from p(V0) as in Li et al. (2021c). Across
environments, f(X, Y ) = 0.1(sin(2π(X + Y )) + cos(2π(X + Y ))). For training,
we consider #Etr = 5 environments with parameters ν ∈ {8 · 10−4, 9 · 10−4, 1.0 ·
10−3, 1.1 · 10−3, 1.2 · 10−3}. For adaptation, we consider #Ead = 4 environments
with parameters ν ∈ {8.5 · 10−4, 9.5 · 10−4, 1.05 · 10−3, 1.15 · 10−3}.

D.6.2 Implementation and Hyperparameters

Architecture We implement the dynamics model gθ with the following archi-
tectures:

• LV, GO: 4-layer MLPs with hidden layers of width 64.

• GS: 4-layer ConvNet with 64-channel hidden layers, and 3× 3 convolution ker-
nels

• NS: Fourier Neural Operator (Li et al. 2021c) with 4 spectral convolution layers.
12 frequency modes and hidden layers with width 10.

We apply Swish activation (Ramachandran et al. 2018). The hypernet A is a single
affine layer NN.

Optimizer We use the Adam optimizer (Kingma et al. 2015) with learning
rate 10−3 and (β1, β2) = (0.9, 0.999). We apply early stopping. All experiments
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are performed with a single NVIDIA Titan Xp GPU on an internal cluster. We
distribute training by batching together predictions across trajectories to reduce
running time. States across batch elements are concatenated.

Hyperparameters We define hyperparameters for the following models:

CoDA:

• LV: λξ = 10−4, λℓ1 = 10−6, λℓ2 = 10−5

• GO: λξ = 10−3, λℓ1 = 10−7, λℓ2 = 10−7

• GS: λξ = 10−2, λℓ1 = 10−5, λℓ2 = 10−5

• NS: λξ = 10−3, λℓ1 = 2 · 10−3, λℓ2 = 2 · 10−3

LEADS: we use the same parameters as Yin et al. (2021a).

GBML: the outer-loop learning rate is 10−3, we apply 1-step inner-loop update for
training and adaptation to maintain low running times. The inner-loop learning
rate for each system is:

• LV: 0.1

• GO: 0.01

• GS: 10−3

• NS: 10−3

. These values are also used to initialize the per-parameter inner-loop learning
rate in Meta-SGD.

D.7 Trajectory Prediction Visualization

We visualize in Figures D.3 and D.4 the prediction Mean-Squared Error (MSE) by
MAML, LEADS, CAVIA-Concat and CoDA-ℓ1 along ground truth trajectories on
the PDE systems NS and GS. We consider a new test trajectory on an Adaptation
environment e ∈ Ead with parameters defined in the caption.
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GroundTruth

MAML

LEADS

CAVIA-Concat

CoDA(Ours)

Figure D.3. – Adaptation to new GS system - F = 0.033, k = 0.061, Du = 0.2097,
Dv = 0.105. Ground-truth trajectory and prediction MSE per frame
for MAML, LEADS, CAVIA-Concat and CoDA.

GroundTruth

MAML

LEADS

CAVIA-Concat

CoDA(Ours)

Figure D.4. – Adaptation to new NS system - ν = 1.15 · 10−3. Ground-truth tra-
jectory and prediction MSE per frame for MAML, LEADS, CAVIA-
Concat and CoDA.





Appendix E

Supplementary Material of Chapter 7

E.1 Full results

We provide in Table E.1 a more detailed version of Table 7.2 for the space-time
extrapolation problem where we report the performance In-s (on the observation
grid) and Out-s (outside). We add s = 50%.

Then, we report in Table E.2, a more detailed version of Table 7.3a, which in-
cludes the results of Xts = Xtr. This corresponds to our generalization across grids
problem.

E.2 Prediction

We display the test prediction of DINo (Figure E.1) and I-MP-PDE (Figure E.2)
on Navier-Stokes for various subsampling levels when X = Xtr = Xts. We plot
the prediction of DINo on Wave in the same setting in Figure E.3. Predictions
are performed on a 64×64 uniform grid which defines the observation grid X
via different subsampling rates. Yellow points correspond to the observation grid
X (In-s) while purple points indicate off-grid points (Out-s). The prediction for
I-MP-PDE at t = 0 is the interpolated initial condition.

E.3 Detailed description of datasets

We choose T (resp. T ′) on a regular grid in [0, T ] (resp. [0, T ′]) with a given
temporal resolution and fix T ′ = 2T . We provide further details on the choice
of these parameters and other experimental parameters, such as the number of
observed trajectories.

219
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Table E.1. – Space and time extrapolation. The train and test observation grids
are equal; they are subsampled with a ratio s from an uniform 64×64

grid fixed here to be the inference grid X ′. We report MSE (↓) on
X ′ (on the observation grid In-s, outside Out-s or on both Full) and
the inference time interval T ′, divided within training horizon (In-
t, T ) and beyond (Out-t, outside T ) across subsampling ratios s ∈
{5%, 25%, 50%, 100%}. Best in bold and second best underlined.

Model

Navier-Stokes Wave

Train Test Train Test

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

s = 5% subsampling

In
-s

I-MP-PDE 3.525e−5 1.295e−3 4.554e−4 1.414e−3 1.824e−6 8.672e−5 1.113e−5 1.987e−4

DeepONet 4.778e−4 4.517e−3 1.060e−2 1.059e−2 2.546e−4 8.831e−3 1.501e−2 3.196e−2

SIREN 5.966e−3 1.769e−1 4.082e−2 2.150e−1 1.690e−3 1.707e−2 2.951e−2 6.955e−2

DINo 1.016e−4 6.945e−4 3.623e−4 8.306e−4 2.250e−6 5.283e−6 7.530e−6 2.146e−5

O
ut

-s

I-MP-PDE 8.550e−3 8.515e−3 8.306e−3 8.571e−3 7.412e−4 7.414e−4 1.195e−3 1.163e−3

DeepONet 3.475e−3 7.515e−3 1.361e−2 1.426e−2 8.624e−4 9.318e−3 1.702e−2 3.259e−2

SIREN 8.882e−3 1.767e−1 4.314e−2 2.124e−1 2.791e−3 1.823e−2 3.359e−2 6.965e−2

DINo 1.076e−3 1.704e−3 1.375e−3 1.863e−3 4.285e−5 4.304e−5 6.703e−5 7.659e−5

Fu
ll

I-MP-PDE 8.154e−3 8.166e−3 7.926e−3 8.225e−3 7.055e−4 7.097e−4 1.138e−3 1.116e−3

DeepONet 3.330e−3 7.370e−3 1.346e−2 1.408e−2 8.331e−4 9.295e−3 1.692e−2 3.256e−2

SIREN 8.741e−3 1.767e−1 4.303e−2 2.126e−1 2.738e−3 1.818e−2 3.339e−2 6.964e−2

DINo 1.029e−3 1.655e−3 1.326e−3 1.813e−3 4.088e−5 4.121e−5 6.415e−5 7.392e−5

s = 25% subsampling

In
-s

I-MP-PDE 1.447e−4 5.677e−4 1.763e−4 6.147e−4 6.754e−7 8.251e−5 9.253e−7 1.227e−4

DeepONet 7.500e−4 5.779e−3 9.227e−3 1.300e−2 5.196e−4 1.058e−2 1.743e−2 3.246e−2

SIREN 4.786e−3 2.178e−1 2.461e−1 3.884e−1 8.478e−4 1.282e−2 1.733e−2 5.104e−2

DINo 8.295e−5 4.273e−4 2.444e−4 5.735e−4 3.194e−6 3.747e−6 8.907e−6 1.029e−5

O
ut

-s

I-MP-PDE 3.678e−4 7.748e−4 4.026e−4 8.143e−4 4.330e−5 1.200e−4 6.764e−5 1.648e−4

DeepONet 9.503e−4 5.987e−3 9.423e−3 1.337e−2 5.891e−4 1.062e−2 1.762e−2 3.213e−2

SIREN 5.305e−3 2.173e−1 2.428e−1 3.853e−1 9.159e−4 1.295e−2 1.798e−2 5.156e−2

DINo 1.081e−4 4.578e−4 2.711e−4 6.021e−4 4.192e−6 4.657e−6 1.153e−5 1.220e−5

Fu
ll

I-MP-PDE 3.135e−4 7.245e−4 3.476e−4 7.658e−4 3.293e−5 1.108e−4 5.142e−5 1.545e−4

DeepONet 9.016e−4 5.936e−3 9.376e−3 1.328e−2 5.722e−4 1.061e−2 1.757e−2 3.221e−2

SIREN 5.180e−3 2.175e−1 2.436e−1 3.861e−1 8.995e−4 1.292e−2 1.783e−2 5.143e−2

DINo 1.020e−4 4.504e−4 2.646e−4 5.951e−4 3.949e−6 4.436e−6 1.089e−5 1.174e−5

s = 50% subsampling

In
-s

I-MP-PDE 1.153e−4 5.016e−4 1.594e−4 6.043e−4 2.200e−7 3.179e−5 8.843e−7 5.854e−5

DeepONet 6.214e−4 4.277e−3 5.699e−3 1.082e−2 7.581e−4 1.187e−2 1.649e−2 3.378e−2

SIREN 4.911e−3 6.815e−1 1.607e−1 6.889e−1 5.134e−4 1.481e−2 3.086e−2 8.196e−2

DINo 8.151e−5 2.920e−4 2.004e−4 4.283e−4 3.277e−6 3.659e−6 8.978e−6 9.572e−6

O
ut

-s

I-MP-PDE 1.186e−4 5.010e−4 1.626e−4 6.132e−4 9.638e−7 3.153e−5 2.367e−6 5.574e−5

DeepONet 6.851e−4 4.343e−3 5.740e−3 1.099e−2 7.842e−4 1.185e−2 1.679e−2 3.391e−2

SIREN 5.067e−3 6.867e−1 1.599e−1 6.845e−1 5.354e−4 1.492e−2 3.113e−2 8.333e−2

DINo 9.175e−5 3.041e−4 2.116e−4 4.409e−4 3.277e−6 3.659e−6 8.978e−6 9.572e−6

Fu
ll

I-MP-PDE 1.170e−4 5.013e−4 1.611e−4 6.088e−4 6.021e−7 3.166e−5 1.646e−6 5.710e−5

DeepONet 6.541e−4 4.311e−3 5.720e−3 1.091e−2 7.715e−4 1.186e−2 1.665e−2 3.385e−2

SIREN 4.995e−3 6.841e−1 1.603e−1 6.867e−1 5.246e−4 1.486e−2 3.100e−2 8.265e−2

DINo 8.677e−5 2.982e−4 2.062e−4 4.348e−4 3.380e−6 3.751e−6 9.251e−6 9.710e−6

s = 100% subsampling

Fu
ll

CNODE 2.319e−2 9.652e−2 2.305e−2 1.143e−1 2.337e−5 5.280e−4 3.057e−5 7.288e−4

MP-PDE 1.140e−4 5.500e−4 1.785e−4 5.856e−4 1.718e−7 1.993e−5 9.256e−7 4.261e−5

MNO 3.190e−5 8.678e−4 2.763e−4 8.946e−4 9.381e−6 4.890e−3 1.993e−4 6.128e−3

DeepONet 1.375e−3 6.573e−3 9.704e−3 1.244e−2 6.431e−4 1.293e−2 1.847e−2 3.317e−2

SIREN 1.066e−3 4.336e−1 3.874e−1 1.037e0 3.674e−4 9.956e−3 3.013e−2 7.842e−2

MFN 1.651e−3 1.037e0 2.106e−1 1.059e0 1.408e−4 1.763e−1 4.735e−3 2.274e−1

DINo (no sep.) 3.235e−4 1.593e−3 7.850e−4 1.889e−3 2.641e−6 4.081e−5 5.977e−5 2.979e−4

DINo 8.339e−5 3.115e−4 2.092e−4 4.311e−4 3.309e−6 3.506e−6 9.495e−6 9.946e−6
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Table E.2. – Generalization across grids. Xtr,Xts are subsampled with different
ratios str ̸= sts ∈ {5, 50, 100}% from the same uniform 64×64 grid. We
report test MSE within Xts (In-s). Best in bold.

Xts = Xtr Xts ̸= Xtr

Subsampling Test → sts = str sts = 5% sts = 50% sts = 100%

Train ↓ In-t Out-t In-t Out-t In-t Out-t In-t Out-t

str = 5%
MP-PDE 1.967e−4 6.631e−4 1.330e−1 3.852e−1 1.859e−1 6.680e−1 2.105e−1 7.120e−1

DINo 3.623e−4 8.306e−4 1.494e−3 2.291e−3 1.257e−3 1.883e−3 1.287e−3 1.947e−3

str = 50%
MP-PDE 1.346e−4 5.110e−4 4.494e−2 9.403e−2 4.793e−3 1.997e−2 6.330e−3 3.712e−2

DINo 2.004e−4 4.283e−4 2.470e−4 4.697e−4 2.073e−4 4.284e−4 2.058e−4 4.361e−4

str = 100%
MP-PDE 1.785e−4 5.856e−4 1.358e−1 3.355e−1 1.182e−2 2.664e−2 1.785e−4 5.856e−4

DINo 2.092e−4 4.311e−4 2.495e−4 4.805e−4 2.109e−4 4.325e−4 2.092e−4 4.311e−4

Subsampling
rate

Observation
grid X

Predicted trajectory
t = 0 −−−−−−−−−−−−−−−−−→ t = T −−−−−−−−−−−−−−−−−→ t = T ′

s = 5%

s = 25%

s = 100%

Ground Truth

Figure E.1. – Prediction MSE per frame for DINo on Navier-Stokes with its corre-
sponding observed train and test grid X . For each model, the first
row contains the predicted trajectory from 0 to T ′, the second row
is the corresponding error maps w.r.t. the reference data (the darker
the pixel, the lower the error).
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Subsampling
rate

Observation
grid X

Predicted trajectory
t = 0 −−−−−−−−−−−−−−−−−→ t = T −−−−−−−−−−−−−−−−−→ t = T ′

s = 5%

s = 25%

s = 100%

Ground Truth

Figure E.2. – Prediction MSE per frame for I-MP-PDE on Navier-Stokes with its
corresponding observed train and test grid X . For each model, the
first row contains the predicted trajectory from 0 to T ′, the second
row is the corresponding error maps w.r.t. the reference data (the
darker the pixel, the lower the error).
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Subsampling
rate

Observation
grid X

Predicted trajectory
t = 0 −−−−−−−−−−−−−−−−−→ t = T −−−−−−−−−−−−−−−−−→ t = T ′

s = 5%

s = 25%

s = 100%

Ground Truth

Figure E.3. – Prediction MSE per frame for DINo on Wave with its correspond-
ing observed train and test grid X . For each model, the first row
contains the predicted trajectory from 0 to T ′, the second row is the
corresponding error maps w.r.t. the reference data (the darker the
pixel, the lower the error).
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2D Wave equation (Wave). It is a second-order PDE:

∂2u

∂t2
= c2∆u, (E.1)

where u is a function of the displacement at each point in space w.r.t. the rest
position, c ∈ R∗

+ is the speed of wave traveling. We transform the equation to a
first-order form, considering the input vt = (ut,

dut
dt
), so that the dimension of vt(x)

at each point x ∈ Ω is n = 2.

We generate our dataset for speed c = 2 with periodic boundary condition. The
domain is Ω = [−1, 1]2. For initial conditions v0 = (u0,

dut
dt |t=0

), the initial displace-
ment u0 is a Gaussian function:

u0(x; a, b, r) = a exp(−(x− b)2
2r2

), (E.2)

where the height of the peak displacement is a ∼ U(2, 4), the location of the peak
displacement is (b1, b2) ∼ U(−1, 1), and the standard deviation is r ∼ U(0.25, 0.3).
The initial time derivative is ∂ut

∂t |t=0
= 0. Each snapshot is generated on a uniform

grid of 64×64. Each sequence is generated with fixed interval δt = 0.25. We set
the training horizon T = 2.25 and the inference horizon T = 4.75. We generated
512 training trajectories and 32 test trajectories.

2D Navier Stokes (Navier-Stokes, Stokes 1851). This dataset corresponds to an
incompressible fluid dynamics described by:

∂w

∂t
= −u∇w + ν∆w + f, w = ∇× u, ∇u = 0, (E.3)

where u is the velocity field and w the vorticity. u,w lie on a spatial domain with
periodic boundary conditions, ν is the viscosity and f is a constant forcing term.
The input vt is wt (n = 1). ν is the viscosity and f is the constant forcing term in
the domain Ω.

The spatial domain is Ω = [−1, 1]2, the viscosity is ν = 1× 10−3, the forcing term
is set as:

∀x ∈ Ω, f(x1, x2) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2))). (E.4)

The full spatial grid is of dimension 64×64 or 256×256 according to experiments
in Section 7.4. We sample initial conditions as in Li et al. (2021c) to create different
trajectories. The first 20 steps of the trajectories are cut off as they are too noisy and
not informative in terms of dynamics. Trajectories are collected with δt = 1. We
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set the training horizon T = 19 and the inference horizon T ′ = 39. We generated
512 training trajectories and 32 test trajectories.

3D spherical shallow water (Shallow-Water, Galewsky et al. 2004). The follow-
ing problem is originally presented for testing numerical models of global shallow-
water equations. The shallow water equations is written as:

du

dt
= −fk × u− g∇h+ν∆u,

dh

dt
= −ht∇ · u+ ν∆h.

(E.5)

where d
dt

is the material derivative, k is the unit vector orthogonal to the spherical
surface, u is the velocity field tangent to the surface of the sphere, which can be
transformed into the vorticity w = ∇× u, h is the thickness of the sphere. Note
that the data we observe at each time t is vt = (wt, ht). f, g, ν,Ω are parameters of
the Earth (cf. Galewsky et al. 2004 for details).

The initial conditions are slightly modified from Galewsky et al. 2004, detailed
below, to create symmetric phenomena on the northern and southern hemisphere.
The initial zonal velocity u0 contains two non-null symmetric bands in the both
hemispheres, which are parallel to the circles of latitude. At each latitude and
longitude ϕ, θ ∈ [−π/2, π/2]× [−π, π]:

u0(ϕ, θ) =


(
umax

en
exp(

1

(ϕ− ϕ0)(ϕ− ϕ1)
), 0) if ϕ ∈ (ϕ0, ϕ1),

(
umax

en
exp(

1

(ϕ+ ϕ0)(ϕ+ ϕ1)
), 0) if ϕ ∈ (−ϕ1,−ϕ0),

(0, 0) otherwise.

(E.6)

where umax is the maximum velocity, ϕ0 = π/7, ϕ1 = π/2−ϕ0, and en = exp(−4/(ϕ1−ϕ0)2).
The water height h0 is initialized by solving a boundary value condition problem
as in Galewsky et al. (2004). It is then perturbed by adding the following h′0 to h0:

h′0(ϕ, θ) = ĥ cos(ϕ) exp(−( θ
α
)2)
[
exp(−(ϕ2 − ϕ

β
)2) + exp(−(ϕ2 + ϕ

β
)2)
]
. (E.7)

where ϕ2 = π/4, ĥ = 120m, α = 1/3, β = 1/15 are constants defined in Galewsky
et al. 2004.

We simulate this phenomenon with Dedalus (Burns et al. 2020) on a latitude-
longitude (lat-lon) grid. The size of the grid is 128 (lat)×256 (lon). We take differ-
ent initial conditions by sampling umax ∼ U(60, 80) to generate long trajectories.
These long trajectories are then sliced into shorter ones. For simulation, we take
one snapshot per hour (of internal simulation time), i.e. δt = 1h. We stop the
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simulation at the 320th hour. To construct a dataset rich of dynamical phenomena,
we take the snapshots within the last 160 h in a long trajectory and slice them into
8 shorter trajectoires. Also note that the data is scaled into a reasonable range: the
height h is scaled by a factor of 3× 103, and the vorticity w by a factor 2. In each
short trajectory, T = 9h and T ′ = 19 h. In total, we generated 16 long trajectories
(i.e. 128 short trajectories) for train, 2 for test (i.e. 16 short trajectories).

E.4 Implementation

E.4.1 Algorithm

We detail the algorithm of DINo for training and test via pseudo-code in Algo-
rithm E.1.

Algorithm E.1 DINo pseudo-code

1: Training: D = {vT }, {αvT }v∈D ← {0}, ϕ← ϕ0, ψ ← ψ0

2: loop
3: for v ∈ D do
4: αvT ← αvT − ηα∇αv

T
ℓdec(ϕ, α

v
T ) ▷ Modulation

5: end for
6: ϕ← ϕ− ηϕ∇ϕ

(∑
v∈D ℓdec(ϕ, α

v
T )
)

▷ Hypernetwork
7: ψ ← ψ − ηψ∇ψ

(∑
v∈D ℓdyn(ψ, α

v
T )
)

▷ Dynamics
8: end loop
9: Test: D′

0 = {v0}, {αv0}v∈D′ ← {0}, ϕ⋆, ψ⋆, T ′ ̸= T
10: loop
11: for v ∈ D′ do
12: αv0 ← αv0 − η∇αv

0
ℓdec(ϕ

⋆, αv0) ▷ Modulation
13: end for
14: end loop
15: for v ∈ D′, t ∈ T ′ do
16: αvt ← αv0 +

∫ t
0
fψ⋆(αvτ )dτ ▷ Unroll dynamics

17: end for

E.4.2 Convergence

Convergence analysis. In practice, we observe no training instability induced
by the two-stage learning process of Eq. (7.6) and Algorithm E.1: the objectives are
non-conflicting. To assess this, we track the evolution of the auto-decoding loss
ℓdec and the dynamics loss ℓdyn throughout training on Navier-Stokes (s = 100%)
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Figure E.4. – Learning curves on Navier-Stokes for ℓdec and ℓdyn throughout train-
ing (pale lines) and corresponding exponential moving averages
from epoch 500 with half-life 1000 (opaque lines).

in Figure E.4. We observe that both losses smoothly converge until the end of
training.

E.4.3 Time efficiency

Our auto-decoding strategy coupled with a latent neural ODE makes DINo

computationally efficient compared to our best competitor MP-PDE.

Inferring α0 via auto-decoding. Given a decoder and an observation frame v0,
finding α0 corresponds to solving an inverse problem, cf. Eq. (7.3). At inference,
we use 300 steps to infer α0; using less steps is possible but results in slight under-
fitting. This represents 2.76 s for 64 trajectories on a single Tesla V100 Nvidia GPU.
Note that, as we unroll dynamics in the latent space, there is no need to relearn
αt when t > 0. Moreover, this differs from training, where αt is continuously
optimized for all t ∈ [0, T ] within the train horizon, alternatively with our INR
decoder. Overall, we trained MP-PDE and DINo for approximately 7 days such
that there is no major additional temporal training cost for DINo.

Latent Neural ODE. Unrolling the dynamics with a neural ODE is efficient
(0.35 s for 19 time predictions for 64 trajectories on a single Tesla V100 Nvidia
GPU). Indeed, the latent space is small (at most 100 dimension) and the dynamics
models uses a simple four-layer MLP for fψ. With the same latent dynamics
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model, using an RK4 numerical scheme only incurs four additional function
evaluations over a discretized alternative e.g. standard ResNet. This incurs a
minor computational cost but enables DINo to operate at different temporal
resolutions, unlike e.g. MP-PDE.

In comparison, the official code of MP-PDE takes 312 s for inference on the same
hardware for the same number of trajectories (vs 3 s for DINo). MP-PDE requires
building an adjacency matrix and incurs for this reason a high memory cost, espe-
cially as the number of nodes increases. Interpolation also significantly increases
inference time. This is not the case for DINo, which is faster.

E.4.4 Additional implementation details

We use PyTorch (Paszke et al. 2019) to implement DINo and our baselines. Hy-
perparameters are further defined in Appendix E.4.5. The dynamics model fψ is a
multilayer perceptron. Its input and output size are same as the size of latent space
dα. All hidden layers share the same size. DINo’s parameters are initialized with
the default initialization in PyTorch, defining ϕ0, ψ0, ω in Algorithm E.1. We recall
that ω is fixed throughout training to reduce the number of optimized parameters
without loss of performance. As in related work (Sitzmann et al. 2020; Fathony
et al. 2021), the frequency parameters ω are scaled by a factor, ωs, considered as a
hyperparameter. For dynamics learning, we use an RK4 integrator via TorchDif-
fEq (Chen et al. 2018) and apply exponential Scheduled Sampling (Bengio et al.
2015) to stabilize training. In practice, modulations αt are learned channel-wise
such that Iθ : Ω → Rdc has separate parameters per output dimension to make
predictions less correlated across channels. We optimize all parameters ϕ, α, ψ
using Adam (Kingma et al. 2015) with decay parameters (β1, β2) = (0.9, 0.999).

E.4.5 Hyperparameters

We list the hyperparameters of DINo for each dataset in Table E.3. In practice,
we observe it is beneficial to decay the learning rates ηϕ, ηα when the loss reaches
a plateau.

E.4.6 Baselines implementation

We detail in the following the hyperparameters and architectures used in our
experiments for the considered baselines, which we reimplemented for our paper.
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Table E.3. – DINo’s hyperparameters.

Hyperparameter Navier-Stokes Wave Shallow-Water

Decoder gϕ = Ihϕ
Number of layers 3 3 6
Number hidden channels 64 64 256
Frequency scale factor ωs 64 64 64
Size of latent space dα 100 50 300

Dynamics model fψ
Number of layers 4 4 4
Hidden layer size 512 512 800
Activation function Swish Swish Swish

Optimization
Learning rate ηϕ 10−2 10−2 10−2

Learning rate ηα 10−3 10−3 10−3

Learning rate ηψ 10−3 10−3 10−3

Number of epochs 12 000 12 000 12 000
Batch size i.e. sequences per batch 64 64 16

• CNODE is implemented with four 2D convolutional layers with 64 hidden
features, ReLU activations, 3×3 kernel and zero padding. Learning rate is fixed
to 10−3. We use an adjoint method for integration like (Chen et al. 2018).

• MNO. We use the FNO architecture in Li et al. 2021c with three FNO blocks,
GeLU activations, 12 modes and a width of 32. Learning rate is fixed to 10−3.

• DeepONet. We consider an autoregressive formulation of DeepONet. We choose
a width of 1000 for hidden features with a depth of 4 for both trunk and branch
nets with ReLU activations. Learning rate is fixed to 10−5.

• MP-PDE. We adapt the implementation in Brandstetter et al. 2022 to handle 2D
and 3D PDEs. We use a time window of 1 with pushforward trick. Batch size
and number of neighbors are fixed to 8. Learning rate is fixed to 10−3. We use
ReLU activations.

• SIREN. To represent data in space and time, SIREN takes space and time
coordinates (x, t) as input. To handle multiple trajectories, we concatenate an
optimizable per-trajectory context code α to the coordinates like in DINo. We
fix the hidden layer size of SIREN to 256. We initialize the parameters and use
the default input scale as in Sitzmann et al. 2020. The size of the context code
is dα = 800. The learning rate is 10−3.
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Table E.4. – Long term extrapolation performance of DINo and (I-)MP-PDE in
the space and time generalization experiment for test trajectories on
Out-t (]T, T ′ = T +∆T ]); cf. Table 7.2 and Section 7.4.1.

Subsampling ratio Model ∆T = T ∆T = 5T ∆T = 10T ∆T = 50T

s = 5%
DINo 2.017e−3 4.895e−3 1.209e−2 1.440e−1
I-MP-PDE 8.387e−3 3.580e−2 3.356e−1 4.031e1

s = 100%
DINo 4.617e−4 2.082e−3 6.901e−3 1.215e−1
MP-PDE 5.251e−4 3.524e−2 3.339e−1 9.755e1

• MFN. Similarly to the previous SIREN baseline, we concatenate the per-trajectory
context code to space and time coordinates at the first layer. The hidden layer
size is fixed to 256 and we use the default parameter initialization with a fre-
quency scale ωs of 64 higher than DINo. The size of the context code is dα = 800.
The learning rate is 10−3.

E.5 Complementary analyses

We detail in this section additional experiments, allowing us to further analyze
and assess the performance of DINo.

E.5.1 Long-term temporal extrapolation

We provide in Table E.4 an analysis of error accumulation over time for long-term
extrapolation. More precisely, we generate a Navier-Stokes dataset with longer
trajectories and report MSE for T ′ = T +∆T where ∆T ∈ {T, 5T, 10T, 50T}. Note
that ∆T = T is the setting in our initial submission (T ′ = 2T ).

We observe that DINo’s MSE in long-term forecasting is more than an order
of magnitude smaller than for (I-)MP-PDE. This demonstrates the extrapolation
abilities of our model.

E.5.2 INRs’ advantage over interpolation

We report in Table E.5 the MSE of bicubic interpolation, our FourierNet’s MSE

(auto-decoding with amplitude modulation but without dynamics model) and
DINo’s MSE (with dynamics model) on train In-t for both Navier-Stokes and Wave.
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Table E.5. – MSE reconstruction error (In-s and Out-s) of train sequences within
the train horizon (In-t) for three different methods: interpolation of
observed points in Xtr, FourierNet learned over individual frames in
Xtr, and DINo (FourierNet with a dynamics model).

MSE train In-t Interpolation FourierNet DINo

Navier-Stokes, s = 5% 8.277e−3 9.673e−4 1.029e−3

Wave, s = 5% 7.075e−4 4.085e−5 4.088e−5

This corresponds to MSE averaged over all training frames within the train horizon
and not only the initial condition v0.

We observe that FourierNet is better than interpolation. Indeed, interpolation is
poorly adapted to sparse observation grids: the interpolation errors are clearly
visible in Figure E.2, first row (5% setting). Interestingly, DINo’s MSE is only
slightly worse than the FourierNet’s MSE, showing that we correctly learned the
dynamics of latent modulations αt. I-MP-PDE, which combines bicubic interpola-
tion with MP-PDE, is then expectedly outperformed by DINo on this challenging
5% setting. This shows the advantage of using INRs instead of standard bicubic
interpolation to interpolate between observed spatial locations.

E.5.3 Modeling real-world data

SST. We evaluate DINo on real-world data to further assess its applicability.
Following Bézenac et al. 2018a and Donà et al. 2021, we model the Sea Surface
Temperature (SST) of the Atlantic ocean, derived from the data-assimilation en-
gine NEMO (Nucleus for European Modeling of the Ocean, Madec et al. n.d.)
using E.U. Copernicus Marine Service Information 1. Accurately modeling SST
dynamics is critical in weather forecasting or planning of coastal activities. This
problem is particularly challenging as SST dynamics are only partially observed:
several unobserved variables affecting the dynamics (e.g. the sea water flow) need
to be estimated from data.

For this experiment, we consider trajectories collected from three geographical
zones (17 to 20) following the initial train / test split of Bézenac et al. 2018a.
Notably, T = 9d, which includes τ = 4d of conditioning frames, i.e. models are
tested to predict vt∈Jτ,T K from vt∈J0,τK.

1. https://data.marine.copernicus.eu/product/GLOBAL_ANALYSIS_FORECAST_PHY_001_
024/description

https://data.marine.copernicus.eu/product/GLOBAL_ANALYSIS_FORECAST_PHY_001_024/description
https://data.marine.copernicus.eu/product/GLOBAL_ANALYSIS_FORECAST_PHY_001_024/description
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Table E.6. – SST test prediction performance for DINo and VarSep.

Method MSE

VarSep (Donà et al. 2021) 1.43

DINo 1.27

Incorporating consecutive time steps. To model SST which includes non-Markovian
data and thus does not correspond to an Initial Value Problem as in Section 7.2,
we modify our dynamics model in a similar fashion to Yıldız et al. 2019 to in-
tegrate a history of several consecutive observations vt∈J0,τK instead of only the
initial observation v0. In more details, we define a neural ODE over an augmented
state [αt, α

′
t] where αt is our auto-decoded state and α′

t is an encoding of τ = 4

past auto-decoded observations via a neural network cξ. We adjust our inference
and training settings as follows:

• inference: we compute α′
τ−1 = cξ(α0, · · · , ατ−1) and then unroll our neural ODE

from the initial condition [ατ−1, α
′
τ−1] to obtain [αt, α

′
t] for all t > τ − 1:

∀t ∈ J0, τ − 1K, αt = eφ(vt), α′
τ−1 = cξ(α0, · · · , ατ−1),

d[αt, α
′
t]

dt
= fψ([αt, α

′
t]);

• training: for all t, we infer α′
t+τ−1 = cξ(αt, · · · , αt+τ−1) and fit the above neural

ODE on the [αt, α
′
t] obtained for all t ∈ J0, T − τ + 1K.

This experiment confirms that our space- and time-continuous framework can
easily be extended to incorporate refined temporal models.

Results. We report in Table E.6 test MSE for DINo and VarSep (Donà et al.
2021), the current state-of-the-art on SST, retrained on the same training data.
DINo notably outperforms VarSep in prediction performance. This demonstrates
DINo’s potential to handle complex real-world spatiotemporal dynamics. We
also provide some visualizations of DINo’s train and test predictions in Fig-
ure E.5. We make two observations. First, DINo fits very accurately the train
data. Second, on the test, we observe that the dynamics on low frequencies seem
to be correctly modeled while the prediction of high frequencies dynamics are less
accurate. Larger scale experiments would be required to effectively evaluate the
model performance on this challenging dataset. Given the complexity of the data,
this is out of the scope of the paper. Yet, these experiments already demonstrate
that DINo behaves competitively w.r.t the previous state-of-the-art.
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(a) Train predictions.

(b) Test predictions.

Figure E.5. – DINo’s prediction examples on SST.

Implementation choices. We choose a similar INR and dynamics architecture
than for our Shallow-water experiment. We use for cξ, which takes as input four
consecutive αts, individual encodings of the αts through a four-layer fully con-
nected network which are then fed to a single linear layer.
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