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Titre : Structures arc-en-ciel dans les graphes proprement arêtes-colorés et les systèmes deshypergraphes.
Mots clés : Problèmes extrêmes ; système de k-graphes ; appariement parfait arc-en-ciel ; cycleHamiltonien arc-en-ciel.
Résumé : La combinatoire extrémal est l’unedes branches les plus vigoureuses des ma-thématiques combinatoires au cours des der-nières décennies, et elle a été largement uti-lisée en informatique, en conception de ré-seaux et en conception de codage. Elle seconcentre sur la détermination de la taillemaxi-male ou minimale possible de certaines struc-tures combinatoires, sous certaines conditionsou contraintes. En particulier, la théorie desgraphes extrémaux est une branche impor-tante de la combinatoire extrémale, qui traiteprincipalement de la manière dont les proprié-tés générales d’un graphe contrôlent la struc-ture locale du graphe.

Un système de k-graphes H = {Hi}i∈[m] estune collection de k-graphes sur le même en-semble de sommets V . Pour un système de k-graphes H = {Hi}i∈[m] sur V , un graphe H sur
V est arc-en-ciel dans H s’il existe une injection
φ : E(H) → [m] telle que e ∈ E(Hφ(e)) pourchaque e ∈ E(H).

Cette thèse produit une étude en trois par-ties.
(1) Nous étudions l’existence de cycles Ha-miltoniens arc-en-ciel dans les systèmes de

k-graphes. Le théorème de Dirac a de nom-breuses variantes. Tout d’abord, il a été géné-ralisé dans les systèmes de graphes. Deuxiè-mement, il a été généralisé dans les hyper-graphes. Dans le même esprit, nous voulonstrouver un cycle Hamiltonien arc-en-ciel dansun système d’hypergraphes. Étant donné k ≥
3, γ > 0, un n-vertex k-système de k-graphes
H = {Hi}i∈[n] avec δk−1(Hi) ≥ (1/2 + γ)n pourchaque i ∈ [n], alors il existe un cycle Hamil-tonien H-arc-en-ciel. De plus, des chercheursse sont consacrés à caractériser la conditionde degré (k − 2) pour l’existence d’un cycleHamiltonien. Lang et Sanhueza-Matamala, Pol-cyn, Reiher, Rödl et Schulke ont prouvé indé-pendamment que pour tout γ > 0, chaque n-vertex k-graph avec δk−2(H) ≥ (5/9 + γ)

(
n
2

)

contient un cycle Hamiltonien. Cependant, laversion arc-en-ciel de la conclusion ci-dessusest beaucoup plus difficile. Gupta, Hamann,Muyesser, Parczyk et Sgueglia ont mentionnéle problème : étant donné un système de 3-graphes H = {Hi}i∈[n] avec une condition dedegré minimum de chaque Hi, est-ce que Hadmet un cycle Hamiltonien arc-en-ciel ? Nousrésolvons le problème ci-dessus et tirons laconclusion générale pour tout k ≥ 3.
(2) Nous étudions l’existence d’une ap-pariement parfaite arc-en-ciel dans les sys-tèmes de k-graphes. Soit ck,d le seuil mini-mum de d-degré pour des appariements frac-tionnaires parfaites dans les graphiques k, àsavoir, pour chaque ε > 0 et suffisammentgrand n ∈ N , chaque n-sommet k-graphe Havec δd(H) ≥ (ck,d + ε)

(
n−d
k−d

) contient une ap-pariement fractionnaire parfaite. On sait quetout k-graphe de n sommets H avec δd(H) ≥
(max{ck,d, 1/2}+ o(1))

(
n−d
k−d

) a un appariementparfait, et cette condition est asymptotique-ment optimale. Nous démontrons que dans un
k-graphe, les conditions minimales de d-degrépour un appariement parfait garantissent éga-lement asymptotiquement la présence d’un ap-pariement parfait rainbow dans le système du
k-graphes pour d ∈ [k − 1]. Plus généralement,un cadre général pour résoudre l’existence defacteurs transversaux dans les systèmes d’hy-pergraphes peut également être donné.

(3) Nous étudions l’existence de longs cyclesarc-en-ciel dans des graphes proprementarêtes-colorés. En 1989, Andersen a conjecturéque chaqueKn proprement arêtes-colorés ad-met un chemin arc-en-ciel qui omet un seulsommet. Nous avons prouvé que chaque Kn,nproprement arêtes-colorés contient un cyclearc-en-ciel d’au moins n − 28n3/4 pour n suffi-samment grand. La limite ci-dessus est asymp-totiquement optimale car chaque classe decouleurs pourrait être un couplage parfait de
Kn,n et seuls n couleurs apparaissent dans
E(Kn,n).



Title : Rainbow structures in properly edge-colored graphs and hypergraph systems
Keywords : Extremal problem; k-graph system; rainbow perfect matching ; rainbow Hamiltoncycle.
Abstract : Extremal Combinatorics is one of themost vigorous branch of Combinatorial Mathe-matics in recent decades and it has been wi-dely used in Computer Science, Network De-sign and Coding Design. It focuses on determi-ning the maximum or minimum possible sizeof certain combinatorial structures, subject tocertain conditions or constraints. In particular,Extremal Graph Theory is a significant branchof Extremal Combinatorics, which primarily ex-plores how the overall properties of a graph in-fluence its local structures.

A k-graph system H = {Hi}i∈[m] is a col-lection of not necessarily distinct k-graphs onthe same vertex set V . For a k-graph system
H = {Hi}i∈[m] on V , a graphH on V is rainbowin H if there exists an injection φ : E(H) → [m]such that e ∈ E(Hφ(e)) for each e ∈ E(H).

This thesis presents a three-part study.
(1)We study the existence of rainbowHamil-ton cycle in k-graph systems. Dirac’s theoremhas many variants. Firstly, it was generalized ingraph systems. Secondly, it was generalized inhypergraphs. Along the same idea, we want tofind a rainbow Hamilton cycle in a hypergraphsystem. Given k ≥ 3, γ > 0, sufficiently large nand an n-vertex k-graph system H = {Hi}i∈[n],if δk−1(Hi) ≥ (1/2 + γ)n for each i ∈ [n],then there exists an H-rainbow Hamilton cycle.Further, scholars devoted to characterizing the

(k − 2)-degree condition for the existence of aHamilton cycle. Lang and Sanhueza-Matamala,Polcyn, Reiher, Rödl and Schülke independentlyproved that for any γ > 0, every n-vertex k-graph with δk−2(H) ≥ (5/9 + γ)
(
n
2

) contains aHamilton cycle. However, the rainbow version

of the above conclusion is much more difficult.Gupta, Hamann, Müyesser, Parczyk, and Sgue-glia mentioned the following problem : Givena 3-graph system H = {Hi}i∈[n] with minimumvertex degree condition of each Hi, does H ad-mit a rainbow Hamilton cycle? We settle theabove problem, and draw the general conclu-sion for any k ≥ 3.
(2) We study the existence of rainbow per-fect matching in k-graph systems. Let ck,d bethe minimum d-degree threshold for perfectfractional matchings in k-graphs, namely, forevery ε > 0 and sufficiently large n ∈ N,every n-vertex k-graph H with δd(H) ≥ (ck,d +

ε)
(
n−d
k−d

) contains a perfect fractional matching.It is known that every n-vertex k-graph H with
δd(H) ≥ (max{ck,d, 1/2} + o(1))

(
n−d
k−d

) has aperfect matching, and this condition is asymp-totically best possible. We proved that a mini-mum d-degree condition asymptotically forcinga perfectmatching in a k-graph also forces rain-bow perfect matchings in k-graph systems for
d ∈ [k−1]. More generally, a general frameworkfor solving the existence of rainbow factors inhypergraph systems can also be given.

(3) We study the existence of long rainbowcycle in properly edge-colored graphs. In 1989,Andersen conjectured that all proper edge-colorings of Kn admit a rainbow path whichomits only one vertex. We proved that everyproperly edge-coloredKn,n contains a rainbowcycle of length at least n − 28n3/4 for suffi-ciently large n. The bound above is asymptoti-cally optimal as each color class could be a per-fect matching ofKn,n and only n colors occur in
E(Kn,n).

3



4



Table des matières

1 Introduction 1
1.1 Terminologies and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Rainbow structures in properly edge-colored graphs . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Extremal problems in properly edge-colored graphs . . . . . . . . . . . . . . . . 6
1.2.2 Rainbow cycles in properly edge-colored complete graphs . . . . . . . . . . . . . 8

1.3 Dirac-type problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Rainbow structures in (hyper)graph systems . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Contribution and outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Rainbow perfect matchings in hypergraph systems with minimum d-degree 21
2.1 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Rainbow absorption method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Rainbow matching cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Rainbow Hamilton cycles in hypergraph systems with minimum (k − 1)-degree 33
3.1 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Rainbow absorption method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Rainbow path cover lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 The connecting lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Rainbow Hamilton cycles in hypergraph systems with minimum (k − 2)-degree 53
4.1 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Obtaining sequentially Hamilton vicinity with degree condition . . . . . . . . . . . . . . 62
4.3 From sequentially Hamilton vicinity to sequentially Hamilton framework . . . . . . . . . 63
4.4 From sequentially Hamilton framework to sequentially Hamilton cycle . . . . . . . . . . 69

5 Long rainbow cycles in complete bipartite graphs 107
5.1 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Obtaining long rainbow cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Concluding remarks 115
6.1 Rainbow Hamilton cycles in hypergraphs systems . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Exact results and the stability in graph and hypergraph systems . . . . . . . . . . . . . . 115
6.3 Rainbow structures in random graph systems . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 117

5



Publications and manuscripts 127

6



1 - Introduction

The paper written by Euler on the Seven Bridges of Königsberg and pu-
blished in 1736 is regarded as the first paper in the history of graph theory
[16]. As it continued to develop, graph theory has many branches, including
graph coloring, extremal graph theory, algebraic graph theory, topological
graph theory, probabilistic graph theory and so on. Since graphs can be used
to model many types of relations and processes in physical, biological, social
and information systems, graph theory has wide applications in real-world
systems. Meanwhile, it also has applications in other areas of mathematics,
such as group theory and number theory.

In this thesis, we mainly study the rainbow spanning structures in pro-
perly edge-colored graphs and hypergraph systems. For the convenience of
the description of our research topic’s background, we first give some termi-
nology and notation in the first section of this chapter. Then we will describe
background in detail, including motivations, known results and so on.

1.1 . Terminologies and tools

Graph
A graph G is an ordered pair (V (G), E(G)) with a nonempty set V (G) of

vertices and a set E(G) of edges, where E(G) is made up of some unordered
pairs of (not necessarily distinct) vertices. A graph is finite if both its vertex
set and edge set are finite. A graph G is simple if E(G) is a collection of some
distinct 2-subsets of V (G). Note that unless otherwise stated, all graphs consi-
dered in this thesis are finite and simple. The order of a graph G refers to the
cardinality of V (G), while the size refers to the cardinality of E(G). If there is
a path between any two vertices of G, then G is called a connected graph. A
complete graphKr is a simple graph on r vertices inwhich every pair of distinct
vertices is connected by a unique edge.
Adjacent and incident

LetG be a graph and u, v ∈ V (G). We say that u, v are adjacent if the 2-set
{u, v} ∈ E(G). Let e ∈ E(G) with e = {u, v}. Then we say that u, v are two
ends of e and u, v are incident with e, respectively.
Degree

Let G be a graph and u, v ∈ V (G). If u, v are adjacent, then u is called
a neighbor of v and vice versa. For any vertex v ∈ V (G), we use NG(v) todenote the set of all neighbors of v and callNG(v) the neighborhood of v. Thecardinality ofNG(v) is the degree of v, denoted by dG(v), i.e. dG(v) = |NG(v)|.Denote by δ(G) and ∆(G) the minimum degree and maximum degree of G,
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respectively. Denote the average degree∑v∈V (G)
dG(v)

n of G by d(G).
Subgraph

Let G,H be two graphs. We say H is a subgraph of G if V (H) ⊆ V (G)

and E(H) ⊆ E(G). Moreover, if H is a subgraph of G and H contains all the
edges {u, v} ∈ E(G) with u, v ∈ V (H), then H is an induced subgraph of G.
If H is a subgraph of G and V (H) = V (G), then H is a spanning subgraph of
G. We say G is F -free if G does not contain F as a subgraph. Let H1, H2 betwo subgraphs ofG. If V (H1)∩V (H2) = ∅, then we sayH1 andH2 are vertex-disjoint. If E(H1) ∩ E(H2) = ∅, then we say H1 and H2 are edge-disjoint. Let
V ′ ⊆ V (G) and E′ ⊆ E(G). We use G − V ′ to denote the subgraph induced
by V (G)\V ′ and useG\E′ to denote the subgraph ofG containing the same
vertices asGbutwith all the elements ofE′ removed. In particular, ifV ′ = {v},
then we write G − v for simplicity. If E′ = {e}, then G \ {e} will be replaced
with G \ e.
Walk, Path and Cycle

Let G be an n-vertex graph. A walk in G is defined as a sequence of al-
ternating vertices and edges such as v0, e1, v1, e2, . . . , ek, vk, where each ei =
{vi−1, vi}. The length of this walk is k. A walk is considered to be closed if the
starting vertex is the same as the ending vertex, that is v0 = vk. A walk is
considered open otherwise. A path is defined as an open walk with no repea-
ted vertices. A cycle is defined as a closed walk where no other vertices are
repeated apart from the starting/ending vertex. We usually use Pk and Ck todenote a path of length of k − 1 and a cycle of length k, respectively. A path
(cycle) is called a Hamilton path (Hamilton cycle) if it visits each vertex of G
exactly once. A cycle of length of 3 is called a triangle.
Multipartite graph

Let k be a positive integer. A k-partite graph is a graph whose vertex set
can be partitioned into k different independent sets, which are called k parts
of the graph. When k = 2, these are the bipartite graphs. A k-partite graph is
balanced if the k parts have same cardinality. A complete k-partite graph is a
k-partite graph in which there is an edge between every pair of vertices from
different independent sets.
Power of a graph

Let G be a graph and k be an integer. The k-th power of G, denoted by
Gk, is defined as the graph on the same vertex set whose edges join distinct
vertices at distance at most k in G.
Factor

Let G be an n-vertex graph and H be an h-vertex graph. An H-tiling is a
collection of vertex-disjoint copies ofH in G. AnH-factor is anH-tiling which
covers all vertices ofG. Note that n ∈ hN is a necessary condition forG contai-
ning an H-factor. When H is Ck, we call it k-factor of G for convenience. In
particular, a 1-factor of G is a perfect matching. A 2-factor of G is a collection
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of vertex-disjoint cycles covering all vertices of G. A connected 2-factor is a
Hamilton cycle.
Vertex-coloring

Let k be a positive integer. A k-coloring of a graph G is an assignment of
colors to the vertices ofG such that no two adjacent vertices receive the same
color. The chromatic number of G, denoted by χ(G), is the smallest value of k
possible to obtain a k-coloring.
Edge-coloring

An edge-coloring c of a graph G is an assignment of colors to the edges
of G. A k-edge-coloring of G is an edge-coloring using k colors overall, while
a local k-edge-coloring of G is an edge-coloring using at most k colors at each
vertex of G. An edge-coloring of G is proper if no two adjacent edges receive
the same color. An edge-colored graph is a graph with an edge-coloring (not
necessarily proper). Given an edge-colored graph G, we say G is monochro-
matic if all edges of G have the same color, and G is a rainbow graph if all the
edges receive pairwise different colors.

For every vertex v ∈ V (G), the color degree of v, denoted by dcG(v), is thenumber of distinct colors appearing on the incident edges of v. Theminimum
color degree of G, denoted by δc(G), is the minimum dcG(v) over all vertices
v ∈ V (G). We say that color i is presented at vertex v if some edge incident
with v has color i. The color neighborhoodCN(v) is the set of different colors
that are presented at v.
Digraph

A digraph or directed graph D is an ordered pair (V (D), A(D)) consisting
of a nonempty set V (D) of vertices and a setA(D) of arcs, whereA(D) ismade
up of some ordered pairs of (not necessarily distinct) vertices.
Outdegree and indegree

Let D be a digraph and u, v ∈ V (D). If (u, v) ∈ A(D), then we say that v
is an outneighbor of u and u is an inneighbor of v. For any vertex v ∈ V (D),
let N+

D (v) and N−
D (v) be its outneighborhood and inneighborhood, i.e. the set

of outneighbors and the set of inneighbors of v, respectively. Let d+D(v) =

|N+
D (v)| and d−D(v) = |N−

D (v)| and call d+D(v) and d−D(v) outdegree and indegreeof v, respectively. Denote by δ+(D) and δ−(D) the minimum outdegree and
minimum indegree, respectively. Let δ(D) = min{δ+(D), δ−(D)} and call δ(D)

the minimum semi-degree of D. Denote by ∆+(D) and ∆−(D) the maximum
outdegree andmaximum indegree, respectively.
Oriented graph

LetG be an n-vertex graph. If we give every edge ofG a direction, then we
obtain a digraph and we call this digraph an oriented graph of G.
Hypergraphs

A k-uniform hypergraph (k-graph, hereafter) H = (V (H), E(H)) consists
of a vertex set V (H) and an edge set E(H) which is a family of k-element
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subsets of V (H), i.e. E(H) ⊆
(V (H)

k

). For any S ⊆ V (H), the degree of S in
H , denoted by degH(S), is the number of edges containing S. For any integer
ℓ ≥ 0, define theminimum ℓ-degree δℓ(H) to bemin{degH(S) : S ∈

(V (H)
ℓ

)
}.

Subgraph
Let G,H be two k-graphs. We say H is a subgraph of G if V (H) ⊆ V (G)

and E(H) ⊆ E(G). An induced subgraph H[V ′] of a k-graph H is a k-graph
with vertex set V ′ and edge setE′ where each edge is precisely the edge ofH
consisting of k vertices in V ′. We usually denoteH[V ′] byH . IfH is a subgraph
of G and V (H) = V (G), then H is a spanning subgraph of G. Let V ′ ⊂ V (G)

and E′ ⊂ E(G). We useG−V ′ to denote the subgraph induced by V (G) \V ′

and use G \ E′ to denote the subgraph of G containing the same vertices
as G but with all the elements of E′ removed. Let H1, H2 be two subgraphs
of H . If V (H1) ∩ V (H2) = ∅, then we say H1 and H2 are vertex-disjoint. If
E(H1) ∩ E(H2) = ∅, then we sayH1 andH2 are edge-disjoint.
k-partite k-graph

A k-graph H is k-partite if V (H) can be partitioned into k parts V1, . . . , Vksuch that every edge consists of exactly one vertex from each part.
Tight path and tight cycle

A tight path P is a k-graph whose vertices can be ordered in such a way
v1v2 · · · vt that each edge consists of k consecutive vertices and two consecu-tive edges intersect in exactly k−1 vertices.We say thatP connects (v1, . . . , vk−1)and (vt, . . . , vt−k+2). (v1, . . . , vk−1) and (vt, . . . , vt−k+2) are called the ends of
P .

A k-graph is called an ℓ-cycle if its vertices can be ordered cyclically such
that each of its edges consists of k consecutive vertices and every two conse-
cutive edges (in the natural order of the edges) share exactly ℓ vertices. In
k-graphs, a (k − 1)-cycle is often called a tight cycle, a 1-cycle is often called a
loose cycle. We say that a k-graph contains a Hamilton ℓ-cycle if it contains an
ℓ-cycle as a spanning subgraph. Without special instruction, the tight cycle is
referred to as cycle for short.
Matching and fractional matching

Given a k-graphH , amatching inH is a collection of vertex-disjoint edges
ofH . A perfect matching inH is a matching that covers all vertices ofH . a frac-
tional matching is a function f : E(H) → [0, 1], subject to the requirement that∑

e:v∈e f(e) ≤ 1, for every v ∈ V (H). Furthermore, if equality holds for every
v ∈ V (H), then we call the fractional matching perfect. Denote the maximum
size of a fractional matching ofH by ν∗(H) = maxf Σe∈E(H)f(e).
k-graph systems

A k-graph system H = {Hi}i∈[m] is a family of not necessarily distinct k-
graphs on the same n-vertex set V where k ≥ 2. Note that each Hi can be
seen as the collection of edgeswith color i, and in this senseH can be regarded
as an edge-colored multi-k-graph. Moreover, a k-graph H on V is rainbow in
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H if there is an injection φ : E(H) → [m] such that e ∈ E(Hφ(e)) for each
e ∈ E(H). Note thatH can be also called H-rainbow.

For terminology and notation not mentioned here, we will give at the be-
ginning of the respective chapters or refer readers to [41].

The following well-known concentration results, i.e. Chernoff bounds, can
be found in [10, 75]. Denote a binomial random variable with parameters n
and p by Bi(n, p).
Lemma 1.1 (Chernoff Inequality for small deviation [10, 75]) IfX =

∑n
i=1XiwhereX1, . . . , Xn are mutually independent random variables, eachXi has Ber-noulli distribution with expectation pi and α ≤ 3/2, then

P[|X − E[X]| ≥ αE[X]] ≤ 2e−
α2

3
E[X].

In particular, whenX ∼ Bi(n, p) and λ < 3
2np, then

P[|X − np| ≥ λ] ≤ e−Ω(λ2/(np)).

Lemma 1.2 (Chernoff Inequality for large deviation [10, 75]) IfX =
∑n

i=1XiwhereX1, . . . , Xn are mutually independent random variables, each random va-
riableXi has Bernoulli distribution with expectation pi and x ≥ 7E[X], then

P[X ≥ x] ≤ e−x.

Wealso need the Janson’s inequality to provide an exponential upper bound
for the lower tail of a sum of dependent zero-one random variables.
Lemma 1.3 (Theorem 8.7.2 in [10]) Let Γ be a finite set and pi ∈ [0, 1] be a
real for i ∈ Γ. Let Γp be a random subset of Γ such that the elements are chosen
independently with P[i ∈ Γp] = pi for i ∈ Γ. Let M be a family of subsets of Γ.
For every Ai ∈ M , let IAi = 1 if Ai ⊆ Γp and 0 otherwise. Let Bi be the eventthat Ai ⊆ Γp. For Ai, Aj ∈ M , we write i ∼ j if Bi and Bj are not pairwiseindependent, in other words, Ai ∩ Aj ̸= ∅. Define X = ΣAi∈MIAi , λ = E[X],
∆ =

∑
i∼j

P[Bi ∧Bj ], then
P[X ≤ (1− γ)λ] < e−γ2λ/[2+(∆/λ)].

Lemma 1.4 (Corollary 2.2, [62]) Let ([N ]
r

) be the set of r-subsets of {1, . . . , N}
and let h :

(
[N ]
r

)
→ R be given. Suppose that there exists α ≥ 0 such that

|h(A)− h(A′)| ≤ α

for any A,A′ ∈
(
[N ]
r

) with |A ∩A′| = r − 1. Let C ⊆ [N ] be a set of size r chosen
uniformly at random. Then

E[eh(C)] = exp(E[h(C)] + a), (1.1)
5



where a is a real constant such that 0 ≤ a ≤ α2

8 min{r,N − r}. Furthermore, for
any real t > 0,

P(|h(C)− E[h(C)]| ≥ t) ≤ 2 exp

(
− 2t2

min{r,N − r}α2

)
. (1.2)

Lemma 1.5 (McDiarmid’s inequality [119]) SupposeX1, . . . , Xm are indepen-
dent Bernoulli random variables and bi ∈ [0, B] for i ∈ [m]. Suppose that X is
a real-valued random variable determined by X1, . . . , Xm such that altering the
value ofXi changesX by at most bi for i ∈ [m]. For all λ > 0, we have

P(|X − E[X]| > λ) ≤ 2 exp

(
−2λ2

BΣm
i=1bi

)
.

1.2 . Rainbow structures in properly edge-colored graphs

How global parameters of a graph, such as its edge density or chromatic
number, can influence its local substructures? Howmany edges, for instance,
dowe have to give a graph on n vertices to ensure that the graphwill contain a
Kr as a subgraph for some given r, nomatter how these edges are arranged?
Will some sufficiently high average degree or chromatic number ensure that
some structure occurs? Questions of this type are among the most natural
ones in Graph Theory, and there is a host of deep and interesting results. Col-
lectively, these are known as Extremal Graph Theory. Extremal Graph Theory
lies at the intersection of Extremal Combinatorics and graph theory. In recent
years several classical results in Extremal Graph Theory have been improved
in a uniform way and their proofs have been simplified and streamlined.

The basic statement of Extremal Graph Theory is Mantel’s theorem [117],
proved in 1907, which states that any graph on n vertices with no triangle
contains atmost n2/4 edges. This is clearly best possible, as onemay partition
the set of n vertices into two sets of size ⌊n/2⌋ and ⌈n/2⌉ and form the com-
plete bipartite graph between them. This graph has ⌊n2/4⌋ edges and does
not contain a triangle as a subgraph. The natural generalisation of this theo-
rem to cliques of size r is the following, proved by Turán [147], which states
that every n-vertex graph does not contain Kr+1 as a subgraph has at most
(1 − 1

r )
n2

2 edges. In 1946, Erdős and Stone [51] generalized Turán’s theorem
and bounded the number of edges in an H-free graph for a non-complete
graphH .

1.2.1 . Extremal problems in properly edge-colored graphs
There has been much research on extremal problems in edge-colored

graphs. An example is the canonical Ramsey theorem, proved by Erdős and
Rado [48], a special case of which shows that any properly edge-colored Knadmits a rainbow Km, provided n is large relative to m. Ramsey’s theorem
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states that there exists a positive integerR(r, s) forwhich every blue-red edge-
colored complete graph on R(r, s) vertices contains a blueKr or a redKs.

Moreover, the Turán-type problem has a generalization in edge-colored
graphs, called rainbowTurán problem. The systematic study of rainbowTurán
numbers was initiated in [85] by Keevash, Mubayi, Sudakov and Verstraëte. It
canbe seen as a generalization of Turán-type problem in edge-colored graphs.
For a fixed graphH , the rainbow Turán problem refers to determine themaxi-
mum number of edges in a properly edge-colored graph on n vertices which
does not contain a rainbow H . This maximum is denoted by ex∗(n,H) and
we refer to it as the rainbow Turán number of H . Recall that given a graph
H , the maximum number of edges in a graph on n vertices that contains no
copy of H is known as the Turán number of H , and is denoted by ex(n,H).
Clearly, ex∗(n,H) ≥ ex(n,H). They determined ex∗(n,H) asymptotically for
any non-bipartite graph H , by showing that ex∗(n,H) = (1 + o(1))ex(n,H).
For bipartite F with a maximum degree of s in one of the parts, they pro-
ved ex∗(n, F ) = O(n1/s). This matches the upper bound for the (usual) Turán
numbers of such graphs. To quote [85], there are two questions that are the
most important among the several ones raised therein. The first one is to de-
termine ex∗(n, C), where C is the class of all cycles. It is shown that ex∗(n, C) =
Ω(n log n) in [85] and Das, Lee, and Sudakov [39] obtained an upper bound
O(ne(logn)

1/2+o(1)
). There have been some recent improvements upon the up-

per bound [76, 91, 144] and the current best one isO(n log2 n) appeared in [91].
The second question in [85] concerns with ex∗(n,C2k), where C2k is the evencycle of length 2k. In [85], a general lower bound ex∗(n,C2k) = Ω(n1+1/k) is
obtained, whereas thematching upper bounds were only verified for k = 2, 3.
This upper bound was subsequently improved by Das, Lee, and Sudakov [39]
to O(n1+(1+ok(1)) log k/k) and by Janzer [76] to O(n1+1/k). While Janzer’s bound
matches the lower bound given in [85], the implicit constant is exponential in
k. Recently, Kim, Lee, Liu and Tran [91] improved it to a polynomial one.

Some classic problems canbe transferred into extremal problems in edge-
colored graphs. For example, finding directed cycles can be formulated as a
special case of finding properly colored cycles. To see this, consider the fol-
lowing construction which was first introduced by Li [107] and also studied in
[42]. Let D be an oriented graph of a graph G with V (G) = {v1, v2, . . . , vn}.Define an edge-coloring τ of G by coloring the edge vivj with j for all arcs
(vi, vj) in D. The resulting edge-colored graph, denoted by (D, τ), is called
the signature ofD (see Figure 1.1 for an example). Then the following two pro-
perties hold : (i) For every vertex v ∈ V (G), dc(D,τ)(v) = d+D(v) if d−D(v) = 0,
otherwise dc(D,τ)(v) = d+D(v) + 1 ; (ii) A cycle in G is a directed cycle in D if
and only if it is a properly colored cycle in (D, τ). Recall that the well-known
Caccetta-Häggkvist Conjecture [24] says that for all positive integers n, r with
n ≥ r, every digraph D of order n with δ+(D) ≥ ⌈n/r⌉ contains a directed
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cycle of length at most r. Hence, the study of Caccetta-Häggkvist Conjecture
in some sense can be transferred into the study of properly colored cycles in
edge-colored graphs with minimum color degree constraints.

Figure 1.1 – An illustration of the signature (D, τ) of an oriented graphD.
There is another interesting branch, called anti-Ramsey theory [58]. The

anti-Ramsey problem is stated as follows : given a positive integer n and a
graph H , the anti-Ramsey number ar(Kn, H) is defined to be the minimum
number of colors k such that for any edge-coloring of Kn with exactly k co-
lors, there exists a rainbow copy of H . The study of anti-Ramsey theory be-
gan with a paper by Erdős, Simonovits, and Sós [50] in 1975 (note that related
ideas were studied even earlier in [49]). The anti-Ramsey number ar(Kn, H)

is closely related to the Turán number ex(n,H), which is the maximum num-
ber of edges in a graph on n vertices with no subgraph isomorphic toH . The
main result in [50] states that ar(Kn, H) = n2

2

(
1− 1

χ−1

)
(1 + o(1)), where

χ = min{χ(H \ e) : e ∈ E(H)}. Instead of forcing rainbow copies of a given
graphH , one can consider forcing properly edge-colored copies ofH by using
many colors, and study the threshold on the number of colors needed. This
is thoroughly studied by Manoussakis, Spyratos, Tuza and Voigt in [116].

Besides a number of applications in graph theory and algorithms, some
concepts and results in edge-colored graphs have also appeared in commu-
nication network [149], social science [31], biology [44, 45, 123] and so on. For
example, edge-colored graphs can be used to model homogeneous faults in
networks [149], study the order of chromosomes [44, 45] and DNA physical
mapping [123].

1.2.2 . Rainbow cycles in properly edge-colored complete graphs
In 1989, Andersen [13] conjectured that all proper edge-colorings of Knadmit a rainbow path which omits only one vertex.

Conjecture 1.1 (Andersen [13]) All proper edge-colorings of Kn admit a rain-
bow path of length n− 2.
It is best possible by a construction of Maamoun and Meyniel [115].
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There aremany variations of Andersen’s Conjecture. The following conjec-
ture was proposed by Hahn [66]. Every edge-colored Kn with at most n/2
edges of each color contains a rainbow Hamilton path. In light of the afore-
mentioned construction of Maamoun and Meyniel [115], Hahn and Thomas-
sen [67] suggested the following slightly weaker form of Hahn’s Conjecture in
1986 : every edge-coloredKn with less than n/2 edges of each color contains arainbowHamilton path. However, even thisweakening ofHahn’s Conjecture is
false. Pokrovskiy and Sudakov [127] proved the existence of such edge-colored
Kn in which the longest rainbow path has length at most n− lnn/42.

Another direction is to find long rainbow paths or cycles in properly edge-
colored complete graphs. In recent years, this problem has been extensively
studied and a series of progresses have been made. We can greedily obtain
that a rainbow path of length n/2− 1 in every properly edge-coloredKn.Akbari, Etesami, Mahini and Mahmoody [6] proved that every properly
edge-colored Kn has a rainbow cycle of length at least n/2 − 1. Gyárfás and
Mhalla [64] proved that if the set of edges with every used color forms a per-
fect matching in Kn, then there exists a rainbow path of length (2n + 1)/3.
Gyárfás, Ruszinkó, Sárközy and Schelp [65] showed that every properly edge-
colored Kn contains a rainbow cycle of length (4/7 − o(1))n. Gebauer and
Mousset [59] and Chen and Li [26], independently showed that every pro-
perly edge-coloredKn contains a rainbow cycle of length (3/4− o(1))n. Alon,
Pokrovskiy and Sudakov [9] proved that every properly edge-colored of Kncontains a rainbow cycle with length n − O(n3/4), and the error bound has
since been improved to O(

√
n · log n) by Balogh and Molla [14].

Further support for Conjecture 5.1 and its variants was provided by Mont-
gomery, Pokrovskiy, and Sudakov [121] as well as Kim, Kühn, Kupavskii, and
Osthus [90], who considered the decompositions of rainbow spanning struc-
tures in properly edge-coloredKn.

1.3 . Dirac-type problems

Problems that relate the minimum degree (in general, minimum ℓ-degree
in k-graphs where ℓ ∈ [k − 1]) to the structure of the (hyper)graphs are often
referred to as Dirac-type problems. we concentrate on three such problems :
Hamilton cycles, perfect matchings and tilings.
Hamilton cycles

A classical theorem of Dirac [43] asserts that for any n ≥ 3, every n-vertex
graph with minimum degree at least n/2 contains a Hamilton cycle. Note that
the lower boundn/2 is best possible, as canbe seenby the following example :
a complete bipartite graph with parts of sizes k and k − 1. The graph has
2k − 1 vertices and minimum degree k − 1, but there is no Hamilton cycle in
this graph. The problem of determining the best possible minimum (k − 1)-
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degree condition forcing Hamilton cycles in k-graphs, was initially researched
by Katona and Kierstead [79]. They proved that every n-vertex k-graphH with
δk−1(H) > (1− 1

2k )n+4−k− 5
2k admits a Hamilton cycle. They also conjectured

that the bound on the minimum (k − 1)-degree can be reduced to roughly
n/2, which was confirmed asymptotically by Rödl, Ruciński and Szemerédi in
[135, 137]. The same authors gave the exact version for k = 3 in [139].
Theorem 1.1 ([137, 139]) Let k ≥ 3, γ > 0 andH be an n-vertex k-graph, where
n is sufficiently large. If δk−1(H) ≥ (1/2+ γ)n, thenH contains a Hamilton cycle.
Furthermore, when k = 3 it is enough to have δ2(H) ≥ ⌊n/2⌋.

More generally, We define the threshold hℓd(k, n) as the smallest integerm
such that every k-graphH on n vertices with δd(H) ≥ m contains a Hamilton
ℓ-cycle. As before, we may omit the subscript when d = k − 1. Let hℓd(k) =

lim supn→∞ hℓd(k, n)/
(
n−d
k−d

). About this parameter, there are many results as
follows [70, 82, 97].
Theorem 1.2 ([70, 82, 97]) For any k ≥ ℓ ≥ 1, we have

hℓ(k) =


1
2 , (k − ℓ) | k,

1
⌈ k
k−ℓ

(k−ℓ)⌉ , (k − ℓ) ∤ k.

Theorem 1.3 ([15, 23]) For integer k ≥ 3 and any 1 ≤ ℓ < k − 2, we have
hℓk−2(k) = 1− (1− 1

2(k − ℓ)
)2.

More generally, Kühn andOsthus [100] and Zhao [152] noted that it ismuch
more difficult to determine the minimum d-degree condition for tight Hamil-
ton cycle for d ∈ [k− 2]. Based on the results of Cooley and Mycroft [34], Gle-
bov, Person andWeps [60], Rödl and Ruciński [132] and Rödl, Ruciński, Schacht
and Szemerédi [134], Reiher, Rödl, Ruciński, Schacht and Szemerédi [130] gave
that hk−1

k−2(k) = 5/9 when k = 3. Polcyn, Reiher, Rödl, Ruciński, Schacht, and
Schülke [128] gave that hk−1

k−2(k) = 5/9when k = 4. The best bound for general
k was given by Lang and Sanhueza-Matamala [105], Polcyn, Reiher, Rödl and
Schülke [129] independently. They proved the following theorem.
Theorem 1.4 ([105, 129]) For any integer k ≥ 3, hk−1

k−2(k) = 5/9.
Perfect matchings

Many open problems in combinatorics can be formulated as a problem of
finding perfect matchings in hypergraphs, e.g., Ryser conjectured that every
Latin square of odd order has a rainbow, and the existence of combinatorial
designs (recently solved by Keevash [80, 81]). A well-known result of Tutte [148]
characterized all the graphs with perfect matchings and there are efficient
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algorithms (e.g., Edmond’s algorithm [46]) that determine if a graph has a
perfect matching. However, deciding if a 3-partite 3-graph contains a perfect
matching is among the first 21 NP-complete problems given by Karp [78]. The-
refore it is natural to look for sufficient conditions that guarantee a perfect
matching.

Bollobás, Daykin and Erdős [17] first related the minimum (vertex) degree
to the existence of a large (but far from perfect) matching in k-graphs. Day-
kin andHäggkvist [40] extended this result by showing that every k-graphwith
δ1(H) ≥ (1−1/k)

(
n−1
k−1

) contains a perfect matching. Given integers d < k ≤ n

such that k divides n, define the minimum d-degree thresholdmd(k, n) as thesmallest integer m such that every k-graph H on n vertices with δd(H) ≥ m

contains a prefectmatching. A simple greedy argument shows thatm1(2, n) =

n/2 for all n ∈ 2N. Given k ≥ 3, a result of Rödl, Ruciński and Szemerédi [137]
on Hamilton cycles implies that mk−1(k, n) ≤ n/2 + o(n). Kühn and Osthus
[99] sharpened this bound to mk−1(k, n) ≤ n/2 + 3k2

√
n log n by reducing

the problem to the one for k-partite k-graphs. Rödl, Ruciński and Szemerédi
[136] improved it further to mk−1(k, n) ≤ n/2 + O(n log n) by using the ab-
sorbing method. Rödl, Ruciński and Szemerédi [133] found a simple proof of
mk−1(k, n) ≤ n/2+k/4. Finally Rödl, Ruciński and Szemerédi [138] determined
mk−1(k, n) exactly for all k ≥ 3 and sufficiently large n (again by the absorbing
method). In order to state this and later results, we need the following extre-
mal configurations that are usually referred to as divisibility barrier.
Consruction Define Hext(n, k) to be the family of all k-graphs H = (V,E), in
which there is a partition of V into two parts A,B and i ∈ {0, 1} such that
|A| ≠ i|V |/k mod 2 and |e ∩A| = i mod 2 for all edges e ∈ E.

It is easy to see that no hypergraph H ∈ Hext(n, k) contains a perfect
matching. Indeed, suppose H contains a perfect matching M , then |A| =∑

e∈M |e∩A| = i|V |/k mod 2, contradicting the definition ofH . Define δ(n, k, d)
to be the maximum of the minimum d-degrees among all the hypergraphs in
Hext(n, k) and note thatmd(k, n) > δ(n, k, d). It is easy to see that

δ(n, k, k − 1) =


n
2 − k + 2, if k/2 is even and n/k is odd,
n
2 − k + 3

2 , if k is odd and (n− 1)/2 is odd,
n
2 − k + 1

2 , if k is odd and (n− 1)/2 is even,
n
2 − k + 1, otherwise.

In general, δ(n, k, d) = (1/2+o(1))
(
n−d
k−d

) for any fixed k > d but the general
formula of δ(n, k, d) is unknown-this is related to the open problem of finding
the minima of binary Krawtchouk polynomials. Nevertheless, Treglown and
Zhao [145] determinedmd(k, n) in terms of δ(n, k, d) for all d ≥ k/2.
Theorem 1.5 ([145]) For k ≥ 3 and d ≥ k/2, md(k, n) = δ(n, k, d) + 1 for all
sufficiently large n.
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Another class of extremal constructions are known as space barrier.
Consruction Given s, k, n ∈ N such that s ≤ ⌈n/k⌉ (k may not divide n),
let H0

s (n, k) be the k-graph on n vertices whose vertex set is partitioned intotwo parts A and B such that |A| = s − 1, and whose edge set consists of all
those edges with at least one vertex in A. When k divides n, let H0(n, k) :=

H0
n/k(n, k).Hàn, Person and Schacht [69] proved that m1(3, n) = (5/9 + o(1))n ≈

δ1(H
0(n, 3)) for sufficiently large n. Khan [88] and independently Kühn, Os-

thus and Treglown [101] obtained that m1(3, n) = δ1(H
0(n, 3)) + 1 for suf-

ficiently large n. Khan [89] also proved that m1(4, n) = δ1(H
0(n, 4)) + 1 for

sufficiently large n. Alon, Frankl, Huang, Rödl, Ruciński and Sudakov [8] deter-
minedmd(k, n) asymptotically for all d ≥ k− 4, including the new cases when
(k, d) = (5, 1), (5, 2), (6, 2) and (7, 3). Very recently Treglown and Zhao [146]
determinedm2(5, n) andm3(7, n) exactly for sufficiently large n. All these re-
sults point to the following conjecture.
Conjecture 1.2 ([146]) Let k, d ∈ N such that d ≤ k − 1. Then for sufficiently
large n ∈ kN,

md(k, n) = max{δ(n, k, d),
(
n− d

k − d

)
−
(
(1− 1/k)n− d+ 1

k − d

)
+ 1}.

When k ≥ 3 and 1 ≤ d < k/2, Hàn, Person and Schacht [69] gave a general
bound :md(k, n) ≤ ((k− d)/k+ o(1))

(
n−d
k−d

). This was improved by Markström
and Ruciński [118] tomd(k, n) ≤ ((k−d)/k−1/kk−d)+o(1))

(
n−d
k−d

) and by Kühn,
Osthus and Townsend [104] to

md(k, n) ≤ (
k − d

k
− k − d− 1

kk−d
+ o(1))

(
n− d

k − d

)
.

Tilings
Tiling problems have been studied extensively for graphs. Finding suffi-

cient conditions for the existence of an F -factor is one of the central areas of
research in Extremal Graph Theory. The celebrated Hajnal–Szemerédi theo-
rem reads as follows.
Theorem 1.6 (Hajnal–Szemerédi [68], Corrádi–Hajnal [35] for t = 3) Everyn-
vertex graph G with n ∈ tN and δ(G) ≥ (1− 1

t )n has aKt-factor. Moreover, theminimum degree condition is sharp.
The minimum degree threshold forcing an F -factor for arbitrary F was ob-
tained by Kühn and Osthus [102, 103], improving earlier results of Alon and
Yuster [11] and Komlós, Sárközy and Szemerédi [95].

It is not surprising that tiling problems become harder in hypergraphs.
Other than the matching problems mentioned above, only a few tiling thre-
sholds are known. Given a k-graph F of order f and an integer n divisible
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by f , we define the F -tiling threshold δd(n, F ) as the smallest integer t such
that every n-vertex k-graphH with δd(H) ≥ t contains an F -factor. We simply
write δ(n, F ) for δk−1(n, F ). LetKk

t be the complete k-graph on t vertices. The
first step towards a hypergraph is determining δ(n,K3

4 ). Czygrinow and Nagle
[38] showed that δ(n,K3

4 ) ≥ 3n/5+o(n). Keevash and Sudakov observed that
δ(n,K3

4 ) ≥ 5n/8 + o(n). Pikhurko [124] proved 3n/4− 2 ≤ δ(n,K3
4 ) ≤ 0.861n.

Lo and Markström [108] showed that δ(n,K3
4 ) ≥ 3n/4 + o(n) by the absor-

bing method. Independently and simultaneously Keevash and Mycroft [86]
determined δ(n,K3

4 ) exactly.
Theorem 1.7 ([86]) For all sufficiently large n ∈ 4N,

δ(n,K3
4 ) =

{
3n
4 − 2, if n ∈ 8N,
3n
4 − 1, otherwise.

When t = k + 1, Lo and Markström [108] showed that δ(n,Kk
k+1) ≤ (1 −

1/2k)n for k ≥ 3. It is plausible that one can prove δ(n,Kk
k+1) ≤

k
k+1n+ o(n)

by applying the approach of [86]. Unfortunately we do not know a matching
lower bound (it was shown in [108] that δ(n,Kk

k+1) ≥ 2n/3 for even k). For
arbitrary t, it was shown in [108] that

(1− 193 log(t− 1)

(t− 1)2
)n ≤ δ(n,K3

t ) ≤ (1− 2

t2 − 3t+ 4
+ o(1))n,

and δ(n,Kk
t ) ≤ (1−

(
t−1
k−1

)−1
+ o(1))n for k ≥ 6 and t ≥ (3 +

√
5)k/2.

Given positive integersm1 ≤ · · · ≤ mk, letKk
m1,...,mk

denote the complete
k-partite k-graph with parts of sizes m1, . . . ,mk. In particular, let Kk

k (m) =

Kk
m,...,m. It is clear that δd(n,Kk

k (m)) ≥ md(k, n), but it is possible to have
δd(n,K

k
m1,...,mk

) < md(k, n) for certain m1, . . . ,mk. Other than the matching
problems, perhaps the earliest result on hypergraph tiling was onK3

1,1,2-tiling(note that K3
1,1,2 is the unique 3-graph with four vertices and 2 triples). As a

corollary of their main result on loose Hamilton cycles, Kühn and Osthus [98]
proved that δ(n,K3

1,1,2) = n/4+o(n). Recently Czygrinow, DeBiasio and Nagle
[37] determined this threshold exactly for sufficiently large n.

Let us consider hypergraph tiling under vertex degree conditions. Very
little is known in addition to [114] used the Local Lemma to derive a general
upper bound for δ1(n, F ) for arbitrary k-graph F as follows.
Theorem 1.8 ([114]) Let F be a t-vertex m-edge k-graph in which each edge in-
tersects at most d other edges. Then δ1(n, F ) ≤ (1 − 1

e(d+1+m
t
k2)

)
(
n−1
k−1

), where
e = 2.718.
Given a k-graph F , let τd(n, F ) denote the minimum integer t such that every
k-graph H of order n with δd(H) ≥ t has the property that every vertex of H
is covered in some copy of F . When F is a graph, it is not hard to see that
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τ1(n, F ) = (1 − 1/(χ(F ) − 1) + o(1))n (see the concluding remarks of [71]).
Given a k-graph F , trivially exd(n, F ) < τd(n, F ) ≤ δd(n, F ), where exd(n, F ) isthe d-degree Turán number of F , defined as the smallest integer t such that
every k-graphH of order n with δd(H) ≥ t+ 1 contains a copy of F .

1.4 . Rainbow structures in (hyper)graph systems

Graph Systems
The most famous transversals are the ones of Latin squares considered

by Euler. In 1782, Euler [52] considered a Latin square of order n, which is an
n × n array filled with symbols 1, . . . , n, where every symbol appears exactly
once in each row and column. A transversal of a Latin square of order n is a
collection of cells such that every two cells share no row, column or symbol.

Figure 1.2 – Latin square.
Considering the rows and columns of the Latin square as a bipartite graph

Kn,n, where each symbol in the Latin square represents a color and each cell
represents an edge in the graph, the Latin square naturally corresponds to
a properly edge-coloring ofKn,n. Viewing this edge-colored graph as a set ofgraphs {Gi}i∈[n], where eachGi is a graph formed by edges with color i, then
a rainbow matching corresponds to a transversal.

Figure 1.3 – A transversal of latin sqaure.
The following conjecture has become known as the Ryser-Brualdi-Stein

conjecture [141, 22, 142] and is the most significant problem on transversals in
Latin squares.
Conjecture 1.3 (Ryser-Brualdi-Stein Conjecture [141, 22, 142]) Every Latin s-
quare of order n has a transversal with n− 1 cells, and a transversal with n cells
if n is odd.
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Towards the above conjecture, Koksma [93] proved the existence of a
transversal of size 2n/3 before Brouwer, De Vries andWieringa [21] andWool-
bright [150] independently showed that every Latin square of order n has a
transversal with at least n −

√
n cells. Hatami and Shor [73] showed that a

transversal with n − 11 log2 n cells exists in any Latin square of order n. This
bound stood until the breakthrough work of Keevash, Pokrovskiy, Sudakov
and Yepremyan [87] in 2022, which showed that every Latin square of order n
has a transversal with n−O(log n/ log log n) cells. Recently, Montgomery [131]
resolved the above conjecture.

More generally, Aharoni and Berger [1] made the following generalization
of the above conjecture.
Conjecture 1.4 (Aharoni-Berger Conjecture [1]) LetG be a properly edge- co-
lored bipartite multigraph with n colors having at least n+ 1 edges of each color.
Then G has a rainbow matching of size n.

This conjecture attracted a lot of attention since it was made. Aharoni,
Charbit and Howard [2] proved that matchings of size ⌊7n/4⌋ are sufficient to
guarantee a rainbow matching of size n. Kotlar and Ziv [96] improved this to
⌊5n/3⌋. Clemens and Ehrenmüller [32] showed that 3n/2 + o(n) is sufficient.
The best currently known bound is by Aharoni, Kotlar and Ziv [5] who showed
that having 3n/2+1 edges of each color in an n-edge-colored bipartite multi-
graph guarantees a rainbowmatching of size n. Pokrovskiy [126] approximate
version of Conjecture 1.4.

This motivates the study about the existence of rainbow structures in a
collection of graphs. Indeed, various interesting results have been proved.

Aharoni, DeVos, Maza, Montejano and Šámal [3] proved that there exists a
rainbow triangle in {G1, G2, G3} if e(Gi) >

26−2
√
7

81 n2 for each i ∈ [3], which is a
Turán type problem over graph systems. Surprisingly, this bound is best pos-
sible as 26−2

√
7

81 is larger than 1/4which we obtained fromMantel’s theorem. It
is an interesting open problem to generalize this further by determining the
tight conditions on e(Gi) for the existence of a {G1, . . . , G(r2)

}-rainbow iso-
morphic to Kr with r > 3. In the same paper, they proposed the following
conjecture.
Conjecture 1.5 ([3]) For |V | = n ≥ 3 and graph system G = {Gi}i∈[n] on V , if
δ(Gi) ≥ n/2 for each i ∈ [n], then there exists a G-rainbow Hamilton cycle.

This was recently verified asymptotically by Cheng, Wang and Zhao [30],
and completely by Joos and Kim [77]. In [20], Bradshaw, Halasz and Stacho
strengthened the Joos-Kim result by showing that given an n-vertex graph
system G = {Gi}i∈[n] with δ(Gi) ≥ n/2 for i ∈ [n], then G has exponentially
many rainbow Hamilton cycles. Similarly, Bradshaw [19] gave a degree condi-
tion for rainbow Hamilton cycle in bipartite graph systems, which generalized
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the result of Moon and Moser [122]. Moreover, Gupta, Hamann, Müyesser,
Parczyk and Sgueglia [63] recently proved that any collection of an n-vertex
graph system with at least rn graphs, each with minimum degree at least
(r/(r + 1) + o(1))n, contains a rainbow r-th power of a Hamilton cycle. This
can be viewed as a rainbow version of the Pósa-Seymour conjecture, which
was proved by Komlós, Sárközy, and Szemerédi [94]. Cheng and Staden [29]
developed a version of rainbow blow-up lemma (which can be used when the
number of colors is ε-fraction more than the number of edges in H) and ob-
tained a result similar to [63] when the number of colors is ε-fraction more
than the number of edges in the power of Hamilton cycle.

Generally, for each graph F , let δF be the smallest real number δ ≥ 0 such
that, for each ε > 0 there exists some n0 such that, for every n ≥ n0 with |F |
dividing n, if an n-vertex graph G has minimum degree at least (δ + ε)n, then
G contains an F -factor. Cheng, Han, Wang and Wang [27] proved that the
minimum degree bound δKr is asymptotically sufficient for the existence of
rainbowKr-factor in graph systems.Montgomery,Müyesser andPehova [120]
generalized the above conclusion for some F satisfying δF ≥ 1/2 or F has a
bridge.

All those graphs above, powers of Hamilton cycles, F -factors and trees,
have somewhat bounded maximum degree and have low connectivity. This
low connectivity can be captured by the following notion of bandwidth. A
graph H has a bandwidth at most b if there exists an ordering x1, . . . , xn of
V (H) such that all edges xixj ∈ E(H) satisfies |i − j| ≤ b. Indeed, the cele-
brated bandwidth theorem proved by Böttcher, Schacht and Taraz [18] deter-
mines the asymptotically sharp minimum degree condition onG to find such
a graphH with bounded maximum degree and low bandwidth as a spanning
subgraph. More precisely, the bandwidth theorem states that if an n-vertex k-
chromatic graphH has boundedmaximum degree and sublinear bandwidth,
then every n-vertex graph G with δ(G) ≥ (1 − 1/k + o(1))n contains a copy
ofH . Recently, Chakraborti, Im, Kim and Liu [25] made important progress in
this direction by proving a ‘rainbow bandwidth theorem’.
Theorem 1.9 ([25]) For every ε > 0 and positive integers ∆, k, there exist α > 0

and h0 > 0 satisfying the following for every h ≥ h0. Let H be an n-vertex graph
with h edges and bandwidth at most αn such that ∆(H) ≤ ∆ and χ(H) ≤ k. If
G = {Gi}i∈[h] is a family of h graphs on the same vertex set of size n such that
δ(Gi) ≥ (1− 1/k + ε)n for all i ∈ [h], then there exists a G-rainbowH .
Hypergraph systems

It is also natural to investigate what can be guaranteedwith a lower bound
on the minimum degree in hypergraphs. It turns out that even in this more
restrictive setting, there can be a discrepancy between the uncolored and the
rainbow versions of the problem.
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Definition 1.1 (Uncolored minimum degree threshold) Let F be an infinite
family of k-graphs. By δF ,d we denote, if it exists, the smallest real number δ suchthat for all α > 0 and for all but finitely many F ∈ F the following holds. Let
n = |V (F )| and H be any n-vertex k-graph with δd(H) ≥ (δ + α)

(
n−d
k−d

). Then H
contains a copy of F .
For example, if F is the family of graphs consisting of a cycle on n vertices
for each n ∈ N, then we have δF ,1 = 1/2 . Indeed, this follows from Dirac’s
theorem which states that any graph with minimum degree at least n/2 has
a Hamilton cycle.
Definition 1.2 (Rainbow minimum degree threshold) LetF be an infinite fa-
mily of k-graphs. By δrbF ,d we denote, if it exists, the smallest real number δ suchthat for all α > 0 and for all but finitely many F ∈ F the following holds. Let n =

|V (F )| andH = {Hi}i∈[|E(F )|] be anyn-vertex k-graph and δd(Hi) ≥ (δ+α)
(
n−d
k−d

)
for each i ∈ [|E(F )|]. Then there exists an H-rainbow F .

Note that δrbF ,d ≥ δF ,d. Indeed, if H contains no copy of F , the system
H consisting of |E(F )| copies of H does not contain a rainbow copy of F
either. However, Montgomery, Müyesser, and Pehova [120] made the follo-
wing observation which shows that δrbF ,d can be much larger than δF ,d. Set
F = {k× (K2,3 ∪C4) : k ∈ N} where k×G denotes the graph obtained by ta-
king k vertex-disjoint copies ofG. It follows from a result of Kühn and Osthus
[103] that δF ,1 = 4/9. Consider the graph system G = {G1, . . . , Gm} on V ob-
tained in the following way. Partition V into two almost equal vertex subsets,
say A and B, and suppose that G1 = G2 = · · · = Gm−1 are all disjoint unionsof a clique on A and a clique on B. Suppose that Gm is a complete bipartite
graph between A and B. Observe that each Gi in this resulting graph systemhas minimum degree ⌊|V |/2⌋. Further observe that if G contains a rainbow
copy of some F ∈ F , the edge of K2,3 or C4 that gets copied to an edge of
Gm would be a bridge (an edge whose removal disconnects the graph) of F .
However, neitherK2,3 nor C4 contains a bridge. Hence, δrbF ,d ≥ 1/2.

On the other hand, there are many natural instances where δrbF ,d = δF ,d.When this equality holds, we say that the corresponding family F is d-color-
blind. For example, Joos and Kim [77] showed that the family F of Hamilton
cycles is 1-color-blind. There are many more families of color-blind hyper-
graphs. In particular, matchings [27, 113, 110, 109], Hamilton ℓ-cycles [28, 143],
factors [27, 120] and spanning trees [120] have been extensively studied.

Recently, Gupta, Hamann, Müyesser, Parczyk and Sgueglia [63] gave a uni-
fied approach to this problem and proved the following result.
Theorem 1.10 ([63]) The following families of hypergraphs are all d-color-blind.

(A) The family of the r-th powers of Hamilton cycles for fixed r ≥ 2 (and
d = 1).
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(B) The family of k-uniform Hamilton ℓ-cycles for the following ranges of k, ℓ,
and d.
(B1) 1 < ℓ < k/2 and d = k − 2 ;
(B2) 1 ≤ ℓ < k/2 or ℓ = k − 1 and d = k − 1 ;
(B3) ℓ = k/2 and k/2 < d ≤ k − 1 with k even.

Other recent results includeworks onmatchings. The largest size of amat-
ching in a hypergraph H is denoted by ν(H). A classical problem in Extremal
Graph Theory is to determinemax e(H) with ν(H) fixed. Erdős [47] made the
following conjecture : For positive integers k, n, t with n ≥ kt, every k-graph
H on n vertices with ν(H) < t satisfies e(H) ≤ max{

(
n
k

)
−
(
n−t+1

k

)
,
(
kt−1
k

)
}.

This bound is tight for the complete k-graph on kt− 1 vertices and for the k-
graph on n vertices in which every edge intersects a fixed set of t− 1 vertices.
There have been many results about this conjecture, but we mainly focus on
the rainbow version. Aharoni and Howard [4] made the following conjecture,
also see Huang, Loh, and Sudakov [74].
Conjecture 1.6 ([4, 74]) Let H = {Hi}i∈[t] be an n-vertex k-graph system. If
e(Hi) > max{

(
n
k

)
−
(
n−t+1

k

)
,
(
kt−1
k

)
} for each i ∈ [t], then there exists an H-

rainbow matching.
Huang, Loh, and Sudakov [74] proved that Conjecture 1.6 holds for n > 3k2t.
Recently, Frankl and Kupavskii [56] proved that Conjecture 1.6 holds when
n ≥ 12kt log(e2t), providing an almost linear bound. Lu, Wang and Yu [110]
improved it to n > 2kt and t is sufficiently large. More recently, Keevash, Lif-
shitz, Long andMinzer [83] independently proved amore general versionwith
n = Ω(kt) using sharp threshold techniques developed in [84].

There are also Dirac-type conditions in hypergraph systems for rainbow
matchings. For 3-graph system H = {Hi}i∈[n/3], Lu, Yu, and Yuan [113] provedthe following result.
Theorem 1.11 ([113]) For sufficiently large n with n ≡ 0(mod 3) and a 3-graph
system H = {Hi}i∈[n/3], if δ1(Hi) >

(
n−1
2

)
−
(
2n/3
2

) for i ∈ [n/3], then there exists
an H-rainbow perfect matching.
This implies the result of Kühn, Osthus, and Treglown [101] and Khan [88] on
perfect matchings in 3-graphs. In [109], Lu, Wang and Yu proved the following
result in 4-graph systems,
Theorem 1.12 ([109] ) Let n be a sufficiently large integer with n ≡ 0(mod4). Let
H = {Hi}i∈[n/4] be an n-vertex k-graph system such that for each i ∈ [n/4], if
δ1(Hi) >

(
n−1
3

)
−
(
3n/4
3

), then there exists an H-rainbow perfect matching.
This gives Khan’s result [89] on perfectmatchings in 4-graphs as a special case.

Besides, Lu, Wang and Yu [111] also give the co-degree threshold for rain-
bow perfect matchings in k-graph systems.
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Theorem 1.13 ([111]) Given integers k, d such that k ≥ 3 and k/2 ≤ d ≤ k − 1

and n ∈ kN, there exists n0 ∈ N such that the following holds. Suppose that
H = {Hi}i∈[n/k] is an n-vertex k-graph system with n ≥ n0 satisfying δk−1(Hi) >

δ(n, k, k−1) for each i ∈ [n/k]. Then there exists an H-rainbow perfect matching.
Recently, You [151] determined the minimum d-degree condition that gua-
rantees the existence of a rainbow perfect matching in k-graph systems for
d ∈ [k/2, k − 1].

1.5 . Contribution and outline of the thesis

In this section, we summarize main works and the organization of this
dissertation.

(1) Let ck,d be theminimum d-degree threshold for perfect fractional mat-
chings in k-graphs, namely, for every ε > 0 and sufficiently large n ∈ N,
every n-vertex k-graphH with δd(H) ≥ (ck,d+ε)

(
n−d
k−d

) contains a perfect
fractional matching. It is known that [8] every n-vertex k-graph H with
δd(H) ≥ (max{ck,d, 1/2} + o(1))

(
n−d
k−d

) has a perfect matching, and this
condition is asymptotically best possible. In Chapter 2, we proved that
a minimum d-degree condition forcing a perfect matching in a k-graph
also forces rainbow perfectmatchings in k-graph systems for d ∈ [k−1].
The degree assumptions in the result is asymptotically best possible (al-
though the minimum d-degree condition forcing a perfect matching in
a k-graph is in general unknown). We also give a general framework to
prove the existence of rainbow factors in hypergraph systems. This is a
joint work with Y. Cheng, J. Han and G. Wang.

(2) A classical theorem of Dirac [43] asserts that for any n ≥ 3, every n-
vertex graph with minimum degree at least n/2 contains a Hamilton
cycle. The problem of determining the best possible minimum (k − 1)-
degree condition forcing Hamilton cycles in k-graphs, was initially re-
searched by Katona and Kierstead [79]. They proved that every n-vertex
k-graph H with δk−1(H) > (1 − 1

2k )n + 4 − k − 5
2k admits a Hamilton

cycle. They also conjectured that the bound on the minimum (k − 1)-
degree can be reduced to roughly n/2, which was confirmed asympto-
tically by Rödl, Ruciński and Szemerédi in [135, 137]. The same authors
gave the exact version for k = 3 in [139]. In Chapter 3, we show that
given k ≥ 3, γ > 0, sufficiently large n and an n-vertex k-graph system
H = {Hi}i∈[n], if δk−1(Hi) ≥ (1/2+γ)n for each i ∈ [n], then there exists
an H-rainbow Hamilton cycle, which is an extension of [137]. This is a
joint work with Y. Cheng, J. Han, G. Wang and D. Yang.

(3) Gupta, Hamann, Müyesser, Parczyk, and Sgueglia [63] mentioned the
following problem as “there is a well-known (uncolored) Dirac-type re-
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sult whose rainbow version is missing” and “it would be an interesting
challenge to obtain this result” : Given a 3-graph system H = {Hi}i∈[n]with minimum vertex degree condition of eachHi, does H admit a rain-
bow Hamilton cycle? In Chapter 4, we develop a sequentially Hamilton
framework, which is of independent interest, settling the above pro-
blem, and draw the general conclusion for any k ≥ 3. We show that
given γ > 0, k ≥ 3, sufficiently large n and an n-vertex k-graph system
H = {Hi}i∈[n] , if δk−2(Hi) ≥ (5/9+γ)

(
n
2

) for i ∈ [n], then there exists an
H-rainbow Hamilton cycle. This result implies the conclusion in a single
graph, whichwas proved by Lang and Sanhueza-Matamala [105], Polcyn,
Reiher, Rödl and Schülke [129] independently. This is a joint work with Y.
Tang, G. Wang and G. Yan.

(4) In 1989, Andersen [13] conjectured that all proper edge-colorings of
Kn admit a rainbow path which omits only one vertex. It is best pos-
sible by a construction of Maamoun and Meyniel [115]. In Chapter 5, we
proved that every properly edge-coloredKn,n contains a rainbow cycle
of length at least n− 28n3/4 for sufficiently large n. The bound above is
asymptotically optimal as each color class could be a perfect matching
of Kn,n and only n colors occur in E(Kn,n). This is a joint work with H.
Li and G. Wang.
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2 - Rainbow perfect matchings in hypergraph
systems with minimum d-degree

It is well-known that perfect matchings are closely related to its fractional
counterpart. Given a k-graphH , a fractionalmatching is a function f : E(H) →
[0, 1], subject to the requirement that∑e:v∈e f(e) ≤ 1, for every v ∈ V (H).
Furthermore, if equality holds for every v ∈ V (H), then we call the fractional
matching perfect. Denote the maximum size of a fractional matching of H by
ν∗(H) = maxf Σe∈E(H)f(e).Let ck,d be the minimum d-degree threshold for perfect fractional mat-
chings in k-graphs, namely, for every ε > 0 and sufficiently large n ∈ N, every
n-vertex k-graph H with δd(H) ≥ (ck,d + ε)

(
n−d
k−d

) contains a perfect fractio-
nal matching. It is known that [8] every n-vertex k-graph H with δd(H) ≥
(max{ck,d, 1/2}+o(1))

(
n−d
k−d

)has aperfectmatching, and this condition is asymp-
totically best possible. However, determining the parameter ck,d is a major
open problem in this field and we refer to [56] for related results and discus-
sions.
Theorem 2.1 For every ε > 0 and integer d ∈ [k − 1], there exists n0 ∈ N, such
that the following holds for all integers n ≥ n0 and n ∈ kN. Every n-vertex k-
graph system G = {Gi}i∈[n/k] with δd(Gi) ≥ (max{ck,d, 1/2}+ ε)

(
n−d
k−d

) for each
i contains a rainbow perfect matching.

2.1 . Notation and preliminaries

Given a k-graph system G = {Gi}i∈[n/k] on vertex V and a subset V ′ ⊆ V .
Let G[V ′] = {Gi[V

′]}i∈[n/k] be the induced k-graph system on V ′. If |V ′| ∈ kN
and there exists a rainbow perfect F -tiling inside G[V ′]whose color set isC ⊆
[n/k], then we say that V ′ spans a rainbow F -tiling in G with color set C. Next,
we give some definition needed in this chapter.
Definition 2.1 (Rainbow F -absorber) Let G = {Gi}i∈[n/k] be a k-graph sys-
tem on V . For every k-setB in V and every colorC in [n/k],A = A1∪A2 is calleda rainbow edge-absorber for (B,C) if

• V (A) = B∪̇L,
• A1 is a rainbow perfect matching L with color set C1 and A2 is a rainbowperfect matching on B ∪ L with color set C1 ∪ C.

Definition 2.2 We call a hypergraphH a (1, b)-graph, if V (H) can be partitioned
intoA∪B andE(H) is a family of (1+ b)-sets each of which contains exactly one
vertex in A and b vertices in B.
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For a (1, b)-graph H with partition A∪̇B, a (1, d)-subset D of V (H) is a
(d + 1)-tuple where |D ∩ A| = 1 and |D ∩ B| = d. A (1, b)-graph H with
partition classes A,B is balanced if b|A| = |B|. We say that a set S ⊆ V (H) is
balanced if b|S ∩A| = |S ∩B|.

Given an n-vertex k-graph systemG = {Gi}i∈[n/k] on V , we construct auxi-liary (1, k)-graphHG of G as follows.
Definition 2.3 Let HG be an auxiliary (1, k)-graph of G with vertex set V ′ =

[n/k] ∪ V and edge set {{i} ∪ e : i ∈ [n/k], e ∈ Gi}.
For a hypergraph H , the 2-degree of a pair of vertices is the number of

edges containing this pair and ∆2(H) denotes the maximum 2-degree in H .
For reals a, b and c, wewrite a = (1±b)c for (1−b)c ≤ a ≤ (1+b)c. We need the
following result which was attributed to Pippenger [125](see Theorem 4.7.1 in
[10]), following Frankl and Rödl. A cover in a hypergraph H is a set of edges
such that each vertex ofH is in at least one edge of the set.
Lemma 2.1 ([125]) For every integer k ≥ 2, r ≥ 1 and a > 0, there exist γ =

γ(k, r, a) > 0 and d0 = d0(d, r, a) such that the following holds for every n ∈ N
and D ≥ d0. Every k-graph H = (V,E) on V of n vertices in which all vertices
have positive degrees and which satisfies the following conditions :

• For all vertices x ∈ V but at most γn of them, dH(x) = (1± γ)D.
• For all x ∈ V , dH(x) < rD.
• ∆2(H) < γD.

contains a cover of at most (1 + a)(n/k) edges.

2.2 . Rainbow absorption method

Given an n-vertex k-graph systemG = {Gi}i∈[n] on V with δd(Gi) ≥ (1/2+

ε)
(
n−d
k−d

) for i ∈ [n/k], d ∈ [k−1], we first construct a (1, k)-graphHGwith vertexset [n/k] ∪ V and edge set {{i} ∪ e : e ∈ Hi, i ∈ [n/k]}. Next, we construct a
specific rainbow edge-absorber. For any k-set T = {v1, . . . , vk} in V and every
color c1 ∈ [n/k], we give a rainbow absorberA = A1∪A2 for (T, c1) as follows.• A1 = {M2, . . . ,Mk} is a set of k − 1 disjoint edges in HG where ci ∈

Mi(i ∈ [2, k]).
• There is a vertex ui(i ∈ [2, k]) from each V (Mi) such that {u2, . . . , uk, v1,
c1} ∈ E(HG) and (V (Mi) \ {ui}) ∪ {vi} ∈ E(HG) for i ∈ [2, k]. Let A2 be
{{u2, . . . , uk, v1, c1}, (V (M2) \ {u2})∪ {v2}, . . . , (V (Mk) \ {uk})∪ {vk}}.For any k-set T in V and every color c1 ∈ [n/k], we denote the family of

such rainbow edge-absorbers for (T, c1) by A(T, c1).
Claim 2.1 |A(T, c1)| ≥ ε2k−2nk−1

(
n−1
k−1

)k
/2.
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Proof. Fix c1 ∈ [n/k] and T = {v1, . . . , vk} ⊆ V . Choose (c2, . . . , ck) arbi-trarily from [n/k] and there are at least (nk − 1) · · · (nk − (k − 1)) ≥ εk−1nk−1

choices. Fix such (c2, . . . , ck). Next, we construct M2, . . . ,Mk and note that
there are at most (k − 1)

(
n−1
k−2

)
≤ ε
(
n−1
k−1

) edges which contain c1, v1 and vj forsome j ∈ [2, k]. Due to the minimum degree assumption, there are at least
1
2

(
n−1
k−1

) edges containing v1 and c1 but none of v2, . . . , vk. We fix such one edge
{c1, v1, u2, . . . , uk} and set U1 = {u2, . . . , uk}. For each i ∈ [2, k] and each pair
{ui, vi}, suppose we succeed in choosing a set Ui such that Ui is disjoint with
Wi−1 = ∪j∈[i−1]Uj ∪ T and both Ui ∪ {ui, ci} and Ui ∪ {vi, ci} are edges inHG,then for a fixed i ∈ [2, k], we call such a choice Ui good.Note that in each step i ∈ [2, k], there are k+(i−1)(k−1) ≤ k2 vertices in
Wi−1, thus the number of edges with color ci intersecting ui and at least oneother vertex inWi−1 is at most k2(n−1

k−2

). So the minimum degree assumption
implies that for each i ∈ [2, k], there are at least 2ε(n−1

k−1

)
− 2k2

(
n−1
k−2

)
≥ ε
(
n−1
k−1

)
good choices for Ui and in total we obtain ε2k−2nk−1

(
n−1
k−1

)k
/2 rainbow absor-

bers for (T, c1). □
For any edge e ∈ E(HG), IfA ⊆ V (HG) and |A| is divisible by k+1, thenA ∈((k+1)n

|A|
) is an absorber for e if e ⊆ A, there is a perfect matching inHG[A] andthere is a perfect matching inHG[A \ e]. Let L(e) denote the set of absorbers

for e inHG.
Lemma 2.2 (Rainbow Absorption Lemma) LetA0 be a rainbow edge-absorber
as above. For every ε > 0, there exist γ, γ1 and n0 such that the following holds forall integers n ≥ n0. Suppose that G = {Gi}i∈[n/k] is an n-vertex k-graph systemon V and δd(Gi) ≥ (1/2+ ε)

(
n−d
k−d

) andHG is the auxiliary (1, k)-graph of G, thenthere exists a matchingM inHG with size at most 2γ(k − 1)n such that for every
balanced set U ⊆ ([n/k] ∪ V ) \ V (M) of size at most γ1n, V (M) ∪ U spans a
matching inHG.
Proof. Let 1/n≪ γ1 ≪ α≪ γ ≪ ε′ ≪ ε. Note that amatching of size k inHGcorresponds to a rainbowedge-absorber inG. Choose a familyF ofmatchings
of size k − 1 fromHG by including each matching of size k − 1 independently
at random with probability

p = γ/n(k−1)(k+1)−1.

Note that |F|, |L(e) ∩ F| are binomial random variables with expectations
E[|F|] ≤ γn and

E[|L(e) ∩ F|] ≥ γε′n for any e ∈ E(HG).

The latter inequality holds since for any edge e ofHG, |L(e)| ≥ ε′n(k−1)(k+1) by
theminimumdegree assumption and Claim 2.1. By Lemma 1.1, with probability
1− o(1), the family F satisfies the following properties.
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1. |F| ≤ 2E[|F|] ≤ 2γn,
2. |L(e) ∩ F| ≥ 1

2E[|L(e) ∩ F|] ≥ 1
2γε

′n for any e ∈ E(HG).
Moreover, we can also bound the expected number of pairs of intersecting
members of F by

n(k−1)(k+1)(k − 1)2(k + 1)2n(k−1)(k+1)−1p2 ≤ 1

8
γε′n.

Thus, by Markov’s inequality, we derive that with probability at least 1/2, F
contains atmost 1

4γε
′npairs of intersectingmembers ofF . Remove onemem-

ber from each of the intersecting pairs inF . Thus, the resulting family, sayF ′,
consists of pairwise disjoint matchings of sizem− 1 that satisfies

1. |F ′| ≤ 2γn,
2. |L(e) ∩ F| ≥ 1

2γε
′n− 1

4γε
′n ≥ αn for any e ∈ E(HG).

Therefore, the union of members in F ′ is a matching in HG of size at most
2γ(k − 1)n and can (greedily) absorb a balanced set U of size at most γ1nsince γ1 ≪ α. □

2.3 . Rainbow matching cover

The goal of this section is to prove the following lemma, an important com-
ponent of the proof of Theorem 2.1.
Lemma 2.3 (Rainbow Almost Cover Lemma) For every ε, ϕ > 0 and integer
d ∈ [k − 1], the following holds for sufficiently large n ∈ bN. Suppose that G =

{Gi}i∈[n/k] is an n-vertex k-graph system on V such that δd(Gi) ≥ (ck,d+ε)
(
n−d
k−d

)
for i ∈ [n/k], then G contains a rainbow matching covering all but at most ϕn
vertices.

For a k-graph H , a fractional cover is a function ω : V (H) → [0, 1], subject
to the requirement∑v:v∈e ω(v) ≥ 1 for every e ∈ E(H). Denote theminimum
fractional cover size by τ∗(H) = minω Σv∈V (H)ω(v). The conclusion ν∗(H) =

τ∗(H) for any hypergraph follows from the LP-duality. For n-vertex k-graphs
we trivially have ν∗(H) = τ∗(H) ≤ n

k .Given ann-vertex k-graph systemG = {Gi}i∈[n/k] onV . LetHG be the auxi-liary (1, k)-graph of G. Let δ1,k−1(HG) := min{degHG(S) : S is a (1, k−1)-subset
of V (HG)} where degHG(S) denotes the number of edges inHG containing S.The proof of the following claim is by now a standard argument on frac-
tional matchings and covers.
Claim 2.2 If each Gi contains a perfect fractional matching for i ∈ [nk ], then theauxiliary (1, k)-graphHG of G contains a perfect fractional matching.
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Proof. By the duality theorem, we transform the maximum fractional mat-
ching problem into the minimum fractional cover problem. Since τ∗(HG) =

ν∗(HG) ≤ n
k , it suffices to show that τ∗(HG) ≥ n

k to obtain ν∗(HG) = n
k .Let ω be the minimum fractional cover of HG and take i1 ∈ [n/k] such that

ω(i1) := mini∈[n/k] ω(i). We may assume that ω(i1) = 1 − x < 1, since other-
wise ω([n/k]) ≥ n

k and we are done. By definition we get ω(e) ≥ 1−ω(i1) = x

for every e ∈ Gi1 . We define a new weight function ω′ on V by setting ω′(v) =
ω(v)
x for every vertex v ∈ V . Thus, ω′ is a fractional cover of Gi1 because foreach e ∈ Gi1 , ω′(e) = ω(e)

x ≥ 1. Recall that Gi1 has a perfect fractional mat-
ching, and thus ω′(V ) ≥ τ∗(Gi1) ≥ n

k which implies that ω(V ) ≥ xn
k . There-fore,

ω([nk ] ∪ V ) ≥ (1− x)nk + xn
k = n

k .
Hence, τ∗(HG) =

n
k , i.e.HG contains a perfect fractional matching. □

Given an n-vertex k-graph system G, we shall construct an auxiliary (1, b)-
graphHG of G and a sequence of random subgraphs ofHG. Then, we use theproperties of them to get a “near regular” spanning subgraph for the sake of
applying Lemma 2.1.

The proof is based on a two-round randomization which is already used
in [8, 110, 27]. Since we work with balanced (1, k)-graphs, we need to make
sure that each random graph is balanced. In order to achieve this we modify
the randomization process by fixing an arbitrarily small and balanced set S ⊆
V (HG). This is done in Fact 2.1.Let HG be the auxiliary (1, k)-graph of G with partition classes A, B and
k|A| = |B| where A is the color set and B = V . Let S ⊆ V (HG) be a set ofvertices such that |S ∩A| = n0.99/b and |S ∩B| = n0.99. The desired subgraph
H ′′ is obtained by two rounds of randomization. As a preparation to the first
round, we choose every vertex randomly and uniformly with probability p =

n−0.9 to get a random subset R of V (HG). Take n1.1 independent copies of Rand denote them byRi+, i ∈ [n1.1], i.e. eachRi+ is chosen in the same way as
R independently. Define Ri− = Ri+ \ S for i ∈ [n1.1].
Fact 2.1 Let n,HG, A,B, S and Ri−, Ri+ be given as above. Then, with probabi-
lity 1 − o(1), there exist subgraphs Ri, i ∈ [n1.1], such that Ri− ⊆ Ri ⊆ Ri+ and
Ri is balanced.
Proof. Recall that |A| = n/k, |B| = n, |S ∩ A| = n0.99/b and |S ∩ B| = n0.99,
thus

E[|Ri+ ∩A|] = n0.1/k,

E[|Ri+ ∩A ∩ S|] = n0.09/k,

E[|Ri+ ∩B|] = n0.1,
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E[|Ri+ ∩B ∩ S|] = n0.09.

By Lemma 1.1, we have
P[||Ri+ ∩A| − n0.1/b| ≥ n0.08] ≤ e−Ω(n0.06),

P[||Ri+ ∩A ∩ S| − n0.09/b| ≥ n0.08] ≤ e−Ω(n0.07),

P[||Ri+ ∩B| − n0.1| ≥ n0.08] ≤ e−Ω(n0.06),

P[||Ri+ ∩B ∩ S| − n0.09/b| ≥ n0.08] ≤ e−Ω(n0.07).

Thus, with probability 1− o(1), for all i ∈ [n1.1],
|Ri+ ∩A| ∈ [n0.1/k − n0.08, n0.1/b+ n0.08],

|Ri+ ∩A ∩ S| = (1 + o(1))n0.09/k,

|Ri+ ∩B| ∈ [n0.1 − n0.08, n0.1 + n0.08],

|Ri+ ∩B ∩ S| = (1 + o(1))n0.09.

Therefore, |b|Ri+ ∩A| − |Ri+ ∩B|| ≤ (k+1)n0.08 < min{|Ri+ ∩A∩S|, |Ri+ ∩
B ∩ S|}. Hence, with probability 1− o(1), Ri can be balanced for i ∈ [n1.1]. □

The following two lemmas together construct the desired sparse regular
k-graph we need.
Lemma 2.4 Given an n-vertex k-graph system G = {Gi}i∈[n/k] on V , let HG bethe auxiliary (1, k)-graph of G. For each X ⊆ V (HG), let Y +

X := |{i : X ⊆ Ri+}|and YX := |{i : X ⊆ Ri}|. Then with probability at least 1− o(1), we have
1. |Ri| = (1/b+ 1 + o(1))n0.1 for all i ∈ [n1.1].
2. Y{v} = (1 + o(1))n0.2 for v ∈ V (HG) \ S and Y{v} ≤ (1 + o(1))n0.2 for
v ∈ S.

3. Y{u,v} ≤ 2 for all {u, v} ⊆ V (HG).
4. Ye ≤ 1 for all e ∈ E(HG).
5. Suppose that V (Ri) = Ci ∪ Vi, we have δ1,d(HG[V (Ri)]) ≥ (ck,d + ε/4)(|Ri+∩B|−d

k−d

)
− |Ri+ ∩B ∩ S|

(|Ri+∩B|−d−1
k−d−1

)
≥ (ck,d + ε/8)

(|Ri∩B|−d
k−d

).
Proof. Note that E[|Ri+|] = (1/k + 1)n0.1,E[|Ri−|] = ((1/k + 1)n − (1/k +

1)n0.99)n−0.9 = (1/k + 1)n0.1 − (1/k + 1)n0.09. By Lemma 1.1, we have
P[| |Ri+| − n0.1(1/k + 1) |≥ n0.095] ≤ e−Ω(n0.09),

P[| |Ri−| − ((1/k + 1)n0.1 − (1/k + 1)n0.09) |≥ n0.095] ≤ e−Ω(n0.09).

Hence, with probability at least 1 − O(n1.1)e−Ω(n0.09), for the given sequence
Ri in Fact 2.1, i ∈ [n1.1], satisfying Ri− ⊆ Ri ⊆ Ri+, we have |Ri| = (1/k + 1 +

o(1))n0.1.
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For each X ⊆ V (HG), let Y +
X := |{i : X ⊆ Ri+}| and YX := |{i :

X ⊆ Ri}|. Note that the random variables Y +
X have binomial distributions

Bi(n1.1, n−0.9|X|) with expectations n1.1−0.9|X| and YX ≤ Y +
X . In particular, for

each v ∈ V (HG), E[Y +
{v}] = n0.2, by Lemma 1.1, we have
P[| |Y +

{v}| − n0.2 |≥ n0.19] ≤ e−Ω(n0.18).

Hence, with probability at least 1−O(n)e−Ω(n0.18), we haveY{v} = (1+o(1))n0.2

for v ∈ V (HG) \ S and Y{v} ≤ (1 + o(1))n0.2 for v ∈ S.
Let Zp,q = |X ∈

(
V (HG)

p

)
: Y +

X ≥ q|. Then,
E[Zp,q] ≤

(n
k + n

p

)(
n1.1

q

)
(n−0.9pq) ≤ Cnp+1.1q−0.9pq.

Hence, by Markov’s inequality we have
P[Z2,3 = 0] = 1− P[Z2,3 ≥ 1] ≥ 1− E[Z2,3] = 1− o(1),

P[Z1+k,2 = 0] = 1− P[Z1+k,2 ≥ 1] ≥ 1− E[Z1+k,2] = 1− o(1),

i.e. with probability at least 1 − o(1), every pair {u, v} ⊆ V (HG) is containedin at most two sets Ri+, and every edge is contained in at most one set Ri+.Thus, the conclusions also hold for Ri.Fix a (1, d)-subsetD ⊆ V (HG) and let ND(HG) be the neighborhood ofDin HG. Recall that R is obtained by choosing every vertex randomly and uni-
formlywith probability p = n−0.9, letDEGD be the number of edges {f |f ⊆ R

and f ∈ ND(HG)}. Therefore DEGD =
∑

f∈ND(HG)
Xf , where Xf = 1 if f is

in R and 0 otherwise. We have
E[DEGD] = dHG(D)× (n−0.9)k−d ≥ (ck,d + ε)

(
n− d

k − d

)
n−0.9(k−d)

≥ (ck,d + ε/3)

(
|R ∩B| − d

k − d

)
= Ω(n0.1(k−d)).

For two distinct intersecting edges fi, fj ∈ ND(HG) with |fi ∩ fj | = ℓ for
ℓ ∈ [k − d− 1], the probability that both of them are in R is

P[Xfi = Xfj = 1] = p2(k−d)−ℓ,

for any fixed ℓ, we have
∆ =

∑
fi∩fj ̸=∅

P[Xfi = Xfj = 1] ≤
k−d−1∑
ℓ=1

p2(k−d)−ℓ

(
n− d

k − d

)(
k − d

ℓ

)(
n− k

k − d− ℓ

)

≤
k−d−1∑
ℓ=1

p2(k−d)−ℓO(n2(k−d)−ℓ) = O(n0.1(2(k−d)−1)).
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Applying Lemma 1.3 with Γ = B, Γp = R ∩ B and M = NHG(D)(a family of
(k − d)-sets) , we have

P[DEGD ≤ (1− ε/12)E[DEGD]] ≤ e−Ω((E[DEGD])2/∆) = e−Ω(n0.1).

Therefore by the union bound, with probability 1− o(1), for all (1, d)-subsets
D ⊆ V (HG), we have

DEGD > (1− ε/12)E[DEGD] ≥ (ck,d + ε/4)

(
|R ∩B| − d

k − d

)
.

Summarizing, with probability 1 − o(1), for the sequence Ri, i ∈ [n1.1], satis-
fying Ri− ⊆ Ri ⊆ Ri+, all of the following hold.

1. |Ri| = (1/b+ 1 + o(1))n0.1 for all i ∈ [n1.1].
2. Y{v} = (1 + o(1))n0.2 for v ∈ V (HG) \ S and Y{v} ≤ (1 + o(1))n0.2 for
v ∈ S.

3. Y{u,v} ≤ 2 for all {u, v} ⊆ V (HG).
4. Ye ≤ 1 for all e ∈ E(HG).
5. DEG(i)

D ≥ (ck,d + ε/4)
(|Ri+∩B|−d

k−d

) for all (1, d)-subsets of D ⊆ V (HG)and i ∈ [n1.1].
Thus, by property 5 above, we conclude that suppose V (R+

i ) = C+
i ∪V +

i and
V (Ri) = Ci ∪ Vi, the following holds.

δ1,d(HG[V (R+
i )]) ≥ (ck,d + ε/4)

(
|Ri+ ∩B| − d

k − d

)
.

After the modification, we still have
δ1,d(HG[V (Ri)]) ≥ (ck,d+ε/4)

(
|Ri+ ∩B| − d

k − d

)
−|Ri+∩B∩S|

(
|Ri+ ∩B| − d− 1

k − d− 1

)

≥ (ck,d + ε/8)

(
|Ri ∩B| − d

k − d

)
.

□

Lemma 2.5 Let n,HG, S,Ri, i ∈ [n1.1] be given as in Lemma 2.4 such that each
HG[V (Ri)] is a balanced (1, k)-graph and has a perfect fractional matching ωi.Then there exists a spanning subgraphH ′′ ofH∗ = ∪iHG[V (Ri)] such that• dH′′(v) ≤ (1 + o(1))n0.2 for v ∈ S,

• dH′′(v) = (1 + o(1))n0.2 for all v ∈ V (HG) \ S,• ∆2(H
′′) ≤ n0.1.
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The proofs follow the lines as in [8, 110, 27].
Proof. By the condition that each HG[V (Ri)] has a perfect fractional mat-
ching ωi, we select a generalized binomial subgraph H ′′ of H∗ by indepen-
dently choosing each edge e with probability ωie(e) where ie is the index i
such that e ∈ HG[V (Ri)]. Recall that property 4 guarantees the uniqueness of
ie. For v ∈ V (H ′′), let Iv = {i : v ∈ Ri}, Ev = {e ∈ H∗ : v ∈ e} and
Ei

v = Ev ∩HG[V (Ri)], then Ei
v, i ∈ Iv forms a partition of Ev and |Iv| = Y{v}.Hence, for v ∈ V (H ′′),

dH′′(v) =
∑
e∈Ev

1 =
∑
i∈Iv

∑
e∈Ei

v

Xe,

where Xe is the Bernoulli random variable with Xe = 1 if e ∈ E(H ′′) and
Xe = 0 otherwise. Thus its expectation is ωie(e). Therefore

E[dH′′(v)] =
∑
i∈Iv

∑
e∈Ei

v

ωie(e) =
∑
i∈Iv

1 = Y{v}.

Hence, E[dH′′(v)] = (1 + o(1))n0.2 for v ∈ V (HG) \ S and E[dH′′(v)] ≤ (1 +

o(1))n0.2 for v ∈ S. Now by Chernoff’s inequality, for v ∈ V (HG) \ S,
P[|dH′′(v)− n0.2| ≥ n0.15] ≤ e−Ω(n0.1),

and for v ∈ S,
P[dH′′(v)− n0.2 ≥ n0.15] ≤ e−Ω(n0.1).

Taking a union bound over all vertices, we conclude that with probability
1−o(1), dH′′(v) = (1+o(1))n0.2 for all v ∈ V (HG)\S and dH′′(v) ≤ (1+o(1))n0.2

for v ∈ S.
Next, note that for distinct u, v ∈ V (HG),

dH′′({u, v}) =
∑

e∈Eu∩Ev

1 =
∑

i∈Iu∩Iv

∑
e∈Ei

u∩Ei
v

Xe,

and
E[dH′′({u, v})] =

∑
i∈Iu∩Iv

∑
e∈Ei

u∩Ei
v

ωi(e) ≤ |Iu ∩ Iv| ≤ 2.

Thus, by Lemma 1.2,
P[dH′′({u, v}) ≥ n0.1] ≤ e−n0.1

,

then by a union bound we have∆2(H
′′) ≤ n0.1 with probability 1− o(1). □

Proof. [Proof of Lemma 2.3] By the definition of ck,d, Lemma 2.4 (5) and Claim
2.2, there exists a perfect fractional matching ωi in every subgraphHG[V (Ri)],
i ∈ [n1.1]. By Lemma2.5, there is a spanning subgraphH ′′ ofH∗ = ∪iHG[V (Ri)]
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such that dH′′(v) ≤ (1 + o(1))n0.2 for each v ∈ S, dH′′(v) = (1 + o(1))n0.2

for all v ∈ V (HG) \ S and ∆2(H
′′) ≤ n0.1. Hence, by Lemma 2.1 (by setting

D = n0.2), H ′′ contains a cover of at most n+n/k
1+k (1 + a) edges which implies

that H ′′ contains a matching of size at least n+n/k
1+k (1− a(1 + k − 1)), where a

is a constant satisfying 0 < a < ϕ/(1 + k − 1). HenceHG contains a matching
covering all but at most ϕ(n+ n/k) vertices. □
Proof. [The proof of Theorem 2.1] Suppose that 1

n ≪ ϕ ≪ γ1 ≪ γ ≪ ε′ ≪ ε

where ε′, γ, γ1 are defined in Lemma 2.2 and ϕ, ε in Lemma 2.3. LetHG be theauxiliary (1, k)-graph of G. By Lemma 2.2, we get a matchingM in HG of sizeat most 2γ(k − 1)n such that for every balanced set U ⊆ [n/k] ∪ V \ V (M)

of size at most γ1n, V (M) ∪ U spans a matching in HG. Let G′ = {G′
i}i∈[n/k]be the induced k-graph system of G on V ′ where V ′ := V \ V (M). Denote

the subsystem of G′ by G′
I = {G′

i}i∈I , where I = [n/k]\V (M). We still have
δd(G

′
i) ≥ (max{ck,d, 1/2}+ ε

2)
(
n−d
k−d

) for i ∈ I , since 2γ(k−1)n
(
n−d−1
k−d−1

)
≤ ε

2

(
n−d
k−d

).
Then, we construct the new auxiliary (1, k)-graphHG′

I
of G′

I .By Lemma2.3,HG′
I
contains amatchingM1 covering all but atmostϕ|V ′| ≤

ϕ(n + n/k) vertices. Suppose W1 = [n/k] ∪ V \ (V (M) ∪ V (M1)), hence
|W1| ≤ ϕ(n + n/k) ≤ γ1n and W1 is balanced. By Lemma 2.2, V (M) ∪ W1spans a matchingM2 in HG and thereforeM1 ∪M2 is a perfect matching in
HG, which yields a rainbow perfect matching in G. □

2.4 . Concluding remarks

Let F be a k-graph with b vertices and f edges. We first define an absorber
without colors. Given a setB of b vertices, a k-graphA0 = A0

1∪A0
2 is called an

F -absorber for B if
• V (A0) = B∪̇L 1,
• A0

1 is an F -factor on L and A0
2 is an F -factor on B ∪ L.

Note that |V (A0)| is a constant. Naturally, we give the definition of rainbow
F -absorber as follows.
Definition 2.4 (Rainbow F -absorber) Let G = {Gi}i∈[nf/b] be a k-graph sys-tem on V and F be a k-graph with b vertices and f edges. For every b-set B in
V and every f -set C in [nf/b], A = A1 ∪ A2 is called a rainbow F -absorber for
(B,C) if

• V (A) = B∪̇L,
• A1 is a rainbowF -factor onLwith color setC1 andA2 is a rainbowF -factoron B ∪ L with color set C1 ∪ C.

Nowwe introduce one of themain parameters cabsd,F . Roughly speaking, it is theminimumdegree threshold such that all b-sets are contained inmany rainbow
F -absorbers.

1. As usual, A∪̇B denotes the disjoint union of A and B.
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Definition 2.5 (cabsd,F : Rainbow absorption threshold) Fix anF -absorberA0 =

A0
1∪A0

2 and letm be the number of vertex disjoint copies of F inA0
2. Let cd,F,A0 ∈

(0, 1) be the infimum of reals c > 0 such that for every ε > 0 there exists ε′ > 0

such that the following holds for sufficiently large n ∈ N where d ∈ [k − 1]. Let
G = {Gi}i∈[nf/b] be an n-vertex k-graph system on V . If δd(Gi) ≥ (c + ε)

(
n−d
k−d

)
for i ∈ [nf/b], then for every b-set B in V and every f -set C in [nf/b] with the
form [(i − 1)f, if ] for some i ∈ [n/b], there are at least ε′n(m−1)(b+1) rainbow
F -absorbersA with color set C(A0

1)∪C whose underlying graph is isomorphic to
A0 such that C(A0

1) = [(i1 − 1)f + 1, i1f ] ∪ [(i2 − 1)f + 1, i2f ] ∪ · · · ∪ [(im−1 −
1)f + 1, im−1f ] where ij ∈ [n/b] for each j ∈ [m − 1] and ij1 ̸= ij2 for distinct
j1, j2 ∈ [m− 1]. Let cabsd,F := inf cd,F,A0 where the infimum is over all F -absorbers
A0.
We next define a threshold parameter for the rainbow almost F -factor in a
similar fashion. We use the following auxiliary b-graphHF . Given a k-graph Fwith b vertices and f edges, and an n-vertex k-graph system H = {Hi}i∈[f ] on
V , let HF be the b-graph with vertex set V (HF ) = V and edge set E(HF ) =

{V (F ′) : F ′ is a rainbow copy of F with color set [f ]}.
Definition 2.6 (ccovd,F : Rainbow almost F -factor threshold) Let ccovd,F ∈ (0, 1)

be the infimum of reals c > 0 such that for every ε > 0, the following holds
for sufficiently large n ∈ N. Let H = {Hi}i∈[f ] be an n-vertex k-graph system.
If δd(Hi) ≥ (c + ε)

(
n−d
k−d

) for every i ∈ [f ], then the b-graph HF has a perfect
fractional matching.

Now we are ready to state our general result on rainbow F -factors. The
proof process is similar with Theorem 2.1 and we will omit the details.
Theorem 2.2 Let F be a k-graph with b vertices and f edges. For any ε > 0 and
integer d ∈ [k − 1], the following holds for sufficiently large n ∈ bN. Let G =

{Gi}i∈[nf/b] be an n-vertex k-graph system on V . If δd(Gi) ≥ (max{cabsd,F , c
cov
d,F }+

ε)
(
n−d
k−d

) for i ∈ [nf/b], then there is a G-rainbow F -factor.
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3 - RainbowHamilton cycles inhypergraph sys-
tems with minimum (k − 1)-degree

The main goal of this chapter is to extend Theorem 1.1 to the rainbow
setting. For every k ≥ 3, γ > 0, we say that an n-vertex k-graph system
H = {Hi}i∈[n] is a (k, n, γ)-graph system if δk−1(Hi) ≥ (1/2 + γ)n for each
i ∈ [n].
Theorem 3.1 For every k ≥ 3, γ > 0 and sufficiently large n ∈ N, every (k, n, γ)-
graph system H = {Hi}i∈[n] admits an H-rainbow Hamilton cycle.

3.1 . Notation and preliminaries

Given a k-graph H and a k-graph system H = {Hi}i∈[n] on the same ver-
tex set with H , we define {i : E(Hi) ∩ E(H) ̸= ∅} as the color set of H , de-
noted by C(H). We call P = x1 · · ·x2k−2 an H-rainbow path with color pattern
(c1, . . . , ck−1) if {xi, . . . , xi+k−1} ∈ E(Hci) for i ∈ [k−1]. Let P = {P1, . . . , Pm}
be a family of vertex-disjoint paths. If each Pi, i ∈ [m], is an H-rainbow path
and C(Pi) ∩ C(Pj) = ∅ for distinct i, j ∈ [m], then we call this family an H-
rainbow family of paths. Denote ⋃i∈[m] V (Pi) by V (P). The size of P is the
number of paths in the family.

When we write α ≪ β, we mean that α, β are constants in (0, 1), and for
every β we have chosen, there exists α0 = α0(β) such that the subsequent
arguments hold for allα ≤ α0. Whilemultiple constants appear in a hierarchy,
they are chosen from right to left.

Besides, we require the following concentration inequalities.
In this section we give an outline of the proof of Theorem 3.1. Our proof

is under the framework of the absorption method, systematised by the work
of Rödl, Ruciński and Szemerédi [135, 138], which reduces the problem of fin-
ding a spanning subgraph to building an absorption structure and an almost
spanning structure. Tailored to our problem, the idea is to build a rainbow
absorbing cycle and a rainbow path cover. Moreover, the rainbow absorbing
cyclewill be able to swallowan arbitrary leftover of vertices, a leftover of colors
as well as an H-rainbow family of paths so that we obtain a rainbow Hamil-
ton cycle. This motivates us to append the color information and the connec-
ting technique into the rainbow absorptionmethod, which is our contribution
compared with the proof in [137].
Lemma 3.1 (Absorbing lemma) Given k ≥ 3, γ > 0, there exists κ > 0 such
that the following holds for sufficiently large n ∈ N. Let H = {Hi}i∈[n] be a
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(k, n, γ)-graph system on V . Then there exists an H-rainbow cycle A with at most
γn/2 vertices such that for any H-rainbow family of paths P and any vertex set U
in V \V (A) with |P|, |U | ≤ κn, there exists an H-rainbow cycle A′ with vertex set
V (A) ∪ U ∪ V (P) and C(A) ⊆ C(A′).

We first define two versions of absorbers as follows .
Definition 3.1 Given a (k, n, γ)-graph system H, a vertex x and a color c, we say
that a path P is a rainbow absorber for (x, c) in an n-vertex k-graph system if the
following holds :

• x /∈ V (P ) ;
• P = x1 · · ·x2k−2 is an H-rainbow path with color pattern (c1, . . . , ck−1) ;• x1 · · ·xk−1xxk · · ·x2k−2 is an H-rainbow path with color pattern (c, c1, . . . ,

ck−1).

Figure 3.1 – Absorber for (x, c) when k = 3

Definition 3.2 Given a (k, n, γ)-graph system H, two disjoint (k − 1)-tuples of
vertices u = (u1, . . . , uk−1), v = (v1, . . . , vk−1) and a (k−1)-tuple (o1, . . . , ok−1)of colors, we say that a path P is a rainbow absorber for (u,v; o1, . . . , ok−1) in an
n-vertex k-graph system if the following holds :

• V (P ) ∩ {u1, . . . , uk−1, v1, . . . , vk−1} = ∅ ;
• P = x1 · · ·x2k−2 is an H-rainbow path with color pattern (c1, . . . , ck−1) ;• x1 · · ·xk−1u1 · · ·uk−1 and v1 · · · vk−1xk · · ·x2k−2 are H-rainbow paths with
color patterns (c1, . . . , ck−1), (o1, . . . , ok−1) respectively.

The second task is to connect the absorbers to a path. The following lemma
helps us to connect any two disjoint paths (by connecting their ends) and its
proof is in Section 3.4.
Lemma 3.2 (Connecting lemma) For every k ≥ 3, γ > 0, there exists c ∈ N
such that the following holds for sufficiently large n ∈ N. Let H = {Hi}i∈[c] bea (k, n, γ)-graph system and u, v be two disjoint (k − 1)-tuples of vertices. Then,
there exists an H-rainbow path from u to v with at most c+ k − 1 vertices.
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Figure 3.2 – Absorber for ((u1, u2), (v1, v2); o1, o2) when k = 3

Given a (k, n, γ)-graph system H = {Hi}i∈[n], we need to construct an H-
rainbow family of paths, covering almost all vertices of V \V (A) and almost
all colors of [n]\C(A). To achieve this, we use the regularity lemma for hyper-
graphs and a trick of Ferber and Kwan [54].
Lemma 3.3 (Path cover lemma) For every k ≥ 3, γ, δ > 0, there exists L > 0

such that the following holds for sufficiently large n ∈ N. Every (k, n, γ)-graph
system H = {Hi}i∈[n] on V contains an H-rainbow family of paths P of size at
most L, covering at least (1− δ)n vertices of V .
Proof. [Proof of Theorem 3.1] For any k ≥ 3 and γ > 0, we choose 1/n ≪
1/L, κ≪ γ, 1/k, and fix H to be a (k, n, γ)-graph system on V .
Step 1. By Absorbing lemma, we obtain an H-rainbow cycle A with at most
γn/2 vertices such that the following property holds. For anyH-rainbow family
of paths P and any vertex set U in V \V (A) with |P|, |U | ≤ κn, there exists an
H-rainbow cycle A′ with vertex set V (A) ∪ U ∪ V (P) and C(A) ⊆ C(A′).
Step 2. Set H′ = {H ′

i}i∈C′ where C ′ = [n]\C(A), H ′
i = Hi[V \V (A)] for i ∈ C ′.

Let n′ = n − |V (A)|. Note that H′ is a (k, n′, γ/2)-graph system where n′ >
(1 − γ/2)n. Applying path cover lemma to H′ with δ = κ, we obtain an H′-
rainbow family of paths P = {P1, . . . , Pp}, where p ≤ L ≤ κn, covering all but
at most κn′ vertices of V \V (A). Denote the set of uncovered vertices by T .
Thus, |T | ≤ κn′ ≤ κn.
Step 3. Using property in Step 1, we obtain a rainbow cycle with vertex set
V (A) ∪ T ∪ V (P), which is actually an H-rainbow Hamilton cycle. □

3.2 . Rainbow absorption method
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Given a vertex x ∈ V and a color c ∈ [n], let L(x; c) be the family of rain-
bow absorbers for (x, c). Similarly, given two disjoint (k− 1)-tuples u and v of
V and a (k − 1)-tuple (o1, . . . , ok−1) of [n], let L(u, v; o1, . . . , ok−1) be the setof rainbow absorbers for (u, v; o1, . . . , ok−1). We need the following simple
result.
Fact 3.1 LetH = {Hi}i∈[n] be a (k, n, γ)-graph system on V ,S be a (k−1)-subset
of V and V0 ⊆ V \S. For any i ∈ [n], we have

|NHi(S) ∩ V0| ≥ |V0| −
1

2
n+ γn+ k − 1.

In particular, for two (k− 1)-subsets of vertices S1 and S2, we obtain that for any
i, j ∈ [n],

|NHi(S1) ∩NHj (S2)| ≥ 2γn+ |S1 ∩ S2|.

Proof. We have |NHi(S) ∪ V0| ≤ n− k + 1 and thus
|NHi(S) ∩ V0| ≥ |V0|+ |NHi(S)| − (n+ k − 1) ≥ |V0| −

1

2
n+ γn+ k − 1.

For the second statement, we apply the first one with S = S1 and V0 =

NHi(S2) \ S1 and note that |V0| ≥ (12 + γ)n− (k − 1− |S1 ∩ S2|). □
Next we show lower bounds on the number of absorbers in a (k, n, γ)-

graph system.
Proposition 3.1 For any k ≥ 3, γ > 0, there exists ζ > 0 such that the following
holds for all sufficiently large n ∈ N. Suppose H = {Hi}i∈[n] is a (k, n, γ)-graph
system on V , then |L(x; c)| ≥ ζn3k−3 for every vertex x ∈ V and color c ∈ [n],
|L(u,v; o1, . . . , ok−1)| ≥ ζn3k−3 for every two disjoint (k − 1)-tuples u and v of
V and a (k − 1)-tuple (o1, . . . , ok−1) of [n].
Proof. Given k, γ, we choose 1/n ≪ ζ ≪ γ/k. Fixing vertex x ∈ V and
color c ∈ [n], we construct a rainbow absorber P = x1 · · ·x2k−2 with color
pattern (c1, . . . , ck−1) for (x, c). We choose (c1, . . . , ck−1) arbitrarily, so there
are (n− 1) · · · (n− k + 1) ≥ 21−knk−1 choices. Furthermore, x1, . . . , xk−2 canbe chosen arbitrarily in (n − 1) · · · (n − k + 2) ≥ 22−knk−2 ways. For xk−1,there are at least (12 + γ)n choices such that {x1, . . . , xk−1, x} ∈ E(Hc). ByFact 3.1, there are at least 2γn+ k − 2 choices for xj , j ∈ [k, 2k − 2], such that
{xj−k+1, . . . , xj}, {xj−k+2, . . . , xj , x} ∈ E(Hcj−k+1

). For j ∈ [k + 1, 2k − 2], xjshould be different from x1, . . . , xj−k. Thus, the number of choices for each
xj is at least 2γn + k − 2 − (j − k) ≥ 2γn, j ∈ [k, 2k − 2], yielding together
at least 21−knk−122−knk−2(12 + γ)n(2γn)k−1 ≥ ζn3k−3 rainbow absorbers for
(x, c).

Givenu = (u1, . . . , uk−1), v = (v1, . . . , vk−1) and (o1, . . . , ok−1), we constructa rainbowabsorberP = x1 · · ·x2k−2with color pattern (c1, . . . , ck−1) for (u, v; o1,
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. . . , ok−1). There are (n − k + 1) · · · (n − 2k + 2) ≥ 21−knk−1 choices for
(c1, . . . , ck−1). There are at least (12 + γ)n − (k − 1) ≥ γn choices for xk−1such that {u1, . . . , uk−1, xk−1} ∈ E(Hck−1

) and xk−1 should be different from
v1, . . . , vk−1. For xi, i ∈ [k − 2], there are at least (12 + γ)n − (2k − 3) ≥ γn

choices such that {uk−i, . . . , uk−1, xk−1, . . . , xi+1, xi} ∈ E(Hci), and it should
be different from v1, . . . , vk−1, u1, . . . , uk−1−i.By Fact 3.1, there are at least 2γn choices forxk such that {x1, · · · , xk−1, xk}
∈ E(Hc1), {v1, · · · , vk−1, xk} ∈ E(Ho1) and it is different fromu1, . . . , uk−1. For
xi, i ∈ [k+1, 2k−2], the number of choices is at least 2γn+k−2−(k−1+2(i−
k)) ≥ γn, such that {xi−(k−1), . . . , xi} ∈ E(Hci−(k−1)

), {vi−(k−1), . . . , vk−1, xk,

. . . , xi} ∈ E(Hoi−(k−1)
) and it should be different from u1, . . . , uk−1, x1, . . . ,

xi−k, v1, . . . , vi−k. Thus, there are at least 21−knk−1(γn)k−1(γn)k−1 ≥ ζn3k−3

rainbow absorbers for (u, v; o1, . . . , ok−1). □
Now we show that we can construct a family of disjoint absorbers, with all
different colors.
Lemma 3.4 For any k ≥ 3 and α, ζ > 0, there exists β > 0 such that the fol-
lowing holds for all sufficiently large n ∈ N. Let H = {Hi}i∈[n] be an n-vertex
k-graph system on V . If |L(x; c)| ≥ ζn3k−3 for every vertex x ∈ V , c ∈ [n] and
|L(u,v; o1, . . . , ok−1)| ≥ ζn3k−3 for all disjoint (k − 1)-tuples u and v of V and
(k − 1)-tuple (o1, . . . , ok−1) of [n], then there exists an H-rainbow family F ′ of
paths of length k − 1, satisfying

|F ′| ≤ αn, |F ′ ∩ L(x; c)| ≥ βn, and
|F ′ ∩ L(u,v; o1, . . . , ok−1)| ≥ βn,

for every vertex x ∈ V , c ∈ [n], two disjoint (k − 1)-tuples u and v of V and
(o1, . . . , ok−1) of [n].
Proof. Let 1/n≪ β ≪ ε≪ α, ζ. Each H-rainbow path x1x2 · · ·x2k−2 with co-lor pattern (c1, . . . , ck−1) canbe viewed as a (3k−3)-tuple (x1, x2, . . . , x2k−2, c1,

. . . , ck−1). Choose a familyF of (3k−3)-tuples from ( V
2k−2

)
×
( [n]
k−1

) by including
each possible (3k − 3)-tuple independently at random with probability

p = ε
(n− (2k − 2))! · (n− (k − 1))!

(n− 1)! · n!
≥ εn−(3k−4).

Note that |F|, |L(x, c) ∩ F|, |L(u, v; o1, . . . , ok−1) ∩ F| are binomial random
variables with

E[|F|] = p
n! · n!

(n− (2k − 2))! · (n− (k − 1))!
= εn,

E[|L(x, c) ∩ F|] = p|L(x; c)| ≥ εζn,

E[|L(u, v; o1, . . . , ok−1) ∩ F|] = p|L(u, v; o1, . . . , ok−1)| ≥ εζn,
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for every vertex x ∈ V , c ∈ [n], two disjoint (k − 1)-tuples u and v of V and
(o1, . . . , ok−1) of [n]. By Lemma 1.1, with probability 1 − o(1), the family F sa-
tisfies the following properties

|F| ≤ 2E[|F|] = 2εn ≤ αn,

|L(x; c) ∩ F| ≥ 2−1E[|L(x; c) ∩ F|] ≥ 2−1εζn,

|L(u, v; o1, . . . , ok−1) ∩ F| ≥ 2−1E[|L(u, v; o1, . . . , ok−1)|] ≥ 2−1εζn,

for every vertex x ∈ V , c ∈ [n], two disjoint (k − 1)-tuples u and v of V and
(o1, . . . , ok−1) of [n]. We say that two (3k− 3)-tuples (x1, x2, . . . , x2k−2, c1, . . . ,

ck−1) and (y1, y2, . . . , y2k−2, f1, . . . , fk−1) are intersecting if xi = yj for some
i, j ∈ [2k − 2] or cm = fℓ for somem, ℓ ∈ [k − 1]. We can bound the expected
number of pairs of (3k − 3)-tuples in F that are intersecting from above by

n! · n!
(n− (2k − 2))! · (n− (k − 1))!

(3k − 3)2
(n− 1)! · n!

(n− (2k − 2))! · (n− (k − 1))!
p2

= (3k − 3)2ε2n.

Thus, using Markov’s inequality, we derive that with probability at least 1/2, F
contains at most 2(3k − 3)2ε2n intersecting pairs of (3k − 3)-tuples. Remove
one (3k− 3)-tuple from every intersecting pair in F and remove the (3k− 3)-
tuples that can not absorb any (x, c) or (u, v, o1, . . . , ok−1) where x ∈ V , c ∈
[n], u and v are (k − 1)-tuples of V and (o1, . . . , ok−1) is a (k − 1)-tuple of
[n]. Thus the resulting subfamily, say F ′, consists of pairwise disjoint (3k− 3)-
tuples, which satisfies

|L(x; c) ∩ F ′| ≥ 2−1εζn− 2(3k − 3)2ε2n ≥ βn,

for any x ∈ V , c ∈ [n], and a similar statement holds for |L(u, v; o1, . . . , ok−1)∩
F ′| for any two disjoint (k− 1)-tuples u and v of V and a (k− 1)-tuple (o1, . . . ,
ok−1) of [n]. Since each (3k− 3)-tuple in F ′ induces a rainbow absorber, F ′ is
an H-rainbow family of paths, where each path is of length k − 1. □

Now we are ready to prove Lemma 3.1, assuming Lemma 3.2 holds.
Proof. [Proof of Lemma 3.1] Given 1/n ≪ κ ≪ β ≪ α, ζ ≪ γ, 1/k, let
H = {Hi}i∈[n] be a (k, n, γ)-graph system on V . By Proposition 3.1, we obtain
|L(x; c)| ≥ ζn3k−3 for every vertexx ∈ V and c ∈ [n], and |L(u, v; o1, . . . , ok−1)|
≥ ζn3k−3 for every two disjoint (k− 1)-tuples u and v of V and a (k− 1)-tuple
(o1, . . . , ok−1) of [n]. By Lemma 3.4, there is an H-rainbow family of pathsF ′ =

{P1, . . . , Pqn}, where q ≤ α and |V (Pi)| = 2k−2 for i ∈ [qn], |F ′∩L(x; c)| ≥ βn

for every vertex x ∈ V , c ∈ [n] and |F ′ ∩ L(u, v; o1, . . . , ok−1)| ≥ βn for every
two disjoint (k − 1)-tuples u and v of V and (o1, . . . , ok−1) of [n].Next, we shall connect all the paths inF ′ into anH-rainbow cycle. Suppose
we have connected P1, . . . , Pj into one path P , by using each time at most
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⌈8kγ−2⌉ − (2k − 2) vertices from outside V (F ′). Let e = (u1, . . . , uk−1) bean end of P and f = (v1, . . . , vk−1) be an end of Pj+1. Let H ′
i be the inducedsubgraph of Hi obtained by removing the vertices of V (F ′) ∪ V (P ) except e

and f. The number of vertices removed is at most
|V (F ′)∪V (P )| ≤ (2k− 2)qn+

(⌈
8k

γ2

⌉
− (2k − 2)

)
(qn− 1) <

⌈
8k

γ2

⌉
qn <

γn

2
,

where the last inequality holds since α≪ γ and k ≥ 3.
We get a (k, n′, γ/2)-graph system H′ = {H ′

i}i∈C where C = [n] \ (C(P )∪
C(F ′) and n′ = |V (H ′

i)|. Taking a (⌈8kγ−2⌉− (k−1))-subsetC ′ ofC , we apply
Lemma 3.2 to {H ′

i}i∈C′ with e′ = (uk−1, . . . , u1) and f′ = (vk−1, . . . , v1), obtai-ning an H-rainbow path P ′ connecting e′ and f′ such that |V (P ′)| ≤ ⌈8kγ−2⌉.
Thus, P ∪ P ′ ∪ Pj+1 forms an H-rainbow path.

After connecting all paths in F ′ in a cyclic order, we obtain an H-rainbow
(k − 1)-cycle A with at most

(2k − 2)qn+

(⌈
8k

γ2

⌉
− (2k − 2)

)
qn ≤ γn

2

vertices. Finally, fix any H-rainbow family of paths P and any vertex set U in
V \V (A) with |P|, |U | ≤ κn. We may assume that U ∩ V (P) = ∅ as otherwise
we just replace U be U \ V (P). Since the paths in P are vertex disjoint, and
V (P), U and V (A) are pairwise disjoint, we infer that the number of colors in
Hnot used inP orA is at leastn−|V (A)|−(|V (P)| − (k − 1)|P|) ≥ n−|V (A)|−
(n− |V (A)| − |U | − (k − 1)|P|) = |U | + (k − 1)|P|. Thus, by the property of
F ′ and the fact that κ ≪ β, there is an H-rainbow cycle A′ with vertex set
V (A) ∪ U ∪ V (P) and C(A) ⊆ C(A′). □

3.3 . Rainbow path cover lemma

In this section, we prove our path cover lemma, Lemma 3.3. A k-graph H
is k-partite if there is a partition V (H) = V1 ∪ · · · ∪ Vk such that every edge of
H intersects each set Vi in precisely one vertex for i ∈ [k]. Given a k-partite k-
graphH on V1∪· · ·∪Vk and subsetsAi ⊂ Vi, i ∈ [k], we define eH(A1, . . . , Ak)to be the number of edges inH with one vertex in each Ai and the density of
H with respect to (A1, . . . , Ak) as

dH(A1, . . . , Ak) =
eH(A1,...,Ak)
|A1|···|Ak| .

We say that a k-partite k-graph H is ε-regular if for all Ai ⊆ Vi with |Ai| ≥
ε|Vi|, i ∈ [k], we have

|dH(A1, . . . , Ak)− dH(V1, . . . , Vk)| ≤ ε.

We give a straightforward generalization of the graph regularity lemma.
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Lemma 3.5 (Weak regularity lemma for hypergraphs [70]) For any k ≥ 2,
ε > 0 and t0 ∈ N, there exists T0 ∈ N such that the following holds. For every
k-graph H on sufficiently large n ∈ N vertices, there is, for some t ∈ N with
t0 ≤ t ≤ T0, a partition V (H) = V0 ∪ V1 ∪ · · · ∪ Vt such that |V0| ≤ εn, |V1| =
|V2| = · · · = |Vt| and for all but at most εtk sets {i1, . . . , ik} ∈

([t]
k

), the induced
k-partite k-graphH[Vi1 , . . . , Vik ] is ε-regular.

The partition in Lemma 3.5 is called an ε-regular partition of H . For an
ε-regular partition of H and d ≥ 0, we refer to the sets Vi, i ∈ [t] as clus-
ters and define the reduced hypergraph K = K(ε, d) with vertex set [t] and
{i1, . . . , ik} ∈

([t]
k

) being an edge if and only if (Vi1 , . . . , Vik) is ε-regular and
d(Vi1 , . . . , Vik) ≥ d. Next we provide a proof sketch of Lemma 3.3 and high-
light key ideas. We need the following definition.
Definition 3.3 A hypergraphH∗ is a (1, k)-graph ((1,k)-partite, in other words),
if there is a partition of V (H∗) = V1 ∪ V2 such that every edge contains exactlyone vertex of V1 and k vertices of V2.
Given a partition of V (H∗) = V1 ∪ V2, a (1, k − 1)-subset S of V (H∗) contains
one vertex in V1 and k − 1 vertices in V2. Let δ1,k−1(H

∗) := min{degH∗(S) :

S is a (1, k − 1)-subset of V (H∗)}.
Step 1. Construct an auxiliary (1, k)-graph. Given a (k, n, γ)-graph system
H = {Hi}i∈[n] on V , we construct the auxiliary hypergraphH∗ with vertex set
V (H∗) = [n] ∪ V and edge set E(H∗) = {{i} ∪ e| e ∈ E(Hi), i ∈ [n]}. By the
definition of (k, n, γ)-graph system, we have δk−1(Hi) ≥ (1/2 + γ)n for each
i ∈ [n]. Thus,H∗ is a (1, k)-graph with δ1,k−1(H

∗) ≥ (1/2 + γ)n.
Step 2. Obtain a reduced hypergraph K.With an initial partition [n] ∪ V of
V (H∗), we apply the Weak Regularity Lemma (Lemma 3.5) to H∗, and obtain
a partition V (H∗) = V ∗

0 ∪I1∪· · ·∪It1 ∪W1∪· · ·∪Wt2 where Ii ⊆ [n],Wj ⊆ V ,
|Ii| = |Wj | = m for every i ∈ [t1], j ∈ [t2], |V ∗

0 | ≤ 2εn. By moving at most
2εn/m clusters to V ∗

0 and renaming as V0 if necessary, we may assume that
t1 = t2, but |V0| ≤ 4εn, Ii ⊆ [n] and Wj ⊆ V for every i, j ∈ [t]. Let K
be the reduced hypergraph for the partition with vertex set I ∪ W where
I = {I1, . . . , It} and W = {W1, . . . ,Wt}. Note that K is a (1, k)-graph. We
will prove thatK almost ‘inherits’ the (1, k − 1)-degree condition ofH∗.
Step 3. Obtain many matchings in K. We equally split I into k parts Ii =
{I(i−1)t/k+1, . . . , Iit/k} for i ∈ [k]. For each Ii ∪ W , we randomly partition it
to balanced smaller pieces, namely, into parts of form I ′ ∪ W ′, where |I ′| =
Q/k and |W ′| = Q. Denote the family of vertex-disjoint (1, k)-subgraphs ofK
induced on all parts from the partition of Ii ∪W by Fi, i ∈ [k]. Note that the
size of Fi is t/Q. We shall see in Section 3.3 that almost all members in Fi are‘nice’ in the sense that they inherit the (1, k − 1)-degree condition of H∗. For
each such member in Fi, i ∈ [k], we use the following lemma, a combination
of Theorem 2.1 and Theorem 1.2 in [8], and obtain a perfect matching. This
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yields for each i ∈ [k] a large matching (in K), sayMi, by taking the union ofthe resulting matchings over all members in Fi.
Lemma 3.6 ([8, 27]) For every γ > 0, k ∈ N, the following holds for all suf-
ficiently large n ∈ kN. every (1, k)-graph H on [n/k] ∪ V with δ1,k−1(H) ≥
(1/2 + γ)n admits a perfect matching, where |V | = n.
Step 4. Embed the paths. Now back to the original (1, k)-graph H∗, each
matching edge in ⋃i∈[k]Mi can be blown up and we obtain an H-rainbow fa-
mily of paths. This is achieved in Lemma 3.8. However, note that distinct mat-
chingsMi,Mj may intersect on vertices inW . To overcome this, we build the
H-rainbow family of paths in H piece by piece by zooming in each matching
Mi one by one. The following proposition shows that the reduced hypergraphalmost inherits the minimum degree property of the original hypergraph.
Proposition 3.2 For any γ > 0, k ∈ N, there exists ε > 0 such that the following
holds for sufficiently large t ∈ N. Given a (1, k)-graph H∗ with δ1,k−1(H

∗) ≥
(1/2+γ)n and an ε-regular partition V (H∗) = V0 ∪ I1 ∪ · · · ∪ It ∪W1 ∪ · · · ∪Wt,letK := K(ε, γ/6) be the reduced hypergraph. The number of (1, k − 1)-subsets
S of V (K) violating degK(S) ≥ (1/2 + γ/4)t is at most k√εtk.
Proof. Let 1/t, ε ≪ γ. Note that the reduced hypergraph K(ε, γ/6) can be
written as the intersection of two hypergraphs D := D(γ/6) and R := R(ε)

both defined on the vertex set {I1, . . . , It,W1, . . . ,Wt} where• D consists of all sets {Ii0 ,Wi1 , . . . ,Wik} such that d(Ii0 ,Wi1 , . . . ,Wik) ≥
γ/6,

• R consists of all sets {Ii0 ,Wi1 , . . . ,Wik} such that H∗[Ii0 ,Wi1 , . . . ,Wik ]is ε-regular.
For any (1, k − 1)-set S, assuming S = {I1,W1,W2, . . . ,Wk−1}, we first showthat

degD(S) ≥
(
1

2
+
γ

2

)
t. (3.1)

Note that n/t ≥ m := |Wi| = |Ij | for i, j ∈ [t]. We now consider the number z
of edges inH∗which intersect each of Ii0 ,Wi1 , . . . ,Wik−1

in exactly one vertex.
If (3.1) does not hold, then from the condition on δ1,k−1(H

∗), we have
tmk+1

(
1

2
+

2γ

3

)
≤ mk

((
1

2
+ γ

)
n− (k − 1)m

)
≤ z (3.2)

<

(
1

2
+
γ

2

)
tmk+1 + t

γ

6
mk+1,

a contradiction.
Note that there are at most εtk+1 edges in R (the complement of R). Let

S be the family of all (1, k − 1)-element subsets S for which degR(S) >
√
εt.
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We have |S| ≤ k
√
εtk. This, together with (3.1) and ε ≪ γ, implies that all but

at most k√εtk (1, k − 1)-sets S ⊆ V (K) satisfy degK(S) ≥ degD(S) −
√
εt ≥

(12 + γ
4 )t. □

Ferber and Kwan [55] showed that if we randomly partition the vertex set
of a k-graph H , then the subgraph of H induced on almost all parts inherits
the minimum degree of H . Here we need such a result for our (1, k)-graphs,
whose proof follows almost identical as that in [55]. We include a proof for
completeness.
Lemma 3.7 (Partition lemma) Suppose that k ≥ 3, λ, γ > 0, there exist η > 0

and Q ∈ kN such that the following holds for t ∈ QN. If H∗ is a (1, k)-graph
on [ tk ] ∪ V with |V | = t where all but at most ηt

k

(
t

k−1

) of the (1, k − 1)-subsets of
V (H∗) have degree at least (1/2+γ)(t−k+1), then there is a partition V (H∗) =

S1 ∪ · · · ∪ St/Q such that all but at most λt/Q classes Si satisfy δ1,k−1(H
∗[Si]) ≥

(1/2 + γ/2)(Q − k + 1) where each Si consists of a Q/k-subset of [t/k] and a
Q-subset of V .
Proof. Let η ≪ 1/Q≪ λ, γ. Partition [t/k] into t/Q sets I1, . . . , It/Q randomly
such that |Ii| = Q/k for i ∈ [t/Q]. We randomly order V as v1, . . . , vt and let
Vi = {v(i−1)Q+1, . . . , viQ} for i ∈ [t/Q]. Let Si = Ii ∪ Vi for i ∈ [t/Q]. Note that
each Vi is a random subset of V . LetM∗ be the collection of (1, k−1)-subsets
with degree less than (1/2+ γ)(t− k+1) inH∗. Then |M∗| ≤ ηt

k

(
t

k−1

). We will
prove that for i ∈ [t/Q] and every (1, k − 1)-subset S of Si,

P
[
degH∗[Si](S) <

(
1

2
+
γ

2

)
(Q− k + 1)

]
≤ η + e−Ω(γ2Q). (3.3)

First note that the probability of the event S ∈ M∗, is at most η. Now let
AS be the event that S is not inM∗. The set Vi\S is equivalent to a uniformly
random set of size Q− (k− 1) in V \S. Let A denote the event that a vertex v
in Vi\S such that S ∪ {v} ∈ E(H∗). Note that

P[A|AS ] ≥
(12 + γ)(t− k + 1)

(
t−k
Q−k

)
(Q− (k − 1))

( t−(k−1)
Q−(k−1)

) =
1

2
+ γ,

then we have
E
[
degH∗[Si](S)|AS

]
≥ (

1

2
+ γ)(Q− k + 1).

Exchanging any element with an element outside Vi\S affects degH∗[Si](S) byat most 1. Fixing i, we apply Lemma 1.4 with S /∈ M∗, the probability that S
has degree less than (1/2 + γ/2)(Q− k + 1) inH∗[Si] is at most

2 exp

(
−
2
(γ
2 (Q− k + 1)

)2
(Q− k + 1)

)
= e−Ω(γ2Q).
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Thus, (3.3) is proved.
We say that Si is poor if some (1, k−1)-set in the induced graphH∗[Si] hasdegree less than (1/2 + γ/2)(Q − k + 1). By (3.3), P[Si is poor]≤ Q

k

(
Q

k−1

)
(η +

e−Ω(γ2Q)) for i ∈ [t/Q]. Let X be the number of poor classes in our partition,
then E[X] ≤ t

k

(
Q

k−1

)
(η + e−Ω(γ2Q)). By Markov’s inequality, we obtain

P
[
X ≥ λ

t

Q

]
≤ Q

λk

(
Q

k − 1

)(
η + e−Ω(γ2Q)

)
.

By the choice of η ≪ 1/Q≪ λ, γ, it follows that
Q

k

(
Q

k − 1

)(
η + e−Ω(γ2Q)

)
< λ,

and thus P[X ≥ λ t
Q ] < 1. Therefore, there is a partition V (H∗) = S1 ∪ · · · ∪

St/Q, where Si = Ii ∪ Vi, such that at least (1− λ)t/Q classes of them satisfy
δ1,k−1(H

∗[Si]) ≥ (1/2 + γ/2)(Q− k + 1). □
Given a (k + 1)-partite (k + 1)-graph H on V0 ∪ V1 ∪ · · · ∪ Vk, we call that a
(k − 1)-subset S of V (H) is legal if |S ∩ Vi| ≤ 1 for i ∈ [k] and |S ∩ V0| = 0. An
expanded pathP of length t inH is a (k+1)-graphwith vertex set {c1, . . . , ct}∪
{v1, . . . , vt+k−1} where {c1, . . . , ct} ⊆ V0, {v1, . . . , vt+k−1} ⊆ V1 ∪ · · · ∪ Vk andedge set {e1, . . . , et} such that ei = {ci, vi, . . . , vi+k−1}. Note that |V (P )∩Vj | =
⌊ t+k−1

k ⌋ or ⌈ t+k−1
k ⌉ for j ∈ [k].

Figure 3.3 – An expanded path in a 4-partite 4-graph (the vertices with thesame color are from the same part)

Lemma 3.8 Given c,m > 0 and k ≥ 2, every (k+ 1)-partite (k+ 1)-graphH on
V0 ∪ V1 ∪ · · · ∪ Vk with at most m vertices in each part and with at least cmk+1

edges contains an expanded path of at least cm/k vertices.
Proof. There are at most k ·mk−1 legal (k−1)-subsets of V (H). We proceed
the following process iteratively. If there is a legal (k − 1)-subset S, which is
contained in less than cm2/k edges in the current hypergraph, then we delete
all the edges containing S. The process terminates at a nonempty hypergraph
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H0 since less than kmk−1(cm2/k) = cmk+1 edges have been deleted in total.
InH0, every legal (k − 1)-subset has degree either zero or at least cm2/k.

Let P be a longest expanded path in H0 with vertex set {c1, . . . , ct} ∪
{v1, . . . , vt+k−1} for some integer t. We have |V (P )∩V0| = t and |V (P )∩Vi| ≤ t

since each edge contains exactly one vertex of Vi for each i ∈ [k]. Consider
St = {vt+1, . . . , vt+k−1}, which is a legal (k− 1)-subset of V (H). Furthermore,
degH0

(St) ≥ cm2/k since St has positive degree. All the edges containing Stmust intersect (V (P ) ∩ V0) ∪ (V (P ) ∩ Vj) by the maximality of P , where the
index j > 0 such that St ∩ Vj = ∅. Thus, we have

cm2

k
≤ |V (P ) ∩ V0| · |Vj |+ |V (P ) ∩ Vj | · |V0| ≤ 2tm, (3.4)

which implies t ≥ cm/(2k). Note that |V (P )| = t+ t+k−1 and thus |V (P )| ≥
cm/k. □

The next result enables us to find a family of long vertex-disjoint expanded
paths which covers almost all vertices in V0 in an ε-regular (k+1)-partite (k+
1)-graph.
Lemma 3.9 For anyα > 0, k ∈ N, there exists ε > 0 such that the following holds
for sufficiently large m ∈ N. Suppose H is an ε-regular (k + 1)-partite (k + 1)-
graph with density at least α and V (H) = V0 ∪ V1 ∪ · · · ∪ Vk where |V0| = m,
m/k ≤ |Vi| ≤ m for i ∈ [k]. Then we obtain thatH contains a family P of vertex-
disjoint expanded paths such that for each P ∈ P , |V (P )| ≥ ε(α − ε)m/k and∑

P∈P |V (P ) ∩ V0| ≥ (1− 2kε)m.
Proof. Let 1/m≪ ε≪ α, 1/k. We call an expanded path P good if |V (P )| ≥
ε(α− ε)m/k. Let P = {P1, . . . , Pp} be a largest family of good, vertex-disjoint
expanded paths and |V (Pi) ∩ V0| = ti for i ∈ [p]. Note that |V (Pi) ∩ Vj | =
⌊ ti+k−1

k ⌋ or ⌈ ti+k−1
k ⌉ for i ∈ [p] and j ∈ [k]. Suppose to the contrary that P

covers less than (1− 2kε)m vertices of V0 and thus∑i∈[p] ti < (1− 2kε)m. Let
W = V (H)−

⋃
P∈P V (P ) be the set of vertices uncovered byP . Then we have

|W ∩ V0| ≥ 2kεm. Hence, by the observation that |V (Pi) ∩ Vj | ≤ ⌈ ti+k−1
k ⌉ ≤

ti
k + 2 for each i ∈ [p], j ∈ [k] and the fact that p = |P| ≤ (k + 1)m/(ε(α −
ε)m/k) = k(k + 1)(ε(α− ε))−1, we have that
|W∩Vi| = |Vi|−|Vi∩V (P)| ≥ m

k
−
∑
i∈[p]

(
ti
k
+ 2

)
≥ m

k
−(1− 2kε)m

k
−2p ≥ εm+1.

LetWi ⊆W ∩ Vi, i ∈ {0, 1, . . . , k} be such that
|W0| = |W1| = · · · = |Wk| = εm ≥ ε|Vi|.

Finally, let Ĥ be the subhypergraph ofH induced on the vertex setW0 ∪W1 ∪
· · · ∪Wk. SinceH is ε-regular, we have

dH(W0,W1, . . . ,Wk) ≥ dH(V0, V1, . . . , Vk)− ε ≥ α− ε,
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or equivalently,
|E(Ĥ)| ≥ (α− ε)(εm)k+1,

and then Lemma 3.8 implies that there is an expanded path in Ĥ on at least
ε(α− ε)m/k vertices, contrary to the maximality of P . □
Proof. [Proof of Lemma 3.3] We choose the following parameters

1/n≪ 1/T0 ≪ ε, 1/t0 ≪ 1/Q≪ λ≪ δ, γ, 1/k.

Given a (k, n, γ)-graph system H = {Hi}i∈[n] on V , we construct a (1, k)-graph
H∗ with vertex set [n] ∪ V and edge set {{i} ∪ e : e ∈ E(Hi), i ∈ [n]}. With
an initial partition [n] ∪ V of V (H∗), we apply Lemma 3.5 toH∗, and obtain a
partition V (H∗) = V ∗

0 ∪ I1 ∪ · · · ∪ It1 ∪W1 ∪ · · · ∪Wt2 where t0 ≤ t1, t2 ≤ T0,
|Ii| = |Wj | = m for i ∈ [t1] and j ∈ [t2], |V ∗

0 | ≤ 2εn. By moving at most 2εn/m
clusters to V ∗

0 and renaming if necessary, we obtain a partition V (H∗) = V0 ∪
I1 ∪ · · · ∪ It ∪W1 ∪ · · · ∪Wt, where t = min{t1, t2}, |V0| ≤ 4εn, Ii ⊆ [n] and
Wj ⊆ V for every i, j ∈ [t]. Let L =

⌈
3kT0

ε(γ/6−ε)

⌉.
Let K := K(ε, γ/6) be the (1, k)-partite reduced hypergraph on I ∪ W

where I = {I1, . . . , It} and W = {W1, . . . ,Wt}. We get a family of (1, k)-
graphsF = {F1, . . . , Fk}where Fi = K[{I(i−1)t/k+1, . . . , Iit/k}∪W] for i ∈ [k].

For each i ∈ [k], applying Proposition 3.2 and Lemma 3.7 to Fi with η =

k
√
ε, we obtain a partition V (Fi) = Si,1∪· · ·∪Si,t/Q such that eachSi,j consistsofQ/k vertices in I andQ vertices inW , and all but at most λt/Q classes Si,jsatisfy δ1,k−1(Fi[Si,j ]) ≥ (1/2 + γ/2)(Q− k + 1) where j ∈ [t/Q]. We call such

classes Si,j nice. Denote by Si the set of indices j such that Si,j is nice. Then
|Si| ≥ (1 − λ)t/Q. Applying Lemma 3.6 to each Fi[Si,ℓ] for i ∈ [k], ℓ ∈ Si, weobtain a perfect matchingMi,ℓ. LetMi =

⋃
ℓ∈Si

Mi,ℓ andM =
⋃

i∈[k]Mi. Notethat eachMi is a matching in Fi. For each Wj ∈ W , let pj be the number of
edges inM that containWj , j ∈ [t]. Then∑j∈[t] pj ≥ k ·(1−λ) t

Q ·Q = (1−λ)kt.
Next, we proceed the following process.

Path Embedding Process :
Given H∗, I = {I1, . . . , It}, W = {W1, . . . ,Wt}, M1, . . . ,Mk, we initialize

W ∗
j :=Wj for j ∈ [t] and i := 1.

Step 1. For each e ∈Mi, letHe be the subgraph ofH∗ induced on the corres-
ponding clusters constituting the edge e, we denote by Ie,W ∗

j1(e)
, . . . ,W ∗

jk(e)where Ie ∈ I.
Step 2. Applying Lemma 3.9 to each He, e ∈ Mi with α = γ/6, we obtain a
family Pe of vertex-disjoint expanded paths that covers all but at most 2kεm
vertices in Ie and for each P ∈ Pe, |V (P )| ≥ ε(γ/6− ε)m/k.

Step 3. Let Pi =
⋃

j≤i

⋃
e∈Mj

Pe and updateW ∗
j by deleting the vertices used

in Pi for j ∈ [t].
Step 4. Update i := i + 1 and if i ≤ k, go to Step 1 ; otherwise terminate the
process.
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After the process, we obtain P := Pk. It follows from the definition of pjthat the size of uncovered vertices of eachWj is
|W ∗

j | = m−
∑

Wj∈e,e∈M
|Pe∩Wj | ≤ m−pj⌊

(1− 2kε)m+ k − 1

k
⌋ ≤ m−pj

(1− 2kε)m

k
.

Recall that∑j∈[t] pj ≥ (1− λ)kt. We obtain that P covers all but
|V0|+

∑
j∈[t]

|W ∗
j | ≤ 4εn+

∑
j∈[t]

(
m− pj

(1− 2kε)m

k

)
≤ (4(k + 1)ε+ λ)n ≤ δn

vertices of V . Moreover, since |V (P )| ≥ ε( γ
6
−ε)

k ⌊nt ⌋ for each path P ∈ P and
t ≤ T0, we have |P| < 2n/(

ε( γ
6
−ε)

k ⌊nt ⌋) < L. Finally, observe that P gives rise
to an H-rainbow family of paths which completes the proof. □

Figure 3.4 – The proof sketch of Lemma 3.3

3.4 . The connecting lemma

In this section, we prove Lemma 3.2. The idea of the proof is to grow tree-
like structures (called cascades) from both designated ends e1 and e2 untilthey meet, forming the H-rainbow path as desired. Our proof follows almost
identical as that in [106, 137]. Before we describe the cascades, it is convenient
to introduce the following notation. For two sequences of vertices

ω1 = (v1, . . . , vr, w1, . . . , ws) and ω2 = (w1, . . . , ws, u1, . . . , ut)
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where r, t ≥ 1, s ≥ 0 and all vertices are distinct, we define their concatenation
as

ω1ω2 = (v1, . . . , vr, w1, . . . , ws, u1, . . . , ut).

This operation can be iterated. For instance, if ω1 = (w1, . . . , wk−2), ω2 =

(w2, . . . , wk−1) and ω3 = (w3, . . . , wk) where all wi are distinct, then ω1ω2ω3 =

(w1, . . . , wk). We could write ω1ω2wk instead of ω1ω2ω3. Let e0 = (v1, . . . , vk−1)be a given (k − 1)-tuple of vertices. We will define the rainbow e0-cascade asan auxiliary sequence of bipartite graphs Gj , j = 1, 2, . . ., with bipartitions
(Aj−1, Aj), whose vertices are (k−2)-tuples of the vertices ofH and the edges
correspond to some (k− 1)-tuples of the vertices ofH . Each node f ∈ Aj be-longs to two graphs Gj and Gj+1. Its neighbors in Gj belongs to Aj−1, whileits neighbors in Gj+1 belongs to Aj+1. For a node f = (v1, . . . , vk−2) of therainbow cascade, the vertex v1 is called the prefix, while vk−2 is called the
suffix of f .

We define the rainbow cascade recursively as follows. Let e0 = (v1, . . . ,

vk−1), f0 = (v2, . . . , vk−1) and A0 = {f0}. For every vertex v /∈ e0, we includethe node g = (v3, . . . , vk−1, v) in the setA1 if and only if v1f0g = e0v ∈ Hc1 for
c1 ∈ [c]. The graphG1 is the star with center f0 and the arms leading to all the
nodes g ∈ A1.Further, let A2 be the set of all (k − 2)-tuples h such that for some node
g ∈ A1 we have f0gh ∈ Hc2 where c2 ̸= c1 and c2 ∈ [c]. Note that each h ∈ A2is obtained from a node g ∈ A1 by dropping the prefix of g and adding a newsuffix u, we denote such node by gu. The graphG2 consists of all edges {g, h}where g ∈ A1, h ∈ A2 and f0gh ∈ Hc2 , it is equal to sayG2 consists of all edges
{g, gu} where f0gu ∈ Hc2 .For j = 3, . . . , k − 2, we similarly define
Aj = {h :∃ f ∈ Aj−2, g ∈ Aj−1 such that {f, g} ∈ Gj−1, fgh ∈ Hcj where

cj ̸= cℓ forℓ ∈ [j − 1]}

andGj as the bipartite graph with bipartition (Aj−1, Aj) and the edge set
{{g, h} :∃ f ∈ Aj−2 such that {f, g} ∈ Gj−1 and fgh ∈ Hcj , where cj ̸= cℓ

for ℓ ∈ [j − 1]}.

In other words, Aj and Gj correspond to the sets of (k − 2)-tuples and
(k − 1)-tuples of the vertices of V which can be reached from e0 in j steps byan H-rainbow path.

First refinement. Having defined Aj and Gj for j ≤ k, beginning with
j = k − 1 we change the recursive mechanism by getting rid of the nodes in
Aj with too small degree in Gj . We define auxiliary
A′

k−1 = {h :∃ f ∈ Ak−3, g ∈ Ak−2 such that {f, g} ∈ Gk−2, fgh ∈ Hck−1
where

ck−1 ̸= cℓ for ℓ ∈ [k − 2]}
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and G′
k−1 as the bipartite graph with bipartition (Ak−2, A

′
k−1) and the edge

set
{{g, h} :∃ f ∈ Ak−3 such that {f, g} ∈ Gk−2 and fgh ∈ Hck−1

where ck−1 ̸= cℓ

for ℓ ∈ [k − 2]}.

Then letAk−1 be the subset ofA′
k−1 consisting of all nodeshwithdegG′

k−1
(h) ≥

√
n and set Gk−1 = G′

k−1[Ak−2 ∪Ak−1].
Second refinement. For j ≥ k, to form an edge {g, h} of Gj we will nowrequire not one but many nodes f ∈ Aj−2 to fulfil the above definition.Setm = ⌈n1/4⌉. Having definedGj−1, letA′

j = {h : ∃ f1, . . . , fm ∈ Aj−2, g ∈
Aj−1 such that for all i ∈ [m], {fi, g} ∈ Gj−1 and figh ∈ Hcj where cj ̸=
cℓ for ℓ ∈ [j − 1]} and let G′

j be the bipartite graph with bipartition (Aj−1, A
′
j)and the edge set {{g, h} : ∃f1, . . . , fm ∈ Aj−2 such that for all i ∈ [m], {fi, g} ∈

Gj−1 and figh ∈ Hcj where cj ̸= cℓ for ℓ ∈ [j − 1]}.
Finally, letAj be the subset ofA′

j consisting of all nodes hwith degG′
j
(h) ≥

√
n and letGj = G′

j [Aj−1 ∪Aj ]. The sequence (Gj), j = 1, 2, . . . ,will be called
the rainbow e0-cascade.
Claim 3.1 ([137]) For every j ≥ k − 1 and every edge {g, h} of Gj where g =

(w1, . . . , wk−2) ∈ Aj−1, h = (w2, . . . , wk−1) ∈ Aj and (g ∪ h) ∩ e0 = ∅ and
for every set of vertices W ⊂ V \ (g ∪ h ∪ e0) such that j + |W | ≤ n1/4,
there is an H-rainbow path P of length j which connects (wk−1, . . . , w1) with
e0 = (v1, . . . , vk−1) and V (P ) ∩W = ∅.
Degrees. Recall that G′

j = Gj for j ≤ k − 2. For a node g ∈ Aj , we set
d+(g) = degG′

j+1
(g) and d−(g) = degGj

(g)

for the forward and backward degree of g in the cascade. Note that in the
definition of d+(g)we consider the forward degree before some small degree
vertices of A′

j+1 are removed. The reason is that we have no control over the
effects of the removal on individual forward degrees. On the other hand, for
all f ∈ Aj , degGj

(f) = degG′
j
(f), so the backward degree is unaffected unless

the node is removed. It is trivial that d−(g), d+(g) ≤ n − k + 2. Observe that
G1 ∪ · · · ∪Gk−2 is a tree, thus, d−(g) = 1 for all g ∈ Aj , j = 1, . . . , k− 2. Recall
that for j ≥ k− 1 the graphGj is obtained fromG′

j by removing nodes g with
degG′

j
(g) <

√
n. Hence our construction guarantees that for all g ∈ Aj , j ≥

k − 1, we have d−(g) ≥ √
n.

For all j ≤ k − 2 and all g ∈ Aj ,
d+(g) ≥

(
1

2
+ γ

)
n, (3.5)

since there are at least (12 + γ)n vertices u such that fgu ∈ Hcj+1 where f isthe neighbor of g inAj−1. Each such vertex u corresponds to a neighbor gu of
g in Aj+1.
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For j ≥ k, the second refinement affects and no lower bound on d+(g)
is obvious. However, the lower bound d−(g) ≥

√
n introduced by the first

refinement maintains.
Growth. By inequality (3.5), for each j ∈ [k − 2], we have

|Gj | = |Aj | ≥
(
1

2
+ γ

)j

nj , (3.6)

|Gk−1| ≥
(
1

2
+ γ

)k−1

nk−1. (3.7)
Call a node f ∈ Aj small if d−(f) < 1

2n and denote by Sj the subset of Ajconsisting of the small nodes. Assume for simplicity that 1/ε2 is an integer.
Claim 3.2 ([137]) There exists an index j0, k− 1 ≤ j0 ≤ k− 1+ (k− 1)/γ2 such
that for all j ∈ [j0, j0 + k − 2] we have |Sj | ≤ 2γnk−2.
Claim 3.3 ([137]) Let

kγ2
2−k

< 2−k

and let j0 be as in Claim 3.2. Then |Aj0+k−2\Sj0+k−2| ≥ (n− k+2− γ2
2−k

n)k−2.
Proof. [The proof of Lemma 3.2] Let γ0 satisfy the condition in Claim 3.3, i.e.
γ0 := γ2

2−k and kγ0 < 2−k. Given two disjoint (k− 1)-tuples of vertices e1 and
e2, we build the rainbow e1-cascade and the rainbow e2-cascade, with the setsof nodes denoted by Aj and Bj .Let j1 = j0 + k − 2, where j0 is the index guaranteed by Claim 3.2 for the
rainbow e1-cascade. Then by Claim 3.3, with sufficiently large n, using Ber-
noulli inequality, we have

|Aj1\Sj1 | ≥ (n− 2γ0n)
k−2 > (1− 2kγ0)n

k−2.

On the other hand by inequality (3.6) for j = k−2, we have |Bk−2| > 22−knk−2,
|Bk−2 ∩ (Aj1\Sj1)| > (22−k − 2kγ0)n

k−2 ≥
(n
2

)k−2
.

Hence, there is a not small node g = (u1, . . . , uk−2) ∈ Aj1 such that g ∩ (e1 ∪
e2) = ∅ and g′ = (uk−2, . . . , u1) ∈ Bk−2.Let e2 = (w1, . . . , wk−1), S = {u1, . . . , uk−2, wk−1} and V0 be the set of
prefixes v of the neighbors f ∈ Aj1−1 of g. Since g′ = (uk−2, . . . , u1) ∈ Bk−2,we obtain thatw1 · · ·wk−1uk−2 · · ·u1 is anH-rainbowpath. By Fact 3.1, we have
|NHcj1

(S) ∩ V0| > γn, and thus, there is at least one vertex v0 /∈ e2 such that
{v0, u1, . . . , uk−2, wk−1} ∈ Hcj1

.
LetP1 = e1 · · · v0u1 · · ·uk−2 be anH-rainbowpath of length j1which avoidsthe vertices of e2. The existence of P1 follows from Claim 3.1 withW = e2. The
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pathP obtained fromP1 by adding the segment (wk−1, . . . , w1) and the “hook-up” edge {v0, u1, . . . , uk−2, wk−1}, is the H-rainbow path connecting e1 and e2as desired.
By the bound on j0 established in Claim 3.2 and since γ ≤ 1/2,

|V (P )| = j1 + 2(k − 1) = j0 + 3k − 4 ≤ k − 1

γ2
+ 4k − 5 ≤ 2k

γ2
.

□

Figure 3.5 – An H-rainbow path connecting two (k − 1)-tuples e1 and e2

3.5 . Concluding remarks

Inspiredby a series of recent successes on rainbowsettings ofmatchings [110,
109, 112, 113] and Hamilton cycles [77] , we suspect the threshold for rainbow
Hamilton cycle in a k-graph system is the same with the threshold for Hamil-
ton cycle in a single k-graph.
Conjecture 3.1 Suppose H = {Hi}i∈[n] is an n-vertex k-graph system on V , n ≥
k + 1 ≥ 4, such that δk−1(Hi) ≥ ⌊(n − k + 3)/2⌋, then there is an H-rainbow
Hamilton cycle.
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On the other hand, the problem of giving the sufficient condition for the
rainbow Hamilton ℓ-cycles, ℓ ∈ [k − 2], is still open.
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4 - RainbowHamilton cycles inhypergraph sys-
tems with minimum (k − 2)-degree

Lang and Sanhueza-Matamala [105], Polcyn, Reiher, Rödl and Schülke [129]
independently proved that for any γ > 0 and sufficiently large n ∈ N , every n-
vertex k-graph with δk−2(H) ≥ (5/9+γ)

(
n
2

) contains a Hamilton cycle. Gupta,
Hamann, Müyesser, Parczyk, and Sgueglia [63] mentioned the following pro-
blem as “there is a well-known (uncolored) Dirac-type result whose rainbow
version is missing” and “it would be an interesting challenge to obtain this
result” : Given a 3-graph system H = {Hi}i∈[n] with minimum vertex degree
condition of each Hi, does H admit a rainbow Hamilton cycle? In this chap-
ter, we develop the sequentially Hamilton framework, which generalized the
Hamilton framework in [105], and give a general result as follows.
Theorem 4.1 For every k ≥ 3, γ > 0, there exists n0 such that the following holdsfor n ≥ n0. Given a k-graph system H = {Hi}i∈[n], if δk−2(Hi) ≥ (5/9+γ)

(
n
2

) for
i ∈ [n], then there exists an H-rainbow Hamilton cycle.

4.1 . Notation and preliminaries

We call a hypergraph H a (1, k)-graph if V (H) can be partitioned into V1and V2 such that every edge contains exactly one vertex of V1 and k vertices of
V2. Given a partition V (H) = V1 ∪ V2, a (1, d)-subset S of V (H) contains one
vertex in V1 and d vertices in V2. Let δ1,d(H) := min{degH(S) : S is a (1, d)-
subset of V (H)} for d ∈ [k− 1]. The relative degree deg(S) to be deg(S)/(n−d

k−d

).
The minimum relative (1, d)-degree of a (1, k)-graph H , written by δ1,d(H), is
the minimum of deg(S) over all (1, d)-subsets S of V (H).

A k-graphH is k-partite if V (H) can be partitioned into k parts V1, . . . , Vksuch that every edge consists of exactly one vertex from each class. Given a
(k+1)-partite (k+1)-graphH with V (H) = V0∪V1∪· · ·∪Vk. A (k+1)-uniform
sequential path P of length t in H is a (k + 1)-graph with vertex set V (P ) =

C(P ) ∪ I(P ) where C(P ) = {c1, . . . , ct−k+1} ⊆ V0, I(P ) = {v1, . . . , vt} ⊆
V1 ∪ · · · ∪ Vk and edge set {e1, . . . , et−k+1} such that ei = {ci, vi, . . . , vi+k−1}for i ∈ [t − k + 1]. Denote the length of P by ℓ(P ). We call c1, . . . , ct−k+1the colors of P and v1, . . . , vt the points of P . Furthermore, if (v1, . . . , vt) is acyclically ordered set, then we call this sequential path a sequential cycle. A
(k + 1)-uniform sequential walk is an ordered set of points with an ordered
set of colors such that the set of the ith k consecutive points along with the
ith color forms an edge. In particular, if the order is cyclical, then we call it
sequentially closed walk. Note that the points, edges and colors in a sequential
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walk are allowed to be repeated. The length of a sequential walk is its number
of points.

Before we give the proof of Theorem 4.1, we use the following similar de-
finitions with [105].
Definition 4.1 (Sequentially Hamilton cycle threshold) Theminimum (1, k−
2)-degree threshold for sequentially Hamilton cycles, denoted by thck−2(k), is thesmallest number δ > 0 such that, for every ε > 0, there exists an n0 ∈ N such that
every (1, k)-graph H on [n] ∪ V with minimum degree δ1,k−2(H) ≥ (δ + ε)

(
n
2

)
contains a sequentially Hamilton cycle where |V | = n ≥ n0.
Definition 4.2 (Sequentially tight connectivity) A subgraph H ′ of a (1, k)-
graphH is sequentially tightly connected, if any two edges ofH ′ can be connected
by a sequential walk. A sequentially tight component of H is an edge maximal
sequentially tightly connected subgraph.

Given b : V (H) → [0, 1], we define the b-fractional matching to be a func-
tionw :E(H) → [0, 1] such that∑e:v∈ew(e) ≤ b(v) for every vertex v ∈ V (H).
Moreover, if the equality holds, then we call w perfect. Denote the maximum
size of a b-fractional matching by ν(H,b) = maxw

∑
e∈E(H)w(e) wherew is a

b-fractional matching. It is well-known that perfect matchings are closely rela-
ted to its fractional counterpart. In particular, when b(v) = 1 for every vertex
v ∈ V (H), the b-fractional matching is called fractional matching. The density
of a b-fractional matching is ∑e∈E(H)w(e)/|V (H)|. Besides, we require the
following characterization. Given a k-graphH , we say thatH is γ-robustly mat-
chable if the following holds. For every vertex weight b : V (H) → [1 − γ, 1],
there is an edge weightw : E(H) → [0, 1] with∑e:v∈ew(e) = b(v)/(k− 1) for
every vertex v ∈ V (H). Note that a γ-robustly matchable k-graph H admits
a b-fractional matching of size∑v∈V (H) b(v)/k(k− 1) for every vertex weigh-
ting b : V (H) → [1− γ, 1]. The following definition plays an important role in
our proof.
Definition 4.3 (Link graph) Given ℓ ∈ [0, k − 1], a (1, k)-graph H on V (H) =

[n] ∪ V where |V | = n and a set S of (1, ℓ)-subset of V (H), we define the link
(k − ℓ)-graph of S in H as the graph LH(S) with vertex set V and edge set {X :

X ∪ S ∈ E(H)}. IfH is clear, then we simply write L(S).
Let H = (V,E) be a k-graph, V ′ ⊆ V , an induced subgraph H[V ′] of a k-

graph H is a k-graph with vertex set V ′ and edge set E′ where each edge is
precisely the edge of H consisting of k vertices in V ′. We usually denote H ′

byH[V ′].
Definition 4.4 (Sequentially Hamilton framework) Letα, γ, δ be positive co-
nstants. Suppose R is a (1, k)-graph on [t] ∪ V where |V | = t, we call a subgraph
H of R an (α, γ, δ)-sequentially Hamilton framework, if H has the following pro-
perties.
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(F1) Hi := H[{i} ∪ V ] is sequentially tightly connected for i ∈ [t],
(F2) Hi contains a sequentially closed walk of length 1 mod k for i ∈ [t],
(F3) HWi := H[[t(i− 1)/k+ 1, ti/k]∪ V ] is γ-robustly matchable for i ∈ [k],
(F4) For every color i ∈ [t], there are at least (1− α)t points v ∈ V such that
{i, v} has relative (1, 1)-degree at least 1− δ + γ,

(F5) LH({i}) and LH({j}) intersect in an edge for each i, j ∈ [t].
Wewrite x≪ y to mean that for any y ∈ (0, 1], there exists an x0 ∈ (0, 1) such
that for all x ≤ x0, the subsequent statements hold. Hierarchies with more
constants are defined similarly to be read from right to left.
Definition 4.5 (Sequentially Hamilton framework threshold) Theminimum
(1, k − 2)-degree threshold for (1, k)-uniform sequentially Hamilton framework,
denoted by rhfk−2(k), is the smallest value of δ such that the following holds.Suppose ε, α, γ, µ > 0 and t ∈ N with 1/t ≪ ε ≪ α ≪ γ ≪ µ. If R is a
(1, k)-graph on [t] ∪ V where |V | = t, with minimum relative (1, k − 2)-degree at
least δ+µ and a set I ⊆ E(R) of at most εt(tk) perturbed edges, thenR contains
an (α, γ, δ)-sequentially Hamilton frameworkH that avoids the edges of I .

We transform the problem of bounding the sequentially Hamilton cycle
threshold to bound the sequentially Hamilton framework threshold.
Theorem 4.2 (Framework Theorem) For k ≥ 3, we have thck−2(k) ≤ rhfk−2(k).

For any j ∈ [k], let the shadow graph ∂j(H) of (1, k)-graph H at level j be
the (1, j)-graph on [n]∪ V whose edges are (1, j)-sets contained in the edges
ofH .
Definition 4.6 (Vicinity) Given a (1, k)-graph R on [t] ∪ V , we say that Ci =

{CS ⊆ L(S) : S ∈ ∂k−2(R) and i ∈ S} for each i ∈ [t] is a (k − 2)-vicinity. We
define the (1, k)-graph HCi generated by Ci as the subgraph of R with vertex set
V (H) = {i} ∪ V and edge set

E(H) =
⋃

i∈S,S∈∂k−2(R)

{A ∪ S : A ∈ CS}.

Besides, we need the following structures.
Definition 4.7 (Switcher) A switcher in a graphG is an edge ab such that a and
b shares a common neighbor in G.

Note that a switcher together with its common neighbor generates a tri-
angle.
Definition 4.8 (Arc) Let Ri be a (1, k)-graph on {i} ∪ V with (k − 2)-vicinity
Ci = {CS : S ∈ ∂k−2(Ri)}. We say that a (1, k + 1)-tuple (i, v1, . . . , vk+1) is anarc for Ci if the following holds.
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• {i, v1, . . . , vk−2} ∈ ∂k−2(Ri) with {vk−1, vk} ∈ C{i,v1,...,vk−2}.• {i, v2, . . . , vk−1} ∈ ∂k−2(Ri) with {vk, vk+1} ∈ C{i,v2,...,vk−1}.
Definition 4.9 (Sequentially Hamilton vicinity) Let γ, δ > 0. Suppose that
R is a (1, k)-graph on [t] ∪ V , let Ri := R[{i} ∪ V ]. We say that a family C =

{Ci : i ∈ [t]} of (k − 2)-vicinities where Ci = {CS : S ∈ ∂k−2(Ri)} is (γ, δ)-sequentially Hamilton if for any S, S′ ∈ ∂k−2(Ri) and T ∈ ∂k−2(Rj) where i ̸= j,
the followings hold,

(V1) CS is tightly connected,
(V2) CS and CS′ intersect in an edge,
(V3) CS has a switcher and the vicinity Ci has an arc for i ∈ [t],
(V4) CS has a fractional matching of density (1 + 1/k)(1/(k + 1) + γ),
(V5) CS has edge density at least 1− δ + γ,
(V6) CS and CT intersect in an edge.

Definition 4.10 (Perturbed degree) Let α, δ > 0. We say that a (1, k)-graph
R has α-perturbed minimum relative (1, k − 2)-degree at least δ if the followings
hold for j ∈ [k − 2].

(P1) every edge of ∂j(R) has relative degree at least δ in R,(P2) ∂j(R) has edge density at most α, where ∂j(R) denotes the complementof ∂j(R),(P3) each (1, j − 1)-tuple of ∂j−1(R) has relative degree less than α in ∂j(R).
Definition 4.11 (Sequentially Hamilton vicinity threshold) Theminimum (1,

k − 2)-degree threshold for (1, k)-uniform sequentially Hamilton vicinities, deno-
ted by rhvk−2(k), is the smallest value δ > 0 such that the following holds. Let
α, γ, µ > 0, t ∈ N with 1/t ≪ α ≪ γ ≪ µ and R be a (1, k)-graph on [t] ∪ V .
If each Ri := R[{i} ∪ V ] has α-perturbed minimum relative (1, k − 2)-degree
at least δ + µ for i ∈ [t], then R admits a family of (γ, δ)-sequentially Hamilton
(k − 2)-vicinities.
Theorem 4.3 (Vicinity Theorem) For k ≥ 3, rhfk−2(k) ≤ rhvk−2(k).

Combining Theorem 4.3 with Theorem 4.2, we just need to prove the fol-
lowing theorem, and we can obtain Theorem 4.1.
Theorem 4.4 For k ≥ 3, rhvk−2(k) ≤ 5/9.
We use the following concentration inequalities.

A hypergraphH = (V,E) is a complex if its edge set is down-closed, mea-
ning that whenever e ∈ E and e′ ⊆ e, we have e′ ∈ E. A k-complex is a
complex where all edges have size at most k. Given a complexH, we useH(i)

to denote the i-graph obtained by taking all vertices ofH and edges of size i.
Denote the number of edges of size i inH by ei(H).
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Let P partition a vertex set V into parts V1, . . . , Vs. Then we say that a
subset S ⊆ V is P-partite if |S ∩ Vi| ≤ 1 for every i ∈ [s]. Similarly, we say
that hypergraph H is P-partite if all of its edges are P-partite. In this case we
refer to the parts of P as the vertex class of H. We say that a hypergraph H
is s-partite if there is some partition P of V (H) into s parts for which H is
P-partite.

LetH be aP-partite complex. Then for anyA ⊆ [s]wewrite VA for⋃i∈A Vi.The index of a P-partite set S ⊆ V is i(S) := {i ∈ [s] : |S ∩ Vi| = 1}. We write
HA to denote the collection of edges in H with index A, that is, HA can be
regarded as an |A|-partite |A|-graph on vertex set VA. Similarly, ifX is a j-set
of indexes of vertex classes ofH we writeHX for the j-partite j-uniform sub-
graph ofH(j) induced by⋃i∈X Vi. We writeHX< for the j-partite hypergraph
with vertex set⋃i∈VX

Vi and edge set⋃X′⊂X HX′ .
Let Hi be any i-partite i-graph and Hi−1 be any i-partite (i − 1)-graph

on a common vertex set V partitioned into i common vertex classes. Denote
Ki(Hi−1) by the i-partite i-graph on V whose edges are all i-sets which are
supported on Hi−1(i.e. induce a copy of complete (i − 1)-graph Ki−1

i on i
vertices inHi−1). The density of Hi with respect toHi−1 is defined to be

d(Hi|Hi−1) :=
|Ki(Hi−1) ∩Hi|

|Ki(Hi−1)|

if |Ki(Hi−1)| > 0. For convenience, we take d(Hi|Hi−1) := 0 if |Ki(Hi−1)| =
0. When Hi−1 is clear from the context, we simply refer d(Hi|Hi−1) as therelative density of Hi. More generally, if Q := (Q1, . . . , Qr) is a collection of r
not necessarily disjoint subgraphs ofHi−1, we define

Ki(Q) :=
r⋃

j=1

Ki(Qj)

and
d(Hi|Q) :=

|Ki(Q) ∩Hi|
|Ki(Q)|

if |Ki(Q)| > 0. Similarly, we take d(Hi|Q) := 0 if |Ki(Q)| = 0. We say that Hiis (di, ε, r)-regular with respect to Hi−1 if we have d(Hi|Q) = di ± ε for every
r-set Q of subgraphs of Hi−1 such that |Ki(Q)| > ε|Ki(Hi−1)|. We refer to
(di, ε, 1)-regularity simply as (di, ε)-regularity. We say that Hi is (ε, r)-regularwith respect toHi−1 tomean that there exists some di for whichHi is (di, ε, r)-regular with respect to Hi−1. Given an i-graph G whose vertex set contains
that ofHi−1, we say thatG is (di, ε, r)-regular with respect toHi−1 if the i-partitesubgraph of G induced by the vertex classes of Hi−1 is (di, ε, r)-regular withrespect to Hi−1. Similarly, when Hi−1 is clear from the context, we refer to
the relative density of this i-partite subgraph ofG with respect toHi−1 as therelative density of G.
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Now let H be an s-partite k-complex on vertex classes V1, . . . , Vs, where
s ≥ k ≥ 3. Since H is a complex, if e ∈ H(i) for some i ∈ [2, k], then the
vertices of e induce a copy of Ki−1

i in H(i−1). This means that for any index
A ∈

(
[s]
i

), the density d(H(i)[VA]|H(i−1)[VA]) can be regarded as the propor-
tion of ‘possible edges’ of H(i)[VA] which are indeed edges. We say that H is
(d2, . . . , dk, εk, ε, r)-regular if

1. for i ∈ [2, k − 1] and A ∈
(
[s]
i

), the induced subgraph H(i)[VA] is (di, ε)-regular with respect toH(i−1)[VA] and
2. for any A ∈

([s]
k

), the induced subgraph H(k)[VA] is (dk, εk, r)-regularwith respect toH(k−1)[VA].
The Regular Slice Lemma says that any k-graph G admits a regular slice.

Informally speaking, a regular slice ofG is a partite (k− 1)-complex J whose
vertex classes have equal size, whose subgraphs J (2), . . . ,J (k−1) satisfy cer-
tain regularity properties andwhichmoreover has the property thatG is regu-
lar with respect to J (k−1). The first two of these conditions are formalised in
the following definition : we say that a (k−1)-complexJ is (t0, t1, ε)-equitable,if it has the following properties.

1. J is P-partite for a P which partitions V (J ) into t parts of equal size,
where t0 ≤ t ≤ t1. We refer to P as the ground partition of J , and to the
parts of P as the clusters of J .

2. There exists a density vector d = (d2, . . . , dk−1) such that for i ∈ [2, k−1]

we have di ≥ 1/t1 and 1/di ∈ N and for eachA ⊆ P of size i, the i-graph
J (i)[VA] induced on VA is (di, ε)-regular with respect to J (i−1)[VA].

If J has density vector d = (d2, . . . , dk−1), then we will say that J is (d2, . . . ,
dk−1, ε)-regular, or (d, ε)-regular, for short. For any k-set X of clusters of J ,
we write ĴX for the k-partite (k−1)-graph J (k−1)

X< . Given a (t0, t1, ε)-equitable
(k−1)-complexJ , a k-setX of clusters ofJ and a k-graphG on V (J ), we say
thatG is (d, εk, r)-regular with respect toX ifG is (d, εk, r)-regular with respectto ĴX . We will also say that G is (εk, r)-regular with respect toX if there exists
a d such that G is (d, εk, r)-regular with respect to X . We write d∗J ,G(X) for
the relative density of G with respect to ĴX , or simply d∗(X) if J and G are
clear from the context, which will always be the case in applications.

We now give the key definition of the Regular Slice Lemma.
Definition 4.12 (Regular slice) Given ε, εk > 0, r, t0, t1 ∈ N, a k-graph G and
a (k − 1)-complex J on V (G), we call J a (t0, t1, ε, εk, r)-regular slice for G if J
is (t0, t1, ε)-equitable andG is (εk, r)-regular with respect to all but at most εk(tk)of the k-sets of clusters of J , where t is the number of clusters of J .

It will sometimes be convenient not to specify all parameters, we may
write that J is (·, ·, ε)-equitable or is a (·, ·, ε, εk, r)-slice for G, if we do not
wish to specify t0 and t1.
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Given a regular slice J for a k-graph G, it will be important to know the
relative densities d∗(X) for k-sets X of clusters of J . To keep track of these
we make the following definition.
Definition 4.13 (Weighted reduced k-graph) Let G be a (1, k)-graph and let
J be a (t0, t1, ε, εk+1, r)-regular slice for G. We define the weighted reduced
(1, k)-graph of G, denoted by R(G), to be the complete weighted (1, k)-graph
whose vertices are the clusters ofJ and where each edgeX is given weight d∗(X).

Similarly, for dk+1 > 0, we define the dk+1-reduced (1, k)-graph Rdk+1
(G) to

be the (unweighted) (1, k)-graph whose vertices are the clusters of J and whose
edges are all (1, k)-sets X of clusters of J such that G is (εk+1, r)-regular withrespect toX and d∗(X) ≥ dk+1.

Given a (1, k)-graph G on [n] ∪ V , a vertex v ∈ V and a color c ∈ [n],
recall that degG(c, v) is the number of edges of G containing c and v and
degG(c, v) = degG(c, v)/

(
n−1
k−1

) is the relative degree of {c, v} in G. Given a
(t0, t1, ε)-equitable (k − 1)-complex J with V (J ) ⊆ V (G), the rooted degree
of (c, v) supported by J , written by degG((c, v),J ), is defined as the number
of (k − 1)-sets T in J (k−1) such that T ∪ {c, v} forms an edge in G. Then
the relative degree degG((c, v);J ) of (c, v) in G supported by J is defined as
degG((c, v);J ) = degG((c, v);J )/e(J (k−1)).
Definition 4.14 (Representative rooted degree) Let η > 0, G be a (1, k)-
graph on [n] ∪ V and J be a (t0, t1, ε, εk+1)-regular slice for G. We say that Jis η-rooted-degree-representative if for any vertex v ∈ V and any color c ∈ [n], we
have

|degG((c, v);J )− degG(c, v)| < η.

Definition 4.15 (Regular setup) Let k,m, r, t ∈ N and ε, εk+1, d2, . . . , dk+1 >

0. We say that (G,GJ ,J ,P, R) is a (k,m, t, ε, εk+1, r, d2, . . . , dk+1)-regular se-tup, if
(RS1) G is a (1, k)-graph on [n] ∪ V where |V | = n and GJ ⊆ G,
(RS2) J is a (·, ·, ε, εk+1, r)-regular slice forGwith density vector d = (d2, . . . ,

dk),(RS3) P is the ground partition of J with initial partition of [n] ∪ V and 2t

clusters, each of sizem,
(RS4) R is a subgraph of Rdk+1

(G),
(RS5) for eachX ∈ E(R), GJ is (dk+1, εk+1, r)-regular with respect toX .

We further say that (G,GJ ,J ,P, R) is representative if(RS6) J is εk+1-rooted-degree-representative.
The Regular Slice Lemma of [7] ensures that every sufficiently large k-

graph has a representative regular slice. Given the existence of a regular slice,
it is easy to derive the existence of a regular setup. In [105], it is stated directly
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in terms of regular setups. And it is an easy corollary of giving a sufficiently
large (1, k)-graph.
Lemma 4.1 (Regular Setup Lemma [7]) Let k, t0 be positive integers, δ, µ, α,
εk+1, dk+1 be positive and r : N → N and ε : N → (0, 1] be functions. Suppose
that

k ≥ 3, εk+1 ≪ α, dk+1 ≪ µ.

Then there exists t1 and m0 such that the following holds for all n ≥ 2t1m0. Let
G be a (1, k)-graph on [n] ∪ V where |V | = n and suppose that G has minimum
relative (1, k−2)-degree δ1,k−2(G) ≥ δ+µ. There exists d = (d2, . . . , dk+1) and arepresentative (k,m, 2t, ε(t1), εk+1, r(t1),d)-regular setup (G,GJ ,J ,P, Rdk+1

)

with t ∈ [t0, t1],m0 ≤ m and n ≤ (1 + α)mt. Moreover, there is a (1, k)-graph I
on P of edge density at most εk+1 such that R = Rdk+1

∪ I has minimum relative
(1, k − 2)-degree at least δ + µ/2.
Let G be a P-partite k-complex and X1, . . . , Xs ∈ P(possibly with repetition),
and letH be a k-complex on vertices [s]. We say that an embedding ofH in G
is partition-respecting, if i is embedded in Xi for i ∈ [s]. Note that this notion
depends on the labeling of V (H) and the clusters X1, . . . , Xs, but these willbe clear in the paper. Denote the set of labelled partition-respecting copies
of H in G by HG [

⋃
i∈S Xi]. When X1, . . . , Xs are clear, we denote it by HG for

short. Recall that ei(H) denotes the number of edges of size i inH.
The following lemma states that the number of copies of a given small

k-graph inside a regular slice is roughly what we expect if the edges inside
a regular slice were chosen randomly. There are many different versions in
[7, 33, 61, 140] and we use the following version in [33].
Lemma 4.2 (Counting Lemma [33]) Let k, s, r,m be positive integers and let
β, d2, . . . , dk, ε, εk be positive constants such that 1/di ∈ N for i ∈ [2, k − 1] and
such that

1/m≪ 1/r, ε≪ εk, d2, . . . , dk−1,

εk ≪ β, dk, 1/s.

Let H be a k-graph on [s] and let H be the k-complex generated by the down-
closure of H . Let d = (d2, · · · , dk), let (G,GJ ,J ,P, R) be a (k,m, ·, ε, εk, r,d)-regular setup and G = J ∪ GJ . Suppose X1, . . . , Xs are such that i 7→ Xi is ahomomorphism from H into R, then the number of labelled partition-respecting
copies ofH in G satisfies

|HG | = (1± β)

(
k∏

i=2

d
ei(H)
i

)
ms.

The following tool allows us to extend small subgraphs into a regular slice.
It was given by Cooley, Fountoulakis, Kühn and Osthus [33].
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Lemma 4.3 (Extension Lemma [33]) Let k, s, s′, r,m be positive integers, where
s′ < s and let β, d2, . . . , dk, ε, εk be positive constants such that 1/di ∈ N for
i ∈ [2, k − 1] and such that

1/m≪ 1/r, ε≪ εk, d2, . . . , dk−1,

εk ≪ β, dk, 1/s.

Suppose H is a k-graph on [s]. Let H be the k-complex generated by the down-
closure of H and H′ be an induced subcomplex of H on s′ vertices. Let d =

(d2, . . . , dk) and (G,GJ ,J ,P, R) be a (k,m, ·, ε, εk, r,d)-regular setup and G =

J ∪GJ . Suppose X1, . . . , Xs are such that i 7→ Xi is a homomorphism from H

into R. Then all but at most β|H′
G | labelled partition-respecting copies of H′ in G

extend to
(1± β)

(
k−1∏
i=2

d
ei(H)−ei(H′)
i

)
ms−s′

labelled partition-respecting copies ofH in G.
In some certain situation, we look for structureswhose edges lie entirely in

the (k−1)-complexJ of a regular setup.We can no longer use the above lem-
mas whose input is a regular setup rather than an equitable complex. Also,
the above lemmas requires r to be large enough with respect to εk while the
(k − 1)-th level of J will only need to be (dk−1, ε)-regular with respect to thelower level. We can use a Dense Counting Lemma as proved by Kohayakawa,
Rödl and Skokan [92]. We state the following version given by Cooley, Foun-
toulakis, Kühn and Osthus [33].
Lemma 4.4 (Dense Counting Lemma [33]) Let k, s,m be positive integers and
ε, d2, . . . , dk−1, β be positive constants such that

1/m≪ ε≪ β ≤ d2, . . . , dk−1, 1/s.

Suppose H is a (k − 1)-graph on [s] and H is the (k − 1)-complex generated by
the down-closure of H . Let d = (d2, . . . , dk−1) and J be a (d, ε)-regular (k − 1)-
complexwith ground partitionP , each size of whose vertex class ism. IfX1, . . . , Xs

∈ P , then
|HJ | = (1± β)

k−1∏
i=2

d
ei(H)
i ms.

The following lemma gives the number of edges in each layer of a regular
slice.
Lemma 4.5 ( [7]) Suppose that 1/m ≪ ε ≪ β ≪ d2, . . . , dk−1, 1/k and that
J is a (·, ·, ε)-equitable (k − 1)-complex with density vector (d2, . . . , dk−1) andclusters of sizem. LetX be a set of at most k − 1 clusters of J . Then

|JX | = (1± β)

 |X|∏
i=2

d
(|X|

i )
i

m|X|.
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Analogously, we have a dense version of Extension Lemma [33].
Lemma 4.6 (Dense Extension Lemma [33]) Let k, s, s′,m be positive integers,
where s′ < s and ε, β, d2, . . . , dk−1 be positive constants such that 1/m ≪ ε ≪
β ≪ d2, . . . , dk−1, 1/s. LetH be a (k−1)-graph on [s]. LetH be the (k−1)-complex
generated by the down-closure ofH andH′ be an induced subcomplex ofH on s′
vertices. Let d = (d2, . . . , dk−1) and let J be a (d, ε)-regular (k−1)-complex, with
ground partition P with vertex classes of sizem each. If X1, . . . , Xs ∈ P , then all
but at most β|H′

J | labelled partition-respecting copies ofH′ in J extend to
(1± β)

(
k−1∏
i=2

d
ei(H)−ei(H′)
i

)
ms−s′

labelled partition-respecting copies ofH in J .
The restriction of a regular complex to a large subset of its vertex is also

a regular complex, with slightly altered constants.
Lemma 4.7 (Regular Restriction Lemma [7]) Let k, r,m, s be integers and α,
ε, εk, d2, . . . , dk be positive constants such that 1/di ∈ N for ∈ [2, k] and

1/m≪ ε≪ εk, d2, . . . , dk−1,

and
εk ≪ α.

Let G be an s-partite k-complex on vertex classes V1, . . . , Vs, each of size m and
which is (d, εk, ε, r)-regular where d = (d2, . . . , dk). Choose any V ′

i ⊆ Vi with
|V ′

i | ≥ αm for i ∈ [s]. Then the induced subcomplex G[V ′
1∪· · ·∪V ′

s ] is (d,√εk,√ε,
r)-regular.

The chapter is organised as follows. In Section 4.2, we show the minimum
degree condition guarantees a sequentially Hamilton vicinity. In Section 4.3,
we show that how a sequentially Hamilton vicinity deduce a sequentially Ha-
milton framework. In Section 4.4, we show that how a sequentially Hamilton
framework deduce a sequentially Hamilton cycle. The sequentially Hamilton
cycle in a (1, k)-graph is a rainbow Hamilton cycle in a k-graph system, as de-
sired.

4.2 . Obtaining sequentiallyHamiltonvicinitywithdegree condi-
tion

In this section, we determine the (k−2)-vicinity threshold of (1, k)-graphs.
Lovász’s formulation of the Kruskal-Katona theorem states that, for any x > 0,
if G is a k-graph with e(G) ≥

(
x
k

) edges, then ej(G) ≥
(
x
j

) for every j ∈ [k]

(Theorem 2.14 in [57]). By approximating the binomial coefficients, they [105]
deduce the following variant.
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Lemma 4.8 (Kruskal-Katona theorem [105]) Let 1/t ≪ ε ≪ 1/k and G be a
graph on t vertices and edge density δ, then ∂(G) has at least (δ1/2 − ε)t vertices.
Proposition 4.1 Let t ∈ N and γ, δ′, δ > 0with 1/t≪ ε≪ δ and δ+δ1/2 > 1+ε.
LetRi be a (1, k)-graph on {i}∪V where |V | = twith a subgraph that is generated
by a (k− 2)-vicinity Ci. Suppose that each CS ∈ Ci has edge density at least δ+µ,then Ci admits an arc.
Proof. Consider an arbitrary set S = {i, v1, . . . , vk−2} ∈ ∂k−2(Ri). By ave-raging, there is a vertex vk−1 with relative vertex degree at least δ in CS . Set
S′ = {i, v2, . . . , vk−1}, we have S′ ∈ ∂k−2(Ri). Thus, CS′ − {v1} has edge den-sity at least δ+µ/2. By Lemma4.8, ∂(CS′−{v1}) has at least (δ1/2−ε)t vertices.By the choice of vk−1 and the pigeonhole principle, ∂(CS′ − {v1}) and
L({i, v1, . . . , vk−1}) must share a common vertex vk. Since vk ∈ ∂(CS′ −
{v1}), there is another vertex vk+1 such that {vk, vk+1} ∈ CS′ − {v1}. Thus,
{i, v1, . . . , vk+1} is an arc. □

We use the following result of [105].
Lemma 4.9 ([105]) Let 1/t ≪ γ ≪ µ, suppose that L1 and L2 are graphs on acommon vertex set of size t such that L1, L2 has edge density at least 5/9+µ. For
i ∈ [2], let Ci be a tight component of Li with a maximum number of edges. We
have

(i) C1 and C2 has an edge in common,(ii) Ci has a switcher for i ∈ [2],
(iii) Ci has a fractional matching of density 1/3 + γ for i ∈ [2],
(iv) Ci has edge density at least 4/9 + γ for i ∈ [2].

Proof. [The proof of Theorem 4.4] Let α, γ, µ > 0 with
1/t≪ α≪ δ ≪ µ≪ 5/9.

Consider a (1, k)-graph R on [t] ∪ V where |V | = t and each Ri := R[{i} ∪
V ] has α-perturbed minimum relative (1, k − 2)-degree at least 5/9 + µ. For
every S ∈ ∂k−2(R), let CS be a tight component of L(S) with a maximum
number of edges and Ci = {CS : S ∈ ∂k−2(R) and i ∈ S}. By the choice of
CS , (V1) holds obviously. By Lemma 4.9, Ci satisfies (V2), (V4), (V5) and (V6).
Every CS ∈ Ci contains a switcher. By Proposition 4.1, Ci contains an arc since
4/9 + (4/9)1−1/2 = 1 + 1/9, thus C = {Ci : i ∈ [t]} satisfies (V3), as desired. □

4.3 . FromsequentiallyHamilton vicinity to sequentiallyHamil-
ton framework

Our goal is to prove Theorem 4.3 in this part. We need the followings lem-
mas.
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Lemma 4.10 Let Ri be a (1, k)-graph on {i} ∪ V with a (k − 2)-vicinity Ci =

{CS : S ∈ ∂k−2(Ri)} for i ∈ [t]. For every S, S′ ∈ ∂k−2(Ri), if the vicinity Ci hasan arc for i ∈ [t],CS andCS′ intersect,CS is tightly connected and has a switcher,then the vertex spanning subgraphHCi ofRi generated by Ci is sequentially tightlyconnected and contains a sequentially closed walk of length 1 mod k.
Lemma 4.11 Let γ, α, δ > 0 such that 1/t ≪ α, γ ≪ 1/k. Let R be a (1, k)-
graph on [t] ∪ V where |V | = t and each Ri has α-perturbed minimum relative
(1, k − 2)-degree at least δ. Let C = {Ci : i ∈ [t]} be a family of (k − 2)-vicinities
where Ci = {CS : S ∈ ∂k−2(Ri)}. If for every S ∈ ∂k−2(R), CS has a fractional
matching of density (1+1/k)(1/(k+1)+γ), then the graphHCWi

⊆ R generated
by CWi := {Cj : j ∈ [t(i−1)/k+1, ti/k]} is γ-robustly matchable for each i ∈ [k].
Lemma 4.12 Let t, k ∈ N, i ∈ [t] and δ, α, ε > 0 with 1/t ≪ ε ≪ α ≪ δ, 1/k.
Let Ri be a (1, k)-graph on {i} ∪ V with minimum relative (1, k − 2)-degree at
least δ where |V | = t. Let I be a subgraph ofRi with edge density at most ε, thereexists a vertex spanning subgraph R′

i ⊆ Ri − I of α-perturbed minimum relative
(1, k − 2)-degree at least δ − α.
Proof. [Proof of Theorem 4.3] Let δ = rhvk−2(k) and ε, α, γ > 0 such that

1/t≪ ε≪ α≪ α′ ≪ γ ≪ µ≪ δ, 1/k.

Moreover,the constants t, ε, α, µ are compatible with the constant hierarchy
given by Definition 4.11, t, ε, 2α, µ satisfy the conditions of Lemma 4.11 and
t, ε, α, δ satisfy the conditions of Lemma 4.12.

Given a (1, k)-graphRi on {i}∪V with minimum relative (1, k−2)-degree
at least δ+2µ and a set I of atmost ε(tk)perturbed edges.We start by selecting
a subgraph ofRi. By Lemma 4.12, we obtain a vertex spanning subgraphR′

i ⊆
Ri − I of α-perturbed minimum relative (1, k − 2)-degree at least δ + µ.

By the definition of 4.11, R′ :=
⋃

i∈[t]R
′
i has a family of (2γ, δ)-sequentially

Hamilton (k − 2)-vicinities C = {Ci : i ∈ [t]} where Ci = {CS : S ∈ ∂k−2(R
′
i)}.Each Ci generates a (1, k)-graph Gi. Let H =

⋃
i∈[t]Gi. Note that Gi does notcontain the edges of I and V (Gi) = V (R′

i). By Lemma 4.10 and 4.11, H also
satisfies (F1)-(F3). For k ≥ 4, by repeatedly applying Definition 4.10, we deduce
that for all but at most αt (1, 1)-sets of V (R′

i) is contained in at least (1 −
2α)k−3

(|V ′|−1
k−3

)
≥ (1− 2(k− 3)α)

(|V ′|−1
k−3

)many (1, k− 2)-sets in ∂k−2(R
′
i). Notethat ∂k−2(R

′
i) = ∂k−2(Gi). This implies that for all but at most αt (1, 1)-sets of

V (Gi) has relative degree at least 1− 2(k − 3)α in ∂k−2(Gi). Moreover, every
(1, k− 2)-set in ∂k−2(Gi) has relative degree at least 1− δ+2γ inGi, sinceGiis generated from (2γ, δ)-sequentially Hamilton (k− 2)-vicinity and Definition
4.9. Thus, we obtain that for each color i ∈ [t], there are at least (1−α)t points
v ∈ V such that {i, v} has relative (1, 1)-degree at least 1−δ+γ, which implies
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(F4) for k ≥ 4. While for k = 3, by Definition 4.9, we have every (1, 1)-set has
relative degree at least 1− δ + 2γ in Gi, which implies (F4) for k = 3.

Besides, it is obvious that (V6) implies (F5), weobtain an (α, γ, δ)-framework,
as desired. □
We define a directed edge in a k-graph to be a k-tuple whose vertices cor-
respond to an underlying edge. Note that the directed edges (a, b, c), (b, c, a)
corresponds to the same underlying edge {a, b, c}. Given a k-graph system
H = {Hi}i∈[n] on vertex set V , we consider the hypergraph H with vertex set
[n]∪V and edge set {{i}∪e : e ∈ E(Hi), i ∈ [n]}. Define a directed edge to be
a (1, k)-tuple (i, v1, . . . , vk)with k points corresponding to an underlying edge
{v1, . . . , vk} in Hi. Given a k-tuple −→

S = (v1, . . . , vk), abbreviated as v1 · · · vk,we use −→
S ⊆ V to mean that the corresponding k-set of −→S is a subset of V .

Similarly, given a family F of k-sets and a k-tuple−→S , we use−→S ∈ F to denote
that the corresponding k-set of −→S is an element of F . Let −→S = (v1, . . . , vk),−→
S \{vi} is the (k−1)-tuple (v1, . . . , vi−1, vi+1, . . . , vk) for i ∈ [k], {v′i}∪−→

S \{vi}is the k-tuple (v1, . . . , vi−1, v
′
i, vi+1, . . . , vk).

Definition 4.16 (Strong connectivity) A hypergraph is called strongly connec-
ted, if every two directed edges lie on a sequential walk.
Claim 4.1 If G is a tightly connected graph, then G is strongly connected.
Proof. Let ab be a switcher in G, by Definition 4.7, we obtain that a and b
share a neighbor c. If we can prove that (a, b) and (b, a) are on a walk W ,
then we can obtain that G is strongly connected. Since we consider any two
directed edges D1 and D2 of G, there are walksW1 andW2 starting from D1and D2 respectively and ending with {a, b}, W1WW2 is a tight walk startingfromD1 and ending withD2. While it is easy to see that abcaba is a tight walk
from (a, b) to (b, a) containing a closed walk of length 3, as desired. □
Next, we want to show that switchers can control the length of sequential
walks. Note that a triangle is a closed walk of odd length in a tightly connected
graph containing a switcher and we obtain the following proposition.
Proposition 4.2 If G is a tightly connected graph containing a switcher, then G
has a closed walk of odd length.
Proposition 4.3 LetR be a (1, k)-graph with a subgraphHCi which is generatedby Ci. Suppose that Ci satisfies the conditions of Lemma4.10, for any (1, k−2)-tuple−→
S ∈ ∂k−2(HCi) and two directed edges D1, D2 ∈ C−→

S
, there exists a sequential

walkW of length 0 mod k inHCi starting from −→
S D1 and ending with −→

S D2.
Proof. Let Ci = {C−→

S
:
−→
S ∈ ∂k−2(R) and i ∈

−→
S } and−→

S = {i}∪
−→
S ′ where−→S ′

is a (k − 2)-tuple. By Proposition 4.2, there is a closed walkW1 of odd lengthin C−→
S
. By Claim 4.1, there is a tight walkW2 starting fromD1, ending withD2
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and containing W1 as a subwalk. Let ℓ(W2) = p. We obtain W3 from W2 byreplacingW1 with the concatenation of p+ 1mod 2 copies ofW1. Hence,W3is a tight walk of even length in C−→
S
starting fromD1 and ending withD2.Suppose that W3 = (a1, a2 . . . , a2m), we have D1 = (a1, a2) and D2 =

(a2m−1, a2m). Note that (i . . . i,−→S ′a1a2
−→
S ′a3a4 · · ·

−→
S ′a2m−1a2m) is a sequential

walk inHCi . Moreover, it has length 0 mod k, as desired. □

Proposition 4.4 LetR be a (1, k)-graphwith a subgraphHCi that is generated by
Ci. Suppose Ci satisfies the conditions of Lemma 4.10, we consider directed edges−→
S ,

−→
T ∈ ∂k−2(HCi) and D1 ∈ C−→

S
, D2 ∈ C−→

T
. If −→S and −→

T differ in exactly one
coordinate, then there is sequential walk of length 0 mod k in HCi starting from−→
S D1 and ending with −→

T D2.
Proof. Let −→S = (i, v1 . . . vi . . . vk−2) and −→

T = (i, v1 . . . ui . . . vk−2) where
ui ̸= vi. By Definition 4.9, there is a directed edge D3 in C−→

S
∩ C−→

T
, thus

(ii,
−→
S \ {i}D3

−→
T \ {i}) is a sequential walk in HCi . By Proposition 4.3, there

is a sequential walk W1 of length 0 mod k starting from −→
S D1 and ending

with −→
S D3, W2 of length 0 mod k starting from −→

T D3 and ending with −→
T D2,

(C(W1)C(W2), I(W1)I(W2)) is the desired walk.
□

Proposition 4.5 LetR be a (1, k)-graphwith a subgraphHCi that is generated by
Ci. Suppose Ci satisfies the conditions of Lemma 4.10, we consider directed edges−→
S ,

−→
T ∈ ∂k−2(HCi) andD1 ∈ C−→

S
,D2 ∈ C−→

T
. There is a sequential walk of length

0 mod k inHCi starting from −→
S D1 and ending with −→

T D2.
Proof. Let r ∈ [k − 2] be the number of indices where −→

S and −→
T differ. If

r = 1, the result follows from Proposition 4.4. Suppose the result is known for
r − 1. By Definition 4.9, there exists an edge pq in C−→

S
∩ C−→

T
.

Suppose that the ith coordinate vertex of −→S and −→
T are different, which

are replaced with p, we obtain −→
S ′ and −→

T ′. Note that −→S ′,
−→
T ′ ∈ ∂k−2(HCi).ChooseD′

1 ∈ C−→
S ′ . By Proposition 4.4, there is a sequential walkW1 of length

0mod k from−→
S D1 to−→S ′D′

1, similarly, there is a sequential walkW3 of length 0mod k from−→
T ′D′

2 to−→T D2 whereD′
2 ∈ C−→

T ′ . By induction, there is a sequential
walkW2 from −→

S ′D′
1 to −→

T ′D′
2 of length 0 mod k. Thus, (C(W1)C(W2)C(W3),

I(W1)I(W2)I(W3)) is the desired walk. □
Proof. [The proof of Lemma 4.10] Consider any two edges X and Y of HCi .Let X = S ∪ A and Y = T ∪ B where A ∈ CS and B ∈ CT . The desired walkcan be obtained from Proposition 4.5.

Next, we need to show thatHCi contains a closed walk of length 1 mod k.
Since Ci admits an arc {i, v1, . . . , vk+1}, by Proposition 4.5, there is a sequen-tial walk W of length 0 mod k from {i, v2, . . . , vk+1} to {i, v1, . . . , vk}. Thus,
(C(W )i, I(W )vk+1) is a closed walk of length 1 mod k. □
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The following claim can be seen in [105], we use a corollary of the claim in this
paper.
Claim 4.2 ([105]) LetH be a k-graph and b : V (H) → [0, 1]. Suppose that there
existsm ≤

∑
v∈V (H) b(v)/k such that for every v ∈ V (H), the link graphLH({v})

has a b-fractional matching of sizem, thenH has a b-fractional matching of size
m.
Corollary 4.1 LetH be a k-graph,α ∈ [0, 1) and b : V (H) → [0, 1]. Suppose that
there existsm ≤

∑
v∈V (H) b(v)/k such that for all but at most α|V (H)| isolated

vertices v, the link graph LH({v}) has a b-fractional matching of size m, then H
has a b-fractional matching of sizem.
Proof. We first delete the isolated vertices of H and obtain a subgraph H ′

of H . Thus, LH′({v}) has a b-fractional matching of size m. By Claim 4.1, we
obtain thatH ′ has a b-fractional matchingw of sizem. Assign a weight b′(u) ∈
[0, 1] to each isolated vertex u of H , and b′(v) = b(v) for each non-isolated
vertex v of H , it is obvious that H has a b′-fractional matching w of size m
since∑e∋uw(e) = 0 for any isolated vertex u and E(H ′) = E(H). □

Proposition 4.6 LetR be a (1, k)-graph on [n/k]∪V where |V | = n, γ > 0, α ∈
[0, 1), b : [n/k]∪V → [1−γ, 1]. Suppose that there existsm ≤

∑
v∈V (R) b(v)/(k+

1) such that given c ∈ [n/k], for all but at most αn vertices v ∈ V , the link graph
LR({c, v}) has a b-fractional matching of sizem, then R has a b-fractional mat-
ching of sizem/k.
Proof. By Corollary 4.1 with H being LR({c}) for c ∈ [n/k], we obtain that
LR({c}) has a b-fractional matching of sizem for c ∈ [n/k].

Next, we want to construct a b-fractional matching of size m/k for R.
Let wc : E(LR({c})) → [0, 1] such that ∑v∈e,e∈LR({c})wc(e) ≤ b(v) where∑

e∈LR({c})wc(e) = m. Let w(f) = 1
nwc(e) for e ∈ LR({c}) and f = e ∪ {c},

c ∈ [n/k]. Thus, we have∑f∈E(R)w(f) =
∑

c∈[n/k]
∑

e∈LR({c})
1
nwc(e) = m

k .It is easy to see that ∑c∈f w(f) =
∑

e∈LR({c})
1
nwc(e) = m

n ≤ 1
k ≤ b(c).

And ∑v∈f w(f) =
∑

c∈[n/k]
∑

v∈e,e∈LR({c})
k
nwc(e) ≤

∑
c∈[n/k]

k
nb(v) = b(v)

for v ∈ V . As desired. □
We use the following results of [105] directly.
Proposition 4.7 ([105]) LetH be a k-graph andm ≤ v(H)/k. If for every vertex
v of V (H), LH({v}) has a fractional matching of sizem, thenH has a fractional
matching of sizem.
Proposition 4.8 Let d ∈ [k− 2] and α, γ, δ > 0, k ≥ 3 such that α, γ ≪ 1/k. Let
R be a (1, k)-graph on [t]∪V withα-perturbedminimum (1, k−2)-degree δ where
|V | = t. If for every S ∈ ∂d(R), the link graphL(S) contains a fractional matchingof size at least (1 + 1/k)(1/(k+1)+ γ)t, then for every edge S′ ∈ ∂1(R), the linkgraphL(S′) contains a fractionalmatching of size at least (1+1/k)(1/(k+1)+γ)t.
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Proof. We prove it by induction on d. Note that the base case when d = 1

is obvious. Suppose that given d ∈ [2, k − 2], we obtain the conclusion for
d′ < d. Let S ⊆ V (R) be a (1, d − 1)-set in ∂d−1(R). Consider any vertex s′in ∂1(LR(S)), S ∪ {s′} is an edge in ∂d(R). By assumption, LR(S ∪ {s′}) has
a fractional matching of size at least (1 + 1/k)(1/(k + 1) + γ)t, thus, we have
LR′({s′}) contains a fractionalmatching of size at least (1+1/k)(1/(k+1)+γ)t

for any vertex s′ of V where R′ is the subgraph of LR(S) induced on the non-isolated vertices of LR(S).By Definition 4.10, S has at most αt neighbors in ∂d(R). It follows that
v(R′) = ∂1(LR(S)) ≥ (1−α)t and (1+1/k)(1/(k+1)+γ)t ≤ v(R′)/(k−d+1)

sinceα, γ ≪ 1/k. By Proposition 4.7 with the condition thatLR′({s′}) contains
a fractional matching of size at least (1 + 1/k)(1/(k + 1) + γ)t for any vertex
s′ of V , we obtain R′(and thus LR(S)) contains a fractional matching of size
(1 + 1/k)(1/(k + 1) + γ)t. Since S is arbitrary, for any S ∈ ∂d−1(R), LR(S)contains a fractional matching of size (1+1/k)(1/(k+1)+γ)t. Hence, we are
done by the induction hypothesis.

□
Proof. [The proof of Lemma 4.11] Suppose that V (H) = [t/k] ∪ V ′ where
|V ′| = t. By assumption,CS contains a fractionalmatching of size (1+1/k)(1/(k

+1)+γ)t for everyS ∈ ∂k−2(H) andCS is a subgraph ofLH(S). By Proposition
4.8, we have LH({i, v}) contains a fractional matching of size (1+1/k)(1/(k+

1) + γ)t for every {i, v} ∈ ∂1(H).
We want to show that H is γ-robustly matchable. Given a vertex weight

b : [t/k] ∪ V ′ → [1 − γ, 1], we have to find a b-fractional matching w such
that∑e∋v w(e) = b(v)/k for any vertex v ∈ V (H). That is, we need to find a
b-fractional matching with size∑v∈V (H) b(v)/k(k + 1). Given i ∈ [t/k], there
are at most αt isolated (1, 1)-tuples by Definition 4.10. For any non-isolated
(1, 1)-tuple (i, v) of V (H), let x be a fractional matching in LH({i, v}) of size
at least (1 + 1/k)(1/(k + 1) + γ)t and let w′ = (1 − γ)x, since 1 − γ ≤ b(v)
for any v ∈ V (H), thus w′ is a b-fractional matching in LH({i, v}). Moreover
w′ has size at least (1 − γ)(1 + 1/k)(1/(k + 1) + γ)t ≥ (1 + 1/k)t/(k + 1) ≥∑

v∈V (H) b(v)/(k + 1) since 1/t ≪ γ ≪ 1/k. We can assume that w′ has size
exactly∑v∈V (H) b(v)/(k + 1). By Proposition 4.6, we obtain that H has a b-
fractional matching of size∑v∈V (H) b(v)/k(k + 1), as desired. □
We use the following claim directly, which can be seen in [105].
Claim 4.3 ([105]) Let t, d, k be integers with d ∈ [k − 1] and δ, ε, α > 0 with
1/t ≪ ε ≪ α ≤ δ, 1/k. Let R be a k-graph on t vertices with minimum relative
d-degree δd(R) ≥ δ. Let I be a subgraph ofR of edge density at most ε. Then there
exists a vertex spanning subgraph R′ ⊆ R − I of α-perturbed minimum relative
d-degree at least δ − α.

The (1, k)-graph Ri on {i} ∪ V with minimum relative (1, k − 2)-degree at
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least δ is equivalent to a k-graphR′
i on V withminimum relative (k−2)-degree

at least δ. Thus, by Claim 4.3, we obtain Lemma 4.12.

4.4 . FromsequentiallyHamilton framework to sequentiallyHa-
milton cycle

In this section, we use the following absorption lemma and almost cover
lemma to prove Theorem 4.2. The proof of these two lemmas will be found in
Section 8 and 9. Before we give these two lemmas, we need some definition.
Definition 4.17 (Extensible paths) Let (G,GJ ,J ,P, R) be a (k,m, 2t, ε, εk+1,

r,d)-regular setup, G be a (1, k)-graph on [n] ∪ V where |V | = n and c, ν > 0.
A (k − 1)-tuple A in V k−1 is said to be (c, ν)-extensible rightwards to an ordered
edge Y = (Y0, Y1, . . . , Yk) in R if there exists a connection S ⊆ [n] ∪ V and a
target set T ⊆ J(Y2,...,Yk) with the following properties.• |T | ≥ ν|J(Y2,...,Yk)|,• for every (v2, . . . , vk) ∈ T , there are at least cm3k+1 many (3k + 1)-tuples

(c1, . . . , c2k, w1, . . . wk, v1) with v1 ∈ S ∩ Y1, wi ∈ S ∩ Yi and cj ∈ Y0 for
i ∈ [k] and j ∈ [2k] such that (c1 . . . c2k, Aw1 . . . wkv1 . . . vk) is a sequentialpath in G.

Given a sequential path P in a (1, k)-graphG and an ordered edgeX inR,
we say that P is (c, ν)-extensible rightwards toX if the (k−1)-tuple correspon-
ding P ’s last k − 1 vertices is (c, ν)-extensible rightwards to X . We call X as
the right extension. We can define leftwards path extensions for (k− 1)-tuples
and for sequential paths in an analogous way (this time corresponding to the
first k − 1 vertices of P ). A connection set of a sequential path is the union of
the connection set of the initial (k−1)-tuple and the connection set of the end
(k − 1)-tuple.

Given that X = (a, b, c) and Y = (a, c, b), there is no guarantee that H
contains a walk from X to Y . While if Y is a cyclic shift of X , that is, (b, c, a)
or (c, a, b), then a walk from X to Y does exist. More generally, a cyclic shift
of a k-tuple (v1, . . . , vk) is any k-tuple of the form (vi, . . . , vk, v1, . . . , vi−1) for
i ∈ [k].

An orientation of a (1, k)-graph G on [n] ∪ V is a family of ordered (1, k)-
tuples {−→e ∈ [n] × V k : e ∈ E(G)}. We say that a family −→G of ordered (1, k)-
tuples is an oriented (1, k)-graph if there exists a (1, k)-graphG such that−→G =

{−→e ∈ [n] × V k : e ∈ E(G)}. Given an oriented (1, k)-graph −→
R , we say that

(G,GJ ,J ,P,
−→
R ) is an oriented (k,m, 2t, ε, εk+1, r,d)-regular setup if −→R is an

orientation ofR and (G,GJ ,J ,P, R) is a (k,m, 2t, ε, εk+1, r,d)-regular setup.Consider a (1, k)-graph G with an orientation −→
G and vertex set [n]∪ V . Given

an ordered k-tuple Y of distinct vertices in V and c ∈ [n], we say that {c} ∪ Y
is consistent with −→

G if there exists an oriented edge {c} ∪ −→e ∈
−→
G such that
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−→e is a cyclic shift of Y . We say that an extensible path is consistent with −→
G if

its left and right extensions are consistent with −→
G . Finally, when considering

multiple paths, we refer to the union of their connection sets as their joint
connection set.

Let −→G be an orientation of a (1, k)-graph G. A sequential walk W in G is
said to be compatiblewith−→

G if each oriented edge of−→G appears at least once
inW as a sequence of k consecutive vertices.

LetG be a (1, k)-graph on [n]∪V where |V | = n, and S ⊆ V,O ⊆ [n], |O| =
|S| = k, P be a sequential path. Recall that (C(P ), I(P )) is used to denote a
sequential path where C(P ) is the color set of P and I(P ) is the point set of
P . We say that P is (S,O)-absorbing in G if there exits a sequential path P ′ in
G with the same initial (k− 1)-tuple and the same terminal (k− 1)-tuple with
P , I(P ′) = I(P )∪S and C(P ′) = C(P )∪O. We say that P is η-absorbing inG
if it is (S,O)-absorbing in G for every S of size at most ηn divisible by k, any
O of size |S|, and S ∩ I(P ) = ∅, O ∩ C(P ) = ∅.
Lemma 4.13 (Absorption lemma) Let k, r,m, t ∈ N and d2, . . . , dk+1, ε, εk+1,

η, µ, δ, α, c, ν, λ be such that
1/m≪ 1/r, ε≪ 1/t, c, εk+1, d2, . . . , dk,

c≪ d2, . . . , dk,

1/t≪ εk+1 ≪ dk+1, ν ≤ 1/k,

c≪ εk+1 ≪ α≪ η ≪ λ≪ ν ≪ µ≪ δ, 1/k.

Let d = (d2, . . . , dk+1) and let S = (G,GJ ,J ,P,
−→
H ) be an oriented represen-

tative (k,m, 2t, ε, εk+1, r,d)-regular setup. Let G be (1, k)-graph on [n] ∪ V with
minimum relative (1, 1)-degree being at least δ+µwhere |V | = n, n ≤ (1+α)mt.
Suppose that there exists a sequentially closed walk which is compatible with the
orientation −→

H ofH and
(F1) Hi is sequentially tightly connected,(F4) For every color i ∈ [t], there are at least (1− α)t points v ∈ V such that
{i, v} has relative (1, 1)-degree at least 1− δ + γ.

Then there exists a sequential path P in G such that the following holds.
(1) P is (c, ν)-extensible and consistent with −→

H ,
(2) V (P ) is λ-sparse in P and V (P )∩S = ∅, where S denotes the connection
set of P ,

(3) P is η-absorbing in G.
Lemma 4.14 (Almost cover lemma) Let k, r,m, t ∈ N, d2, . . . , dk+1, ε, εk+1,

α, γ, c, ν, λ be such that
1/m≪ 1/r, ε≪ 1/t, c, εk+1, d2, . . . , dk,

c≪ d2, . . . , dk,
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1/t≪ εk+1 ≪ dk+1, ν, α ≤ 1/k,

α≪ η ≪ λ≪ ν ≪ γ.

Let d = (d2, . . . , dk+1) and let S = (G,GJ ,J ,P,
−→
H ) be an oriented (k,m, 2t, ε,

εk+1, r, d)-regular setup. Suppose thatG is a (1, k)-graph on [n]∪V where |V | = n

and n ≤ (1 + α)mt,H is a (1, k)-graph on [t] ∪ V ′ where |V ′| = t and
(F1) Hi is sequentially tightly connected,(F2) Hi contains a sequentially closedwalkW compatible with−→H whose length
is 1 mod k,

(F3) HWi is γ-robustly matchable for i ∈ [k],
(F5) LH({i}) and LH({j}) intersect in an edge for each i, j ∈ [t].

Suppose that P is a sequential path in G such that
(1) P is (c, ν)-extensible and consistent with −→

H ,
(2) V (P ) is λ-sparse in P and V (P )∩ S = ∅ where S is the connection set of
P ,

then there exists a sequential cycle C of length at least (1 − η)n which contains
P as a subpath. Moreover, the number of uncovered points of V is divisible by k
and the number of uncovered colors of [n] has the same size with the number of
uncovered points.
Proof. [The proof of Theorem 4.2] Let δ = rhfk−2(k), µ > 0 and

εk+1 ≪ α≪ η ≪ λ≪ ν ≪ γ ≪ µ,

1/t0 ≪ εk+1 ≪ dk+1 ≪ µ.

We apply Lemma 4.1 with input εk+1, 1/t0, r, ε to obtain t1,m0. Choose c ≪
1/t1 and 1/n0 ≪ 1/t1, 1/m0, c, 1/r, ε. LetG be a (1, k)-graph on [n]∪ V where
|V | = n and 2n ≥ n0 verticeswith δ1,k−2(G) ≥ δ+µ. Our goal is to prove thatG
contains a sequentially Hamilton cycle. By Lemma 4.1, there exists a represen-
tative (k,m, 2t, ε, εk+1, r, d2, . . . , dk+1)-regular setup (G,GJ ,J ,P, Rdk+1

)with
t0 ≤ t ≤ t1 and n ≤ (1 + α)mt. Moreover, there is a (1, k)-graph I of edge
density at most εk+1 such thatR = Rdk+1

∪ I has minimum relative (1, k− 2)-
degree at least δ + µ/2. By Definition 4.5 and δ = rhfk−2(k), we obtain that
R contains an (α, γ, δ)-sequentially Hamilton frameworkH that avoids edges
of I . Thus,H ⊆ Rdk+1

.
Next, we want to fix an orientation −→

H and a compatible walk W . Since
H is an (α, γ, δ)-sequentially Hamilton framework, Hi is sequentially tightlyconnected and has a sequentially closed walk of length 1 mod k, LH({i}) and
LH({j}) intersect in an edge for each i, j ∈ [t]. We obtain a sequentially closed
walk of length 1mod k visiting all edges ofH . Define an orientation−→

H = {−→e ∈
V (H)k : e ∈ H} by choosing for every edge e of H , a k-tuple (or subpath) −→e
inW which contains the vertices of e. Note thatW is compatible with −→

H .
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Firstly, we select a sequentially absorbing path P . Note that 1/t1 ≤ d2, . . . ,

dk, since J is a (t0, t1)-equitable complex. Since H is an (α, γ, δ)-sequentially
Hamilton framework, it follows that there exists a sequential path P in G by
Lemma 4.13 such that

1. P is (c, ν)-extensible and consistent with −→
H ,

2. V (P ) is λ-sparse in P and V (P ) ∩ T = ∅, where T denotes the connec-
tion set of P ,

3. P is η-absorbing in G.
Next, by Lemma 4.14, there is a sequential cycleA of length at least (1−η)n

which contains P as a subpath. Moreover, the number of uncovered points
|V \ I(A)| is divisible by k and the number of uncovered colors is of size |[n] \
C(A)| = |V \ I(A)|.

Finally, we absorb the uncovered points and colors into A. Note that |V \
I(A)| ≤ ηn. Thus, there is a sequential path P ′ with point set I(P )∪(V \I(A))
and color set C(P ) ∪ ([n] \ C(A)), which has the same endpoints as P , as
desired. □

Embedding sequential pathsGiven sequential walksW andW ′with the pro-
perty that the terminal (k−1)-tuple ofW is identical to the initial (k−1)-tuple
ofW ′, wemay concatenateW andW ′ to form a new sequential walk with color
set C(W ) + C(W ′), which we denoteW +W ′.
Lemma 4.15 Let k, r, n0, t, B be positive integers and ψ, d2, . . . , dk+1, ε, εk+1, νbe positive constants such that 1/di ∈ N for i ∈ [2, k] and such that 1/n0 ≪ 1/t,

1

n0
,
1

B
≪ 1

r
, ε≪ εk+1, d2, . . . , dk,

εk+1 ≪ ψ, dk+1, ν,
1

k
.

Then the following holds for all integers n ≥ n0.Let G be a (1, k)-graph on [n] ∪ V where |V | = n, J be a (·, ·, ε, εk+1, r)-regular slice for G on [t] ∪ V ′ where |V ′| = t with density vector d = (d2, . . . , dk).LetJWi be the induced subcomplex ofJ on [t(i−1)/k+1, ti/k]∪V ′ for i ∈ [k]. We
call [t] the family of color clusters and V ′ the family of point clusters. Let RWi :=

R [[t(i− 1)/k + 1, ti/k] ∪ V ′] be the induced subgraph of R := Rdk+1
(G). Let

RWi be sequentially tightly connected for i ∈ [k] andwi be a fractionalmatching ofsize µi = ∑e∈E(RWi
)wi(e) for i ∈ [k] and µi(Z) = ∑Z∈e,e∈E(RWi

)wi(e) ≤ 1/k

for each cluster Z. Also, let X and Y be (k − 1)-tuples of point clusters, SX and
SY be the subsets of JX and JY of sizes at least ν|JX | and ν|JY | respectively.Finally, let W be a sequential walk from X to Y of length at most t2k+1 in RWiand denote ℓ(W ) by p. For i ∈ [k], we have

72



(i) for any ℓ divisible by k with 4k ≤ ℓ ≤ (1 − ψ)µikn/t, there is a sequentialpath P inG of length ℓ−1+ℓ(W )(k+1) whose initial (k−1)-tuple belongs
to SX and whose terminal (k − 1)-tuple belongs to SY ,

(ii) P uses at most µi(Z)n/t+B vertices from any point cluster Z ∈ V ′ and at
most kµi(C)n/t+B vertices from any color clusterC ∈ [t(i−1)/k+1, ti/k]

where µi(Z ′) =
∑

Z′∈e,e∈RWi
wi(e) for any cluster Z ′.

Proof. Let α = ψ/5 and β = 1/200. When using Lemma 4.3, we require that
ε ≪ c2 and choosem0 to be large enough so thatm ≥ αm0 is acceptable forall these applications. Given t, let

n0 = t ·max(m0,
200k2

ε
,
8k2

α
√
ε
,
10k(k + 1)t2k+1

α
). (4.1)

We write G for the (k + 1)-complex obtained from JWi by adding all edgesof G supported on J (k)
Wi

as the ‘(k + 1)th level’ of G. So for any edge X =

(X0, X1, . . . , Xk) ∈ RWi ,G[⋃i∈[0,k]Xi] is a (d2, . . . , dk, d∗(X), ε, εk+1, r)-regular
(k + 1)-partite (k + 1)-complex with d∗(X) ≥ dk+1.Since J is a regular slice for G, for any (1, k)-set of clusters X = {X0, X1,

. . . , Xk} in JWi , the (k+1)-partite k-complex JWi [
⋃

j∈[0,k]Xj ] is (d, ε)-regular.
By adding all (k + 1)-sets supported on ˆJWiX as the ‘(k + 1)th level’, we may
obtain a (d2, . . . , dk, 1, ε, εk+1, r)-regular (k+1)-partite (k+1)-complex, whose
vertex clusters are subsets Yj ⊆ Xj for j ∈ [0, k] of size |Y1| = · · · = |Yk| =
αm/k and |Y0| = αm. Y0 can be seen as ⋃i∈[k] Y0,i where |Y0,i| = αm/k for
i ∈ [k] and we obtain a (d2, . . . , dk, 1,√ε,√εk+1, r)-regular by Lemma 4.7. We
conclude by Lemma 4.5 that for any subset Yi, i ∈ [k − 1] of distinct clusters
of J , each of size αm/k, we have

|G(Y1, . . . , Yk−1)| ≥ εmk−1. (4.2)
The following claim plays an important role in Lemma 4.15.

Claim 4.4 Let {X0, X1, . . . , Xk} be an edge of R and choose any Yj ⊆ Xj foreach j ∈ [0, k] so that |Y0| = k|Y1| = · · · = k|Yk| = αm. Let P be a collection
of at least 1

2 |G(Y1, . . . , Yk−1)| sequential paths in G(not necessarily contained in⋃
j∈[k] Yj ) each of length at most 3k and whose terminal (k−1)-tuples are distinct

members of G(Y1, . . . , Yk−1). Then for each σ ∈ {0, 1} there is a path P ∈ P and
a collection P ′ of 9

10e(G(Yσ+1, . . . , Yσ+k−1)) sequential paths inG, each of length
2k−1+σ, all of whose initial (k−1)-tuples are the same (terminal (k−1)-tuple of
P ). Furthermore, the terminal (k − 1)-tuples of paths in P ′ are distinct members
of G(Yσ+1, . . . , Yσ+k−1). If j ≤ k − 1, then the jth vertex x of each path in P ′ lies
in Yj , if j ≥ k, then x is not contained in P , and k new colors are not contained in
P .
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Proof. Let σ ∈ {0, 1} be fixed, we takeH to be the (k+1)-complex generated
by the down-closure of a sequential path of length 2k − 1 + σ with vertex
set {c1, . . . , ck+σ} ∪ {v1, . . . , v2k−1+σ} and consider its (k + 1)-partition V0 ∪
V1 ∪ · · · ∪ Vk where {c1, . . . , ck+σ} ⊆ V0 and the ith vertex of the path lies in
the vertex class Vj with j = i mod k. We take H′ to be the subcomplex of H
induced by {v1, . . . , vk−1, vk+1+σ, . . . , v2k−1+σ}. Consider the pair (e, f), where
e is an ordered (k − 1)-tuple of G(Y1, . . . , Yk−1) and f is an ordered (k − 1)-
tuple of G(Yσ+1, . . . , Yσ+k−1). For any such ordered (k − 1)-tuple e, there are
at most kmk−2 such ordered (k − 1)-tuples f which intersect e, thus there
are at most 1/200-proportion of the pairs (e, f) are not disjoint. On the other
hand, if e and f are disjoint, then the down-closure of the pair (e, f) forms a
labelled copy ofH′ in G[

⋃
j∈[0,k] Yj ], so by Lemma 4.3 with s = 3k+2σ−1 and

s′ = 2k − 2, for all but at most 1/200-proportion of the disjoint pairs (e, f),
there are at least c(αm/k)k+2σ+1 ≥

√
ε(αm/k)k+2σ+1 extensions to copies of

H in G[
⋃

j∈[0,k] Yj ]. Each such copy of H corresponds to a sequential path in
G of length 2k − 1 + σ with all vertices in the desired clusters. We conclude
that at least 99/100-proportion of all pairs (e, f) of ordered (k− 1)-tuples are
disjoint and are linked by at least √ε(αm/k)k+2σ+1 sequential paths in G of
length 2k − 1 + σ, where ci ∈ V0 for i ∈ [k + σ] and vℓ ∈ Vj with j = ℓmod k.
We call these pairs extensible.

We call an ordered (k − 1)-tuple e ∈ G(Y1, . . . , Yk−1) good if at most 1/20
of the ordered edges f ∈ G(Yσ+1, . . . , Yσ+k−1) do not make an extensible pair
with e. Then atmost 1/5 of the ordered (k−1)-tuples inG(Y1, . . . , Yk−1) are notgood. Thus, there exists a path P ∈ P whose terminal (k − 1)-tuple is a good
ordered (k − 1)-tuple e. Fix such a P and e, and any ordered (k − 1)-tuple
f in G(Yσ+1, . . . , Yσ+k−1) which is disjoint from P , suppose that (e, f) is an
extensible pair, there are at least√ε(αm/k)k+2σ+1 sequential paths inG from
e to f . We claim that at least one of these paths has the further property that
if j ≥ k, then the jth vertex is not contained in P and the k+σ new colors are
not contained in P , we can therefore put it in P ′. Indeed as f is disjoint from
P , if σ = 0, then it suffices to show that one of these paths has the property
that vk ∈ Yk\V (P ) and ci ∈ Y0\V (P ) for i ∈ [k]. This is true because there are
only at most (2k+1)(αm)k + k(2k+1)(αm/k)k <

√
ε(αm/k)k+1 paths which

do not have this property by (4.1). If σ = 1, then we need a path whose kth and
(k + 1)st vertices are not in V (P ) and ci ∈ Y0 \ V (P ) for i ∈ [k + 1], which is
possible since 2(2k+1)(αm/k)k+2+(k+1)(2k+1)(αm/k)k+2 <

√
ε(αm/k)k+3

by (4.1).
Finally, considering the ordered (k−1)-tuple f ∈ G(Yσ+1, . . . , Yσ+k−1), wehave 20|V (P )|(k − 1)(αm/k)k−2 ≤ εmk−1 ≤ e(G(Yσ+1, . . . , Yσ+k−1)) by (4.1)and (4.2), at most 1/20 of these (k− 1)-tuples f intersect P and by the choice

of e, at most 1/20 of these (k−1)-tuples f are such that (e, f) is not extensible.
This leaves at least 9/10 of (k−1)-tuples f remaining, and choose a sequential
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path for each such f as described above gives the desired set P ′. □
Let X = (X1, . . . , Xk−1), Y = (Y1, . . . , Yk−1), Xk be the cluster following

X inW and Yk be the cluster preceding Y inW . Without loss of generality, we
may assume that {X0, X1, . . . , Xk} is an edge of R1 and {Y0, Y1, . . . , Yk} is anedge ofRk. By the condition, we have SX constitutes at least a ν proportion of
G(X1, . . . , Xk−1) and SY constitutes at least a ν proportion of G(Y1, . . . , Yk−1).Given any subsets X ′

j ⊆ Xj of size αm/k for j ∈ [k] and X ′
0 ⊆ X0 of size

αm, we say that a (k − 1)-tuple e ∈ G(X1, . . . , Xk−1) is well-connected to
(X ′

1, . . . , X
′
k−1) via X ′

k and X ′
0 if for at least 9/10 of the (k − 1)-tuples f in

G(X ′
1, . . . , X

′
k−1), there exist distinct k-subsets {c1, . . . , ck}, {f1, . . . , fk} ofX ′

0and distinct u, v ∈ X ′
k such that (c1 · · · ck, e(u)f) and (f1 · · · fk, e(v)f) are se-quential paths in G of length 2k − 1.

Claim 4.5 For any subsets X ′
j ⊆ Xj of size αm/k, Zj ⊆ Xj of size αm/k for

j ∈ [k] and X ′
0 ⊆ X0, Z0 ⊆ X0 of size αm such that each X ′

j is disjoint from Zj ,the following statements hold.
(1) At least 9/10 of the (k− 1)-tuples e in G(Z1, . . . , Zk−1) are well-connectedto (Z1, . . . , Zk−1) via Zk and Z0.(2) At least 9/10 of the (k−1)-tuples e in G(Z1, . . . , Zk−1) are well-connectedto (X ′

1, . . . , X
′
k−1) viaX ′

k andX ′
0.(3) At least 9/10 of the (k−1)-tuples e in G(X ′

1, . . . , X
′
k−1) are well-connectedto (Z1, . . . , Zk−1) viaX ′

k andX ′
0.Proof. From the proof of Claim 4.4, we know that all but atmost 1/100-proportion

of pairs (e, f), where e, f ∈ G(Z1, . . . , Zk−1), are disjoint and are linked by at least√
ε(αm/k)k+1 sequentially tight paths in G of length 2k − 1. It is obvious that at

least 9/10-proportion (k−1)-tuples ofG(Z1, . . . , Zk−1) can be extended to at least
9/10-proportion (k − 1)-tuples of G(Z1, . . . , Zk−1) by at least √ε(αm/k)k+1 se-
quential paths. To prove (2), we apply Lemma 4.6 withH being the (k+1)-complex
generated by the down-closure of a sequential path of length 2k− 1 andH′ being
the subcomplex induced by its initial and terminal (k − 1)-tuples. We regard H
as a (2k)-partite (k + 1)-complex with k colors in the color cluster and one point
in each point cluster. The role of G in Lemma 4.3 is the (2k)-partite subcomplex
of G with vertex classes X ′

0, Z1, . . . , Zk−1, X
′
k, X

′
1, . . . , X

′
k−1, the colors of H are

embedded inX ′
0, the first pointH is to be embedded in Z1, the second one in Z2,and so forth. By Lemmas 4.7 and 4.3, the proportion of pairs (e, f) for which there

is no path as in (2) is at most 1/200, and the remainder of the argument can be
followed in (1). (3) can be proved similarly. □

We are ready to construct our path. Arbitrarily choose a subsetX(0)
0 ⊆ X0,

Z0 ⊆ Y0 of size αm and X(0)
j ⊆ Xj , Zj ⊆ Yj of size αm/k for j ∈ [k]. By Theo-

rem4.2, Theorem4.3, Theorem4.5, there are at least |SX ||G(X(0)
1 , . . . , X

(0)
k−1)|/2pairs (e, f), where e ∈ SX and f ∈ G(X(0)

1 , . . . , X
(0)
k−1), can be extended to

√
ε(αm/k)k+1 sequential paths whose remaining point lies inX(0)

k and colors
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lie inX(0)
0 . Thus, we choose a (k − 1)-tuple P (0) of SX such that the following

holds, there is a set P(0) of sequential paths of the form (c1 · · · ck, P (0)(v)f)

for v ∈ X
(0)
k , c1, . . . , ck ∈ X

(0)
0 and f ∈ G(X(0)

1 , . . . , X
(0)
k−1) for which the termi-

nal (k − 1)-tuples of paths in P(0) are all distinct and constitute at least half
of the ordered (k − 1)-tuples of G(X(0)

1 , . . . , X
(0)
k−1). Similarly, we can choose

e ∈ SY such that for at least half the members e′ of G(Z1, . . . , Zk−1), there isa sequential path of length 2k−1 inG from e′ to ewhose remaining point lies
in Zk and colors lie in Z0.Wenowconstruct the desiredpath. SinceHWi is sequentially tightly connec-ted, we can obtainW = e1 · · · es passing all edges ofHWi . For each i ∈ [s], let
ni be any integer with 0 ≤ ni ≤ (1 − 3α)w(ei)m. Set the initial state to be
‘filling the edge e1’, we proceed for j ≥ 1 as follows,

⋆ The terminal (k − 1)-tuple of the path family P(j) constitute at least
half of the ordered (k − 1)-tuples G(X(j)

1 , . . . , X
(j)
k−1).

Suppose that our current state is ‘filling the edge ei’ for some i, if we have
previously completedni steps in this state, thenwedonothing and change thestate to ‘position 1 in traversing thewalkW ’. Otherwise, since⋆ holds for j−1,
we apply Claim 4.4 with σ = 0 to obtain a pathP ∈ P(j−1) and a collectionP(j)

of 9
10e(G(X

(j−1)
1 , . . . , X

(j−1)
k−1 )) sequential paths of length 2k − 1, all of whose

initial (k− 1)-tuples are the same (the terminal (k− 1)-tuple of P ) and whose
terminal (k− 1)-tuples are distinct numbers of G(X(j−1)

1 , . . . , X
(j−1)
k−1 ) and are

disjoint from V (P ), whose colors lie in X(j−1)
0 \ C(P ), and whose remaining

vertex lies inX(j−1)
k \V (P ). We define P (j) to be the concatenation P (j−1)+P

with color classes C(P (j−1)) ∪ C(P ). For p ∈ [0, k], we generate X(j)
p from

X
(j−1)
p by removing the vertices of P (j) inX(j)

p and replacing them by vertices
from the same cluster which do not lie in Z or in P (j). We will prove that this
is possible in Claim 4.6.

Now suppose that our current state is ‘position q in traversing the walk
W ’. Since⋆ holds for j−1, applying Claim 4.4 with σ = 1 to obtain a path P ∈
P(j−1) and a collection P(j) of 9

10e(G(X
(j−1)
1 , . . . , X

(j−1)
k−1 )) sequential paths

of length 2k, all of whose initial (k − 1)-tuples are the same (the terminal
(k − 1)-tuple of P ) and whose terminal (k − 1)-tuples are distinct numbers
of G(X(j−1)

2 , . . . , X
(j−1)
k ) and are disjoint from V (P ), and whose two remai-

ning vertices lie in X(j−1)
k \ V (P ) and X(j−1)

1 \ V (P ) respectively with colors
in X(j−1)

0 \ C(P ). Exactly as before we define P (j) to be the concatenation
P (j−1) + P . We generate X(j)

p from X
(j−1)
p+1 for p ∈ [0, k − 1] by removing the

vertices ofP (j−1) inX(j−1)
p+1 and replacing themby vertices from the same clus-

ter do not lie inZ orP (j). If we have not reached the end ofW , we chooseX(j)
kto be a subset of the cluster at position q + k in the sequence ofW such that

X
(j)
k is disjoint from P (j)∪Z. In this case, we change our state to ‘position q+1
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in traversingW ’. Alternatively, if we have reached the end ofW , meaning that
the (k − 1)-tuple of clusters containing X(j)

1 , . . . , X
(j)
k−1 is (Y1 . . . , Yk−1), then

we chooseX(j)
k to be a subset of Yk which has size αm/k and is disjoint from

P (j)∪Z. Wemay choose a pathP ∈ P(j−1) such that the terminal (k−1)-tuple
f ∈ G(X

(j)
1 , . . . , X

(j)
k−1) of P is well-connected to (Z1, . . . , Zk−1) via Zk and Z0.This implies that wemay choose a (k−1)-tuple e′ in G(Z1, . . . , Zk−1), v, v′ inZkwith new colors C∗, C∗∗ in Z0 with |C∗| = |C∗∗| = k such that (C∗, f(v′)e′) is a

sequential pathQ′ and (C∗∗, e′(v)e) is a sequential pathQ. ReturnP (j)+Q′+Q

as the output sequential path in G. Note that an edge may appear multiple
times. When it first appears in the walk, the process executes ‘filling the edge’.
When it appears later, ‘filling the edge’ is no longer needed. Again we prove
Claim 4.6 that these choices are all possible.
Claim 4.6 The algorithm described above is well-defined(that is, it is always pos-
sible to construct the sets X(j)

p ), maintains ⋆ and returns a sequential path of
length

4k − 1 +

∑
i∈[s]

ni

 · k + ℓ(W ) · (k + 1).

Proof.
We prove that⋆ is maintained, recall that e(G(X(j)

1 , . . . , X
(j)
k−1)) ≥ εmk−1

for each j. Fixing some j, for either Ap := X
(j−1)
p or Ap := X

(j−1)
p+1 , we ob-

tain setsA1, . . . , Ak−1, each with size αm such that the terminal (k−1)-tuples
of P(j) constitute at least 9/10 of the ordered edges of G(A1, . . . , Ak−1) andfor each i ∈ [k − 1], X(j)

i is formed from Ai by removing at most two ver-
tices and replacing them with the same number of vertices. Since each ver-
tex is in at most mk−2 ordered (k − 1)-tuples of either G(A1, . . . , Ak−1) or
G(X(j)

1 , . . . , X
(j)
k−1), we conclude that the fraction of ordered (k − 1)-tuples of

G(X(j)
1 , . . . , X

(j)
k−1) which are the terminal (k − 1)-tuples of paths in P(j) is at

least
9
10e(G(A1, . . . , Ak−1))− 2(k − 1)mk−2

e(G(X(j)
1 , . . . , X

(j)
k−1))

≥
9
10(e(G(X

(j)
1 , . . . , X

(j)
k−1))− 2(k − 1)mk−2)− 2(k − 1)mk−2

e(G(X(j)
1 , . . . , X

(j)
k−1))

≥ 9

10
− 4(k − 1)mk−2

εmk−1
≥ 1

2
,

(4.3)

where the last equality holds sincem ≥ m0 ≥ 16(k−1)/ε. Thus, we obtain⋆.
To prove that we can always construct the set X(j)

p , observe that it is en-
ough to check that at termination every cluster still have at least 2αm vertices
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not in P (j), as then there are at least αm vertices outside Z. In each walk-
traversing step, each path in P(j) contains precisely k + 1 new points and
k + 1 new colors and the total number of walk-traversing steps is precisely
ℓ(W ). Recall that this number is at most t2k+1, we have (k + 1)t2k+1 < αm

2kand (k + 1)2t2k+1 < αm
2 by (4.1). When we are in the state ‘filling the edge ei’,we have ni steps and in each step, each path in P(j) contains k new points,

one from each cluster of ei \ C(ei) and k new colors from C(ei). So for any
color cluster C , the number of whose vertices which are added to P (j) is at
most∑i:C∈ei kni ≤

∑
i:C∈ei(1− 3α)kw(ei)m ≤ (1− 3α)m. And for any point

cluster X , the number of whose vertices which are added to P (j) is at most∑
i:X∈ei ni ≤

∑
i:X∈ei(1 − 3α)w(ei)m ≤ (1 − 3α)m/k. Together with e and

the k vertices of the chosen path in P(0), we conclude that there are at most
(1 − 2α)m vertices of any color cluster and at most (1 − 2α)m/k vertices of
any point cluster contained in P (j) at termination.

Finally, the length of the path is equal to the number of points. Recall that
P (0) contains k− 1 points. Next, k points and k colors are added from P (0) to
form P (1). Each of the∑i∈[s] ni edge-filling steps resulted in k new points and
k new colors being added to P (j) and each of the ℓ(W ) walk-traversing steps
resulted in k + 1 new points and k + 1 new colors being added to P (j). When
completing the path, we need 2k points which are not in the final paths P (j)

(v, v′, e and e′). Thus, the final path has length

(k − 1) + k +

∑
i∈[s]

ni

 · k + ℓ(W ) · (k + 1) + 2k.

□
We obtain the shortest sequential path by never entering the state ‘filling

an edge’, in which case we can obtain a sequential path of length 4k − 1 +

ℓ(W )(k + 1). On the other hand, by extendingW to include all edges of RWi ,we take ni to be (1 − ψ)w(ei)m for each i ∈ [s]. We can obtain a sequential
path of length at least (1−ψ)µikn/t, with using atmost kµi(C)n/t+B vertices
from any color cluster C in RWi and at most µi(X)n/t + B where µi(Z) =∑

Z∈e,e∈RWi
wi(e) for i ∈ [k] and B = B(t, k). By choosing ni appropriately,we can obtain tight cycles of certain length between two extremes. □

Similarly with Lemma 4.15, we can obtain the following lemma.
Lemma 4.16 Let k, r, n0, t, B be positive integers and ψ, d2, . . . , dk+1, ε, εk+1, νbe positive constants such that 1/di ∈ N for i ∈ [2, k] and such that 1/n0 ≪ 1/t,

1

n0
≪ 1

t
≪ 1

B
≪ 1

r
, ε≪ εk+1, d2, . . . , dk,

εk+1 ≪ ψ, dk+1, ν,
1

k
.
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Then the following holds for all integers n ≥ n0.LetG be a (1, k)-graph on [n]∪V where |V | = n,J be a (·, ·, ε, εk+1, r)-regularslice forG on [t]∪V ′ where |V ′| = t with density vector d = (d2, . . . , dk). Let JWibe the induced subcomplex ofJ on [t(i−1)/k+1, ti/k]∪V ′ for i ∈ [k]. LetRWi :=

R [[t(i− 1)/k + 1, ti/k] ∪ V ′] be the induced subgraph of R := Rdk+1
(G). Let

RWi be sequentially tightly connected for i ∈ [k] and wi be a fractional matchingof size µi =∑e∈E(RWi
)wi(e) for i ∈ [k] with µi(Z) ≤ 1/k for each cluster Z and

i ∈ [k]. Also, let X and Y be (k − 1)-tuples of point clusters, SX and SY be the
subsets of JX and JY of sizes at least ν|JX | and ν|JY | respectively. Finally, let
W be a sequential walk traversing all edges of eachHWi fromX to Y of length at
most t2k+1 and denote ℓ(W ) by p. For i ∈ [k], we have

1. for any ℓ divisible by k with 4k ≤ ℓ ≤ (1 − ψ)
∑

i∈[k] µikn/t, there is asequential path P in G of length ℓ− 1 + ℓ(W )(k+ 1) whose initial (k− 1)-
tuple belongs to SX and whose terminal (k − 1)-tuple belongs to SY ,

2. P uses at most∑i∈[k] µi(Z)n/t+B vertices from any point cluster Z ∈ V ′

and at most kµi(C)n/t + B vertices from any color cluster C ∈ [t] where
µi(Z

′) =
∑

Z′∈e,e∈RWi
wi(e) for any cluster Z ′.

Connecting Let us begin with the existence of extensible paths. The following
proposition states that most tuples in the complex induced by an edge of the
reduced graph of a regular slice also extend to that edge.
Proposition 4.9 Let k,m, t, r ∈ N and ε, εk+1, d2, . . . , dk+1, β, c, ν be such that

1/m≪ 1/r, ε≪ c≪ εk+1, d2, . . . , dk,

εk+1 ≪ β ≪ dk+1, ν.

Letd = (d2, . . . , dk+1) and let (G,GJ ,J ,P, R) be a (k,m, 2t, ε, εk+1, r,d)-regularsetup. Let Y = (Y0, Y1, . . . , Yk) be an ordered edge in R, then all but at most
β|J(Y1,...,Yk−1)|many tuples (v1, . . . , vk−1)∈ J(Y1,...,Yk−1) are (c, ν)-extensible bothleft and rightwards to Y .
Proof. Let P = (c1, . . . , c2k, v1, . . . , v3k−1) be a sequential path. Partition its
vertex set in k + 1 clusters X0, X1, . . . , Xk such that X0 = {c1, . . . , c2k}, and
Xi = {vj : j = imod k} for i ∈ [k]. Thus, P is a (k + 1)-partite (k + 1)-graph.

LetH be the down-closure of the path P , which is a (k+1)-partite (k+1)-
complex. Let V1 = {v1, . . . , vk−1} and V2 = {v2k+1, . . . , v3k−1}. Let H′ be the
induced subcomplex of H on V1 ∪ V2. Thus, H′ is a k-partite (k − 1)-complex
on 2k − 2 points. Let G = J ∪GJ .Let H′

G be the set of labelled partition-respecting copies of H′ in G. It fol-
lows that

|H′
G | = (1± εk+1)|J(Y1,...,Yk−1)|

2, (4.4)
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where the error term accounts for the fact that we do not count the intersec-
ting pairs of (k − 1)-tuples in J(Y1,...,Yk−1). Since Y is an edge of R, any func-
tion ϕ : V (P ) → V (R) such that ϕ(Xi) ⊆ Yi is a homomorphism. By Lemma
4.3 with β2 playing the role of β, we deduce that all but at most β2|H′

G | oflabelled partition-respecting copies of H′ in G extend to at least cm3k+1 la-
belled partition-respecting copies of H in G, since c ≪ d2, . . . , dk−1. For each
e ∈ J(Y1,...,Yk−1), let T (e) be the number of tuples e′ in J(Y1,...,Yk−1) such that
e ∪ e′ can be extended to at least cm3k+1 copies ofH in G, We have∑

e∈J(Y1,...,Yk−1)

T (e) ≥ (1− 2β2)|J(Y1,...,Yk−1)|
2. (4.5)

Let S ⊆ J(Y1,...,Yk−1) be the set of (k − 1)-tuples e which is not (c, ν)-
extensible leftwards to Y , that is T (e) < ν|J(Y1,...,Yk−1)|. Combining with (4.5)
and β ≪ ν, we have∑
e∈J(Y1,...,Yk−1)

T (e) ≤ |S| · ν|J(Y1,...,Yk−1)|+ (|J(Y1,...,Yk−1)| − |S|)|J(Y1,...,Yk−1)|,

furthermore, we have
|S| ≤ 2β2

1− ν
|J(Y1,...,Yk−1)| ≤

β

2
|J(Y1,...,Yk−1)|.

A symmetric fact shows that all but at most β
2 |J(Y1,...,Yk−1)| (k − 1)-tuples in

J(Y1,...,Yk−1) are not (c, ν)-extensible rightwards to Y . Thus, all but at most
β|J(Y1,...,Yk−1)| pairs in J(Y1,...,Yk−1) are not (c, ν)-extensible both left and right-wards to Y . □

In Proposition 4.9, we know that most tuples in the complex induced by
an edge of the reduced graph of a regular slice also extend to that edge. The
following lemma allows us to connect up two extensible paths using either
very few or quite a lot of vertices.
Lemma 4.17 Let k, r,m, t ∈ N, and d2, . . . , dk+1, ε, εk+1, c, ν, λ be such that

1/m≪ 1/r, ε≪ c≪ εk+1, d2, . . . , dk,

λ≪ ν ≪ 1/k,

εk+1 ≪ dk+1.

Let d = (d2, . . . , dk+1) and letS = (G,GJ ,J ,P, H) be a (k,m, 2t, ε, εk+1, r,d)-regular setup where P has an initial partition of [n] ∪ V and H is a (1, k)-graph
on [t]∪V ′. Suppose thatHWi = H[[t(i−1)/k, ti/k]∪V ′] andHWi is sequentiallytightly connected for i ∈ [k]. Let P1, P2 ⊆ G be (c, ν)-extensible paths such that
P1 extends rightwards to X and P2 extends leftwards to Y . Suppose that P1 and
P2 are either identical or disjoint, letW be a sequential walk traversing eachHWi
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of length at most t2k+1 that starts from X and ends with Y . Let T be the joint
connection set of P1 and P2. Suppose that T and S ⊆ V (G) are λ-sparse in P ,
V (P1) ∪ V (P2) ⊆ S and T ∩ S = ∅, then

(1) there is a sequential pathQ of length 4k−1+(ℓ(W )+2)(k+1) inG[V (P)]

such thatP1QP2 is a sequential path, containing no vertices ofS and exactly 6k+2

vertices of T ,
(2) considerψ with εk+1 ≪ ψ, letw be a fractional matching of size µ =

∑
i∈[k]∑

e∈E(HWi
)wi(e) ≥ 5/m such that ∑Z∈e,e∈HWi

wi(e) ≤ (1 − 2λ)/k for each
Z ∈ P . There is a sequential path Q of length ℓ(W ) + 1 mod k in G[V (P)] such
that P1QP2 is a sequential path, containing no vertices of S and exactly 6k + 2

vertices of T . Moreover, there is a set U ⊆ V (P) of size at most ψmt such that
U ∪ V (Q) has exactly ⌈

∑
i∈[k]

∑
Z∈e,e∈HWi

wi(e)m⌉ + B vertices in each point
cluster Z.
Proof. Let X = (X0, X1, . . . , Xk), since P1 extends rightwards to X , thus
there exists a target set T1 ⊆ J(X2,...,Xk) of size |T1| ≥ ν|J(X2,...,Xk)| such thatfor every (v2, . . . , vk) ∈ T1, there are at least cm3k+1 many (3k + 1)-tuples
(c1, . . . , c2k, w1, . . . , wk, v1) with ci ∈ T ∩ X0 for i ∈ [2k], wi ∈ T ∩ Xi for
i ∈ [k] and v1 ∈ T ∩ X1 such that ((c1, . . . , c2k), P1(w1, . . . , wk, v1, . . . , vk)) isa sequential path. Let Y = (Y0, Y1, . . . , Yk), P2 extends leftwards to Y with
target set T2 ⊆ J(Y2,...,Yk).For each Z ∈ P , let Z ′ ⊆ Z \ (S ∪ T ) of sizem′ = (1− 2λ)m since S and T
are λ-sparse. LetP ′ = {Z ′}Z∈P ,G′ = G[V (P ′)] andJ ′ = J [V (P ′)]. By lemma
4.7,S′ := (G′, G′

J ,J ′,P ′, H) is a (k,m′, 2t,
√
ε,
√
εk+1, r,d)-regular setup.For (2), let µ′ = µ/(1 − 2λ) be the scaled size of w and B ∈ N such that

1/B ≪ 1/r, ε. Let ℓ be the largest integer divisible by k with 4k ≤ ℓ ≤ (1 −
ψ/4)µ′m′k. Note that such an ℓ exists since (1−ψ/4)µ′m′ ≥ 4, where the latter
inequality follows from µ ≥ 5/m. Applying Lemma 4.16 with G′,J ′,W, ℓ,w, µ′
and T1, T2, we obtain a sequential path Q′ whose initial (k − 1)-tuple belongs
to T1 and whose terminal (k − 1)-tuple belongs to T2. Furthermore, Q′ has
length ℓ− 1+ ℓ(W )(k+1) and uses at most∑i∈[k] µi(Z)m+B vertices from
any point cluster Z where µi(Z) = ∑

Z∈e,e∈HWi
wi(e) and B ≪ ψµmk. Note

that ℓ ≥ (1− ψ/4)µkm− k, it follows that∑
Z∈V ′

∑
i∈[k]

µi(Z)m−
∑
Z∈V ′

|V (Q′) ∩ Z|

≤ µkm− (1− ψ

4
)µkm+ k + 1− ℓ(W )(k + 1)

≤ ψ

4
µkm+ k + 1

≤ ψ

4
(1− 2λ)tm+ k + 1 ≤ ψ

2
mt.

Hence, there is a set U ⊆ V (P) of size at most ψmt such that U ∪ V (Q′) has
⌈
∑

i∈[k] µi(Z)m⌉+B vertices from any point cluster Z ∈ V ′.
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For (1), we can choose a path Q′ in the same way. The only difference is
that in this case w is a single edge of weight 1 and ℓ = 4k. Hence, Q′ is a path
of length 4k − 1 + ℓ(W )(k + 1).

Finally, we use the above extensible paths to choose c1, . . . , ck+1, w1, . . . ,

wk, v1 and f1, . . . , fk+1, v
′
k, w

′
1, . . . , w

′
k in T such that for

Q = ((c1, . . . , ck+1)C(Q
′)(f1, . . . , fk+1), (w1, . . . , wk, v1)Q

′(v′k, w
′
1, . . . , w

′
k)),

the concatenation P1QP2 is a sequential path and Q is disjoint from S, since
V (S)∩T = ∅ T ∩V (Q′) = ∅. It is obvious that the length ofQ in (1) is 4k− 1+

(ℓ(W ) + 2)(k + 1) and the length of Q in (2) is ℓ(W ) + 1mod k.
□

Proposition 4.10 LetW be a sequential walk in a (1, k)-graphH on [t]∪V ′ which
starts from (1, k)-tupleX and ends with (1, k)-tuple Y where |V ′| = t. There exists
a sequential walkW ′ of length at most ktk+1, which starts fromX and ends with
Y . Moreover, ℓ(W ′) = ℓ(W )mod k.
Proof. Suppose that ℓ(W ) = j mod k for a j ∈ [0, k − 1]. LetW ′ be a vertex-
minimal sequentially tightly walk from X to Y of size j mod k. Our goal is to
show that every (1, k)-tuple repeats at most k times inW ′.

Assume thatW ′ contains k + 1 copies of the same (1, k)-tuple Z and de-
note by nj the position inW ′ where the jth repetition Z begins. It is obvious
that nj − n1 ̸≡ 0mod k, otherwise it is contrary to the minimal ofW ′. By the
pigeonhole principle, there exist two indices j, j′ such that nj − n1 ≡ nj′ − n1mod k for 1 ≤ j < j′ ≤ k + 1. That is, nj − nj′ ≡ 0 mod k. We can also
reduce the length of W ′ by deleting the vertices between nj and nj′ − 1, a
contradiction. □

Proposition 4.11 Let j, k, t ∈ N with j ∈ [k]. LetW be a sequentially closed walk
that is compatible with respect to an orientation−→H of a (1, k)-graphH on [t]∪V ′

where |V ′| = t. LetX1 andX2 be consistent with−→H . There exists a sequential walk
W ′ of length at most ktk+1, which starts from X1 and ends with X2. Moreover, if
W has length 1mod k, thenW ′ has length j mod k.
Proof. For the first part, by Proposition 4.10, it suffices to show that there is
a sequential walk starting fromX1 and ending withX2. SinceX1 is consistentwith −→

H , there is a sequential path WX1 of length at most k − 1 from X1 to
X ′

1 in H where X ′
1 is an oriented edge in −→

H which is a cyclic shift of X1. Simi-
larly, there is a sequential pathWX2 of length atmost k−1 fromX2 toX ′

2 inHwhereX ′
2 is an oriented edge in−→

H which is a cyclic shift ofX2. SinceW is com-
patible with respect to an orientation−→

H , there is a subwalkWX′
1X

′
2
⊆W star-

ting from X ′
1 and ending with X ′

2, hence (C(X1)C(WX1)C(WX′
1X

′
2
)C(WX2)

C(X2), I(X1)I(WX1)I(WX′
1X

′
2
)I(WX2)I(X2)) is the desiredW ′.
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Note that we chooseWX′
1X

′
2
such thatW ′ has length jmod k by extending

WX′
1X

′
2
along the same (1, k)-tuple with copies ofW , for an appropriate num-

ber of times. This is possible since any number coprime to k is a generator for
the finite cyclic group Z/kZ. □

Lemma 4.18 (Connecting lemma) Let k,m, r, t ∈ N, d2, . . . , dk+1, ε, εk+1, p, ν,

λ, ζ be such that
1/m≪ 1/r, ε≪ 1/t, ζ, εk+1, d2, . . . , dk,

ζ ≪ p≪ d2, . . . , dk,

1/t≪ εk+1 ≪ dk+1, ν ≤ 1/k,

λ≪ ν ≪ 1/k.

Letd = (d2, . . . , dk+1) and let (G,GJ ,J ,P, H) be a (k,m, 2t, ε, εk+1, r,d)-regularsetup with H being sequentially tightly connected. Let −→H be an orientation of H
with a compatible closed walkW . Suppose that C is a collection of pairwise disjoint
(p, ν)-extensible paths consistent with−→

H and with joint connection set T . Assume
that

(1) |C| ≤ ζm,
(2) V (C) is λ-sparse in P ,
(3) V (C) ∩ T = ∅.

Consider any two elements P1, P2 of C, there is a sequential path P inG such that
(a) P connects every path of C,
(b) P starts from P1 and ends with P2,(c) V (P ) \ V (C) ⊆ V (P),
(d) V (P ) \ V (C) intersects in at most 10k2CZ + t2t+3k+2 vertices with each
cluster Z ∈ P , where CZ denotes the number of paths of C intersecting with
Z.

Proof. Choose a set T ′ from V (G) by including each vertex of V (P) inde-
pendently at random with probability p. By Lemma 1.1 and the union bound,
we obtain that the set T ′ is (2p)-sparse with probability 1−2t exp(−Ω(m)). By
Lemma 1.5, we obtain that the set T ′ is a connection set of a fixed (p3k+2/2, ν)-
extensible path in C with probability 1 − 2mk−1 exp(−Ω(m)). Since |C| ≤ ζm,
with positive probability, we get a set T ′ satisfying all these properties.

Initiate S = V (C). While there are two paths Q1, Q2 ∈ C such that the
extension to the right ofQ1 equals to the left ofQ2, apply Lemma 4.17 (1) with
ℓ(W ) = kpk+4/2 to obtain a path Q of length 10k2 which avoids S and has
exactly 6k + 2 vertices in T ′. Add V (Q) to S, replace Q1, Q2 with Q in C and
delete the 6k + 2 vertices used by Q in T ′. Denote the set of paths after the
procedure by C′.
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Note that the size of S grows by at most 10k2|C| ≤ 10k2ζm ≤ λm, we
delete at most (6k + 2)|C| ≤ (6k + 2)ζm ≤ p3k+2m/4 vertices from T throu-
ghout this process since ζ ≪ p. This implies that every path of C remains
(p3k+2/4, ν)-extensiblewith connection setT ′. Hence the conditions of Lemma
4.17 (1) are satisfied in every step and C′ is well-defined.

Note that when the procedure ends, C′ has size at most t2t. Moreover, the
paths of C′ inherit the property of being consistent with −→

H . We continue by
connecting up the paths of C′ to the desired path P along the orientation. As
the paths of C′ are consistent with −→

H , the left and right extensions of each
path in C′ are contained in the walk W . Since W is compatible with −→

H , we
can apply Proposition 4.11 to obtain a sequential walk in H of length of at
most t2k+1 between the left and right end of each path in C′. Use Lemma 4.7
and Lemma 4.17 (1), we can connect up the paths of C′ using at most t2t+3k+2

further vertices of V (P).
Thus, P contains every path in C as a subpath and V (P ) \ V (C) ⊆ V (P).

Moreover, note that V (C′) \ C intersects in at most 10k2CZ vertices for each
Z ∈ P , where CZ denotes the number of paths of C that intersects with Z. It
is obvious that P can start and end with any two paths of C. □

Proof. [Proof of Lemma 4.14] Let P1 = P . Suppose that P1 extends right-wards to X and leftwards to Y , there exists a path P2 of length k − 1 which
(c, ν)-extends both leftwards and rightwards to Y by Proposition 4.9. Moreo-
ver, we can assume that V (P1) is disjoint from V (P2) and T2, where T2 is theconnection set of P2. By Lemma 1.1 and Lemma 1.5, we can choose a λ-sparse
vertex set T ′ such that P1, P2 are (c3k+2/2, ν)-extensible paths with connec-
tion set T ′.

Firstly, let S1 = V (P1)∪V (P2), and we choose κ such that λ≪ κ≪ γ. For
each Z ∈ P , we can select a subset Z ′ of Z of sizem′ = κm such that Z∩S1 ⊆
Z ′ since S1 is 2λ-sparse, 1/m≪ 1/t≪ α≪ λ and 2λ≪ κ. Let P ′ = {Z ′}Z∈P ,
V (P ′) =

⋃
Z∈P Z

′,G′ = G[V (P ′)],G′
J ′ = GJ [V (P ′)] be the corresponding in-

duced subgraphs and J ′ = J [V (P ′)] be the induced subcomplex. By Lemma
4.7, S′ = (G′, G′

J ′ ,J ′,P ′, H) is a (k,m′, 2t,
√
ε,
√
εk+1, r, d2, . . . , dk+1)-regularsetup.

Nowwedefine a fractionalmatching that complements the discrepancy of
S1 in the clusters ofP . Consider bi ∈ RV (HWi

) by setting bi(Z
′) = |Z ′\S1|/|Z ′|

for every Z ∈ V (HWi). Recall that |S1 ∩ Z| ≤ 2λm, |Z ′| = κm and λ ≪ κ, γ. It
follows that

1− γ ≤ 1− 2λ

κ
≤ 1− |S1|

|Z ′|
≤ bi ≤ 1.

SinceHWi is γ-robustly matchable, there is a fractional matchingwi such that∑
Z∈e,e∈HWi

wi(e) = bi(Z
′)/k for every cluster Z ′ ∈ P ′ of HWi where i ∈ [k].

Consider ψ > 0 with εk+1 ≪ ψ ≪ α, there exists a sequential path Q1 in G′

such that P2Q1P1 is a sequential path in G which contains no vertices of S1
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and 4k+2 vertices of T ′ by Lemma 4.17. Moreover, there is a set U ⊆ V (P) of
size at most ψmt such that U ∪ V (Q1) has ⌈∑i∈[k]

∑
Z∈e,e∈HWi

wi(e)κm⌉+B

vertices in each point cluster Z. In other words, V (P2Q1P1) ∪ U has κm + B

vertices in each point cluster of V (H) and uses (κm + B)(1 − α)t vertices of
V since |V (LH(i))| ≥ (1− α)t for i ∈ [t].

We now choose the second pathQ2. Note thatP2Q1P1 has right extension
X and left extension Y , which are consistent with −→

H . SinceW is compatible
with −→

H , we can apply Proposition 4.11 to obtain a sequential walkW ′ in H of
length p ≤ t2k+1 starting from X and ending with Y . Moreover, sinceW has
length coprime to k, we can chooseW ′ such that

p+ 1 = |V (G) \ V (P2Q1P1)|mod k.

Let S2 = V (P2Q1P1) and T ′′ = T ′ \S2. Define ci ∈ RV (HWi
) by setting ci(Z) =

(m−|Z ∩S2|)/m for every Z ∈ V (HWi). Note that 1−γ ≤ 1−κ−ψ ≤ ci ≤ 1.
Since HWi is robustly matchable, there is a fractional matching zi such that∑

Z∈e,e∈HWi
zi(e) = ci(Z)/k for every Z ∈ P of HWi . By Lemma 4.17, there

exists a sequential path Q2 in G of length p + 1 mod k which contains no
vertices of S2 and 4k + 2 vertices of T ′′ such that P2Q1P1Q2 is a sequentialcycle. Besides, there is a set U ′ ⊆ V (P) of size at most ψmt such that U ′ ∪
V (Q2) has ⌈∑i∈[k]

∑
Z∈e,e∈HWi

zi(e)m⌉ + B vertices in each point cluster Z.
Thus, U ′∪V (Q2) uses at least ((1− κ)m−B +B) (1−α)t = (1−κ)m(1−α)t
vertices of V . Denote the set of uncovered vertices in all clusters of P byM .

Note that P2Q1P1Q2 contains all vertices of V (G) but M , U and U ′. We
know that |M | ≤ αmt, |U | ≤ ψmt, |U ′| ≤ ψmt. Thus P2Q1P1Q2 covers all butat most αmt+2ψmt ≤ 3αn ≤ ηn vertices. Since the length ofQ2 is p+1mod
k, it follows that |V \ V (P2Q1P1Q2)| is divisible by k. □
Absorption Next, we will give the proof of Lemma 4.13. The method can be
sketched as follows.Wedefine absorbing gadget to absorb a setT of k vertices
and a setO of k colors. For each (T,O), the absorbing gadgets are numerous.
Based on the above properties, we can choose a small family of vertex-disjoint
gadgets such that for every (T,O), there are many absorbing gadgets. Such a
family is obtained by probabilisticmethod. Connecting all these gadgets yields
the desired absorbing path.

In this part, wewill obtain some results to help us attach vertices to regular
complexes. LetH be a (1, k)-graph with vertex set [n]∪V , J be a regular slice
with cluster set P . Given a (0, k − 1)-subset X ⊆ P , JX is an |X|-partite |X|-
graph containing all edges of |X|-level of J . For any v ∈ V , δ > 0 and any
color cluster C , let
NJ ((v, C), δ) = {X ⊆ P : |X| = k−1, for any c ∈ C, |NH((v, c);JX)| > δ|JX |}.

Lemma 4.19 Let k, r,m, t ∈ N and d2, . . . , dk+1, ε, εk+1, µ, δ be such that
1/m≪ 1/r, ε≪ εk+1, d2, . . . , dk,
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εk+1 ≪ dk+1 ≤ 1/k,

and
εk+1 ≪ µ≪ δ.

Let d = (d2, . . . , dk+1) and let (H,HJ ,J ,P, R) be a representative (k,m, 2t, ε,
εk+1, r,d) -regular setup. Suppose that H has minimum relative (1, 1)-degree at
least δ+µ with vertex set [n]∪V . Then for any v ∈ V and any color cluster C , we
have

|NJ ((v, C),
µ

3
)| ≥ (δ +

µ

4
)

(
t

k − 1

)
.

For any c ∈ [n] and any point cluster Z , we have
|NJ ((c, Z),

µ

3
)| ≥ (δ +

µ

4
)

(
t

k − 1

)
.

Proof. Let v ∈ V and c ∈ C be arbitrary. Theminimum relative degree condition
implies that degH(v, c) ≥ δ + µ. Since the regular setup is representative and
εk+1 ≪ µ, we have |degH(v, c)− degH((v, c);J )| < εk+1 and

degH((v, c),J (k−1)) ≥ (δ + µ− εk+1)|J (k−1)| ≥ (δ +
2

3
µ)|J (k−1)|.

For any (0, k − 1)-subset X of P , JX corresponds to the (k − 1)-edges of
J (k−1) which are X-partite. Define dX =

∏k−1
i=2 d

(k−1
i )

i . By Lemma 4.5, we have
|JX | = (1 ± εk+1)dXm

k−1. By summing over all the (0, k − 1)-subsets of P , we
have

|J (k−1)| ≥ (1− εk+1)

(
t

k − 1

)
dXm

k−1.

Moreover, letX range over all (0, k − 1)-subsets of P , we have∑
X

|NH((v, c);JX)| = degH((v, c);J (k−1)) ≥ (δ +
2

3
µ)|J (k−1)|.

Finally, we obtain
(δ +

2

3
µ)|J (k−1)|

≤
∑
X

|NH((v, c);JX)| ≤
∑

X∈NJ ((v,c),µ/3)

|JX |+
∑

X/∈NJ ((v,c),µ/3)

µ

3
|JX |

≤
(
|NJ ((v, c), µ/3)|+

µ

3

((
t

k − 1

)
− |NJ ((v, c), µ/3)|

))
(1 + εk+1)dXm

k−1

≤
(
(1− µ

3
)|NJ ((v, c), µ/3)|+

µ

3

(
t

k − 1

))
1 + εk+1

1− εk+1

|J (k−1)|(
t

k−1

)
≤
(
|NJ ((v, c), µ/3)|+

µ

3

(
t

k − 1

))
(1 + 2εk+1)

|J (k−1)|(
t

k−1

) .
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Thus, for any v ∈ V and c ∈ C , we have
|NJ ((v, c), µ/3)| ≥ (δ +

µ

4
)

(
t

k − 1

)
,

and by definition, the following holds for any v ∈ V and color cluster C ,
|NJ ((v, C), µ/3)| ≥ (δ +

µ

4
)

(
t

k − 1

)
.

Similarly, we can obtain the following result holds for any c ∈ [n] and point
cluster Z ,

|NJ ((c, Z), µ/3)| ≥ (δ +
µ

4
)

(
t

k − 1

)
.

□

Lemma 4.20 Let k, r,m, t ∈ N and d2, . . . , dk+1, ε, εk+1, µ, λ be such that
1/m≪ 1/r, ε≪ εk+1, d2, . . . , dk,

εk+1 ≪ dk+1 ≤ 1/k,

and
εk+1 ≪ λ≪ µ.

Letd = (d2, . . . , dk+1) and let (H,HJ ,J ,P, R) be a (k,m, 2t, ε, εk+1, r,d)-regularsetup. Let T ⊆ V (H) such that |Z1 ∩ T | = |Z2 ∩ T | ≤ λm for every Z1, Z2 ∈ P .
Let Z ′ = Z \T for each Z ∈ P , and let J ′ = J [

⋃
Z ′] be the induced subcomplex.

For every v ∈ V and color cluster C , we have
|NJ ((v, C), 2µ)| ≤ |NJ ′((v, C), µ)|,

and for every c ∈ [n] and point cluster Z , we have
|NJ ((c, Z), 2µ)| ≤ |NJ ′((c, Z), µ)|,

Proof. For any v ∈ V , color clusterC and a (0, k−1)-setX ∈ NJ ((v, C), 2µ).By the definition, we have |NH((v, c);JX)| > 2µ|JX | for any c ∈ C. Let X =

{X1, . . . , Xk−1} and X ′ = {X ′
1, . . . , X

′
k−1} be the corresponding clusters in

the complex J ′. Our goal is to prove thatX ′ ∈ NJ ′((v, C), µ).
Let ε≪ β ≪ εk+1 and dX =

∏k−1
i=2 d

(k−1
i )

i . By Lemma 4.5, we have
|JX | = (1± β)dXm

k−1

and
|NH((v, c);JX)| > 2µ|JX | ≥ 2µ(1− β)dXm

k−1.
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Let m′ = |X1 \ T |, we have |Z ′| = m′ for each Z ∈ P , note that m′ ≥
(1 − λ)m. By Lemma 4.7, J ′ is a (·, ·,

√
ε,
√
εk+1, r)-regular slice. By Lemma

4.5, we have
(1 + β)dX(m′)k−1 ≥ |J ′

X′ | ≥ (1− β)dX(m′)k−1 ≥ (1− β)(1− λ)k−1dXm
k−1.

Since β ≪ εk+1 ≪ λ≪ µ, we have
|NH((v, c);J ′

X′)| ≥ |NH((v, c);JX)| − (|JX | − |J ′
X′ |)

≥ (1− β)(2µ− (1− (1− λ)k−1))dXm
k−1

≥ µ(1 + β)dXm
k−1 ≥ µ|J ′

X′ |.

Thus, we obtain thatX ∈ NJ ′((v, C), µ).
Similarly, for every c ∈ [n] and point cluster Z , we have

|NJ ((c, Z), 2µ)| ≤ |NJ ′((c, Z), µ)|.

□
In a (k+1)-uniform sequential cycle, the link graph of a point corresponds

to a k-uniform sequential path. Thus, we will look for sequential paths in the
neighbors of vertices inside a regular complex. The following lemma states
that by looking at a µ-fraction of (1, k− 1)-edges of a regular complex, we will
find lots of sequential paths.
Lemma 4.21 Let 1/m ≪ ε ≪ d2, . . . , dk, 1/k, µ and k ≥ 3. Suppose that J
is a (·, ·, ε)-equitable complex with density vector d = (d2, . . . , dk) and ground
partition P , the size of each vertex class ism. LetW = {W0,W1, . . . ,Wk−1} ⊆ P .
Let S ⊆ JW be with size at least µ|JW | and Q be a k-uniform sequential path
(c1 · · · ck, v1 · · · v2k−2)with vertex classes {X0, X1, . . . , Xk−1} such that vi, vi+k−1

∈ Xi for i ∈ [k − 1] and cj ∈ X0 for j ∈ [k]. LetQ be the down-closed k-complex
generated by Q and QS ⊆ QJ be the copies of Q whose edges in the k-th level
are in S. We have

|QS | ≥
1

2

( µ
8k

)k+1
|QJ |.

Proof. The proof consists of three steps. Firstly, we use the dense version
of the counting and extension lemma to count the number of various hyper-
graphs in J . Secondly, we remove some (1, k − 1)-tuples without good pro-
perties. Finally, we use an iterative procedure to return sequential paths using
good (1, k − 1)-tuples, as desired.

Firstly, let β be such that ε≪ β ≪ d2, . . . , dk, 1/k, µ. Define

da =

k−2∏
i=2

d
(k−2

i )
i , db =

k−2∏
i=2

d
(ki)−(

k−2
i )

i ·
k∏

i=k−1

d
(ki)
i .
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LetW ′ =W \ {W0,Wk−1}. By Lemmas 4.4 and 4.5, we have
|JW | = (1± β)dadbm

k, (4.6)
|JW ′ | = (1± β)dam

k−2,

|QJ | = (1± β)dad
k
bm

3k−2.

Since S ⊆ JW with |S| ≥ µ|JW |, with (4.6), we have
|S| ≥ (1− β)µdadbm

k.

Let BW ′ ⊆ JW ′ be the (k − 2)-edges which are not extensible to (1± β)dbm
2

copies of a k-edge in JW . By Lemma 4.6, we have
|BW ′ | ≤ β|JW ′ |.

Secondly, we delete from S the edges which contain a (k − 2)-set from
BW ′ to obtain S′, the number of edges deleted is at most

|BW ′ |m2 ≤ β|JW ′ |m2 ≤ β(1 + β)dam
k ≤ |S|/3,

since β ≪ µ, d2, . . . , dk. Thus, we have |S′| ≥ 2|S|/3. Furthermore, if there is
any partite (k − 2)-set T in J which lies in less than µdbm2/(4k) edges of S′,
then we delete all edges in S′ containing T to obtain S′′ and iterate this until
no further deletions are possible. Note that the number of partite (k − 2)-
sets supported in the clusters ofW \ {W0} is (k − 1)(1± β)dam

k−2. Thus the
number of edges deleted is at most

(k − 1)(1 + β)dam
k−2µdbm

2

4k
≤ (1 + β)

µdadbm
k

4
≤ |S|

3
.

Thus, |S′′| ≥ |S|/3. Each partite (k−2)-set inW1, . . . ,Wk−1 is either containedin zero edges of S′′ or in at least µdbm2/(4k) edges in S′′.
Finally, we use the properties of S′′ to construct many labelled partition-

respecting paths in QS .
Step 1. Select T = {x1, . . . , xk−2} ∈ JW ′ which is contained in at least

µdbm
2/4 edges in S′′.

Step 2. Choose (c1, xk−1) such that {c1, x1, x2, . . . , xk−1} ∈ S′′ and c1, xk−1are not in T .
Step 3. For i ∈ [k, 2k−2], choose (ci−k+2, xi) such that {ci−k+2, xi−k+2, . . . ,

xi} ∈ S′′ and ci−k+2, xi are not used before.This constructs a sequential path QS on 3k − 2 vertices such that each
edge in the k-th level is in S′′, thus in S. Next, we count the size of QS .In Step 1, letG ⊆ JW ′ be the set of (k−2)-sets which are contained in less
than µdbm2/4 edges in S′′, we have

|S|
3

≤ |S′′| =
∑

T∈JW ′

degS′′(T ) ≤ |G|µ
4
dbm

2 + (|JW ′ | − |G|)dbm2(1 + β),
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it gives that |G| ≤ (1− β)(1− µ/12)dam
k−2, thus, the choices for T is at least

|JW ′ | − |G| ≥ µ/13dam
k−2. In Step 2, we have at least µdbm2/4 choices for

(c1, xk−1). In Step 3, {xi−k+2, . . . , xi−1} is a (k − 2)-set contained in S′′, by
the construction of S′′, there are at least µdbm2/(4k) choices for (ci−k+2, xi),furthermore, at least µdbm2/(8k) are different from the previous choices.

Thus, the number of paths in QS is at least( µ
13
dam

k−2
)(µ

4
dbm

2
)( µ

8k
dbm

2
)k−1

≥ (
µ

8k
)k+1dad

k
bm

3k−2 ≥ 1

2
(
µ

8k
)k+1|QJ |,

since β ≪ µ, 1/k. □

Lemma 4.22 Let 1/m ≪ ε ≪ d2, . . . , dk, 1/k, µ and k ≥ 3. Suppose that J
is a (·, ·, ε)-equitable complex with density vector d = (d2, . . . , dk) and ground
partition P , the size of each vertex class is m. Let W = {W1, . . . ,Wk−1,Wk} ⊆
P . Let S ⊆ JW be with size at least µ|JW | and Q be a k-uniform tight path
v1, . . . , vk−1, b, vk, . . . , v2k−2 with vertex classes {X1, . . . , Xk−1, Xk} such that vi,
vi+k−1 ∈ Xi for i ∈ [k − 1] and b ∈ Xk. Let Q be the down-closed k-complex
generated by Q and QS ⊆ QJ be the copies of Q whose edges in the k-th level
are in S. We have

|QS | ≥
1

2

( µ
8k

)k+1
|QJ |.

Proof. The proof consists of three steps. Firstly, we use the dense version
of the counting and extension lemma to count the number of various hyper-
graphs in J . Secondly, we remove some k-tuples without good properties. Fi-
nally, we use an iterative procedure to return a tight path using good k-tuples,
as desired.

Firstly, let β be such that ε≪ β ≪ d2, . . . , dk, 1/k, µ. Define
da =

k−1∏
i=2

d
(k−1

i )
i , db =

k∏
i=2

d
(k−1
i−1)

i .

LetW ′ =W \ {Wk}. By Lemma 4.4 and 4.5, we have
|JW | = (1± β)dadbm

k, (4.7)
|JW ′ | = (1± β)dam

k−1,

|QJ | = (1± β)dad
k
bm

2k−1.

Since S ⊆ JW with |S| ≥ µ|JW |, with (4.7), we have
|S| ≥ (1− β)µdadbm

k.

Let BW ′ ⊆ JW ′ be the (k − 1)-edges which are not extensible to (1 ± β)dbmcopies of a k-edge in JW . By Lemma 4.6, we have
|BW ′ | ≤ β|JW ′ |.
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Secondly, we delete from S the edges which contain a (k − 1)-set from
BW ′ to obtain S′, the number of edges deleted is at most

|BW ′ |m ≤ β|JW ′ |m ≤ β(1 + β)dam
k ≤ |S|/3,

since β ≪ µ, d2, . . . , dk. Thus, we have |S′| ≥ 2|S|/3. Furthermore, if there is
any partite (k − 1)-set T in J which lies in less than µdbm/(4k) edges of S′,
then we delete all edges in S′ containing T to obtain S′′ and iterate this until
no further deletions are possible. Note that the number of partite (k−1)-sets
supported in the clusters ofW is k(1± β)dam

k−1. Thus the number of edges
deleted is at most

k(1 + β)dam
k−1µdbm

4k
≤ (1 + β)

µdadbm
k

4
≤ |S|

3
.

Thus, |S′′| ≥ |S|/3. Each partite (k − 1)-set inW1, . . . ,Wk is either containedin zero edges of S′′ or in at least µdbm/(4k) edges in S′′.
Finally, we use the properties of S′′ to construct many labelled partition-

respecting paths in QS .
Step 1. Select T = {x1, . . . , xk−1} ∈ JW ′ which is contained in at least

µdbm/4 edges in S′′.
Step 2. Choose b such that {x1, x2, . . . , xk−1, b} ∈ S′′ and b /∈ T .
Step 3. For i ∈ [k, 2k− 2], choose xi such that {xi−k+2, . . . , xk−1, b, xk, . . . ,

xi} ∈ S′′ and xi is not used before.This constructs a sequential path QS on 2k − 1 vertices such that each
edge in the k-th level is in S′′, thus in S. Next, we count the size of QS .In Step 1, letG ⊆ JW ′ be the set of (k−1)-sets which are contained in less
than µdbm/4 edges in S′′, we have

|S|
3

≤ |S′′| =
∑

T∈JW ′

degS′′(T ) ≤ |G|µ
4
dbm+ (|JW ′ | − |G|)dbm(1 + β),

it gives that |G| ≤ (1− β)(1− µ/12)dam
k−1, thus, the choices for T is at least

|JW ′ |− |G| ≥ µ/13dam
k−1. In Step 2, we have at least µdbm/4 choices for b. InStep 3, {xi−k+2, . . . , xk−1, b, xk, . . . , xi−1} is a (k−1)-set contained inS′′, by the

construction of S′′, there are at least µdbm/(4k) choices for xi, furthermore,
at least µdbm/(8k) are different from the previous choices.

Thus, the number of paths in QS is at least( µ
13
dam

k−1
)(µ

4
dbm

)( µ
8k
dbm

)k−1
≥ (

µ

8k
)k+1dad

k
bm

2k−1 ≥ 1

2
(
µ

8k
)k+1|QJ |,

since β ≪ µ, 1/k. □
Before we build the absorbing path, we need to define absorbing gadget,
which is useful to absorb a particular set T of k vertices and a particular set
O of k colors.
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Definition 4.18 (Absorbing gadget) Let T = {t1, . . . , tk} be a k-set of pointsof G and O = {o1, . . . , ok} be a k-set of colors of G. We say that F ⊆ G is an
absorbing gadget for (T,O) if F = F1 ∪ F2 where F1 = A ∪ B ∪ E ∪

⋃k
i=1(Pi ∪

Qi) ∪C ∪
⋃k

i=1Ck and F2 = A′ ∪B′ ∪E′ ∪
⋃k

i=1(P
′
i ∪Q′

i) ∪C ′ ∪
⋃k

i=1C
′
k suchthat

(1) A,B,E,P1, Q1, . . . , Pk, Qk,A′, B′, E′, P ′
1, Q

′
1, . . . , P

′
k, Q

′
k are pairwise dis-joint and also disjoint from T . C,C1, . . . , Ck, C

′, C ′
1, . . . , C

′
k are pairwise

disjoint and also disjoint from O,
(2) Ci = (ci,1, . . . , ci,k−1) and C ′

i = (c′i,1, . . . , c
′
i,k−1) for i ∈ [k],

(3) A,B,E,A′, B′, E′ are k-tuples of points ofG,C andC ′ are (k+1)-tuples
of colors of G, (C,AE), (C ′, A′E′) and (C ′(c1,1, . . . , ck,1), A

′B′E′) are se-
quential paths,

(4) for B = (b1, . . . , bk), each of Pi, Qi has k − 1 vertices for i ∈ [k], both
(Ci, PibiQi) and ({oi} ∪ Ci \ {ci,1}, PibiQi) are sequential paths of length
2k − 1 for i ∈ [k],

(5) for B′ = (b′1, . . . , b
′
k), each of P ′

i , Q
′
i has k − 1 vertices for i ∈ [k], both

(C ′
i, P

′
i b

′
iQ

′
i) and (C ′

i, P
′
i tiQ

′
i) are sequential paths of length 2k − 1 for i ∈

[k].

Figure 4.1 – Before the Absorption (k = 3), the paths (C,AE), (C ′, A′E′),
(C1, P1b1Q1), (C

′
1, P

′
1b

′
1Q

′
1), (C2, P2b2Q2), (C

′
2, P

′
2b

′
2Q

′
2), (C3, P3b3Q3), (C

′
3, P

′
3b

′
3

Q′
3) are sequential paths, the black dots represent the points while otherdots with the same color come from the same color set.
Note that an absorbing gadgetF spans 4k2+2k points together with 2k2+

2k + 2 colors.
Definition 4.19 (S-gadget) Suppose F = F1∪F2 is an absorbing gadget where
F1 = A ∪ B ∪ E ∪

⋃k
i=1(Pi ∪ Qi) ∪ C ∪

⋃k
i=1Ck and F2 = A′ ∪ B′ ∪ E′ ∪⋃k

i=1(P
′
i ∪ Q′

i) ∪ C ′ ∪
⋃k

i=1C
′
k with A = (a1, . . . , ak), B = (b1, . . . , bk), E =

(e1, . . . , ek), C = (c1, . . . , ck+1), Ci = (ci,1, . . . , ci,k), Pi = (pi,1, . . . , pi,k−1) and
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Figure 4.2 – After the Absorption (k = 3), the paths ({o1}∪C1 \{c1,1}, P1b1Q1),
({o2} ∪ C2 \ {c2,1}, P2b2Q2), ({o3} ∪ C3 \ {c3,1}, P3b3Q3), (C ′

1, P
′
1t1Q

′
1),

(C ′
2, P

′
2t2Q

′
2),(C ′

3, P
′
3t3Q

′
3), (C,AE), (C ′(c1,1, c2,1, c3,1), A

′B′E′) are sequentialpaths.

Qi = (qi,1, . . . , qi,k−1) for i ∈ [k], A′ = (a′1, . . . , a
′
k), B′ = (b′1, . . . , b

′
k), E′ =

(e′1, . . . , e
′
k), C ′ = (c′1, . . . , c

′
k+1), C ′

i = (c′i,1, . . . , c
′
i,k), P ′

i = (p′i,1, . . . , p
′
i,k−1) and

Q′
i = (q′i,1, . . . , q

′
i,k−1) for i ∈ [k]. Suppose that ε, εk+1, d2, . . . , dk+1, c, ν > 0.

Let d = (d2, . . . , dk+1) and suppose that S = (G,GJ ,J ,P,
−→
H ) is an oriented

(k + 1,m, 2t, ε, εk+1, r,d)-regular setup. We say that F is anS-gadget if
(G1) there exists an oriented edge Y ′ = (Y0, Z1, . . . , Zk) ∈

−→
H and a color

cluster Z0, such that C ∪C ′ ∪
⋃

i∈[k]Ci ⊆ Y0,⋃i∈[k]C
′
i ⊆ Z0, ai, bi, ei ∈ Zifor i ∈ [k],

(G2) there exists an oriented edge Y = (Y0, Y1, . . . , Yk) ∈
−→
H , such that a′i, b′i,

e′i ∈ Yi for i ∈ [k],
(G3) there exists an ordered k-tuple of clustersWi = (Wi,1, . . . ,Wi,k−1) suchthatWi∪{Y0, Zi} is an edge inH and (Y0,Wi,1, . . . ,Wi,k−1, Zi) is consistent
with −→

H , pi,j , qi,j ∈Wi,j for i ∈ [k], j ∈ [k − 1],
(G4) there exists an ordered k-tuple of clustersW ′

i = (W ′
i,1, . . . ,W

′
i,k−1) suchthatW ′

i∪{Z0, Yi} is an edge inH and (Z0,W
′
i,1, . . . ,W

′
i,k−1, Yi) is consistent

with −→
H , p′i,j , q′i,j ∈W ′

i,j for i ∈ [k], j ∈ [k − 1],
(G5) F ⊆ GJ ,We will further say that F is (c, ν)-extensible if the following also holds :
(G6) The path (C,AE) is (c, ν)-extensible both left- and rightwards to the
ordered tuple Y ′ = (Y0, Z1, . . . , Zk) and the path (Ci, PibiQi) is (c, ν)-
extensible leftwards to (Y0,Wi,1, . . . ,Wi,k−1, Zi) and rightwards to (Y0, Zi,

Wi,1, . . . ,Wi,k−1) for i ∈ [k].
(G7) The path (C ′, A′E′) is (c, ν)-extensible both left- and rightwards to the or-
dered tupleY = (Y0, Y1, . . . , Yk) and the path (C ′

i, P
′
i b

′
iQ

′
i) is (c, ν)-extensible
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leftwards to (Z0,W
′
i,1, . . . ,W

′
i,k−1, Yi) and rightwards to (Z0, Yi,W

′
i,1, . . . ,

W ′
i,k−1) for i ∈ [k].

Definition 4.20 (Reduced gadget) A reduced gadget is a (1, k)-graphL consis-
ting of Y ∪W1 ∪ · · · ∪Wk ∪ Z0 ∪ Z1 ∪ . . . ∪ Zk ∪W ′

1 ∪ · · · ∪W ′
k where Y =

{Y0, Y1, . . . , Yk},Wi = {Wi,1, . . . ,Wi,k−1} for i ∈ [k],W ′
i = {W ′

i,1, . . . ,W
′
i,k−1}for i ∈ [k] and 2(k + 1) edges given by Y, Y ′ = {Y0, Z1, . . . , Zk},Wi ∪ {Y0, Zi}for i ∈ [k] andW ′

i ∪ {Z0, Yi} for i ∈ [k]. We refer to Y and Y ′ as the core edges
of L andWi,W

′
i , i ∈ [k] as the peripheral sets of L.

Figure 4.3 – Reduced Gadget
Given an oriented (1, k)-graph −→

H , a reduced gadget in −→
H is a copy of L such

that Y coincideswith the orientation of that edge in−→H and such that (Z0,Wi,1,

. . . ,Wi,k−1, Yi) is consistent with that edge in −→
H .

Let S = (G,GJ ,J ,P,
−→
H ) be an oriented regular setup. Let c, ν > 0, T =

{t1, . . . , tk} be a k-set of V and O = {o1, . . . , ok} be a k-set of [n], and L be a
reduced gadget in −→

H . We define the following sets :
1. Denote the set of all reduced gadgets in −→

H by L−→
H
,

2. Denote the set of S-gadgets which use precisely the clusters of L as in
Definition 4.20 by FL,

3. Denote the set of S-gadgets in FL which are (c, ν, V (G))-extensible by
Fext
L ,
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4. Denote the set of allS-gadgets by F,
5. Denote the set of all (c, ν, V (G))-extensibleS-gadgets by Fext ⊆ F,
6. For any k-subset T of V and any k-subset O of [n], let F(T,O) ⊆ F be the

set of absorbingS-gadgets for (T,O),
7. Denote the set ofS-gadgets absorbing (T,O)which are (c, ν)-extensible

by Fext
(T,O) = F(T,O) ∩ Fext.

Lemma 4.23 Let k, r,m, t ∈ N and d2, . . . , dk+1, ε, εk+1, c, ν, β be such that
1/m≪ 1/r, ε≪ 1/t, c, εk+1, d2, . . . , dk,

c≪ d2, . . . , dk,

1/t≪ εk+1 ≪ β, dk+1 ≤ 1/k,

εk+1 ≪ ν.

Let d = (d2, . . . , dk+1) and let S = (G,GJ ,J ,P,
−→
H ) be an oriented (k,m, 2t, ε,

εk+1, r, d)-regular setup and L ∈ L−→
H
be a reduced gadget in−→H . LetF be the (k+

1)-complex corresponding to the down-closure of (1, k)-graph F as in Definition
4.19. Then

|FL| = (1± β)

(
k+1∏
i=2

d
ei(F)
i

)
m6k2+4k+2, (4.8)

|FL \ Fext
L | ≤ β|FL|.

Proof. Let Y = (Y0, Y1, . . . , Yk), Y
′ = (Y0, Z1, . . . , Zk) ∈

−→
H be the ordered

core edge of L and Wi = {Wi,1, . . . ,Wi,k−1}, W ′
i = {W ′

i,1, . . . ,W
′
i,k−1} for

i ∈ [k], be the peripheral sets, ordered such that (Y0,Wi,1, . . . ,Wi,k−1, Zi) and
(Z0,W

′
i,1, . . . ,W

′
i,k−1, Yi) are consistent with−→

H . Note that |V (F )| = 6k2+4k+

2. The bounds on |FL| are given by Lemma 4.2 directly.
Let Y ∗ = (Y1, . . . , Yk−1) and denote the ordered tuples in the (k − 1)-th

level of J in the clusters {Y1, . . . , Yk−1} by JY ∗ . Let dY ∗ =
∏k−1

i=2 d
(k−1

i )
i . By

Lemma 4.5 we have
|JY ∗ | = (1± β)dY ∗mk−1.

Let β1 be such that εk+1 ≪ β1 ≪ β, dk, dk+1, 1/k. Let B1 ⊆ JY ∗ be the set
of (k − 1)-tuples which are not (c, ν)-extensible leftwards to (Y0, Y1, . . . , Yk).By Proposition 4.9 with β1 playing the role of β, we deduce that

|B1| ≤ β1|JY ∗ |.

Let β2 be such that ε ≪ β2 ≪ εk+1, d2, . . . , dk−1. Let ϕ : V (F ) → L be
the homomorphism and Z ⊆ V (F ) corresponds to the first k − 1 points
{a1, . . . , ak−1} of pathAE. LetF− be the (k−1)-complex generated by remo-
ving the (k+1)-st and k-th layer from the down-closureF ofF . LetZ = F−[Z]
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be the induced subcomplex of F− in Z. Note that ϕ(ai) = Yi for i ∈ [k − 1].
Thus the labelled partition-respecting copies of Z in J correspond exactly to
JY ∗ . Define

dF−\Z =
k−1∏
i=2

d
ei(F−)−ei(Z)
i .

Let B2 ⊆ JY ∗ be the set of (k − 1)-tuples which are not extensible to (1 ±
β2)dF−\Zm

6k2+3k+3 labelled partition-respecting copies ofF− inJ . By Lemma
4.6 with β2 playing the role of β, we have

|B2| ≤ β2|JY ∗ |.

By (4.8), we have
|FL| = (1± β)d

ek+1(F)
k+1 d

ek(F)
k dF−\ZdY ∗m6k2+4k+2.

Let G = J ∪GJ . Say that a labelled partition-respecting copy ofF in G is nice if
the vertices of {a1, . . . , ak−1} are not inB1 ∪B2. For every Z ∈ JY ∗ , letN∗(Z)

be the number of labelled partition-respecting copies of F in G which extend
Z. We have ∑

Z∈B1∪B2

N∗(Z) =
∑

Z∈B1\B2

N∗(Z) +
∑
Z∈B2

N∗(Z)

≤ [|B1|(1 + β2)dF−\Z + |B2|]m6k2+3k+3

≤ [β1(1 + β2)dF−\Z + β2]|JY ′ |m6k2+3k+3

≤ 3β1dF−\Z |JY ∗ |m6k2+3k+3

≤ 3β1(1 + β)dF−\ZdY ∗m6k2+4k+2

≤ 3β1(1 + β)

(1− β)d
ek+1(F)
k+1 d

ek(F)
k

|FL|

≤ β

4k + 4
|FL|,

since 0 ≤ N∗(Z) ≤ m6k2+3k+3 andβ1 ≪ β, dk, dk+1, 1/k andβ2 ≪ d2, . . . , dk−1,

εk+1.The same analysis shows that we define nice tuples for any (k − 1)-set of
vertices of F , the number of copies of F which are not nice with respect to
that (k − 1)-set is at most β|FL|/(4k + 4). Note that F ∈ FL is extensible if
and only if paths (C,AE), (C ′, A′E′), (Ci, PibiQi) and (C ′

i, P
′
i b

′
iQ

′
i) for i ∈ [k]

contained in F are extensible with certain edges of the reduced graph. This
means that 4(k + 1)many (k − 1)-tuples are extensible with certain edges of
the reduced graph. Thus, F ∈ FL \ Fext

L implies that F is not nice with one of
4k + 4many (k − 1)-sets. Thus,

|FL \ Fext
L | ≤ (4k + 4)

β

4k + 4
|FL| = β|FL|.
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□

Lemma 4.24 Let k, r,m, t ∈ N and d2, . . . , dk+1, ε, εk+1, c, ν, β, µ be such that
1/m≪ 1/r, ε≪ 1/t, c, εk+1, d2, . . . , dk,

c≪ d2, . . . , dk,

1/t≪ εk+1 ≪ β, dk+1 ≤ 1/k,

εk+1 ≪ ν, µ,

α≪ µ.

Let d = (d2, . . . , dk+1) and let S = (G,GJ ,J ,P,
−→
H ) be an oriented (k,m, 2t, ε,

εk+1, r, d)-regular setup. Suppose that for each color cluster C , there are at least
(1 − α)t point clusters Z such that {C,Z} has relative (1, 1)-degree at least µ in
H , then

µ2k+2

8

(
t

k

)2( t

k − 1

)2k

t(t− 1) ≤ |L−→
H
| ≤

(
t

k

)2( t

k − 1

)2k

t(t− 1).

LetF be the (k+1)-complex corresponding to the down-closure of the (1, k)-graph
F . For each reduced gadget L ∈ L−→

H
in −→
H , we have

|Fext
L | = (1± β)

(
k+1∏
i=2

d
ei(F)
i

)
m6k2+4k+2

and
|Fext| = (1± β)

(
k+1∏
i=2

d
ei(F)
i

)
m6k2+4k+2|L−→

H
|.

Proof. The lower boundofL−→
H
canbedone as follows. LetY = (Y0, Y1, . . . , Yk),

Y ′ = (Y0, Z1, . . . , Zk) ∈
−→
H be the ordered core edge of L andWi = {Wi,1, . . . ,

Wi,k−1},W ′
i = {W ′

i,1, . . . ,W
′
i,k−1} for i ∈ [k], be the peripheral sets, ordered

such that (Z0,W
′
i,1, . . . ,W

′
i,k−1, Yi) and (Y0,Wi,1, . . . ,Wi,k−1, Zi) are consistent

with −→
H . We first choose Y0, Z0 arbitrarily, there are at least t(t − 1) choices.

For (Y1, . . . , Yk), there are at least µ(tk)− αt
(

t
k−1

)
≥ µ

(
t
k

)
/2 choices. Similarly,

for (Z1, . . . , Zk), there are at least µ(tk)/2 choices. Furthermore, W ′
i and Wifor i ∈ [k] can be chosen in at least µ( t

k−1

) ways for i ∈ [k], but we need to
delete the possible choices of intersecting reduced gadgets, whose number
is at most t(t− 1)(2k2)2t2k

2−2 ≤ (2k2)2t2k
2 . We have

|L−→
H
| ≥ µ2k+2

4

(
t

k

)2( t

k − 1

)2k

t(t− 1)− (2k2)2t2k
2

≥ µ2k+2

8

(
t

k

)2( t

k − 1

)2k

t(t− 1),
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since 1/t≪ µ, 1/k.
While the upper bound is obvious.
We choose β′ such that εk+1 ≪ β′ ≪ β, dk, dk+1, 1/k. By Lemma 4.23 (with

β′ in place of β), we obtain that

(1− β)

(
k+1∏
i=2

d
ei(F)
i

)
m6k2+4k+2 ≤ (1− β′)2

(
k+1∏
i=2

d
ei(F)
i

)
m6k2+4k+2

≤ (1− β′)|FL| ≤ |Fext
L |,

|Fext
L | ≤ |FL| ≤ (1 + β′)

(
k+1∏
i=2

d
ei(F)
i

)
m6k2+4k+2

≤ (1 + β)

(
k+1∏
i=2

d
ei(F)
i

)
m6k2+4k+2.

Note that
Fext =

⋃
L∈L−→

H

Fext
L ,

and the union is disjoint, the bounds of |Fext| are easy to see. □

Lemma 4.25 Let k, r,m, t ∈ N and d2, . . . , dk+1, ε, εk+1, c, ν, θ, µ be such that
1/m≪ 1/r, ε≪ 1/t, c, εk+1, d2, . . . , dk,

c≪ d2, . . . , dk,

1/t≪ εk+1 ≪ dk+1 ≤ 1/k,

εk+1 ≪ ν ≪ θ ≪ µ≪ 1/k.

Let d = (d2, . . . , dk+1) and let S = (G,GJ ,J ,P,
−→
H ) be an oriented (k,m, 2t, ε,

εk+1, r, d)-regular setup. Suppose that for each color cluster C , there are at least
(1 − α)t point clusters Z such that {C,Z} has relative (1, 1)-degree at least µ in
H . For any point v of G, color cluster C , there are at least (1− α)t point clusters
Z ∈ P such that |NJ ((v, C), µ)∩NH(Z,C)| ≥ µ

(
t

k−1

). And for every c ∈ [n], color
clusterC , there are at least (1−α)t point clustersZ ∈ P such that |NJ ((c, Z), µ)∩
NH(C,Z)| ≥ µ

(
t

k−1

). Let T ⊆ V be a k-set and O ⊆ [n] be a k-set, we have
|Fext

(T,O)| ≥ θ|Fext|.

Given a k-subset T = {t1, . . . , tk} of V and a k-subset O = (o1, . . . , ok) of [n],the family L−→
H
and µ > 0, we define L−→

H,(T,O),µ
of reduced ((T,O), µ)-absorbers

as the set of (T,O)-absorbers Y ∪W1∪· · ·∪Wk∪Z0∪Z1∪. . .∪Zk∪W ′
1∪· · ·∪W ′

k,whereWi ⊆ NJ ((ci, Zi), µ) andW ′
i ⊆ NJ ((ti, Z0), µ) for i ∈ [k].
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Claim 4.7 Let k, r,m, t ∈ N and d2, . . . , dk+1, ε, εk+1, c, ν, θ, µ be such that
1/m≪ 1/r, ε≪ 1/t, c, εk+1, d2, . . . , dk,

c≪ d2, . . . , dk+1,

1/t≪ εk+1 ≪ dk+1 ≤ 1/k,

εk+1 ≪ ν ≪ θ ≪ µ≪ 1/k,

α≪ µ.

Let d = (d2, . . . , dk+1) and let S = (G,GJ ,J ,P,
−→
H ) be an oriented (k,m, 2t, ε,

εk+1, r, d)-regular setup. Suppose that for each color cluster C , there are at least
(1 − α)t point clusters Z such that {C,Z} has relative (1, 1)-degree at least µ in
H . For any point v of G, color cluster C , there are at least (1− α)t point clusters
Z ∈ P such that |NJ ((v, C), µ)∩NH(Z,C)| ≥ µ

(
t

k−1

). And for every c ∈ [n], color
clusterC , there are at least (1−α)t point clustersZ ∈ P such that |NJ ((c, Z), µ)∩
NH(C,Z)| ≥ µ

(
t

k−1

). Let T ⊆ V be a k-set and O ⊆ [n] be a k-set, we have
|L−→

H,(T,O),µ
| ≥ θ|L−→

H
|.

Proof. Let T = {t1, . . . , tk} and O = (o1, . . . , ok). Since H has minimum
relative (1, 1)-degree at least µ, there are at least µt(tk) − tαt

(
t

k−1

)
≥ µt

(
t
k

)
/2

choices for Y . Besides, there are at least t− 1 choices for Z0. For (Z1, . . . , Zk),there are at least µ(tk)/2− k2
(

t
k−1

)
≥ µ

(
t
k

)
/3 choices. EachWi is chosen from

NJ ((oi, Zi), µ) ∩ NH(Y0, Zi) for i ∈ [k], thus, Wi can be chosen in at least
µ
(

t
k−1

)
− (k − 1)((i − 1)(k − 1) + 2k)

(
t

k−2

)
≥ µ

(
t

k−1

)
/2 ways for i ∈ [k], since

there are atmost (k−1)((i−1)(k−1)+2k)
(

t
k−2

) choices forWiwhich intersectswith Y \ {Y0}, Z1, . . . , Zk,W1, . . . ,Wi−1.And each W ′
i is chosen from NJ ((ti, Z0), µ) ∩ NH(Yi, Z0) for i ∈ [k]. Si-

milarly, there are at least (µ/2)( t
k−1

) possible choices for eachW ′
i for i ∈ [k].

Thus, the number of reduced ((T,O), µ)-absorbers is at least
µt

2

(
t

k

)
(t− 1)

µ

3

(
t

k

)(
µ

2

(
t

k − 1

))2k

≥ θ

(
t

k

)2( t

k − 1

)2k

t(t− 1) ≥ θ|L−→
H
|

since θ ≪ µ. □

Claim 4.8 Let k, r,m, t ∈ N and d2, . . . , dk+1, ε, εk+1, c, ν, θ, µ be such that
1/m≪ 1/r, ε≪ 1/t, c, εk+1, d2, . . . , dk,

c≪ d2, . . . , dk,

1/t≪ εk+1 ≪ dk+1 ≤ 1/k,

εk+1 ≪ ν ≪ θ ≪ µ≪ 1/k.

Let d = (d2, . . . , dk+1) and let S = (G,GJ ,J ,P,
−→
H ) be an oriented (k,m, 2t, ε,

εk+1, r, d)-regular setup. Let T ⊆ V and O ⊆ [n] be k-sets and let L ∈ L−→
H
be a

reduced ((T,O), µ)-gadget in −→
H . We have
|FL ∩ F(T,O)| ≥ θ|FL|.
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Proof. Let T = {t1, . . . , tk} and O = {o1, . . . , ok}, L = Y ∪W1 ∪ · · · ∪Wk ∪
Z0 ∪ Z1 ∪ . . . ∪ Zk ∪W ′

1 ∪ · · · ∪W ′
k whereWi = {Wi,1, . . . ,Wi,k−1} andW ′

i =

{W ′
i,1, . . . ,W

′
i,k−1}. Choose Pi, Qi inWi and P ′

i , Q
′
i inW ′

i , letQZi,Wi be the setof k-uniform tight paths (bi, v1, . . . , v2k−2) such that bi ∈ Zi, vℓ, vℓ+k−1 ∈ Wi,ℓfor i, j ∈ [k], ℓ ∈ [k − 1] and its down-closure is in J . Let Qoi,(Zi,Wi) ⊆ QZi,Wibe the set of those paths whose edges in the k-th level are in NG(oi). Notethat F is the absorbing gadget for (T,O). Let F be the down-closure of F .
Since L is a reduced (T, µ)-gadget, we haveWi ∈ NH(Y0, Zi)∩NJ ((oi, Zi), µ),thus |NG((oi, Zi),JWi)| ≥ µ|JWi |. By Lemma 4.22 with S being the set of k-
sets where each k-set consists of k− 1 points fromNG((oi, Zi),JWi) and onepoint from Zi, we have

|Qoi,(Zi,Wi)| ≥
1

2

( µ
8k

)k+1
|QZi,Wi |.

LetQZ0,W ′
i
be the set of k-uniformsequential paths (c′1, . . . , c′k, v′1, . . . , v′2k−2)such that c′j ∈ Z0, v′ℓ, v′ℓ+k−1 ∈ W ′

i,ℓ for i, j ∈ [k], ℓ ∈ [k − 1] and its down-
closure is in J . Let Qti,(Z0,W ′

i )
⊆ QZ0,W ′

i
be the set of those paths whose

edges in the k-th level are in NG(ti). Since L is a reduced ((T,O), µ)-gadget,
we haveW ′

i ∈ NH(Z0, Yi)∩NJ ((ti, Z0), µ), thus |NG((ti, Z0),JW ′
i
)| ≥ µ|JW ′

i
|.

By Lemma 4.21 with S being the set of k-sets where each k-set consists k − 1

points from NG((ti, Z0),JW ′
i
) and one color from Z0, we have

|Qti,(Z0,W ′
i )
| ≥ 1

2

( µ
8k

)k+1
|QZ0,W ′

i
|.

Let ϕ : V (F ) → V (L) be the homomorphism which labels the copies of F
in FL. Set Z = {b1, . . . , bk}∪

⋃k
i=1(V (Pi)∪V (Qi))∪

⋃k
i=1(C

′
i ∪V (P ′

i )∪V (Q′
i)).Thus, |Z| = 5k2−3k. LetZ = F [Z] be the induced subcomplex ofF inZ. Note

thatZ consists of k vertex-disjoint k-uniform tight paths of length 2k−1where
the i-th path lies inQoi,(Zi,Wi) and k vertex-disjoint k-uniform sequential paths
of length 2k − 2 where the i-th path lies in Qti,(Z0,W ′

i )
. Let G = J ∪ GJ and

ZG be the set of labelled partition-respecting copies of Z in G. Let β1 be suchthat ε ≪ β1 ≪ d2, . . . , dk, εk+1 and define dZ =
∏k

i=2 d
ei(Z)
i . By Lemma 4.4,

we have
|ZG | =

k∏
i=1

|QZi,Wi ||QZ0,W ′
i
| = (1± β1)dZm

5k2−3k.

Let Z(T,O),G ⊆ ZG be the labelled partition-respecting copies of Z absor-
bing (T,O), thus we have
|Z(T,O),G | ≥

k∏
i=1

|Qoi,(Zi,Wi)||Qti,(Z0,W ′
i )
| ≥

(
1

2

( µ
8k

)k+1
)2k k∏

i=1

|QZi,Wi ||QZ0,W ′
i
|

≥ 3θ|ZG |,

since θ ≪ µ, 1/k.
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Letβ2 be such that εk+1 ≪ β2 ≪ θ, dk+1, 1/k and dF−Z =
∏k+1

i=2 d
ei(F)−ei(Z)
i .

Let I ⊆ ZG be the set of labelled partition-respecting copies of Z which are
not extensible to (1 ± β2)dF−Zm

k2+7k+2 labelled partition-respecting copies
of F in G. By Lemma 4.3, we have

|I| ≤ β2|ZG | ≤ θ|ZG |,

since β2 ≪ θ. By Lemma 4.23, we have
|FL| = (1± β2)dF−ZdZm

6k2+4k+2,

since εk+1 ≪ β2 ≪ θ, dk+1, 1/k.Note that a labelled partition-respecting copy of F in G containing a Z ∈
Z(T,O),G yields exactly one gadget in FL ∩ F(T,O), we have

|FL ∩ F(T,O)| ≥ |Z(T,O),G \ I|(1− β2)dF−Zm
k2+7k+2

≥ (|Z(T,O),G | − |I|)(1− β2)dF−Zm
k2+7k+2

≥ 2θ|ZG |(1− β2)dF−Zm
k2+7k+2

≥ 2θ(1− β2)(1− β1)dZm
5k2−3kdF−Zm

k2+7k+2

≥ 2θ(1− 2β2)dZdF−Zm
6k2+4k+2

≥ 2θ
1− 2β2
1 + β2

|FL|

≥ θ|FL|,

since β2 ≪ θ. □

Proof. [Proof of Lemma 4.25] Let θ ≪ θ′ ≪ µ. By Claim 4.8 with θ′, we have
for every reduced ((T,O), µ)-gadget L ∈ L−→

H
,

|FL ∩ F(T,O)| ≥ θ′|FL|.

Let β be such that εk+1 ≪ β ≪ dk+1, θ
′, by Lemma 4.23 with θ′, we have

|FL \ Fext
L | ≤ β|FL| ≤ θ′|FL|/2. Thus,

|Fext
(T,O) ∩ FL| ≥ |FL ∩ F(T,O)| − |FL \ Fext

L | ≥ θ′

2
|FL|.

By Claim 4.7 with θ′ and Lemma 4.24, we have |L−→
H,(T,O),µ

| ≥ θ′|L−→
H
| and

|Fext
(T,O)| ≥

∑
L∈L−→

H,(T,O),µ

|Fext
(T,O) ∩ FL| ≥

θ′

2

∑
L∈L−→

H,(T,O),µ

|FL| ≥ θ|Fext|.

□
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Lemma 4.26 Let k, r,m, t ∈ N and d2, . . . , dk+1, ε, εk+1, c, ν, θ, µ, α, ζ be suchthat
1/m≪ 1/r, ε≪ 1/t, ζ, εk+1, d2, . . . , dk,

ζ ≪ c≪ d2, . . . , dk,

1/t≪ εk+1 ≪ dk+1, ν ≤ 1/k,

c≪ εk+1 ≪ α≪ θ ≪ µ≪ 1/k.

Let d = (d2, . . . , dk+1) and let S = (G,GJ ,J ,P,
−→
H ) be an oriented (k,m, 2t, ε,

εk+1, r, d)-regular setup. Suppose thatV (G) = [n]∪V where |V | = n ≤ (1+α)mt

and V (H) = [t] ∪ V ′ where |V ′| = t. Suppose that for each color cluster C , there
are at least (1−α)t point clusters Z such that {C,Z} has relative (1, 1)-degree at
least µ inH . For any point v ofG, color cluster C , there are at least (1−α)t point
clusters Z ∈ P such that |NJ ((v, C), µ) ∩ NH(Z,C)| ≥ µ

(
t

k−1

). And for every
c ∈ [n], color cluster C , there are at least (1− α)t point clusters Z ∈ P such that
|NJ ((c, Z), µ) ∩ NH(C,Z)| ≥ µ

(
t

k−1

). Then there exists a family F′′ of pairwise
disjointS-gadgets which are (c, ν)-extensible with the following properties.

(1) |F′′| ≤ ζm,

(2) |F′′ ∩ Fext
(T,O)| ≥ ζθm for any k-subset T of V and k-subset O of [n],

(3) V (F′′) is (2(k + 1)ζ/t)-sparse in P .
Proof. Let β > 0 be such that εk+1 ≪ β ≪ dk+1. Let F be the (1, k)-graph
as in Definition 4.19 and let F be the (k + 1)-complex generated by its down-
closure. Let dF =

∏k+1
i=2 d

ei(F)
i . By Lemma 4.24, we have

|Fext| ≤ (1 + β)dFm
6k2+4k+2

(
t

k

)2( t

k − 1

)2k

t(t− 1) ≤ dFm
6k2+4k+2t2k

2+2,

|Fext| ≥ µk+1

2
(1− β)dFm

6k2+4k+2

(
t

k

)2( t

k − 1

)2k

t(t− 1)

≥ µk+1

2k+2k2k(k − 1)2k2
dFm

6k2+4k+2t2k
2+2

≥ 6θ1/2dFm
6k2+4k+2t2k

2+2,

since 1/t ≪ εk+1 ≪ β ≪ dk+1 ≪ 1/k and θ ≪ µ, 1/k. By Lemma 4.24, for
each reduced gadget L ∈ L−→

H
in −→
H , we have

|Fext
L | ≤ 2dFm

6k2+4k+2.

By Lemma 4.25 with θ1/2, for any k-set T ⊆ V and any k-set O ⊆ [n], we have
|Fext

(T,O)| ≥ θ1/2|Fext| ≥ 6θdFm
6k2+4k+2t2k

2+2.

Choose a family F′ from Fext by including eachS-gadget independently at
random with probability

p =
ζm

2dFm6k2+4k+2t2k2+2
.
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Note that |F′|, |F′∩Fext
(T,O)| are binomial random variables, for any k-set T ⊆ V

and any k-set O ⊆ [n], we have
E[|F′|] = p|Fext| ≤ ζm

2
,

E[|F′ ∩ Fext
(T,O)|] = p|Fext

(T,O)| ≥ 3θζm.

For eachZ ∈ P , note thatZ exists in atmost t2k2+1 reduced gadgets, thus,
there are at most 2dFm6k2+4k+2t2k

2+1 S-gadgets with vertices in Z. Note that
each S-gadget contains at most k2 + 2k + 2 vertices in a cluster. Hence, for
each cluster Z ∈ P , we have

E[|V (F′) ∩ Z|] ≤ 2(k2 + 2k + 2)dFm
6k2+4k+2t2k

2+1p =
(k2 + 2k + 2)ζm

t
.

By Lemma 1.1, with probability 1 − o(1), the family F′ satisfies the following
properties.

|F′| ≤ 2E[|F′|] ≤ ζm,

|F′ ∩ Fext
(T,O)| ≥ 2θζm,

|V (F′) ∩ Z| ≤ 2(k2 + k + 1)ζm

t

for any k-set T ⊆ V , k-set O ⊆ [n] and cluster Z ∈ P . We say that two
S-gadgets are intersecting if they share at least one vertex. Note that there
at most (2k2 + 2)2t4k

2+3 pairs of intersecting reduced gadgets. Hence, there
are at most (6k2 + 4k + 2)2m12k2+8k+1(2k2 + 2)2t4k

2+3 pairs of intersecting
S-gadgets. We can bound the expected number of pairs of intersecting S-
gadgets by

(6k2 + 4k + 2)2m12k2+8k+3(2k2 + 2)2t4k
2+3p2

=
ζ2(6k2 + 4k + 2)2(2k2 + 2)2m

4d2F t
≤ ζθm

2
,

since ζ ≪ d2, . . . , dk+1, θ, 1/k. Using Markov’s inequality, we derive that with
probability at least 1/2, F′ contains at most ζθm pairs intersectingS-gadgets.
Remove one gadget from each intersecting pair in such a family and remove
gadgets that are not absorbing for any (T,O) where T ⊆ V , O ⊆ [n] and
|T | = |O|. We obtain a subfamily F′′, satisfying the following properties.

(1) |F′′| ≤ ζm,
(2) |F′′ ∩ Fext

(T,O)| ≥ θζm,
(3) V (F′′) is (2(k2 + k + 1)ζ/t)-sparse in P ,

as desired. □
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Proof. [The proof of Lemma 4.13] SinceG hasminimum relative (1, 1)-degree
at least δ + µ and S is a representative setup. For any v ∈ V and any color
cluster C , we have

|NJ ((v, C),
µ

3
)| ≥ (δ +

µ

4
)

(
t

k − 1

)
.

For any c ∈ [n] and any point cluster Z , we have
|NJ ((c, Z),

µ

3
)| ≥ (δ +

µ

4
)

(
t

k − 1

)
.

by Lemma 4.19. Let ζ > 0 with 1/r, ε ≪ ζ ≪ c and let θ > 0 with η ≪ θ ≪
µ, 1/k andM := ⌈ηt/(θζ)⌉. Firstly, we need the following claim.
Claim 4.9 For each j ∈ [0,M ], and any S ⊆ V of size at most jθζn/t divisible
by k and any O ⊆ [n] of size |S|, there is a sequential path Pj ⊆ G such that the
following holds.

(i) Pj is (S,O)-absorbing in G,
(ii) Pj is (c, ν)-extensible and consistent with −→

H ,
(iii) V (Pj) is (100k3jζ/t)-sparse in P and V (Pj) ∩ Tj = ∅, where Tj denotesthe connection set of Pj .

Proof. [Proof of the claim] Take P0 to be the empty path and Pj satisfy theabove conditions for j ∈ [0,M).
Select a subsetZ ′ ⊆ Z\V (Pj) of sizem′ = (1−λ)m, this can be done since

100k3jζ/t ≤ (2ηt/(ζθ))(100k3ζ/t) ≤ λ which follows from ζ ≪ c ≪ η ≪ λ, θ.
Also, since n ≤ (1 + α)mt, we have m′ ≥ n/(2t). Let P ′ = {Z ′}Z∈P , J ′ =

J [V (P ′)] and G′
J ′ = GJ [V (P ′)] . By lemma 4.7, S′ := (G′, G′

J ′ ,J ′,P ′, H) is
a (k,m′, 2t,

√
ε,
√
εk+1, r,d)-regular setup.By Lemma 4.20, for every v ∈ V and color cluster C , we have

|NJ ′((v, C), µ/6)| ≥ |NJ ((v, C), µ/3)| ≥ (δ + µ/4)

(
t

k − 1

)
,

and for every o ∈ [n] and point cluster Z , we have
|NJ ′((o, Z), µ/6)| ≥ |NJ ((o, Z), µ/3)| ≥ (δ + µ/4)

(
t

k − 1

)
,

Thus, we obtain that for every v ∈ V , o ∈ [n], color clusterC , there are at least
(1− α)t point clusters Z ∈ P , we have

|NJ ((v, C), µ/6) ∩NH(Z,C)| ≥ µ

5

(
t

k − 1

)
,

and
|NJ ((o, Z), µ/6) ∩NH(C,Z)| ≥ µ

5

(
t

k − 1

)
.

By Lemma 4.26 with 4c instead of c, 2ζ instead of ζ , we obtain a set A′ of
pairwise-disjointS′-gadgets which are (4c, ν)-extensible and such that
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(1) |A′| ≤ 2ζm′,

(2) |A′ ∩ F(T,O)| ≥ 2ζθm′ for any k-subset of V ,
(3) V (A′) is (4(k2 + k + 1)ζ/t)-sparse in P ′.

Next, we would connect all paths of absorbing gadgets inA′ and Pj to obtain
Pj+1. By Definition 4.19, there are 2(k+1) pairwise disjoint sequential paths in
eachS′-gadget in A′ which are (4c, ν)-extensible inS′. Let A be the union of
all such sequential paths of all gadgets ofA′ and Pj . Set Tj+1 = V (G) \V (A),
it is obvious thatA is a set of pairwise disjoint sequential paths inG such that

(1’) |A| ≤ 4(k + 1)ζm′ + 1,

(2’) V (A) is (100k3jζ/t+4(k2+k+1)ζ/t)-sparse inP and V (A)∩Tj+1 = ∅,
(3’) every path in A \ {Pj} is (2c, ν, Tj+1)-extensible in S and consistent
with −→

H . Pj is (c, ν, Tj+1)-extensible inS and consistent with −→
H .

Note that (1’) follows from (1) and the addition of Pj . (2’) follows from (iii), (3)
and the definition of Tj+1. (3’) follows from (ii) and (3) since 4(k2+k+1)ζm/t ≤
2cm. In particular, Pj is (c, ν)-extensible by (ii) while all other paths go from
(4c, ν)-extensible in S′ to (2c, ν)-extensible in S. The consistency with −→

H is
given by the consistency of Pj and the definition ofS′-gadgets.

By Lemma 4.18, we obtain a sequential path Pj+1 with the following pro-
perties.

(A) Pj+1 contains every path of A,(B) Pj+1 starts and ends with two paths different from Pj ,(C) V (Pj+1) \ V (A) ⊆ V (P ′),
(D) V (Pj+1) \ V (A) intersects in at most 10k2AZ + t2t+3k+2 vertices with
each cluster Z ∈ P , where AZ denotes the number of paths of A that
intersect with Z.

We claim that Pj+1 satisfies (i)-(iii). First, we prove (iii). Note that for everycluster Z ∈ P , the number of paths of A that intersect with Z is bounded
by 4(k + 1)ζm/t + 1. (D) implies that V (Pj+1) \ V (A) intersects in at most
100k3ζm/t vertices with each cluster Z ∈ P . Together with (iii), it follows that
A is (100k3(j + 1)ζ/t)-sparse in P .

Next, wewant to prove (ii),V (Pj+1)\V (A) intersects in atmost 100k3ζm/t ≤
cm/4 vertices with each cluster Z ∈ P , since ζ ≪ c. Also, we have V (A) ∩
Tj+1 = ∅. Hence, we obtain (ii) after deleting the vertices of Pj+1 from Tj+1.After the deletion, we go from (2c, ν)-extensible in (3’) to (c, ν)-extensible. It is
crucial that Pj+1 starts and ends with two paths different from Pj by (B).Finally, we claim that Pj+1 is (S,O)-absorbing in G for any S ⊆ V of size
divisible by k and at most (j + 1)ζθn/t and any O ⊆ [n] of size |S|. Partition
S into two sets S1 and S2 such that both |S1|, |S2| are divisible by k and S1 ismaximal such that |S1| ≤ jζθn/t. Partition O into two sets O1 and O2 suchthat |O1| = |S1| and |O2| = |S2|. Since Pj is (S′, O′)-absorbing in G for any set
S′ ⊆ V of size at most (jζθn/t) and |O′| = |S′|, there exists a path P ′

j with thesame endpoints as Pj such that I(P ′
j) = S1 ∪ I(Pj) and C(P ′

j) = O1 ∪ C(Pj),
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besides, Pj is a subpath of Pj+1. So it remains to absorb S2. By the choice of
S1, we have |S2| ≤ ζθn/t + k ≤ 2ζ3n/t ≤ 2(1 + α)ζ3m ≤ 5ζ3m/2. Therefore,
we can partition S2 and O2 into ℓ ≤ 5ζ3m/(2k) ≤ 2ζθm′ sets of size k each,
letD1, . . . , Dℓ andR1, . . . , Rℓ be those sets. By (2), we have |F(Di,Ri) ∩A′| ≥ ℓ.
Thus, we can associate each (Di, Ri) with a different gadget Fi ∈ A′ for each
i ∈ [ℓ]. Each Fi yields a collection of 2(k+1) sequential paths Pi,1, . . . , Pi,2(k+1)and we can replace those paths with a collection of different paths with the
same endpoints. Since Pj and each Pi,u, i ∈ [ℓ], u ∈ [2(k+1)], are subpaths of
Pj+1, the sequential path P ′

j+1 has the same endpoints with Pj+1. Also, P ′
j+1is exactly (C(Pj+1) ∪O, I(Pj+1) ∪ S). □

To finish, note that PM and CM has the desired properties. By the choice of
M = ⌈ηt/(ζθ)⌉, we have Mζθ/t ≥ η, so PM with CM is η- absorbing in G.
Moreover, sinceM(100k3ζ/t) ≤ 200k2η/θ ≤ λ and η ≪ λ, V (PM ) is λ-sparse
in P . □
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5 - Long rainbow cycles in complete bipartite
graphs

In 1989, Andersen [13] conjectured that all proper edge-colorings of Knadmit a rainbow path which omits only one vertex.
Conjecture 5.1 (Andersen [13]) All proper edge-colorings of Kn admit a rain-
bow path of length n− 2.
It is best possible by a construction of Maamoun and Meyniel [115]. Akbari,
Etesami, Mahini and Mahmoody [6] proved that every properly edge-colored
Kn has a rainbow cycle of length at least n/2 − 1. Gyárfás and Mhalla [64]
proved that if the set of edges with every used color forms a perfect matching
inKn, then there exists a rainbow path of length (2n+1)/3. Gyárfás, Ruszinkó,
Sárközy and Schelp [65] showed that every properly colored Kn contains a
rainbow cycle of length (4/7 − o(1))n. Gebauer and Mousset [59] and Chen
and Li [26], independently showed that every properly coloredKn contains arainbow cycle of length (3/4−o(1))n. Alon, Pokrovskiy and Sudakov [9] proved
that every properly edge-colored of Kn contains a rainbow path with length
n − O(n3/4), and the error bound has since been improved to O(

√
n · log n)

by Balogh and Molla [14].
In this chapter, we show that every properly edge-colored Kn,n contains

a long rainbow cycle as follows.
Theorem 5.1 Every properly edge-coloredKn,n contains a rainbow cycle of lengthat least n− 28n3/4 for sufficiently large n.

The bound above is asymptotically optimal as each color class could be a
perfect matching ofKn,n and only n colors occur in E(Kn,n).

5.1 . Notation and preliminaries

For a bipartite graph G on vertex set X ∪ Y and (not necessarily distinct)
vertex sets A ⊆ X,B ⊆ Y , we define EG(A,B) = {ab : a ∈ A, b ∈ B, ab ∈
E(G)}. We often simply write E(A,B) when G is clear from the context. Let
eG(A,B) = |EG(A,B)|. A path forest P is a family of vertex-disjoint paths in a
graph. Given a path forestP = {P1, . . . , Pt}, letV (P) = V (P1)∪· · ·∪V (Pt) and
E(P) = E(P1) ∪ · · · ∪ E(Pt). Given an edge-colored graph G and a subgraph
H ofG, let C(H) be the set of colors appeared inE(H). Furthermore, given a
path forest P = {P1, . . . , Pt} in an edge-colored graph, if each Pi is a rainbowpath and C(Pi)∩C(Pj) = ∅ for any {i, j} ∈

(
t
2

), then we call P a rainbow path
forest. For a natural number n ∈ N, we define [n] = {1, 2, . . . , n}. We write
a = (1± b)c to mean that the inequality (1− b)c ≤ a ≤ (1 + b)c holds.
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Lemma 5.1 For every ε > 0, there exists a constant C such that the following
holds. Given a proper edge-coloring of a balanced bipartite graph H of 2n ver-
tices on vertex set X ∪ Y such that δ(H) ≥ (1 − η)n for some η = η(n), let
G be the subgraph obtained by choosing every color class randomly and inde-
pendently with probability p. Then, with high probability, every vertex v in G has
degree (1 − ε)p · dG(v) and for every two disjoint subsets A ⊆ X,B ⊆ Y with
|A| ≥ C log n/p, |B| ≥ C(log n/p)2, eG(A,B) ≥ (1− ε)p|A||B|.
Lemma 5.2 For all γ, δ, n with δ ≥ γ and 3γδ − γ2/2 > 2/n the following holds.
LetG be a properly edge-colored bipartite graphwith 2n vertices which is balanced
and δ(G) ≥ (1 − δ)n. Then G contains a rainbow path forest P with at most γn
paths and |E(P)| ≥ (1− 4δ)n.
Lemma 5.3 For any b,m, r > 0 with 2mr ≤ b, the following holds. Let P =

{P1, . . . , Pr} be a rainbow path forest in a properly edge-colored bipartite graph
G on vertex set X ∪ Y . Let H be a subgraph of G sharing no colors with P with
δ(H) ≥ 3b and |EH(A,B)| ≥ b + 1 for any two sets of vertices A ⊆ X,B ⊆ Y

of size b. Then either |P1| ≥ |V (P)| − 4b or there are two edges e1, e2 ∈ H and a
rainbow path forest P ′ = {P ′

1, . . . , P
′
r} such that E(P ′) ⊆ E(P) + e1 + e2 and

|P ′
1| ≥ |P1|+m.

Proof. [The proof of Theorem 5.1] Let H be the subgraph of Kn,n obtained
by choosing every color class randomly and independently with probability
p = 4.5b/n where b = n3/4. By Lemma 5.1, with high probability, all vertices in
H has degree 4b ≤ (1− o(1))pn ≤ 5b and eH(A,B) ≥ (1− o(1))pb2 > 4.4n1/2b

for any two disjoint sets A ⊆ X,B ⊆ Y of size b. We choose such anH .
LetG = Kn,n \H , then δ(G) ≥ n− 5b = (1− 5n−1/4)n. By Lemma 5.2 with

parameters δ = 5n−1/4, γ = n−3/4, we obtain a rainbow path forest P in G
with n1/4 paths and |E(P)| ≥ n− 20n3/4.

Apply Lemma5.3 inH repeatedly 2n1/2 timeswith parameters b = n3/4, r =

n1/4,m = n1/2/2. At each iteration, we delete all edges sharing a color with e1or e2 to get a subgraph H ′. We obtain that after i iterations, δ(H ′) ≥ δ(H) −
2i ≥ 3b and for any A ⊆ X,B ⊆ Y of size b, |EH′(A,B)| ≥ 4.4n1/2b − 2ib ≥
b + 1. We either increase the length of P1 bym or |P1| ≥ |V (P)| − 4b at each
iteration. Since 2n1/2m = n > n− 4b, |P1| ≥ |V (P)| − 4bmust occur at some
step during the iterations. Thus, we obtain a rainbow path P of length at least
|V (P)| − 4b > |E(P)| − 4b ≥ n− 24n3/4. Let S, T be the first 2b and the last 2b
vertices of P respectively and S′ = S∩A, T ′ = T ∩B. Then the sizes of S′ and
T ′ are b and eH′(S′, T ′) ≥ b + 1. There must be edge between S′ and T ′. We
add this edge to get a rainbow cycle of length at least |P |−4b ≥ n−28n3/4.□

We also need the following proposition and lemma.
Given a proper edge-coloring of Kn,n on vertex set X ∪ Y , we call a pair

(A,B) of disjoint subsets A ⊆ X,B ⊆ Y nearly-rainbow if the number of
colors of edges between A and B is at least (1− o(1))|A||B|.
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Lemma 5.4 For any ε > 0, there exists a constantC such that the following holds.
Given a proper edge-coloring of Kn,n on vertex set X ∪ Y , let G be a subgraph
ofKn,n obtained by choosing every color class with probability p. Then, with highprobability, all nearly rainbow pairs (A,B) with |A| = |B| = y ≥ C log n/p,
A ⊆ X,B ⊆ Y satisfy eG(A,B) ≥ (1− ε)py2.
Proof. For any y, we choose ε such that every nearly-rainbow pair (A,B) has
at least (1− ε/2)|A||B| colors and C = 40/ε2. Let (A,B) be a nearly-rainbow
pair with |A| = |B| = y, then the number of colors m between A and B in
Kn,n is at least (1 − ε/2)y2. Thus, the number of colors between A and B in
G is binomially distributed with parameters (m, p) wherem ≥ (1− ε/2)y2. By
Lemma 1.1, we have

P[eG(A,B) ≤ (1− ε)py2] ≤ e−ε2py2/14.

The result follows by taking a union bound over all (ny)2 pairs of sets of size ysince ε2y ≥ 40 log n/p. □

Lemma 5.5 For every ε > 0, there exists C such that the following holds. Given a
proper edge-coloring ofKn,n on vertex set X ∪ Y , let A ⊆ X,B ⊆ Y be two sets
of sizes a and b respectively with a ≤ b, b ≥ Cy2. Then there are partitions of A
and B into sets {Ai} and {Bj} of size y where y | a and y | b such that all but an
ε-fraction of pairs (Ai, Bj) are nearly-rainbow.
Proof. For any ε > 0, we choose C ≥ 1/ε2. Let Ec be the set of edges
between A and B with color c. Note that ∑c |Ec| = |E(A,B)| = ab and
|Ec| ≤ min{a, b} = a since the edge-coloring ofKn,n is proper.Let S and T be selected uniformly at random from (

A
y

) and (By) respecti-vely. Thus, for any twodisjoint edges e, e′ ∈ E(A,B), we haveP[e ∈ E(S, T )] =
y2

ab andP[e, e′ ∈ E(S, T )] = y2(y−1)2

ab(a−1)(b−1) . By the inclusion-exclusion formula, we
have
P[c is present in E(S, T )] ≥

∑
e∈Ec

P[e ∈ E(S, T )]−
∑

{e,f}∈(Ec
2 )

P[e, f ∈ E(S, T )]

≥ y2

ab
|Ec| −

y2(y − 1)2

ab(a− 1)(b− 1)

(
|Ec|
2

)
=
y2

ab
|Ec|(1−

(y − 1)2(|Ec| − 1)

2(a− 1)(b− 1)
)

≥ y2

ab
|Ec|(1−

(y − 1)2

2(b− 1)
) ≥ y2

ab
|Ec|(1− ε2).

The last inequality holds since (y−1)2

2(b−1) ≤ y2

b ≤ 1
C ≤ ε2. Let Z be the number

of colors in E(S, T ). Thus, E[Z] = ∑
c P[c is present in E(S, T )] ≥

∑
c
y2

ab |Ec|

109



(1− ε2) = y2(1− ε2). Since y2 = e(S, T ) ≥ Z , we have y2 − Z is non-negative
with expectation at most ε2y2. By Markov’s inequality, we have P[y2 − Z ≥
εy2] ≤ ε, which implies that with high probability, (S, T ) is nearly rainbow.

Let {Ai} and {Bj} be random partitions of A andB into sets of size y. Let
Y denote the number of pairs (Ai, Bj)which are not nearly rainbow, then wehave E[Y ] = ab

y2
P[(Ai, Bj) is not nearly rainbow]≤ ab

y2
ε. By Markov’s inequality,

we have P[Y ≥
√
ε ab
y2
] ≤

√
ε, which implies that with high probability, there

exists a partition satisfying the lemma. □

5.2 . Obtaining long rainbow cycles

Proof. [The proof of Lemma 5.1] For any ε > 0, let ε′ = ε/3, C ′ ≥ 1/ε and
C = 6C ′/ε. Let y = ⌈C ′ log n/p⌉, |A| ≥ C log n/p, |B| ≥ CC ′2(log n/p)2. As-
sume that δ(H) ≥ (1 − η)n ≥ C logn

p , let G be the subgraph of H obtained
by choosing every color class with probability p. The degree of vertex v in
G is binomially distributed with (dH(v), p). By Lemma 1.1, for each vertex v,
P[|dG(v)− p · dH(v)| ≥ εp · dH(v)] ≤ 2e−

ε2p·dH (v)

3 ≤ 2/n. By the union bound,
with high probability, all vertices of G have degree (1− ε)p · dH(v).

By Lemma 4.11 with ε′ and C ′, we obtain that with high probability,
eG(S, T ) ≥ (1− ε′)y2, (5.1)

for every nearly rainbow pair (S, T ) of sets of size y. Let b be the smallest
integer larger that C ′y2 that is divisible by y and A′ ⊆ A,B′ ⊆ B be subsets
of sizes y and b respectively. By Lemma 4.12 with ε′ and C ′, we can obtain
that there exists a partition {B′

j} of B′ into parts of size y such that all but
at most ε′-fraction of pairs (A′, B′

j) are nearly rainbow. If we let J = {j :

(A′, B′
j) is nearly rainbow}, then |J | ≥ (1− ε′)b/y. Therefore, we have
eG(A

′, B′) ≥
∑
j∈J

eG(A
′, B′

j) ≥
(1− ε′)b

y
· (1− ε′)y2 ≥ (1− 2ε′)by.

Note that ε′|A| ≥ y and ε′|B| ≥ b since ε′ = 2C ′/C. Therefore, there exists
a collection of at least (1− ε′)|A|/y disjoint subsets of A, each of size of y and
a collection of at least (1− ε′)|B|/b disjoint subsets of B, each of size of b.

Then, with high probability,
eG(A,B) ≥ (1− ε′)

|A|
y

(1− ε′)
|B|
b

(1− 2ε′)yb ≥ (1− ε)|A||B|.

□
Proof. [The proof of Lemma 5.2] Let P = {P1, . . . , Pγn} be a rainbow path
forest and |E(P)| is as large as possible. Suppose that |E(P)| < (1 − 4δ)n.
Note that |V (P)| ≤ |E(P)|+ γn < n− γn. Thus, we can obtain γn non-empty
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paths. Since otherwise we can replace the empty path by a vertex outside
V (P). Let Pi = vi,1 · · · vi,|Pi| for i ∈ [γn]. For simplicity, we denote c(vi,j−1vi,j)by c(vi,j) and vi,j−1vi,j by e(vi,j). Let C0 be the set of colors not used on E(P)

andCi = {c(x) : x ∈ NCi−1(vi,1)∩V (P)\
⋃

j∈[γn]{vj,1}}∪Ci−1 for i ∈ [γn]. Note
that for each c ∈ Ci\Ci−1, there is a vertex x ∈ V (P) such that c(vi,1x) ∈ Ci−1and c(x) = c. Firstly, we need to prove the following claim.
Claim 5.1 NCi−1(vi,1) ⊆ V (P) \

⋃γn
j=i+1{vj,1} for i ∈ [γn].

Proof. Suppose that there is an edge vi,1vj,1 with color from Ci−1 for some
j ∈ [i + 1, γn]. The case when there is an edge vi,1x for some x /∈ V (P) is
identical. We proceed the following process.

Step1 Let i0 = i and x0 = vj,1.
Step2 We maintain that if it ≥ 1, then c(vit,1xt) ∈ Cit−1.
Step3 Let ct = c(vit−1,1xt−1). Note that ct ∈ Cit−1−1, t ≥ 1.
Step4 Let it be the smallest number such that ct ∈ Cit . Note that ct ∈
Cit \ Cit−1 for t ≥ 1.

Step5 For t ≥ 1, if it ≥ 0, then let xt be the vertex of V (P)with c(xt) = ct.Since ct ∈ Cit \Cit−1, by the definition, there is a vertex xt ∈ V (P) such
that c(vit,1xt) ∈ Ci−1 and c(xt) = ct.

Step6 The iteration stops if is = 0.
Note that i0 > i1 > · · · > is. Since ct ∈ Cit−1−1 and it is the smallest number
such that ct ∈ Cit , we have it−1−1 ≥ it. We also have xt ̸= xt′ for t ̸= t′. Since
c(xt) = ct ∈ Cit \ Cit−1 and c(xt′) = ct′ ∈ Cit′ \ Cit′−1, the case c(xt) = c(xt′)occurs onlywhen it = it′ , that is, t = t′. Our next goal is to find a larger rainbow
path forest.
Claim 5.2 P ′ = P1 ∪ · · · ∪ Pγn ∪ {vi0,1x0, vi1,1x1, . . . , vis−1,1xs−1} \ {e(x1), . . . ,
e(xs−1)} is a rainbow path forest.
Proof. Our proof is divided into three steps, we prove that P ′ is rainbow in
the first step, P ′ is a forest in the second step and P ′ is a path forest in the
last step.

Note that c(xℓ) = cℓ = c(viℓ−1,1xℓ−1), cs = c(vis−1xs−1) ∈ Cis = C0 for
ℓ ∈ [s− 2] and C0 ∩ C(P) = ∅, thus P ′ is rainbow.

Suppose that there is a cycle. Let viℓ,1, xℓ, u1, u2, . . . , uk, viℓ,1 be the cyclesequence. Since xℓ ∈ V (P), we may assume that xℓ = vt,j for some t and
j. Since e(xt) is absent in P ′, we have that u1 = vt,j+1. Let r be the smallest
index for which ur ̸= vt,j+r. By the definition of P ′, we have that ur−1ur must
be the form of xℓ′vℓ′,1 for some ℓ ̸= ℓ′ with ur−1 = xℓ′ and ur = vℓ′,1. However,
e(xℓ′) = ur−2ur−1 is absent in P ′, a contradiction.
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Note thatP ′ hasmaximumdegree 2. Since the degrees of vertices x0, vi0,1,
. . . , vis−1,1 increase from 1 to 2 and the degrees of other vertices do not in-
crease from P to P ′. Thus, P ′ is a path forest. □

From the above claim, we obtain a larger rainbowpath forestP ′, contradicting
the maximality of P . □

Let mi = |Ci| − |C0| for i ∈ [s]. Note that |C(G)| = |C0| + e(P) and e(P) ≤
(1 − 4δ)n. We have |NCi(v)| ≥ |N(v)| − (|C(G)| − |Ci|) ≥ (1 − δ)n − (|C0| +
e(P)) + (|C0|+mi) ≥ 3δn+mi for any vertex v.

From the definition of Ci, we have |Ci| ≥ |C0| + |NCi−1(vi,1) ∩ {vj,k : k ≥
2, j ∈ [γn]}|. From Claim 5.1, we have |NCi−1(vi,1) ∩ {vj,k : k ≥ 2, j ∈ [γn]}| ≥
|NCi−1(vi,1)| − i. Thus, |Ci| ≥ |C0|+mi−1 + 3δn− i andmi ≥ mi−1 + 3δn− i.
Iterating it, we obtain mi ≥ 3iδn −

(
i
2

). Let i = γn, we have 2n ≥ 3γδn2 −
(γn)2/2, which contradicts with 3γδ − γ2/2 > 2/n. □

Proof. [The proof of Lemma 5.3] Suppose that |P1| < |V (P)| − 4b, let P1 =

v1v2 · · · vk and letU be the set of vertices of these paths P2, . . . , Pr which havelength at least 2m. Assume that v1 ∈ X without loss of generality. Notice that
there are at most 2mr vertices of paths P2, . . . , Pr which have length at most
2m. Thus, |U | ≥ |V (P)| − |P1| − 2mr ≥ 3b. Note that ||U ∩X| − |U ∩ Y || ≤
r ≤ b. Thus, we can choose U ′ ⊆ U ∩ Y with |U ′| = b and U0 ⊆ U ∩ X with
|U0| = b.

Suppose that there is an edge of H from v1 to a vertex x ∈ U ′ on some
path Pi of length at least 2m. Let e1 = e2 = v1x. Partition Pi into P 1

i and P 2
i ,we may assume that the length of P 1

i is at leastm without loss of generality.
Let P ′

1 = P1 + e1 + P 1
i , P ′

i = P 2
i and P ′

j = Pj for all other j.
Suppose that |NH(v1) ∩ P1| ≥ b. LetW ⊆ NH(v1) ∩ P1 with size b.W+ =

{vi−1 : vi ∈ W}. Note that W ⊆ Y and W+ ⊆ X . Since |W+|, |U ′| = b,
we have |EH(W+, U ′)| ≥ b + 1. There exists a vertex vj ∈ W+ such that
|NH(vj) ∩ U ′| ≥ 2. Thus, there exists some vertex x ∈ NH(vj) ∩ U ′ such that
c(v1vj+1) ̸= c(vjx). Denote v1vj+1 by e1 and vjx by e2. We may assume that
x ∈ Pi and the length of Pi is at least 2m. Similarly, we can also partition Piinto P 1

i and P 2
i . Without loss of generality, we may assume that the length of

P 1
i is at leastm. Let P ′

1 = P1 + e1 + e2 − vjvj+1 +P 1
i , P ′

i = P 2
i and P ′

j = Pj forall other j.
Suppose that |NH(v1) ∩ P1| < b and there is no edge from v1 to U ′. Since

NH(v1) ≥ 3b and there are at most 2mr ≤ b vertices from v1 to the vertices ofpaths Pi of length at most 2r, there is a set T ⊆ NH(v1) \ V (P) of size b and
T ⊆ Y . Since |U0|, |T | ≥ b, there is an edge tx in H where t ∈ T and x ∈ U0.
SinceH is properly edge-colored, we have c(v1t) ̸= c(tx). Note that the vertex
x is on some path Pi of length at least 2m. Denote v1t by e1 and tx by e2.Similarly, we can also partition Pi into P 1

i and P 2
i . Without loss of generality,

we may assume that the length of P 1
i is at leastm. Let P ′

1 = P1+ e1+ e2+P
1
i ,

P ′
i = P 2

i and P ′
j = Pj for all other j. □
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5.3 . Concluding remarks

The Andersen conjecture has not yet been proved, so the relevant conclu-
sions about it can be further improved.
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6 - Concluding remarks

6.1 . Rainbow Hamilton cycles in hypergraphs systems

Inspired by a series of very recent successes on rainbow matchings [110,
109, 112, 113], rainbow Hamilton cycles [28, 30, 77] and rainbow factors [27,
36, 120], we suspect the threshold for a rainbow spanning subgraph in (hy-
per)graph system is asymptotically same with the threshold for a spanning
subgraph in a (hyper)graph.

Let 1 ≤ d, ℓ ≤ k − 1. For n ∈ (k − ℓ)N, define hℓd(k, n) to be the smallest
integer h such that every n-vertex k-graph H satisfying δd(H) ≥ h contains a
Hamilton ℓ-cycle. Han and Zhao [72] gave the result that

hk−1
d (k, n) ≥

(
1−

(
t

⌊t/2⌋

)
⌈t/2⌉⌈t/2⌉(⌊t/2⌋+ 1)⌊t/2⌋

(t+ 1)t
+ o(1)

)(
n

t

)
(6.1)

where d ∈ [k−1] and t = k−d. In particular,hk−1
d (k, n) ≥ (5/9+o(1))

(
n
2

)
, (5/8+

o(1))
(
n
3

) for k− d = 2, 3. Lang and Sanhueza-Matamala [105] conjectured that
the minimum d-degree threshold for k-uniform tight Hamilton cycles coin-
cides with the lower bounds in (6.1). This leads to the following conjecture.
Conjecture 6.1 For every k ≥ 4, µ > 0, there exists n0 such that the followingholds for n ≥ n0. Given a k-graph system G = {Gi}i∈[n], if δk−3(Gi) ≥ (5/8 +

µ)
(
n
3

) for i ∈ [n], then there is a G-rainbow Hamilton cycle.
Furthermore, we believe the following holds.
Conjecture 6.2 For every k, d, µ > 0, there existsn0 such that the following holdsfor n ≥ n0. Given a k-graph system G = {Gi}i∈[n], if δd(Gi) ≥ hk−1

d (k, n) + µ
(
n
d

)
for i ∈ [n], then there is a G-rainbow Hamilton cycle.

6.2 . Exact results and the stability in graph and hypergraph
systems

For rainbowHamilton cycles in graph systems, the exact minimumdegree
threshold is known [77]. It is natural to ask whether exact results also hold for
other structures in the rainbow setup, for example,
Question 6.1 Given a graph system G = {Gi}i∈[n], if δ(Gi) ≥ rn/(r + 1), does
there exist a G-rainbowKr-factor ?

In the non-rainbow setup, exact results can typically be obtained by consi-
dering an extremal and non-extremal case separately, where the latter often
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gives stability, that is, even a smaller minimum degree condition is sufficient
if the graph is far from any extremal construction. For graphs there are also
more arguments that also work in the rainbow setup, for example, [111], thus,
we can consider the stability in graph and hypergraph systems.

6.3 . Rainbow structures in random graph systems

Ferber, Han and Mao [53] gave the following results in random graph sys-
tems.
Theorem 6.1 ([53]) For any ε > 0, p = w(log n/n) and a random graph sys-
tem G = {Gi}i∈[n/2] on V where n is even, if each Gi is independent sample of
G(n, p) on the same vertex set [n], then the following holds with high probability.
For every spanning subgraphs Hi of Gi with δ(Hi) ≥ (1/2 + ε)np, then there is
an {Hi}i∈[n/2]-rainbow perfect matching.
Theorem 6.2 ([53]) For any ε > 0, p = w(log n/n) and a random graph sys-
tem G = {Gi}i∈[n] on V where n is even, if each Gi is independent sample of
G(n, p) on the same vertex set [n], then the following holds with high probability.
For every spanning subgraphs Hi of Gi with δ(Hi) ≥ (1/2 + ε)np, then there is
an {Hi}i∈[n/2]-rainbow Hamilton cycle.
Later, Anastos and Chakraborti [12] determined the threshold for the exis-
tence of a rainbow Hamilton cycle in a collection of random subgraphs of Di-
rac graphs in various settings.
Theorem 6.3 ([12]) There exits a constant c such that the following holds. Sup-
poseG = {Gi}i∈[n] is an n-vertex graph system and for every i ∈ [n], δ(Gi) ≥ n/2,
where p = w(log n/n). Then with high probability, there exist a G ∩ G(n, p)-
rainbow Hamilton cycle.
Theorem 6.4 ([12]) There exits a constant c such that the following holds. Sup-
pose G is and n-vertex graph with δ(G) ≥ n/2, p = w(log n/n), G = {Gi}i∈[n] isan n-vertex random graph system, where each Gi is independently distributed as
Gp, for i ∈ [n]. Then with high probability, there is a G-rainbow Hamilton cycle.

Based on these results, we can consider the rainbow factors, rainbow
trees in random graph system.
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