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Abstract

Due to the increasing complexity of logistics networks driven by rapid globalization and

technological transformation, a naive inventory management leads to serious damage to both

the business and its supply chain. Therefore, achieving and maintaining the optimal balance

between cost reduction and customer service has become an important strategic concern for

all types of organizations.

In this thesis, we study a single item, single-echelon inventory replenishment system with

stochastic seasonal demand and stochastic lead time. Our objective is to find a time-varying,

periodic review (T,Rt, Qt) policy that minimizes holding, ordering, reviewing and purchas-

ing costs under a minimum fill rate constraint. We propose a simulation-based stochastic

optimization framework based on a new Memetic Algorithm (MA), which combines a Ge-

netic Algorithm (GA) with a gradient-free Local Search Algorithm (LSA). The performance

of the MA has been validated by solving a benchmark experiment with 18 different test

instances and by comparing the solution quality with a benchmark model. Furthermore,

its performance and robustness have been evaluated with extensive tests and numerical

analyses. Our computational experiments show that the proposed MA obtains significantly

better solutions than the benchmark method and that it is robust to problem parameters

and inventory structures.

Keywords: Stochastic Inventory Control, Seasonal Demand, Memetic Algorithm, Sim-

ulation Optimization, Anticipation Inventory
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1. INTRODUCTION 1

1 Introduction

Seasonal demand is common in many industries, including high-tech, toy, fashion and

pharmaceutical sectors (Gardner Jr and Diaz-Saiz, 2002; Metters, 1998), but managing an

inventory with seasonal demand is often far more complicated than it might first appear.

Unlike with stationary demand, seasonal fluctuation requires a dynamic replenishment strat-

egy that carefully balances the trade-off between holding large inventory during seasons with

low demand (or off-seasons) and facing high shortage risk during seasons with high demand

(or peak seasons). Likewise, determining an optimal dynamic replenishment strategy re-

quires complex decisions of when and how much to adjust the order quantity across seasons.

Despite this problem’s high practical significance, available techniques are rather scarce in

the literature (Grewal et al., 2015).

In this thesis, we consider a stochastic variant of a single item, single-echelon inventory

system under seasonal customer demand and stochastic lead time. Also, the inventory op-

erates in a lost sales system and it needs to achieve a target customer service level, which

is a commonly observed situation in many retail inventories (Bijvank and Vis, 2011). For

this inventory system, we investigate the problem of determining a cost minimizing replen-

ishment strategy while achieving a sufficient level of customer service. Moreover, in order

to properly manage seasonal demand we consider a time-varying periodic replenishment

strategy (T,Rt, Qt), of which the reorder point Rt and the reorder quantity Qt may vary

throughout the seasonal demand cycle. Assuming that the exact length of each demand

cycle is known a priori and that the number of seasons during a demand cycle is fixed, our

problem also concerns the optimal timing of the seasonal adjustments made to Rt and Qt.

In general, many stochastic inventory problems that are recognized in practice are ana-

lytically intractable because of their complexity. To overcome our problem’s complexity and

modeling difficulties, we propose an effective simulation-based optimization model, which

is a commonly applied framework for approximating the optimal solutions for practical in-

ventory problems (Jalali and Nieuwenhuyse, 2015). Our solution framework combines a

stochastic inventory simulation with a metaheuristic model without posing unrealistic re-

strictions on the problem. Also, a simulation-based approach may produce more detailed

and visual information about the inner dynamics of inventory operations, providing mean-

ingful insights for its subsequent analysis.

The objectives of our thesis are threefold. The first objective is to create an efficient ap-

proach to determine the optimal dynamic replenishment strategy under the described inven-

tory system. Our second objective is to verify and validate the performance of our proposed

approach for solving the problem under various demand, cost and inventory configurations.

Finally, we aim to conduct a scientific numerical analysis to examine the method’s behavior

under different inventory parameters and cost structures. The remainder of the paper is

structured as follows. In Section 2 we present a comprehensive overview of existing liter-

ature on related inventory problems and solution techniques. Section 3 contains a formal

description of the considered problem as well as its formulation into a stochastic non-linear

programming model. In Section 4 our method is described with a proper set of notations.

The computational results and numerical analyses are presented in Section 5, and in Section

6 we present our conclusions together with discussion and limitations of our research. The

suggestions for the future research are also provided in this final section.
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2 Literature Review

2.1 Introduction

In this section, we provide a general review on inventory control problems for a single-

echelon supply chain (Section 2.3). The focus of this review is on inventory replenishment

problems with non-stationary demand, stochastic lead time and service level constraint due

to their direct relevance to our research. Also, in Section 2.4 we provide a detailed summary

of available solution techniques for the relevant problems in Section 2.3 with a focus on

simulation-optimization and metaheuristic approaches.

2.2 Different Ordering Policies

Among many different ordering policies to control stochastic inventory system, (R,Q)

policy and (s, S) policy are the two most commonly studied policies in the literature

(Axsäter, 2015). Both R and s denote for the reorder points in each of these two poli-

cies. Q stands for the reorder quantity, also referred to as the batch quantity or the lot size,

and S is the order-up-to level or the maximum inventory level. In the next two subsections,

these two ordering policies and their key variants are briefly explained for our literature

review.

2.2.1 (R,Q) Policy

For a (R,Q) policy, a replenishment order of a fixed size Q is generated whenever the

inventory position (i.e., the number of on hand stock plus outstanding orders minus backo-

rders) declines to or below the reorder point R. In case of continuous review and continuous

demand, the inventory position increases by the size of reorder quantity Q whenever the

reorder point R is hit exactly as shown in Figure 1. On the other hand, the inventory level

(i.e., the number of on hand stock minus backorders) that does not consider the number of

outstanding orders remains below R during the lead time.

Figure 1: Continuous review (R,Q) policy with continuous demand

In case of periodic review (R,Q) with review period T , the inventory position is inspected

at every T time units. Figure 2 illustrates the periodic review (T,R,Q) policy with fixed

lead time. Unlike the continuous review analogue, the inventory position increases by Q

only if it is below R at review period.
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Figure 2: Periodic review (T,R,Q) policy with continuous demand

In addition to the static (R,Q) policy, some authors also consider the dynamic (Rt, Qt)

policy that applies time-varying reorder point Rt and reorder quantity Qt at time t. Also,

a (R, nQ) policy is commonly used in the literature, where it is possible to order more than

one batch quantity Q until the inventory position reaches above the reorder point R.

2.2.2 (s, S) Policy

An (s, S) policy, also known as a min/max policy, sets a minimum and a maximum level

of the inventory position. When the inventory position declines to or below the reorder

point s, a replenishment order of size S − s is issued to bring the inventory position up

to the order-up-to level S. For the continuous review case, the inventory position hits the

reorder point exactly and it is immediately brought up to the level S. Figure 3 illustrates

the policy in a continuous review, continuous demand situation.

Figure 3: Continuous review (s, S) policy with continuous demand

In case of the periodic review (T, s, S) policy, the inventory position is reviewed at every

T time units and the inventory position is brought up to S if it is below or equal to the

reorder point s. Figure 4 demonstrates this policy. Again, for periods other than review

time, the inventory position does not increase.
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Figure 4: Periodic review (T, s, S) policy with continuous demand

Another important variant of the (s, S) policy is a base stock policy, or an (S − 1, S)

policy, which always orders up to the level S whenever the period demand is greater than

zero. Therefore, in a continuous review base stock policy, every positive demand in each

period leads to a replenishment order of size equal to the period demand.

2.3 Inventory Control Problems

2.3.1 Lot Sizing Problem

A lot-sizing problem considers the determination of the optimal batch quantity in a re-

plenishment policy. When using a static (R,Q) replenishment policy, this corresponds to the

determination of optimal level and timing of the reorder quantity Q. The typical objective

of this type of problem is to balance inventory holding and ordering cost without creating

shortages. General lot-sizing models impose the assumption of exactly known future de-

mand and infinite time horizon. The classical economic order quantity (EOQ) equation by

Harris (1991) is one of such models, in which the cost optimal batch quantity is determined

under constant purchase, ordering and holding costs. There are many variants of this simple

EOQ model that extend to problems with multiple items (Sana, 2010), quantity discounts

(Benton and Park, 1996) and backorders (Mak, 1987; Pentico and Drake, 2009).

In practical inventory problems, however, time-varying customer demands are more com-

monly observed. For example, customer demand for medicines, winter coats and air con-

ditioners have strong seasonal variations (Feng and Gallego, 1995). For these products,

considering a class of dynamic lot-sizing models is more appropriate, as these models can

manage time-varying demand over a finite number of discrete time periods with linear hold-

ing cost. For the uncapacitated version of the dynamic lot sizing problem, Wagner and

Whitin (1958) proposed the first dynamic programming approach with the quadratic com-

putational complexity, which means that the computation time is proportional to the square

of the number of periods in the considered problem, to solve the deterministic case exactly.

Later, various extensions of the Wagner-Whitin algorithm were proposed, including the work

of Zangwill (1966) that studies the backordering case and the work of Heady and Zhu (1994)

which integrates the concept of Economic Part-Period into the planning-horizon theorem to

achieve an increased performance.

Despite the proven optimality of the exact methods, in practice it is more common to

use simple heuristic methods to obtain an approximate, yet “good enough” solution. While
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an efficient implementation of the exact methods can greatly reduce the computation time,

the alternative heuristics are still more preferred in practice because of their simplicity and

adaptability (Yilmaz, 1992). One of the most popular heuristics is the Silver-Meal method,

which is a simple sequential method proposed by Silver and Meal (1973). This heuristic tech-

nique determines the order timing and quantity by iteratively computing the average cost

per period for orders that would cover successive periods. When the average cost increases

for the first time, one should order the total demand for the periods that are covered. Other

alternative procedures are Least Unit Cost heuristic by Gorham (1968), which considers the

average cost per order quantity instead of cost per time like in Silver-Meal heuristic, and

Part-Period Balancing heuristic by DeMatteis (1968), which orders the quantity that keeps

the ordering cost as close to the holding cost as possible.

So far, we have discussed the lot-sizing problems with deterministic demand. Never-

theless, most of lot-sizing problems that are encountered in practice deals with stochastic

demand. This is because the future demand is usually only available in forms of forecasts

and the presence of forecast errors introduces random variation in the future demand (Tarim

and Kingsman, 2004). Silver (1978) proposed a heuristic method for the stochastic lot-sizing

problem with Normally distributed forecast errors. His heuristic determines when to order,

the size of order and the number of periods which an order needs to cover, while keeping

sufficient service level. Furthermore, Bookbinder and Tan (1988) considered the same prob-

lem in a rolling horizon environment, in which the lot size is determined for a tighter finite

horizon than the original horizon, which rolls over the complete horizon. They formulated

a “dynamic uncertainty” strategy to determine the lot size for the future periods based on

the demand that become updated at a later point in time.

2.3.2 Dynamic Ordering Policy

Existing literature on optimization of the static ordering policy is flourishing, yet rela-

tively little attention was given to the dynamic ordering policy. One of the earliest publi-

cations is the study of Karlin (1960), which shows the optimality of the (s, S) policy for a

non-stationary demand with a special problem structure. The author showed that for pe-

riods with stochastically low demand, the order-up-to level S decreases while the opposite

is not necessarily true. Nevertheless, the proposed approach requires complex computation

and makes restrictive assumptions, including the integrability of the objective function.

More recently, Graves (1999) developed a myopic (i.e., short-period ahead), time-dependent

ordering policy based on demand forecast made from a simple exponential smoothing model.

Assuming for deterministic lead time, the reorder quantity consists of the demand for the

immediate period as well as the expected change in the forecast. Despite its simplicity, how-

ever, the model does not take into account service level constraint and stochastic lead time,

hence limiting its applicability in practice. Babäı and Dallery (2006) proposed a sequential

approach to approximate the optimal parameters of a dynamic (Rt, Q) policy for a general

class of inventory problems with a fill rate constraint. The authors derived a simple formula

for the optimal safety stock based on a given series of time-dependent reorder points assum-

ing that the demand distribution is independent and identically distributed. As their model

is applicable to the system with non-stationary demand and a minimum fill rate constraint,

their model is very relevant to our own. Yet, their model does not optimize the review time

and applies a constant reorder quantity Q instead of dynamic quantities Qt.
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Besides the objective of minimizing the total cost, Grewal et al. (2015) focused on min-

imizing the work-in-progress and finished goods inventory by means of a simulation-based

optimization algorithm. Their algorithm decides a dynamic (Rt, Qt) replenishment strat-

egy with a fixed number of adjustments of policy parameters in a seasonal cycle. Given

the exact seasonal pattern of future demand during any given seasonal cycle, the optimal

strategy determines the timing of seasons within a demand cycle as well as the size of the

reorder point and the reorder quantity in each season. They show that effective seasonal

adjustments were able to stabilize the finished goods inventory level but made no significant

improvements for the work-in-progress inventory.

2.3.3 Service Level Constraint

An important criterion for the optimal reorder policy is the policy’s expected customer

service level. Since an inventory’s service level is generally expressed in terms of size or

frequency of shortages (Axsäter, 2015), a sufficient number of safety stock needs to be main-

tained in order to achieve the desired level of customer service. In some inventories, shortage

or backordering costs are charged instead of monitoring the service level. But in practice the

determination of stock out costs is considered to be very difficult (Hadley and Whitin, 1963).

Only a few case studies have been conducted for setting an appropriate level of shortage

cost. Chang and Niland (1967) stated that the expected shortage cost may be modeled in

terms of direct measurements and conditional costs, such as the number of past stock-outs,

the cost of emergency procurement and the opportunity cost of losing customer goodwill.

However, it may be impossible to accurately estimate the abstract measurements such as

the loss of customer goodwill due to their subjective nature (Dion et al., 1991). An in-

tuitive approach is to conduct direct interviews and market surveys on target customers,

but such a method requires costly market investigations and is valid under very restrictive

premises (Oral et al., 1972). In some situations, shortage costs may be directly available

from contracts that state shortage penalties, but even in such cases monitoring the service

level would be useful for understanding the performance of the inventory system (Diks et al.,

1996).

There are two most commonly used definitions of the inventory service level in the

literature (Ronen, 1983; Axsäter, 2015).

1. Cycle Service Level: probability of not stocking out in an order cycle

2. Fill Rate: proportion of demand that can be immediately satisfied from available stock

on hand

Cycle service level can be understood as the probability of an order arriving before the

stock on hand is depleted. This definition is quite simple to implement because the opti-

mal order point satisfying the cycle service level does not get affected by the change in the

lengths of replenishment cycles (Schneider, 1981). However, it does not consider the actual

size of batch quantity, resulting in a significant divergence from the “real” service level that

indicates how many demands are directly satisfied (Axsäter, 2015). Several indicative exam-

ples of single-echelon inventory models with cycle service level constraints include Schneider

(1981), Babäı et al. (2009) and Axsäter (2015).

In practice and in a major part of literature, fill rate definition is more frequently em-

ployed as the main service measure as it considers both the possibility of stock-out situations
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and the size of the unmet demand (Tempelmeier, 2007). For a multi-item environment, an

order-based fill rate may be used to estimate the probability of serving all items in the cus-

tomer order instead of the typical item-based fill rate that considers individual item (Song,

1998). Available literature for the single-item inventory problem with a minimum fill rate

constraint is extensive and they employ great varieties of optimization techniques, including

constrained optimization models (Bashyam and Fu, 1998; Jha and Shanker, 2009), approx-

imation heuristics (Axsäter, 2006; van Donselaar and Broekmeulen, 2013), and simulation-

based optimization models (Fu, 2002; Kleijnen et al., 2010).

2.3.4 Stochastic Lead Time

Incorporating stochastic lead times in inventory models brings remarkable impacts on

the optimal reorder policies and the system performance. The most common assumption

is that the lead time is independent of demand and order size, and that the orders do not

cross in time, meaning that the replenishment orders issued earlier do not arrive later than

the orders issued later in time (Axsäter, 2015; Zipkin, 1986).

For finite horizon problems, Song et al. (2010) established important effects of lead time

volatility in the standard (R,Q) policy with a compound Poisson demand process. They

showed that a larger lead time volatility leads to a higher optimal reorder point but does not

necessarily result in a higher optimal average cost. Due to the added stochasticity, earlier

works often modeled the problem as a queuing system with random order arrivals (Berman

and Kim, 1999; Kaplan, 1970). Kaplan (1970) successfully implemented a finite-horizon dy-

namic programming model and observed that the optimal policy was dependent on whether

ordering cost is fixed or variable. An interesting extension was studied by Ehrhardt (1984)

who included a salvage value for the left-over inventory at the end of the planning periods

and showed that a myopic solution is optimal in case of zero fixed ordering cost.

2.3.5 Lost Sales System

In a lot of commercial inventories in retail sectors, majority of customers who observe

a stock-out gets lost immediately (Gruen et al., 2002), and therefore a lost sales model is

more appropriate to represent these cases. However, many of the inventory models studied

in academics assume that excess demand is backordered, meaning that customers will wait

until the next delivery of replenishment order and purchase the items when made available.

The central reason for this preference is the problem’s relatively simple structure that fa-

cilitates better theoretical analysis and that requires less computational effort (Bijvank and

Vis, 2011). As a matter of fact, (s, S) type policies are proven to be optimal for backorder

models under periodic review but an optimal policy for the lost sales model is not trivial

(Scarf, 1959). Also, a greedy approximation of the lost sales system by a similar backorder

model may lead up to 30% deviations of the optimal cost (Zipkin, 2008a).

Extensive research has been performed to optimize continuous review inventory with

lost sales system, and most of these works focus either on an (R,Q) or an (s, S) type or-

dering policy. For static (R,Q) policies, an exact expression for the expected total cost has

been derived under the Poisson demand process and with the assumption of at most one

outstanding order (Hadley and Whitin, 1963). Then this model has been extended to incor-

porate stochastic lead time (Buchanan and Love, 1985; Johansen and Thorstenson, 1993),
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general demand distribution (Mohebbi and Posner, 1998) and discounted model (Johansen

and Thorstenson, 1996). In addition, Aardal et al. (1989) considered the same problem with

a minimum service level constraint and solved it by using Lagrangian multipliers. She mod-

eled the relationship between the shortage cost and service level, and also addressed that

the shadow price of the service level constraint corresponds to the shortage cost. In case

of (s, S) policies, Archibald (1981) obtained the exact expression for the average stationary

cost with the discrete compound Poisson demand process and applied a small grid search for

obtaining the global optimum. He also proposed a near-optimal approximation procedure

using the optimal policy in the equivalent backorder model. Kalpakam and Sapna (1994)

considered the inventory problem of perishable items with general lead time distribution,

where they obtained the steady-state performances and investigated the analytical proper-

ties of the expected cost.

In periodic review system, existing models can be classified by whether the fixed order

costs are zero or positive (Bijvank and Vis, 2011). In case of no fixed ordering cost, Morton

(1969) provided the upper and lower bounds on the optimal order quantity and the minimum

expected total cost for problems with linear holding cost and variable ordering cost. It also

conditions that the lead time is an integral multiple of the review period. Then Zipkin

(2008b) extended the results of Morton (1969) to prove that the optimal cost function is a

L-natural convex function. This means the function is convex and submodular in discrete

number space, and it implies that the optimal order quantities are monotonically decreasing

with respect to the inventory position. When there is a fixed ordering cost per each order, a

periodic review (T, s, S) policy is shown to be optimal under zero lead time (Veinott, 1966;

Cheng and Sethi, 1999). Yet, the optimal policy for positive lead time case is unknown.

The numerical analysis performed by Hill and Johansen (2006) showed that both (R,Q) and

(s, S) policies are not optimal for this problem, but if the parameters are selected carefully

they can provide near-optimal performance. Finally, Bijvank and Vis (2012) derived lower

and upper bounds on the order-up-to level for the lost sales model with a service level

constraint, which could effectively narrow the parameter search space.

2.4 Solution Methods

2.4.1 Exact Method

The optimal solution technique, often referred to as an exact method, can identify a glob-

ally optimal solution to an optimization problem. Due to its guarantee of global optimality,

numerous researchers have been keen on formulating efficient exact methods. However, ex-

act methods often require intense computational effort and time, which is burdensome in

day-to-day industrial applications. Moreover, the underlying assumptions may be in appro-

priate for many inventory systems in real life.

Since the research in stochastic inventory system is flourishing and continues to expand,

it is hard to generalize the existing exact methods into a single global framework. Instead,

we refer the readers to the work of Axsäter (2015), which provides extensive results on the-

oretically optimal ordering policies for both single- and multi-echelon systems. The author

extensively studies and develops several different analytical models for the optimal determi-

nation of the reorder policy under various discrete and continuous demand distributions.
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2.4.2 Simulation-Optimization

A computer-based simulation model can be employed as a potentially powerful alterna-

tive to the traditional methods because it can model the complex inventory operations as

well as the inherent system uncertainties without making unrealistic assumptions (Glover

et al., 1999). Simulation-optimization, also referred to as simulation-based optimization,

is an optimization technique that enhances the system’s simulation model with a suitable

optimization technique to efficiently search for the optimal decision variables (Nguyen et al.,

2014). Unlike the classical analytic methods that determine the optimal decision variables

by algebraically minimizing the objective function, simulation-optimization models evaluate

system performance by combining and processing the responses from the simulation model

and therefore does not require the exact gradient information of the objective function (Mele

et al., 2006).

In the field of inventory control systems, several works have integrated optimization tech-

niques with inventory simulation models and the two most popular techniques are simple

metaheuristics and hybrid metaheuristic methods (Jalali and Nieuwenhuyse, 2015).

The most common metaheuristic algorithm employed for the inventory problems is Ge-

netic Algorithm (GA) due to its flexibility and ability to handle simulation noise (An-

dradóttir, 2006). GA is a population-based search heuristic that iterates through fitness

assessment, parent selection and reproduction from an initial population of candidate solu-

tions. It is generally applied to optimize discrete decision variables because the number of

feasible solutions is unbounded for continuous problems. Application of GA on inventory

problems spans from single-echelon (Yang et al., 2012; Pasandideh et al., 2013; Saracoglu

et al., 2014) to multi-echelon (Köchel and Nieländer, 2005; Min et al., 2006; Pasandideh

et al., 2011) supply chain. The algorithm’s main advantage is its flexibility to handle dif-

ferent inventory settings, such as multi-item situation (Pasandideh et al., 2011), storage

constraints (Mandal et al., 2011), and purchase discounts (Taleizadeh et al., 2010). Other

popular metaheuristics are Simulated Annealing, Tabu Search and Particle Swarm Ppti-

mization algorithms (Silva et al., 2003; Altiparmak et al., 2006) and the comprehensive

survey of their applications is available in the paper of Jalali and Nieuwenhuyse (2015).

Hybrid metaheuristic algorithms combine different individual algorithms in order to im-

prove the overall search performance. The main benefit of mixing different algorithms

derives from the synergy that improves both explorative and exploitative power of the re-

sulting algorithm. The most common hybridization approach is to augment an explorative

algorithm, such as GA, with some exploitative algorithms (e.g., Local Search Algorithm)

(Luke, 2009). Memetic Algorithm (MA), which was coined in Moscato et al. (1989), is a

class of such hybrid algorithms which combines population-based algorithms with individual

local search algorithms. There have been several works that applied MA to inventory man-

agement systems, such as the machine scheduling problem (França et al., 2001; Mendes,

Alexandre S and Müller, Felipe M and França, Paulo M and Moscato, Pablo, 2002) and

lot-sizing problems (Berretta and Rodrigues, 2004), but only a few of these papers consider

inventory replenishment systems. The work of Pasandideh et al. (2013), for an example,

finds the optimal reorder quantities for multiple items by applying an MA that combines a

standard GA with a Simulated Annealing method for the initial population generation.
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3 Problem Description

3.1 Introduction

In this section, we properly introduce the inventory problem considered in this thesis

and state the scope of our research by presenting the research questions we would like to

answer from this project. In Section 3.2, the inventory system considered in this thesis

is described together with a simple supply chain representation. In Section 3.3 a formal

description of our problem is presented and in Section 3.4 our problem is formulated as a

stochastic non-linear programming problem. In Section 3.5 and 3.6 we address the central

question of our research and provide the list of problem assumptions that we imposed for

our scientific research.

3.2 System Description

Our inventory model fits in a serial supply chain with a supplier, a warehouse and

customers, in which a single type of item is delivered to the customers via the warehouse.

The warehouse serves the customers’ orders using its available inventory and by regularly

procuring the product from the supplier. As soon as the supplier receives a new purchase

order from the warehouse, it processes and transports the order to the warehouse after

finite periods of lead time. Under the discrete time system, all the operations take place

in discrete time periods and no events are assumed to occur during the time in between.

Figure 5 illustrates the main process of the described serial supply chain.

Figure 5: Demonstration of the single-echelon serial supply chain

In the considered inventory system, the uncertainty originates from the demand and

lead time. The number of customer demand in each period is assumed to follow a discrete

Normal distribution with a seasonal mean and a constant standard deviation. The lead time

is a random variable from a Geometric distribution with a known parameter value. At first,

such distributional assumptions may seem rather impractical. Yet, many researchers and

practitioners support that these are suitable for items with typically high demand. Firstly,

the high demand item is usually bought by multiple customers who make decisions indepen-

dent of each other, and by the Central Limit Theorem the sum of these independent random

demands tends toward a Normal distribution under very general conditions (Axsäter, 2015).

Since in our system the product is exchanged in discrete units, we use a discrete Normal dis-

tribution instead to model customer demand. Its probability mass function is presented in

Appendix A.2. Secondly, the Geometric distribution is a discrete analogue of the continuous

Exponential distribution, which is commonly adapted when modeling inventory systems due
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to its tractability and broad applicability in real world situations (Ramasesh et al., 1991;

Tijms, 2003).

3.3 Formal Problem Description

Consider the inventory that operates until a finite planning horizon N for equally spaced

discrete time periods t = 1, 2, . . . , N . The inventory stocks a single type of product with

high, seasonal customer demand dt and it follows a discrete Normal distribution with a

time-varying mean µt ≥ 0 and a constant standard deviation σ ≥ 0. Also, because of

the product’s high demand the probability of seeing negative demand is none and having

zero demand quantity is absolutely small. Thus, the demand distribution’s coefficient of

variation, which is the ratio σ/µt, is smaller than 1/4 for all t, and any negative demand

is rounded up to zero. Assume that the seasonal pattern in µt is uniquely defined over a

seasonal cycle of length Y and that the same pattern repeats until the planning horizon N

for an integer number of times. Therefore, the planning horizon N is an integral multiple

of the cycle length, such that N = nY for n = 1, 2, . . . . See Figure 6 for an example of

two seasonal demand cycles, each with length Y = 52 periods. The inventory applies lost

sales system, in which the excess demand above the stock on hand gets lost immediately.

The replenishment lead time is Geometrically distributed with a known rate 0 < q < 1,

and therefore the lead time for any replenishment orders takes a positive non-zero integer

value. We mention that our problem’s special seasonality structure is originally from the

seasonality structure presented by Grewal et al. (2015).

Figure 6: Two seasonal cycles with N = 2Y

The ordering decisions are made based on the inventory position IPt at the end of period

t. The inventory position is defined as a linear combination of three inventory measures;

the physical stock on hand OHt, the outstanding orders OOt that are yet to be delivered

from the supplier, and the number of backorders, which is the demand that has not been

satisfied immediately. For our lost sales inventory system, the number of backorders is zero

because there cannot be any backorders if all excess demand gets lost.

IPt = OHt +OOt (1)
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While all replenishment decisions are made based on IPt, the cost of carrying inventory

is determined based on the inventory level ILt. It is equal to the number of stock on hand

minus the number of backorders, but under lost sales system, there is no backorder.

ILt = OHt (2)

Therefore, in lost sales system both IPt and ILt can never become negative.

The inventory level is controlled by a seasonal (T,Rt, Qt) policy for all periods t =

1, . . . , N , where T is a review time, Rt is a reorder point, and Qt is a reorder quantity for

time t. All three types of decision variables take strictly positive integer values and T is

bounded by the interval [1, Tmax] where Tmax is a positive integer upper bound for T that is

larger or equal 1. Under this periodic ordering system, the inventory position is reviewed

at every T time periods. If IPt declines to or below the reorder point Rt at time t, a fixed

reorder quantity Qt is ordered from the supplier. Furthermore, we assume that exactly m

adjustments are made to the pair of reorder point and reorder quantity (Rt, Qt) within a

seasonal demand cycle of Y periods. See Figure 7 for an example of the seasonal policy

for two cycles of length Y = 21, each with three seasons (m = 3). The frequency m is an

integer valued design parameter that is chosen from the interval [1, Y ]. If m = 1 then the

policy is essentially a static (T,R,Q) policy, and if m = Y then the policy is a fully dynamic

(T,Rt, Qt) policy that may take different values for every time t = 1, . . . , N .

Figure 7: Example (T,Rt, Qt) policy with m = 3

In every review period, a replenishment order of size Qt is submitted to the supplier

when the inventory position at the beginning of period t has dropped to or below the re-

order point. We assume that at most one replenishment order can be issued in each time

period and that the lead time Lt for the order can be larger than the length of review time

T . Furthermore, we ensure that the replenishment orders cannot cross in time, meaning

that the orders issued at later time periods cannot be delivered earlier than the orders is-

sued earlier. This implies that the following inequality t + Lt ≤ t + x + Lt+x always holds

for x = 1, 2, . . . . We also assume that the supplier has an unlimited supply capacity for

any replenishment quantities at any point of time and that there is no restriction on the
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maximum number of outstanding orders.

Before serving any demand at time t, the inventory receives all past replenishment quan-

tities that were expected to arrive at time t. Therefore, when these orders arrive at time

t the inventory level increases by EQt =
∑
{k|1≤k≤t,k+Lk=t}Qkxk, where xk is a binary vari-

able that equals to 1 if a replenishment order was placed at time k and 0 otherwise. After

receiving the replenishment orders, customer demand at t is served with available stock on

hand and any excess demand above the available stock is lost without penalties. The number

of lost sales in each period is obtained by LSt = max{0, dt−ILt−1−EQt} for t = 1, 2, . . . , N .

Within every time period t, three inventory operations may take place: inventory re-

view, order arrival and demand satisfaction. Each of these operations has a purpose of

checking inventory position for possible replenishment orders, receiving past replenishment

orders and meeting customer demand, respectively. In case multiple operations take place

in the same period, they are managed in the order of review, order arrival and demand

satisfaction. That is, the inventory position is reviewed first if t belongs to a review period,

and then all previously issued replenishment orders with scheduled arrival at t are received.

After completing all reviews and order receipts the period demand is served with available

inventory.

Four types of costs are considered in this problem. Setting up a replenishment order

incurs a fixed order set up cost K ≥ 0 per unit order. Carrying positive inventory incurs

a per unit per time unit holding cost of h ≥ 0. Purchasing a unit of item costs p ≥ 0 and

reviewing the inventory at any point of time incurs a review cost of r ≥ 0 per review. Review

cost typically includes the costs of administration and labor involved during the inspection

process (Metzger et al., 2013). When review cost is neglected, then setting the smallest

discrete review time (T = 1) might become optimal and the model essentially reduces to a

discrete time continuous review model. In order to study the effect of different values of T ,

we consider a general model with a positive review cost.

Define a replenishment strategy P as a unique sequence of (T,Rt, Qt) policies with m

seasons within a seasonal cycle. The objective of our problem is to determine the optimal

replenishment strategy P∗ that minimizes the expected total cost while maintaining a suf-

ficient quality of expected customer service. The expected total cost for a replenishment

strategy f(P) is a sum of expected purchasing, holding, ordering and review cost for all de-

mand and lead time scenarios during N periods. Let d̂t and L̂t denote a possible realization

of the period demand dt and the lead time Lt for an order placed at time t, respectively.

Then the expected total cost is expressed as in Equation (3).

f(P) = r

⌊
N

T

⌋
+
∑
d̂1

· · ·
∑
d̂N

∑
L̂1

· · ·
∑
L̂N

( N∑
t=1

hILt+Kxt+pQtxt

)
g1(d̂1) · · · gN (d̂N )v(L̂1, x1 = 1) · · · v(L̂N , xN = 1)

(3)

where the floor function bac finds the largest integer smaller or equal to real number a,

gt(d̂t) is the probability mass of receiving demand d̂t at time t, and v(L̂t, xt = 1) obtains

the joint probability of having a lead time of L̂t and setting up a reorder at time t. We use

joint probability for the lead time because the lead time at time t is not realized unless a

replenishment order is actually issued at t. The extra subscript t for the function gt(·) is

used for non-stationary demand distribution at time t, unlike the joint probability for the
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lead time v(·) that is identical across all time periods.

The expected service level is expressed as the expected item fill rate, 0 ≤ FR(P) ≤ 1.

Since the fraction of satisfied demand is equivalent to one minus the fraction of lost sales to

the total demand, we obtain

FR(P) = 1−
∑
d̂1

· · ·
∑
d̂N

∑
L̂1

· · ·
∑
L̂N

(∑N
t=1 LSt∑N
t=1 d̂t

)
g1(d̂1) · · · gN (d̂N )v(L̂1, x1 = 1) · · · v(L̂N , xN = 1) (4)

A replenishment strategy is called feasible if its expected fill rate is higher than a mini-

mum threshold. We denote a feasible replenishment strategy by adding a hat to its standard

notation, such as P̂ and its expected item fill rate is above a lower bound 0 ≤ FRmin ≤ 1,

such that

FR(P̂) ≥ FRmin (5)

Therefore, our objective is to minimize Equation (3) with the minimum service level

constraint in Equation (5). In next section, we formulate our problem as a stochastic non-

linear programming problem for a coherent presentation of our inventory system.

3.4 Stochastic Non-Linear Programming Model

Due to stochastic problem parameters and non-linear constraints, our problem can be

more accurately modeled by a Stochastic Non-linear Programming (SNLP) model. The

problem consists of the decisions of the review time T , reorder point Rt and reorder quan-

tity Qt to minimize the expected total cost subject to demand and lead time uncertainties.

The non-linear constraints consist of maximum functions and division operators that are

implemented for calculating expected lost sales and for expressing the item fill rate condi-

tion. Also, the binary decision variable xt that indicates a setup of order at time t involves

a non-linear modulus operator. We present our SNLP model using the maximum function

(y)+ = max{y, 0} that finds the positive part of the random variable y and the modulus

operator a mod b that finds the remainder from the division of real number a by another

real number b.
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Stochastic Non-Linear Programming Model

min f(P) (Equation (3)) (6)

subject to EQt =
∑

{k|1≤k≤t,k+L̂k=t}

Qkxk t = 1, 2, . . . , N (7)

IPt = (IPt−1 − d̂t +Qtxt)
+ t = 1, 2, . . . , N (8)

xt =

{
1 if IPt−1 ≤ Rt and t mod T = 0

0 otherwise
t = 1, 2, . . . , N (9)

ILt = (ILt−1 + EQt − d̂t)+ t = 1, 2, . . . , N (10)

LSt = (d̂t − ILt−1 − EQt)+ t = 1, 2, . . . , N (11)

1−
∑N

t=1 LSt∑N
t=1 d̂t

≥ FRmin (12)

N mod Y = 0 (13)

Rt = Rt+Y t = 1, 2, . . . , N − Y (14)

Qt = Qt+Y t = 1, 2, . . . , N − Y (15)

yt =


0 if |Rt −RY | = 0 and |Qt −QY | = 0 t = 1

0 if |Rt −Rt−1| = 0 and |Qt −Qt−1| = 0 t = 2, 3, . . . , Y

1 otherwise t = 1, 2, . . . , Y

(16)

max

{ Y∑
t=1

yt, 1

}
≤ m (17)

IL0 = IP0 = LS0 = EQ0 = 0 (18)

Qt, Rt, ILt, IPt, LSt, EQt ∈ Z+ t = 1, 2, . . . , N (19)

xt ∈ {0, 1} t = 1, 2, . . . , N (20)

yt ∈ {0, 1} t = 1, 2, . . . , Y (21)

T ∈ {1, 2, . . . , Tmax} (22)

The objective function (Equation (6)) is equal to the sum of expected holding, purchas-

ing, review and order setup cost throughout the planning horizon. The exact expression for

the expected total cost f(P) can be found in Equation (3). Equation (7) finds the number

of items scheduled to arrive at time t. Equation (8) states that the inventory position at

the end of time t is a function of previous inventory position at time t − 1, demand at



3. PROBLEM DESCRIPTION 16

t and the amount of reorder quantity placed at time t. Equation (9) defines the binary

variable xt that equals to 1 if a replenishment order is placed at time t and 0 otherwise. A

replenishment order is placed when the inventory position at time t− 1 is below or equal to

the reorder point Rt and when t is an integral multiple of the review period T . Equation

(10) updates the inventory level at the end of time t based on the scheduled receipt and

observed demand at t. Equation (11) states that the number of lost sales at t is equal to

the number of customer demand that cannot be immediately satisfied from the inventory

at t. Equation (12) expresses the service level constraint in terms of lost sales compared to

the total demand throughout the planning horizon. Equation (13) to (17) ensure that the

optimal replenishment strategy is adjusted seasonally during each demand cycle. Equation

(13) ensures that the planning horizon consists of an integer number of repetitions of a

seasonal demand cycle. Equation (14) and (15) express the repetition of identical reorder

policies over each seasonal cycle. Equation (16) evaluates if the reorder policy of period t

has been adjusted from that of preceding period t−1 (or Y if t = 1). Equation (17) ensures

that the number of seasonal adjustments made to the reorder policy during each demand

cycle does not exceed the number of seasons m. Since observing zero seasonal adjustment

indicates that the strategy has only one season, the equation’s maximum operator compares

the number of seasonal adjustments with 1. Equation (18) sets the initial values for the

inventory level, inventory position, lost sales and scheduled arrivals. In Equation (19) all

variables are defined as non-negative integer variables from an unbounded integer set, while

in Equation (20) and (21) all binary variables are defined. Finally, Equation (22) addresses

that the optimal review time takes an integer value between 1 and Tmax.

To solve the proposed stochastic non-linear programming problem with existing stochas-

tic programming techniques, the objective function and the constraints should be accurately

linearized and reformulated into its deterministic analogue. This might involve many auxil-

iary variables and additional assumptions that can eventually make the problem analytically

intractable. In our research, we present an alternative metaheuristic approach that obtains

near-optimal replenishment strategy without such extensive reformulation.
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3.5 Research Questions

The main contribution of our research is to provide a new simulation-optimization model

for a realistic inventory replenishment system with stochastic seasonal demand and service

level constraint. While inventory models for stationary demand have been extensively stud-

ied, models that handle demand seasonality with seasonal replenishment strategy are rarely

found in the literature. To fill this research gap, we aim to investigate the optimal character-

istics of the replenishment strategy that can protect from the high shortage risk during peak

seasons and reduce excess stock in off-seasons through anticipation. The model’s efficiency

and robustness will be evaluated in multiple aspects with critical numerical analysis and

benchmark testing.

The central research question of our thesis is formulated as follows

Central question How can we determine the cost-optimal seasonal replenishment strat-

egy for a single item, single-echelon inventory system with stochastic seasonal demand,

stochastic lead time and service level constraint in the lost sales environment?

The central question is divided into following sub-questions about the effects of demand

seasonality and service level constraint, as well as the proposed model’s optimization per-

formance. Furthermore, the section numbers in brackets address the relevant sections of our

paper that are devoted to answer each of these sub-questions.

• What is the effect of demand seasonality on optimal replenishment strategy and how

can we determine the optimal timing of seasons? How can the amount of anticipation

inventory be determined in order to protect against projected demand fluctuations?

(Section 5.4.3 and 5.5.1)

• How can the inventory operations be simulated? What are the inventory events and

underlying assumptions for the simulation model? How can we integrate the simulation

model into the optimization process? (Section 4.2 and 4.3.2)

• How can the proposed simulation-optimization method incorporate and handle de-

mand and lead time uncertainty? (Section 4.3.3)

• How can the proposed model handle the service level constraint and what is the effec-

tive size of penalty for constraint violation during the optimization process? (Section

4.4.4)

• How does the proposed method perform in benchmark experiments against a compet-

ing method in the literature? What are the reasons for differences in comparison to

the benchmark method? (Section 5.4)

• How robust is the proposed method to different demand, cost and inventory structures?

Are all operators and decisions included in the proposed method valid and effective?

(Section 5.5 and Section 5.6)

Our thesis aims to identify scientific answers to these research questions and provide

fruitful insights for handling demand seasonality under service level constraint and lost sales

system.
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3.6 Problem Assumptions

In order to conduct more focused and efficient research, we limited our research scope by

imposing following list of assumptions. The assumptions are classified into three separate

classes of inventory model, supply and demand depending on which part of the supply chain

they would make the most direct impact.

Inventory model

• Single item, single-echelon inventory system

• Multi-period with a finite planning horizon and discrete time system

• Minimum item fill rate constraint

• Seasonal replenishment strategy with integer valued review period, reorder point and

reorder quantity policy per time unit (T,Rt, Qt)

• Fixed number of seasons for the replenishment strategy

• No returns, reservations and discounts

• Lost sales system

• Imperishable goods and no obsolescence

• Inventory operations take place in the order of inventory review - order arrival - demand

satisfaction

• Unlimited storage capacity

Supply

• Geometrically distributed lead time with a known distribution parameter

• Replenishment orders cannot cross in time

• Unlimited number of outstanding orders

• Replenishment orders do not arrive in pieces over time

• Lead time can be larger than the review period T

Demand

• Stochastic seasonal demand from positive, discrete Normal distribution with known

distribution parameters

• Demand is insensitive to the endogenous factors such as lost sales and lead time

• Coefficient of variation for the demand distribution in each period is less than 1/4

• Length of seasonal demand cycle is known exactly
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4 Methodology

4.1 Introduction

In this section, we describe our new simulation-based metaheuristic method that de-

termines the optimal replenishment strategy by utilizing a stochastic simulation model of

the inventory replenishment system. We begin by introducing the overall structure of our

two-phase simulation-optimization framework and continue with explaining all elements of

each phase in more detail.

Our simulation-optimization algorithm involves two-way interactions between the discrete-

event simulation and the stochastic optimization. In the simulation phase, the performance

of a replenishment strategy of interest is evaluated by simulating over demand and lead time

scenarios, generating numerical estimates of the expected total cost and service level. In

the optimization phase, our optimization algorithm utilizes the simulation output to search

for an improved replenishment policy. This simulation-optimization process repeats until

certain termination criterion is met, which is manually set by the user.

In Section 4.2, a graphical overview of the simulation-optimization structure is presented.

In Section 4.3, we introduce the Discrete-Event Simulation (DES) model that evaluates the

performance of the considered replenishment system. In Section 4.4 we propose our new

Memetic Algorithm (MA), which combines a Genetic Algorithm (GA) and a gradient-free

Local Search Algorithm (LSA) in order to identify a near-optimal seasonal replenishment

strategy. Finally in Section 4.5, we give a summary of the main steps involved in our

simulation-optimization model.

4.2 Simulation-Optimization Structure

The structure diagram in Figure 8 illustrates how a replenishment strategy P from the

optimization procedure is simulated in the simulation module, and the mean estimates of the

total cost TC and the fill rate FR over S̃ simulation replications are used in the optimization

module for the future search. Let TCbest be the expected total cost of the best replenishment

strategy found by the algorithm until the considered iteration.
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Figure 8: Simulation-Optimization structure diagram

At the beginning of the algorithm, an initial replenishment strategy is produced and

definitions of the output variables are input into the optimization module. Then these

data are passed to the simulation module that has been configured with initial simulation

parameters such as planning horizon and simulation warm-up period. The main purpose of

having an initial warm-up period is to attain steady-state conditions of the inventory level,

the inventory position and the amount of replenishment orders that are being delivered. The

simulation module evaluates the quality of the input replenishment strategy by simulating

its performance for a finite number of times until certain stopping criterion is met. The

simulation module reports the performance output of the replenishment strategy to the

optimization module and the optimization module examines whether the considered strategy

is an improvement or not. Until the termination criterion is satisfied, the optimization

module continues to search for a new replenishment strategy and the whole simulation-

optimization procedure is repeated.
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4.3 Phase 1: Inventory Simulation

The performance of a replenishment strategy can be verified through a stochastic simula-

tion model, which evaluates the strategy’s expected ouput for various demand and lead time

scenarios. Next two subsections are dedicated to describe the essentials of our stochastic

simulation model. In Section 4.3.1, we introduce the seasonal demand generation func-

tion proposed by Grewal et al. (2015). In Section 4.3.2, the DES model for the stochastic

inventory system is explained.

4.3.1 Seasonal Demand Generation

In order to generate various classes of stochastic seasonal demand, we adapted the special

demand generating trigonometric function developed by Grewal et al. (2015), which can

simulate both symmetric and asymmetric seasonal patterns that are commonly observed

in practical applications. In addition, we generate mean µt instead of actually observed

demand dt to preserve demand uncertainty. Equation (23) generates a seasonal series of the

expected demand rate µt at time t.

µt = D + E1 sin
{(2π

Y
(t− v1)) + E2 cos

(4π

Y
(t− v2)

))}
(23)

D is the mean demand level across the seasonal cycle, E1 defines the amplitude of the

demand seasonality, v1 is the horizontal seasonality lag parameter, E2 is the coefficient that

controls the symmetry of the seasonality and v2 is the symmetry lag parameter. Due to its

cycle-based formulation, the same value of µt repeats in every cycle. That is, µt = µt+Y for

t = 1, . . . , N − Y + 1.

A symmetrical seasonal pattern can be generated by setting E2 = 0. For example, Figure

9a is a symmetrical seasonal pattern generated for weekly demand (i.e., Y = 52 weeks) by

setting D = 20, E1 = 8, v1 = 20, E2 = 0 and v2 = 0. By setting E2 > 0, we can generate

an asymmetrical pattern as in Figure 9b. The figure shows a resulting pattern with E2 = 1

and v2 = 5 while holding all the other parameters identical.

The cosine function is contained inside the sine function to create various asymmetric

patterns from the plain symmetric demand. The main purpose of considering asymmetric

seasonality is to study the effects of intra-seasonal demand volatility on the identification

of optimal seasons and the optimal reorder parameters. As can be seen from Figure 9b,

the asymmetric seasonality contains multiple peaks and troughs within each season, and

therefore the expected rate of inventory usage in a season is more variable than for the

symmetric demand. In this case, it may be preferable to adjust the seasons and to alter the

reorder policy for each season to effectively stabilize the inventory level.
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(a) Symmetrical demand seasonality (b) Asymmetrical demand seasonality

Figure 9: Trigonometric demand generating function

4.3.2 Discrete-Event Simulation

DES is an efficient stochastic simulation framework which models the procedure of a

stochastic system as a sequence of unique time-based events. Every event occurs at its

assigned time and uniquely alters the system’s state. Unlike the discrete-time simulation,

which simulates the system at every time period, DES simulates only at the occurrences

of events and avoids unnecessary simulation during the times with no events. Since our

inventory replenishment system is a discrete time system with integer valued review time T

and discrete order lead time, the DES framework is used to effectively model our system.

Our replenishment system can be modeled with three unique events: REVIEW, AR-

RIVAL and DEMAND. In the REVIEW event, a new replenishment order is scheduled if

the inventory position at certain moment is below or equal to the associated reorder point.

In the ARRIVAL event, any past replenishment orders that were scheduled to arrive at the

time of current simulation are received, and they increase the inventory level by the sched-

uled order quantities. In the DEMAND event, the period demand is served by the available

stock on hand and any lost sales are recorded.

The flowchart in Figure 10 shows the DES process, which consists of four routines that

are connected by bold and dotted arrows. For correct representation, the steps directed by

dotted arrows should be followed first before following bold arrows. In the Initialization

routine, the system state, simulation settings and counter variables are initialized. The

simulation clock is initially set equal to 0 and it advances during the main routines. Also,

the first REVIEW and DEMAND events are generated based on review time T and demand

distribution, and they are entered in the event list. In the Timing routine, the next earliest

event is invoked and the simulation clock is updated. The Event routine simulates the system

operations according to the event’s type and updates the system variables. It also generates

a new event in the event list. Finally, when the simulation is complete by simulating all

events up to the planning horizon, the Output generation routine reports the simulation

results and the simulation process is terminated. For the complete DES algorithm, readers

are referred to Appendix A.3.
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Figure 10: DES process flowchart (follow dotted arrows first before bold arrows)

An important remark is that if an order crossing occurs, the DES resamples a new lead

time from the Geometric distribution until all orders would arrive in a sequential order. In

this manner, our simulation model is able to implement the non-order crossing condition.

However, such a repetitive strategy may lead to a serious accumulation of long lead times

once after an exceptionally long lead time has been simulated. For example, if the lead time

of a replenishment order placed at t = 1 is excessively long then the lead time of an order

at t = 2 should be long enough to prevent order crossing, which continues to apply in all

subsequent time periods t = 3, 4, . . . , N . As the lead times tend to become longer than the

theoretical mean 1/q, the results from the DES may not match the real-world performance.

However, we emphasize that this was rarely observed in our computational experiments

because of the Geometric distribution’s positive skewness. The distribution’s longer tail on

higher values (i.e., right side of the distribution) keeps the likelihood of repetitively drawing

long lead times very low.
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4.3.3 Dynamic Resampling

Due to the inherent uncertainty in demand and lead time, the inventory simulation model

outputs performance estimates that are also random variables themselves. Using the noisy

estimates for optimization can lead to a longer search time and inaccurate identification of

the optimal strategy (Branke et al., 2001; Jin and Branke, 2005). In order to counteract

performance deterioration due to output noise, many researchers have successfully imple-

mented explicit averaging techniques, in which the noiseless output variables are estimated

by calculating the average of the output variables after simulating many different demand

and lead time scenarios (Jin and Branke, 2005). While averaging over many samples are

required to minimize the estimation error, it would significantly increase the computational

time and effort. Therefore, it is essential to determine the minimum number of samples that

can sufficiently compensate output noise for a fixed computation budget.

The inventory simulation model outputs two key performance indices, namely, expected

total inventory cost and expected fill rate, and the noise intensity inherent in their sample

values may be different for different replenishment strategies. To handle estimates with dif-

ferent variance, it appears more reasonable to sample more for high-noise solutions to obtain

more reliable estimates, while sampling less for low-noise solutions to save computational

budget. In the work of Di Pietro et al. (2004), this type of dynamic technique is referred to

as dynamic resampling technique because it determines the appropriate number of samples

for each individual solution with different noise levels.

In the paper of Di Pietro et al. (2004), the authors developed an intuitive resampling

technique based on the standard error of the sample mean. The idea is straightforward:

simulate performance of a given replenishment strategy and sample total cost and fill rate

until the standard error of their sample mean is below a pre-specified threshold. By setting

an identical threshold for all replenishment strategies, the resulting noise level is expected to

be similar for all strategies. This is desirable for both estimation accuracy and performance

comparison between different strategies.

In order to calculate standard error of a replenishment strategy P , it is initially simulated

for S0 ≥ 2 number of times. A larger size of S0 would generate more reliable estimation

of its true mean performance but would also require more computational effort. For every

simulation instance i = 1, . . . , S0, we obtain a sample value of total cost f̂i(P) and fill rate

F̂Ri(P). Our goal is to estimate noise-free true value of expected total cost f(P) and ex-

pected fill rate FR(P) by averaging out noise. Thus, the resampling technique is applied

to each of these two measures separately. Since the identical resampling procedure applies

to estimate both measures, we proposed the dynamic resampling algorithm in terms of an

auxiliary variable z that may be replaced by either of f̂i(P) or F̂Ri(P). To ensure that the

resulting mean estimates of f(P) and FR(P) have sufficiently low variance, the final sample

size is set equal to the maximum of the two sample sizes, such that S∗ = max{S∗FR(P), S
∗
f(P)}.

Figure 11 shows the steps for the proposed dynamic resampling method.
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Standard Error Dynamic Resampling by Di Pietro et al. (2004)

(1) Sample the value of z for S0 number of times and set S∗z = S0

(2) Calculate its sample mean: z̄ =
∑S∗z

i=1 zi
S∗z

where zi is the ith sample value of z

(3) Calculate its sample standard deviation: ŝz =

√∑S∗z
i=1(z2i−z̄2)

S∗z−1

(4) Calculate the standard error of the sample mean: ŝez = ŝz√
S∗z

(5) Stop if the ratio of the standard error to the sample mean is below the threshold:
ŝez
z̄
< nthr

(6) Stop if the number of samples is equal to the maximum sample size: S∗z = Smax

(7) Otherwise, sample one more measurement of z and update the sample size:
S∗z = S∗z + 1. Return to Step (2)

Figure 11: Standard error dynamic resampling method by Di Pietro et al. (2004)

The proposed resampling method in Figure 11 is slightly modified from the original

model by Di Pietro et al. (2004) by Step (5). This modified version applies the threshold

nthr to the ratio of the standard error to the sample mean, unlike how the original model

applies it to the standard error only. Since the magnitude of the standard error depends

on the scale of units, we applied the threshold condition to the standardized measure of

variance instead of the absolute value of the standard error.

There are only two parameters to set for the proposed method: the threshold 0 < nthr
and the maximum sample size 0 < Smax. The threshold should be set to balance the trade-off

between the number of samples and the accuracy of the mean estimate. Furthermore, small

Smax will generate an unreliable estimation of the true mean while large Smax may overload

computation for high-noise replenishment strategies. In our research, we determined their

values by conducting numerical experiments and it is explained in more detail in Section

5.2.



4. METHODOLOGY 26

4.4 Phase 2: Memetic Algorithm

In order to solve the proposed stochastic replenishment problem, we developed an MA

that augments an evolutionary GA with a gradient-free LSA. In Section 4.4.1, we provide a

comprehensive description of the general MA process. The details of the proposed MA are

explained in Sections 4.4.2 - 4.4.10. Finally in Section 4.5, the summary of our proposed

MA is provided.

4.4.1 Algorithm Framework

MA is a population-based evolutionary algorithm that hybridizes GA with a problem

specific LSA in order to incorporate individual learning procedures. In this section, we first

explain the general framework of a simple GA and elaborate on how hybridization can be

achieved.

GA is one of the most successful evolutionary computation algorithms that works with

a population of candidate solutions by iterating through fitness assessment, selection and

reproduction (crossover and mutation) for multiple generations. Because of its capability to

explore the search space in large-scale problems and handle complex nonlinear constraints,

GA has been successfully implemented for various inventory management problems (Alti-

parmak et al., 2006).

A typical GA starts with a set of randomly generated candidate solutions, referred to

as a population. Each individual solution in the population is called a chromosome, or an

individual, and it is a string of a set of solution parameters, where each parameter is referred

to as a gene. Therefore, every solution of the optimization problem needs to be encoded as

a chromosome in order to apply GA. Each chromosome has its own fitness value evaluated

from the fitness function, which represents the quality of the associated solution. Typically,

the fitness function is identical to the objective function of the considered problem, but it is

not always the case (Beasley et al., 1993). Also, depending on how the function is defined,

a larger or a smaller fitness value may be regarded better.

In each iteration of the GA, which is referred to as a generation, the fitness value of

every chromosome in the population is evaluated. The individual with a better fitness value

is selected for reproduction (i.e., modification of its gene to form a new population) and

survival by elitism (i.e., best chromosomes remain in the new population) with a higher

probability. In a simple GA, three genetic operators are typically used for the population

reproduction: selection, crossover and mutation. To generate a new chromosome, a pair of

“parent” chromosomes are randomly selected from the population with a higher chance of

selecting an individual with a better fitness value. Then the crossover operator randomly

recombines the genes of two parents to generate one or more “child” chromosomes (i.e.,

chromosomes in the next generation). After crossover, one or more randomly selected child

chromosomes are mutated by randomly changing its one or more gene values. The algorithm

repeats this process until a termination criterion is satisfied, which is commonly represented

by the maximum number of generations.

MA extends the GA operators by one or more LSA to utilize problem-specific knowledge

in the search. Commonly used LSA for continuous GA are Hill-Climbing, Simplex method

and Newton/Quasi-Newton method (Tang et al., 2009). The advantage of MA comes from
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hybridizing an explorative global optimization algorithm (GA) with an exploitative LSA,

which creates a good balance between the algorithm’s generality and problem specificity

(Tang et al., 2009). We conclude this section with a flowchart of the process in a typical

Memetic Algorithm shown in Figure 12.

Figure 12: Flowchart of the proposed MA

4.4.2 Algorithm Notations

The parameters used in the GA part of the proposed MA are population size P , the

maximum number of generations M , the probability of selecting a fitter individual in the

binary tournament (tournament probability) λt, the probability of crossover (crossover rate)

λc, the probability of mutation (mutation rate) λm and the number of elite solutions nelite.

In the LSA of the MA, the number of chromosomes improved by the LSA in each generation

is denoted by nLS.

4.4.3 Chromosome Representation

As discussed in Section 3.3, a replenishment strategy P consists of a review time T and

a pair of reorder point and reorder quantity throughout the planning horizon (Rt, Qt), t =

1, 2, . . . , N . However, due to the cycle-based definition of our seasonal replenishment strat-

egy, the pair (Rt, Qt) for two consecutive time periods cannot be different for more than m

number of times during each seasonal cycle of Y periods. Therefore, we can alternatively

define P in terms of m seasons.

A season is a set of consecutive time periods that has the same (Rt, Qt) values within a

seasonal demand cycle. The start time of each season ωstart
i for i = 1, . . . ,m lies between the

interval [1, Y ] and does not overlap with other seasons. Also, the season’s length ωlength
i is at

least one time period long and the sum of all seasons’ lengths must equal to the cycle length

to cover the entire demand cycle:
∑m

i=1 ω
length
i = Y . Therefore, below list of conditions must

be met for each season set {(ωstart
i , ωlength

i )|i = 1, 2, . . . ,m} to be valid for a replenishment

strategy.
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1. Seasons are sorted in an increasing order of the start time: ωstart
i < ωstart

j ∀j > i
where i ∈ {1, 2, . . . ,m− 1} and j ∈ {2, 3, . . . ,m}

2. Season exceeding the cycle length: if the end time of season i exceeds the demand
cycle, the season still continues in the next demand cycle. Hence, the season is split
into two smaller sub-seasons (i, 1) and (i, 2), where the second sub-season starts at the
beginning of the demand cycle

• ωstart
i,1 = ωstart

i and ωlength
i,1 = Y − ωstart

i + 1

• ωstart
i,2 = 1 and ωlength

i,2 = ωlength
i − ωlength

i,1

• Keep the original season set: ωstart
i = ωstart

i,1 and ωlength
i = ωlength

i,1 + ωlength
i,2

3. No overlap between seasons: ωstart
i +ωlength

i −1 < ωstart
j ∀j > i where i ∈ {1, 2, . . . ,m−

1} and j ∈ {2, 3, . . . ,m}
4. Covers the whole seasonal cycle:

∑m
i=1 ω

length
i = Y

5. Possible start time: ωstart
i ∈ {1, 2, . . . , Y } for i = 1, 2, . . . ,m

6. Possible length: ωlength
i ∈ {1, 2, . . . , Y } for i = 1, 2, . . . ,m

Figure 13: Conditions for seasons in a replenishment strategy

Finally, the pair of reorder point and reorder quantity for season i is denoted with a hat,

as (R̂i, Q̂i). Figure 14 illustrates four different examples of possible replenishment strategies

with m = 3 and Y = 52.

(a) Seasons of similar lengths with no cycle surplus (b) Seasons of different lengths with no cycle surplus

(c) Seasons of different lengths with cycle surplus (d) 2 seasons of different lengths with cycle surplus

Figure 14: Examples of possible replenishment strategies with 3 seasons (m = 3)

Figure 14a shows a typical example of a replenishment strategy with 3 seasons, where

each season has a similar length and does not overlap with one another. It is still possi-

ble that some particular seasons are exceptionally longer than the other, as demonstrated
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in Figure 14b where season 1 is noticeably longer than the other two seasons. Figure 14c

shows an example of a strategy with a season that ends after the cycle length. Season 3,

which starts before the end of cycle time (ωstart
3 = 40 < 52) ends after the cycle length

(ωstart
3 +ωlength

3 − 1 > 52). Since the seasons are defined with respect to the seasonal cycle Y

and not to the actual planning horizon N , the excess season over Y are passed to the begin-

ning of the next cycle. Notice how season 3 continues to time 1 until 5 before ωstart
1 . Figure

14d shows an example of a strategy with season 2 having the same reorder parameters as

season 3. This is essentially a 2-season strategy.

Every chromosome used in the proposed MA represents a replenishment strategy defined

in terms of seasons. As described above, every season i = 1, 2, . . . ,m contains information

about its start time and length (ωstart
i , ωlength

i ) as well as its associated reordering policy

(R̂i, Q̂i). Therefore, we can encode the seasonal replenishment in a [1 × (4m + 1)] matrix.

Each column of the matrix represents a gene, which could be review time (T ), a season’s

start time (ωstart
i ), length (ωlength

i ), reorder point (R̂i) or reorder quantity (Q̂i). Figure 15

illustrates a chromosome with m = 3.

Figure 15: Example chromosome with m = 3

4.4.4 Fitness Function

Due to the target service level condition, applying an ordinary GA that neglects the

service level constraint will naturally prefer the cheapest strategy that may be seriously

infeasible. To avoid such situation, many researchers have developed various constraint-

handling techniques, and the penalty function method has been one of the mostly studied and

applied technique for solving constrained optimization problems. Penalty function methods

prevent infeasible solutions to attain the same or higher priorities to feasible solutions by

penalizing their fitness values in proportion to the magnitude of constraint violation. Since

our objective is to minimize the expected total cost, we have a “smaller the better” type of

fitness function and therefore a positive penalty term is added to the total fitness function

if an infeasible solution is evaluated.

Fitness function = expected total cost + penalty term

Many sophisticated penalty function methods have been applied to various constrained

combinatorial problems (Yeniay, 2005), and we implement an adaptive penalty method

proposed by Coit et al. (1996) that utilizes the search length and severity of constraint vi-

olation. The term Near-Feasibility Threshold (NFT) stands for the threshold of infeasible

search space where the GA is willing explore. The penalty function based on the NFT

criteria encourages the GA to explore within the feasible region and its NFT-neighborhood

solutions, while discouraging search beyond the threshold.

For a chromosome that encodes a replenishment strategy P , its fitness value in generation

e depends on the severity of constraint violation and the expected total cost of best known

strategy until generation e. The fitness function g(P , e) is then expressed as Equation (24)
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g(P , e) = f(P) + (f efeas − f eall)
( δ(P)

N̂FT

)κ
(24)

where f(P) is the expected total cost for the chromosome P , f efeas denotes the expected

total cost of the best feasible solution found until generation e, f eall denotes the expected

total cost of the best solution until generation e, δ(P) is the distance of the expected fill

rate of chromosome P from the target fill rate FRmin, N̂FT is the near-feasibility threshold

value, and κ is the user-specified severity parameter for constraint violation. Let f einfeas be

the expected total cost of the best infeasible solution found until generation e. Then we can

express f eall = min{f efeas, f
e
infeas}.

The NFT function is adaptive to the complexity of the service level constraint. If the con-

straint is difficult to meet, the gap between the best feasible solution and the best solution

found so far (f efeas− f eall) will be wide because it would require more frequent replenishments

with larger ordering quantities, which would incur a greater cost. In contrary, a very narrow

gap suggests that the constraint is rather easy to satisfy.

The degree of constraint violation δ(P) is expressed by the positive difference between

the target service level and the chromosome’s expected fill rate.

δ(P) = (FRmin − FR(P))+ (25)

The dynamic version of the NFT fitness function defines the constant N̂FT in a unique

form

N̂FT =
NFT0

1 + ce
(26)

where NFT0 is some upper bound for NFT and 0 ≤ c ≤ 1 is a positive multiplier to multiply

the penalty term as the generation evolves. Thus, the threshold value is a function of the

generation number e, which would decrease monotonically as the generation continues. This

forces the total penalty term for infeasible solutions to grow and make the GA to search

toward the feasible region as the generation grows.

Two potential problems may arise when using the NFT model. Firstly, when f efeas is lower

than f einfeas, the difference f efeas − f eall becomes zero because f eall = min{f efeas, f
e
infeas} = f efeas.

As a consequence, any infeasible solutions with higher expected total costs than f efeas in

generation e and in later generations will have zero penalties until a better (i.e., lower

cost) infeasible solution is produced. Having zero penalty term for these infeasible solutions

may influence the GA’s selection and reproduction procedures, and possibly deteriorate the

algorithm’s overall performance. However, the zero penalty situation can be quite beneficial

to the algorithm’s explorative capabilities in later generations as it encourages to search

beyond the established search region. Furthermore, the risk of losing the best feasible

solution due to unpenalized infeasible solutions is extremely low because even if the difference

f efeas − f eall is small, the final penalty term will dynamically increase at an exponential rate

as the number of generations increases. The second potential problem may occur when

f eall is much higher than f efeas, imposing extremely severe penalty to infeasible solutions.

This can be critical especially in early generations when the algorithm needs to explore

the search space without restriction. However, a good initial population generated by our

population initialization method (Section 4.4.5) prevents from having infeasible solutions

that are unacceptably far from the feasible region.
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4.4.5 Initial Population Generation Method

With the population-based structure, we need to build an initial population of replenish-

ment strategies and encode them as chromosomes for further steps. Since the choice of initial

population has a substantial impact in the algorithm’s exploration strength and convergence

rate in early generations, we designed and developed a heuristic method to construct a set

of reasonable replenishment strategies instead of simple randomization.

Season start time and length

An intuitive approach to define seasons is to cluster together the periods of similar demand

level. That is, average demand of a peak season should be higher than average demand of

an off-season. Also, the periods in which the transitions between seasons take place (i.e.,

from high to low demand season or from low to high demand season) should be captured as

separate transition seasons. A simple random search can be used to identify such seasons by

minimizing the total mean squared error (MSE) between the seasonal mean and the period

demand during the seasons.

The MSE of the seasonal mean for season i measures the distance between the season’s

mean demand µ̂i = (1/ωlength
i )

∑ωstart
i +ωlength

i −1

k=ωstart
i

µk and the average period demand µt for time

t that belongs to the season. Equation (27) defines the MSE for season i.

MSEi =
1

ωlength
i

ωstart
i +ωlength

i −1∑
k=ωstart

i

(µk − µ̂i)2 (27)

In case the end time of season i exceeds the cycle length Y , we split the summation∑ωstart
i +ωlength

i −1

k=ωstart
i

(·) into two parts:
∑Y

k=ωstart
i

(·) and
∑ωstart

i +ωlength
i −Y

k=1 (·) to obtain the demand

that is passed onto the next cycle.

A simple random search algorithm can randomly generate nrs number of season sets,

where each season set {(ωstart
i , ωlength

i )|i = 1, . . . ,m} contains a unique definition of m seasons

according to the condition in Figure 13. Then, we select a set among these nrs season sets

that minimize the total MSE (denoted by MSE∗) throughout the seasonal cycle.

MSE∗ =
m∑
i=1

MSEi (28)

One important drawback of using a random search is that one needs to set a very large

value for nrs to find the correct seasons that minimize the total MSE. Indeed, enumerating

over all possible season definitions would require at least Y !
(Y−m)!

number of iterations to find

the exact minimum. However, setting a relatively low value for nrs could be more desirable

for the purpose of population diversification since it would enable some randomization of

seasons while strictly preferring the season set with the least MSE∗.

The example seasons identified by minimizing the total MSE are demonstrated in Figure

16. Four seasons were defined for both symmetric and asymmetric seasonal demand by

setting nrs equal to 1, 000, 000.



4. METHODOLOGY 32

(a) Seasons for symmetric demand (b) Seasons for asymmetric demand

Figure 16: Seasons for symmetric and asymmetric seasonal demand

Ordering policy

The review time T for the replenishment strategy is selected randomly with a uniform

probability from the discrete interval [1, Tmax]. By pure randomization, the initial popula-

tion can consist of a more diverse set of individuals.

For each season, we determine the corresponding reorder quantity Q̂i by a simple eco-

nomic order quantity (EOQ) formula. We note that the EOQ model is not necessarily

optimal for our problem as it assumes for deterministic, stationary demand and zero lead

time. But this may still provide a fairly good initial guess if the demand and lead time

variations are reasonably low. The reorder quantity for each season i = 1, 2, . . . ,m then

equals to

Q̂i =

√
2Kµ̂i
h

(29)

where µ̂i is the seasonal mean.

The initial reorder point for each season R̂i are generated following the results on Axsäter

(2015). He proposed a novel approach to determine the reorder point under periodic review,

continuous Normally distributed demand and constant lead time. To apply his approach in

our problem, we replace continuous distribution by a discrete Normal demand distribution

for each season with mean µ̂i and standard deviation ŝi = σ/
√
ωlength
i . Also, constant lead

time is assumed using the mean lead time, such that L = 1/q.

Let the demand during lead time L have a mean µ′i = Lµ̂i and a standard deviation

s′i =
√
Lŝi. Also the demand during the time L + T , which would be the next possible

delivery time, have a mean µ′′i = (L+ T )µ̂i and a standard deviation s′′i =
√
L+ T ŝi. Then

we obtain following inventory level distribution just after a possible delivery has arrived

P (IL′i ≤ x) =
s′i

Q̂i

[
G
(R̂i − x− µ′i

s′i

)
−G

(R̂i + Q̂i − x− µ′i
s′i

)]
(30)

G(x) is a discrete Normal loss function

G(x) = ϕ̃(x)− x(1− Φ̃(x)) (31)

where ϕ̃(x) and Φ̃(x) are the probability mass function and the cumulative distribution

function of the discrete analogue of standard Normal distribution at x, respectively. The
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precise definitions of these two functions are available in Appendix A.2

Then the expected fill rate during season i is expressed as

F̂Ri = 1− E(IL′′i )
− − E(IL′i)

−

µ̂iT
(32)

where E(IL′i)
− and E(IL′′i )

− are the expected negative inventory level just after a replenish-

ment arrival and just before the next possible delivery respectively. The exact expressions

for E(IL′i)
− and E(IL′′i )

− can be found in Appendix A.1. Therefore, the optimal reorder

point R̂i in season i for a given Q̂i is determined by calculating the smallest R̂i value that

satisfies F̂Ri ≥ FRmin where F̂Ri is defined according to Equation (32).

Summary

Figure 17 summarizes the initial population generation algorithm.

Initial Population Generation Algorithm

(1) Randomly generate a review time: T ∈ [1, Tmax]

(2) Generate m seasons by applying a random search with nrs number of solutions
to minimize the mean squared error (MSE) of seasonal mean µ̂i subject to the
mean period demand µt covered by the season

(3) For every season i = 1, 2, . . . ,m:

(3.1) Set the season’s reorder quantity by EOQ model: Q̂i =
√

2Kµ̂i
h

(3.2) Round Q̂i to the nearest integer

(3.3) Determine the season’s reorder point R̂i by numerically calculating the
smallest integer R̂i value that satisfies FRi ≥ FRmin, where FRi is defined
as in Equation (32)

(3.4) Check for the bound: R̂i = max{R̂i, 0}

Figure 17: Initial population generation algorithm

When implementing the above initialization method, each season can have at most

Tmax number of unique reorder policies (R̂i, Q̂i), assuming that the seasons are correctly

identified to minimize the total MSE. This implies that the proposed method can gen-

erate at most (Tmax)m unique chromosomes, which may be too small for the MA with a

larger population size. In order to generate more unique chromosomes, the target fill rate

0 ≤ FRmin ≤ 1 in Step (3.3) can be replaced by a Normally distributed random variable

∆FR ∼ N (FRmin, σ(FRmin)) with a mean FRmin and a standard deviation σ(FRmin). In

case the new target fill rate ∆FR is outside of the bounds [0, 1], a new value of ∆FR is drawn

from the Normal distribution. Setting a high value for the standard deviation σ(FRmin)

would allow for a more diverse set of chromosomes in the initial population while more

infeasible solutions will be generated as well.
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4.4.6 Selection and Elitism

In our proposed MA, the parent chromosomes are selected by a simple binary tournament

method with a winning probability λt. A tournament selection rule is a stochastic parent

selection approach that randomly selects two or more chromosomes from the population

with equal probability and conducts “tournaments” between the selected chromosomes. A

chromosome with a better fitness value has a higher chance of winning each tournament,

and the winner of all tournaments is selected for reproduction.

In case of our binary tournament, only two chromosomes are randomly selected, with

replacement, from the population with equal chance, and a chromosome with a lower (hence

better) fitness value is selected for reproduction with probability λt. To make sure that the

chromosome with a lower fitness value has a higher chance to reproduce, λt is set above

0.5. We applied the binary tournament instead of larger tournaments in order to preserve

diversity of the population and ultimately enhance the algorithm’s explorative strength since

our objective function is strongly multi-modal. See Figure 18 for the diagram of binary

tournament.

Figure 18: Illustration of binary tournament

Moreover, nelite number of elite chromosomes with the best fitness values in current

generation are copied to the next generation in order to preserve the best found solution so

far. This is known as the elitism strategy that prevents from losing the best chromosomes

throughout the MA iterations while performing crossover or mutation operation. The elite

chromosomes can still be selected as parent chromosomes for breeding a new child, but they

are copied to the next generation beforehand.

4.4.7 Crossover

The proposed MA breeds new child chromosomes by performing uniform crossover where

two parent chromosomes exchange their genes randomly at the rate of λc. If a uniform ran-

dom number that is drawn from the continuous interval [0, 1] takes a value smaller than

or equal to λc, two parent chromosomes selected from the binary tournament swap their

genes according to the following crossover operator. We emphasize that the probability λc
determines whether a crossover would happen or not at all. If it does not happen then the

two parent chromosomes survive to the next generation.

In the uniform crossover, every gene of a child chromosome is randomly chosen from

either of two parents with equal probability. Figure 19 illustrates our uniform crossover

between two parents for their review time T and seasonal reorder policies (R̂i, Q̂i). Because
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the crossover operator generates two new child chromosomes, if the population size P is odd

valued then only one of the two child chromosomes is entered into the next generation.

Figure 19: Uniform crossover for reorder policies

On the other hand, the crossover for all seasons’ start times and lengths (ωstart
i , ωlength

i )

must either happen altogether or not at all due to the special structure of our chromosome.

As described in Figure 13, the seasons become invalid for a replenishment strategy if the

seasons overlap with each other or if the demand cycle is not completely covered. Accord-

ingly, swapping seasons individually instead of as a whole may create invalid seasons for the

child chromosomes. Also, repairing invalid seasons may destroy the original gene structure

that should have been preserved from the parent’s chromosome. Hence, we treat all seasons’

timing genes (ωstart
i , ωlength

i ) as a whole and swap them altogether during crossover. Figure

20 illustrates how they are swapped altogether for chromosomes with m = 3.

Figure 20: Uniform crossover for seasons’ start times and lengths
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4.4.8 Mutation

The main purpose of mutation operator is to create diversity of chromosomes in the

population by randomly altering the genes of chromosomes with a very small probability

λm ∈ [0, 1]. For every chromosome in the population, we iterate over each gene and draw

a random number at uniform probability from the continuous interval [0, 1]. If the random

number is below or equal to the mutation rate λm, the gene’s value is replaced by a randomly

drawn number from its bounds at uniform probability. When the gene is either T , R̂i or Q̂i

of certain season i, a new value is randomly drawn from their respective bounds [1, Tmax],

[0, Rmax], and [0, Qmax]. Since our inventory model is uncapacitated, the values for Rmax

and Qmax are not available in advance. Yet, based on our computational experiments, we

suggest setting Rmax and Qmax equal to three times the average size of R̂i and Q̂i for all

chromosomes in the current generation. The suggested bounds are wide enough to capture

feasible regions without expanding the search space too much, which can slow down conver-

gence of the MA. Also, the bounds are adaptive to the search region that is being explored in

each generation. See Figure 21 for an example of review time and reorder quantity mutation.

Figure 21: Mutation for review time and reorder policy

When the selected gene for mutation is either ωstart
i or ωlength

i of certain season i, the en-

tire set of seasons (ωstart
i , ωlength

i ) must be generated for all i = 1, 2, . . . ,m from their integer

bounds [1, Y ] while satisfying the conditions in Figure 13. See Figure 22 for an example

mutation of seasons’ start times and lengths.

Figure 22: Mutation for seasons’ start times and lengths

4.4.9 Local Search Algorithm

The simple GA is great for exploring the search space and exploiting the superior genet-

ics of elite individuals. However its convergence to the optimal solution in practical settings

is not stable and it lacks the overall sharpness to refine an individual in more detail (Tang

et al., 2007).
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In order to boost convergence and to better locate the feasible region during the search,

we implemented a Local Search Algorithm (LSA) that looks for the best improvement in

the neighborhood. Our LSA is a sequential heuristic method, which first adjusts seasons’

orders, start times and lengths for the selected chromosome and later applies a Discrete Si-

multaneous Perturbation Stochastic Approximation (DSPSA) proposed by Wang and Spall

(2011) to adjust seasonal reorder policy (R̂i, Q̂i) for i = 1, 2, . . . ,m. We refer to the first

part as Neighborhood Search and the second part as DSPSA.

Neighborhood Search

The neighborhood of a chromosome is found by altering one of five main parameters of the

chromosome, which are review time (T ), season start time (ωstart
i ), length (ωlength

i ), reorder

point (R̂i) and reorder quantity (Q̂i). Next five basic neighborhood operators are applied

to a properly chosen chromosome to change their parameters until positive improvement in

its fitness value is achieved.

• ChangeReviewTime: Replace the review time T with a neighbor T + 1 or T − 1,

whichever that obtains the largest improvement in the fitness value. Continue replacing

T until no more improvements are realized. Stop if the most-improving neighbor lies

outside of the bounds [1, Tmax].

• CopySeasons: Apply Copy forward and Copy backward to the season with the earliest

start time (ωstart
i ). Iterate over the remaining seasons in the increasing order of ωstart

i .

Even if a season is overwritten by another season’s copy, still apply Copy forward and

Copy backward to the original season.

Copy forward : Copy the season’s reorder policy (R̂i, Q̂i) to its immediately pre-

ceding season i − 1 (or m in case i = 1) and check for improvement in fitness

value. Continue until there is no more improvement.

Copy backward : Copy the season’s ordering policy (R̂i, Q̂i) to the immediately

succeeding season i+ 1 (or 1 in case i = m) and check for improvement in fitness

value. Continue unless there is no more improvement.

• RearrangeSeasons: For every time period in demand cycle t = 1, . . . , Y , calculate

the average of expected demand µt during the protection interval [t, t+ 1/q + T ] and

denote this by µt,pro. Then for every season i = 1, 2, . . . ,m, calculate the season’s total

protection demand µ̂i,pro =

ωstart
i +ωlength

i −1∑
t=ωstart

i

µt,pro. Now apply Rearrange by reorder point

and Rearrange by reorder quantity until there is no more improvement.

Rearrange by reorder point : Rank every season’s reorder policy (R̂i, Q̂i) in a

decreasing order of R̂i. Also rank every season set (ωstart
i , ωlength

i ) in a decreasing

order of µ̂i,pro. Assign every reorder policy to the season set of the same rank.

Thus, higher R̂i is assigned to manage higher µ̂i,pro.

Rearrange by reorder quantity : Rank every season’s reorder policy (R̂i, Q̂i) in a

decreasing order of Q̂i. Also rank every season set (ωstart
i , ωlength

i ) in a decreasing

order of µ̂i,pro. Assign every reorder policy to the season set of the same rank.

Thus, higher Q̂i is assigned to manage higher µ̂i,pro.
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• DragSeasons: While keeping all season lengths fixed, move all seasons’ start times

by one unit forward (ωstart
i − 1) or backward (ωstart

i + 1), whichever that yields the

highest fitness improvement. Continue until no more improvements are realized.

• StretchSeasons: Apply Stretch forward and Stretch backward to the season with the

earliest start time (ωstart
i ). Iterate over the remaining seasons in the increasing order

of ωstart
i .

Stretch forward : Decrease the season’s start time and increase its length by one

unit (ωstart
i − 1, ωlength

i + 1) as long as the preceding season can be shortened by

one time unit (i.e., ωlength
i−1 ≥ 2, or ωlength

m ≥ 2 if i = 1). Continue until no more

improvements are realized or the preceding season cannot be shortened.

Stretch backward : Fix the season’s start time and increase its length by one

unit (ωstart
i , ωlength

i + 1) as long as the succeeding season can be shortened by one

time unit (i.e., ωlength
i+1 ≥ 2, or ωlength

1 ≥ 2 if i = m). Continue until no more

improvements are realized or the succeeding season cannot be shortened.

Figure 23 illustrates how each neighborhood operator alters the replenishment strategy

with 4 different seasons. Each unique pattern that fills the the bar indicates a unique pair

of seasonal reorder policy (R̂i, Q̂i).

(a) Original strategy

(b) Rearrange season 2 and 3 by swapping (c) Copy season 2 to season 1 and 3

(d) Drag forward by 2 time periods (e) Stretch season 3 by 2 periods forward and 1 period
backward

Figure 23: Local search operators

The operators are applied in the order of ChangeReviewTime, CopySeasons, Rear-

rangeSeasons, DragSeasons and StretchSeasons. The first three operators are applied

with priority as they can overwrite the existing policies with entirely new policies of differ-

ent underlying structure. More specifically, ChangeReviewTime changes the review time,

which affects the reorder policies of all seasons, and therefore an entirely new replenishment
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strategy may be optimal for the new review time. CopySeasons and RearrangeSeasons

can entirely overwrite some seasons and change the order of seasons, respectively. This

creates more radical changes to seasons’ correlation structure. The other two operators are

applied later in order to fine-tune the timing of the seasons while maintaining the strategy’s

underlying correlation structure.

Discrete SPSA

After performing all the neighborhood operators, we apply the gradient-free DSPSA algo-

rithm to refine (R̂i, Q̂i). Wang and Spall (2011) proposed a middle point DSPSA algorithm,

which is shown to have almost sure convergence to the global optimum. There are three

main benefits of incorporating their DSPSA algorithm into our LSA. Firstly, the DSPSA

algorithm has a unique ability to utilize the search space structure based on approximate

gradient information. Secondly, the algorithm produces gradient approximation with only

two fitness measurements in each generation, regardless of the number of decision variables

involved in a chromosome. Finally, Wang and Spall (2011) have shown that the algorithm

attains a tight upper bound for its finite sample convergence and optimization performance.

The underlying idea of the continuous version SPSA is to explore the search space based

on an approximation of the gradient from the difference between two noisy fitness value

measurements. It is a gradient-free steepest descent type of method for global optimization

that does not require direct measurements of the true fitness value. Also, it only requires two

measurements regardless of the variable’s dimension to estimate the gradient (Spall, 2005).

The DSPSA is a discrete analogue of the continuous SPSA without function derivatives.

Let U be the maximum number of DSPSA iterations and θk be the chromosome at kth

iteration of the algorithm. θ0 is therefore the original chromosome selected for the DSPSA,

which is expressed as θ0 = [R̂1, Q̂1, . . . , R̂m, Q̂m]. The basic form of the recursive model for

the 2m-dimensional chromosome θk is

θk+1 = θk − akζk(θk) (33)

where ζk(θk) is the gradient estimate obtained from simultaneously perturbing the elements

of the variable θk at kth iteration and ak is a non-negative gain coefficient.

In the work of Wang and Spall (2011), the gradient approximation ζk(θk) is obtained

by simultaneously perturbing all 2m components of θk by a 2m-dimensional vector of inde-

pendent Bernoulli random variables ∆k = [∆k,1,∆k,2, . . . ,∆k,2m]T , where each element ∆k,i

takes a value either −1 or +1 with an equal probability. The component-wise middle point

between the ceiling value dθke and the floor value bθkc is expressed as π(θk) = (2bθkc+12m)/2

with a 2m-dimensional vector of ones 12m. Then, the gradient approximation is obtained in

terms of two fitness measurements for π(θk) + ∆k/2 and π(θk)−∆k/2

ζk(θk) =

[
g

(
π(θk) +

∆k

2
, e

)
− g

(
π(θk)−

∆k

2
, e

)]
∆−1
k (34)

where ∆−1
k = [∆−1

k,1,∆
−1
k,2, . . . ,∆

−1
k,2m]T and g(x, e) is the dynamic fitness function defined for

solution x in generation e (see Section 4.4.4).
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The gain sequence ak in Equation (33) is expressed in terms of three non-negative coef-

ficients α, A and a

ak =
a

(k + 1 + A)α
(35)

The choice of these coefficients are very important to the algorithm’s finite sample per-

formance and Spall (2005) suggests that setting α = 0.602 and A = 0.1U . Based on our

own computational experiments, however, we have chosen A = 0.2 instead as it attained the

best fitness value with α = 0.602. The value of a is chosen by solving the equation

a =
u

ζ0(θ0)
(A+ 1)α (36)

where u is the desired magnitude of changes for the elements of θk in the early iterations. In

our method, we replace u by a percentage of average size of θk elements to reflect the average

magnitude of the reorder parameters R̂i and Q̂i. Thus, u is replaced by a new coefficient

ũ 1
2m

∑2m
j=1 θkj where 0 ≤ ũ ≤ 1 is a percentage term.

Figure 24 shows the DSPSA algorithm procedure for the 2m-dimensional input vector θk.

DSPSA Algorithm Procedure by Wang and Spall (2011)

(0) Set the maximum number of iterations U ≥ 1 and set k = 0

(1) Pick non-negative coefficients α, a and A according to the guidelines suggested
by Spall (2005):

(1.1) Set α = 0.602 and A = 0.2U based on the guideline by Spall (2005) and
by conducting numerical experiments

(1.2) Determine a according to Equation (36)

(2) Increase k = k + 1

(3) Generate a 2m-dimensional vector of Bernoulli random variables: ∆k =
[∆k,1,∆k,2, . . . ,∆k,2m]T where each ∆k,i takes value either −1 or +1 with 0.5
probability

(4) Calculate the middle point of θk: π(θk) = (2bθkc + 12m)/2 where 12m is a 2m-
dimensional vector of ones and g(x, e) is the dynamic fitness function defined
for solution x in generation e (Section 4.4.4)

(5) Calculate the gradient approximation by simultaneous perturbation: ζk(θk) =[
g

(
π(θk)+

∆k

2
, e

)
−g

(
π(θk)−∆k

2
, e

)]
∆−1
k where ∆−1

k = [∆−1
k,1,∆

−1
k,2, . . . ,∆

−1
k,2m]T

(6) Update the reorder policies: θk+1 = θk − akζk(θk)
(7) Stop if k = U . Else return to Step (2)

Figure 24: DSPSA algorithm procedure by Wang and Spall (2011)
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4.4.10 Parameter Optimization

As with every parametric algorithm, optimizing the control parameters for the MA is the

key for attaining the best performance with the least computational effort. The most im-

portant parameters in the GA part of the proposed MA are population size (P ), maximum

generation (M), tournament probability (λt), crossover rate (λc) and mutation rate (λm).

For tuning these parameters with a small number of test experiments, we apply Taguchi

method suggested by Phadke (1989). In this section, we discuss the central idea of Taguchi

method and its main steps for tuning the GA parameters. We discuss other MA parameters

in Section 5.2 and focus only on the GA parameters in this section because they have the

largest influence on navigating the search during the optimization procedure.

Taguchi method has been widely used for choosing the optimal parameter combinations

of various optimization algorithms. For the class of inventory problems, the parameters

of common metaheuristics including Genetic Algorithm, Simulated Annealing and Parti-

cle Swarm Optimization algorithm were often optimized by Taguchi method and several

researchers reported improved computational efficiency and solution quality (Pasandideh

et al., 2013; Mousavi et al., 2013; Sadeghi et al., 2014; Saracoglu et al., 2014). In our paper,

we also apply Taguchi method to optimize the GA parameters instead of the full factorial

design that experiments on all possible parameter combinations.

Taguchi method uses special orthogonal arrays to quickly identify the optimal parameter

settings with only a small number of experiments. To optimize the parameters in the GA,

we consider 3 possible levels for each of these parameters based on common settings in the

inventory optimization literature (Daniel and Rajendran, 2005; Min et al., 2006; Pasandideh

et al., 2013) whereby population size ranges from 20 to 200, crossover rate lies between 0.5

and 0.9, and mutation rate lies between 0.05 and 0.3. We suggest slightly different parameter

levels as shown in Table 1. Then a standard L18 orthogonal array is used to conduct only 18

experiments instead of performing 35 = 243 experiments that would have been required for

full factorial design. The standard L18 array has eight columns and eighteen rows, each row

representing an experiment and it is commonly chosen for tuning from 5 to 7 parameters

with 3 levels (Phadke, 1989). Except for its first column, which is for parameter with only

2 levels, other 7 columns have entries of levels (1, 2 or 3) for 3 level parameters. Due to its

special orthogonal structure, each pair of columns in the array has all combinations of levels

and they appear for an equal number of times. See Appendix B.1 for the L18 orthogonal

array.

Table 1: GA parameters to optimize and their three levels

Parameters
Maximum
generation
(M)

Population
size
(P )

Tournament
probability
(λt)

Crossover
rate
(λc)

Mutation
rate
(λm)

Level 1 100 20 0.5 0.25 0.05
Level 2 200 50 0.7 0.5 0.1
Level 3 400 100 1 0.7 0.3

Taguchi method measures the degree of variation in the fitness function by calculating

the signal-to-noise (S/N) ratio. Here, signal and noise each represents the mean and the
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variance of the fitness function (Phadke, 1989). Taguchi method considers three types of

ratio functions, namely the “smaller the better”, the “larger the better”, and the “nominal

is the best”. As we aim to minimize the fitness function, our objective function belongs to

the “smaller the better” type. The corresponding S/N ratio is

S/N = −10 log10

1

n

n∑
i=1

(fitness function i)
2 (37)

where n is the number of algorithm executions and fitness function i is the fitness value ob-

tained from the ith replication of the MA. In our experiment, we conducted the GA for 10

times and estimated the average S/N values with n = 10. The parameter values that have

attained the best average performance in the experiment are the ones with the highest S/N

ratios.

For Taguchi experiments, we considered a representative problem instance with seasonal

demand. The complete experiment settings and the table of average S/N ratio for each

parameter level are available in Appendix B.1. Also, we conduct the experiments only with

the GA part of the complete MA by skipping the LSA in order to isolate the effects of GA

parameters from the influence of exogenous factors. Figure 25 graphically shows the average

S/N ratios for each level of the GA parameters over 10 independent executions.

Figure 25: Average S/N ratios for each level of GA parameters over 10 executions of MA (larger S/N ratio
is better)

According to Figure 25, Taguchi method suggests to use the following parameter values:

{M = 400, P = 50, λt = 1, λc = 0.25, λm = 0.05} as these parameter levels have attained

the highest S/N ratios. In addition, it is clear that higher population size and tournament

probability result in higher S/N ratios because of increased explorative and exploitative

power. On the other hand, a higher mutation rate deteriorates the search ability and results

in a premature convergence. This is clear from the sharp decline in S/N value for increasing

level of mutation rate. The relationship with the other two parameters (i.e., population size

and crossover rate) is not so straightforward and appears to be relatively insignificant.

In order to determine the relative size of contribution that each parameter has on the
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S/N ratios and to approximate the magnitude of variance caused from noise, we conduct

analysis of variance (ANOVA) on computed S/N ratios. ANOVA summarizes the variance

of the S/N ratios explained by each parameter and tests if its contribution is statistically

significant compared to the variance due to random error. A common approach to test this

hypothesis is to apply F-test on ANOVA results (Phadke, 1989). To conduct F-test with

one or more independent parameters, their degrees of freedom are determined based on the

number of experiments and the number of parameters involved in ANOVA.

ANOVA results in Table 2 show that three parameters (M,λt, λm) have the largest

effects on the GA’s performance. All these three parameters have their p values below 0.01,

implying that they have significant effects on the results at 99% confidence level. Also,

according to the Percentage column, which contains the ratio between each parameter’s

sum of squares and the total sum of squares, these three parameters constitute more than

80% of total effects on the algorithm’s performance. On the other hand, the remaining two

parameters did not produce significant effects on the results. Still, care should be taken

when selecting their values as their interactions with the other three parameters may have

caused significant improvements in the results.

Table 2: ANOVA results for the GA parameters

Parameters
Degrees of
freedom

Sum of
squares

Mean
squares

F value p value Percentage

Maximum generation (M) 2 35.32 17.66 11.11 0.00673 26.34%
Population size (P ) 2 1.08 0.54 0.34 0.723 0.81%
Tournament rate (λt) 2 39.22 19.61 12.33 0.0051 29.25%
Crossover rate (λc) 2 9.29 4.64 2.92 0.12 6.93%
Mutation rate (λm) 2 38.03 19.01 11.96 0.00552 28.37%
Error 7 11.13 1.59 8.30%
Total 17 134.06
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4.5 Algorithm Summary

Our simulation-optimization algorithm combines both Phase 1 (DES model) and Phase

2 (MA) in order to attain the optimal replenishment strategy that is effective and robust to

demand and lead time uncertainty. In Figure, 26, we first summarize the main steps of our

MA.

Memetic Algorithm Procedure

(1) Generate initial population according to Section 4.4.5.

(2) Evaluate current population in terms of fitness function formulated in Section
4.4.4.

(3) Copy the best nelite number of chromosomes to the next population without
modifying their genes.

(4) Select P − nelite number of parent chromosomes using binary tournament selec-
tion rule with selection rate λt, as described in Section 4.4.6.

(5) For each pair of parent chromosomes selected in step (4), perform uniform
crossover proposed in Section 4.4.7 to create two new child chromosomes at
the rate of λc. If no crossover takes place, then both parents survive to the next
generation.

(6) Except for nelite best chromosomes, mutate the genes of child chromosomes at
the rate of λm, as described in Section 4.4.8.

(7) Apply the LSA proposed in Section 4.4.9 to nLS number of chromosomes in each
generation and update their genes.

(8) Terminate the algorithm if the maximum number of generations has reached.
Otherwise return to Step (2).

Figure 26: Memetic Algorithm procedure

Figure 27 summarizes how the inventory simulation model (Phase 1) and the Memetic

Algorithm (Phase 2) are integrated.
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Simulation-Optimization Algorithm Summary

(1) Simulate seasonal demand throughout the planning horizon using the trigono-
metric demand generating function in Section 4.3.1.

(2) Optimize the GA parameters in the MA according to Section 4.4.10.

(3) Follow the main steps of the MA as presented in Figure 26 using the simulation
outputs.

(3.1) When evaluating the fitness value of a solution (i.e., replenishment strat-
egy), determine the minimum number of simulation replications to obtain
robust estimates of the expected total cost and expected fill rate based on
the dynamic resampling technique described in Section 4.3.3.

(3.2) Estimate the solution’s expected total cost and expected fill rate by simu-
lating for the number of times determined in Step (3.1) using the inventory
DES model described in Section 4.3.2.

(4) Stop if the MA has reached the maximum number of generations. Otherwise
return to Step (2).

Figure 27: Summary of proposed algorithm that combines Phase 1 Simulation and Phase 2 Memetic
Algorithm
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5 Computational Study

5.1 Introduction

In this section, the proposed MA is validated on various problem instances with differ-

ent inventory configurations. Different problem instances were generated by altering the

cost parameters and seasonal patterns of the problem described in Section 3, and the per-

formance of the optimal solution produced by the MA was compared with a benchmark

solution obtained from an algorithm implemented by Babäı and Dallery (2006). The main

goal of this section is to provide a simulation-based analysis of the MA’s performance and

to gain fruitful insights for handling seasonal demand.

In Section 5.2, we describe how the MA parameters were set before carrying out the

experiments. In Section 5.3, the benchmark algorithm implemented by Babäı and Dallery

(2006) is presented. Then in Section 5.4, we conduct a comparative analysis with the

benchmark algorithm and validate our approach in terms of the solution’s expected total

cost, computational effort and robustness. We also present a numerical sensitivity analysis

in Section 5.5 to study the impact of demand seasonality, cost and inventory structure on the

optimal solution. This chapter concludes by providing a numerical evidence for effectiveness

of the MA’s crucial components in Section 5.6.

5.2 Algorithm Parameters

For all experiments, we used the identical MA parameters chosen according to the per-

formance attained from several test problems described as follows.

• The GA parameters within the MA were determined by the Taguchi experiment intro-

duced in Section 4.4.10. The size of random search nrs for generating initial seasons

was chosen from the set {100, 500, 1, 000, 5, 000, 10, 000, 20, 000, 50, 000} to ensure that

about 5% of generated season sets are different from the exact MSE-minimizing season

set for diversification.

• For 100, 000 randomly populated replenishment strategies, the resampling parameters

were selected to obtain less than 1% deviation of the sample mean to the true mean.

The true expected total cost and fill rate of a replenishment strategy were estimated

by averaging its simulation performance for 10, 000 demand and lead time scenarios.

The minimum sample size was set by balancing computational effort and the accuracy

of sample estimate through simple sub-experiments.

• The parameters for the NFT fitness function were tuned in order to impose a grow-

ing penalty term to infeasible solutions as the generation increases. Specifically, the

penalty for 1% deviation from the target service level FRmin was set to increase at a

quadratic rate and to become approximately 5 times larger than the average magnitude

of the expected total cost at the final generation.

• According to our computational experiments in Section 5.6, applying the LSA to 10

randomly selected chromosomes in each generation brought more robust performance

improvement under reasonable computational time.

• The parameters for the DSPSA algorithm were chosen to maximize the algorithm’s

optimization performance for 10, 000 randomly generated replenishment strategies.

The details are described in Section 4.4.9.
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The parameters used for the MA are summarized in Table 3. 3.

Table 3: Table of parameters used for the Memetic Algorithm

Dynamic Resampling

Minimum sample size (S0) 10 Maximum sample size (Smax) 200
Standard error threshold (nthr) 1%

Genetic Algorithm

Maximum generation (M) 400 Population size (P ) 50
Tournament probability (λt) 100% Crossover probability (λc) 25%
Mutation probability (λm) 5% Number of elites (nelite) 1
Number of random search (nrs) 10,000

Fitness Function

NFT upper bound (NFT0) 0.8 Generation multiplier (c) 2
Penalty severity (κ) 2

Local Search Algorithm

Number of chromosomes
improved by LSA (nLS)

10
Type of chromosomes
improved by LSA

Random

Coefficient alpha (α) 0.602 Maximum iterations (U) 100
Percentage step size coefficient (ũ) 10% Budget coefficient (A) 20

We carried out the MA 10 times for every problem instance and reported the best, worst,

median and average results produced among those 10 executions. In addition, we reported

the average computation time per problem instance to provide an estimation of total com-

putational requirement. The MA has been implemented and executed in Java SE 8 on an

Intel(R) Core(TM) workstation with i7-7700HQ CPU at 2.80GHz and 16.0 GB RAM.

In order to visualize the algorithm’s performance, we computed the percentage deviation

from the benchmark result using Equation (38)

Gap =
fMA − fbenchmark

fbenchmark

(38)

where fMA is the expected total cost of the optimal solution produced by the MA and

fbenchmark is that of the benchmark algorithm. The gap was calculated for the best, worst,

median and average MA solutions against the optimal benchmark solution.

5.3 Algorithm by Babäı and Dallery (2006)

In the work of Babäı and Dallery (2006), a similar inventory problem to our problem has

been studied, but without considering lead time uncertainty, review and purchase costs. In

their paper, the authors propose a simple sequential approach for approximating the optimal

safety stock in the single-echelon inventory system with non-stationary demand and the fill

rate constraint. The algorithm applies periodic review policy with a time-varying reorder

point and a constant reorder quantity (T,Rt, Q). This is a special case of our dynamic

(T,Rt, Qt) strategy that does not consider the dynamic adjustment of the reorder quantity

as well as the restriction on the number of seasons for the reorder policies. For convenience,

we refer to their algorithm as BD method.
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In our comparative study, we implemented a slightly modified version of the BD method

in order to handle the lead time uncertainty using the Law of Total Probability. Recall that

N is the planning horizon, and let SS denote the number of safety stock. Following BD

algorithm determines the optimal level of safety stock for a specified target service level and

an initial reorder quantity, which is obtained using the simple EOQ model. Then the re-

order point Rt for each period is determined by the expected demand during the protection

interval (i.e., lead time plus review time) and the number of safety stock.

Approximation algorithm by Babäı and Dallery (2006)

(1) Compute initial reorder quantity according to the EOQ model Q =

√
2K

∑N
i=1 µt

hN

and set the review time T = 1.

(2) For a given lead time L, define demand’s standard deviation during lead time

and review time σL =
√
L+ T + 1σ where σ is the standard deviation of ho-

moscedastic demand dt (i.e., constant demand variance).

(3) Determine the optimal safety stock SS∗ based on the minimum service level

constraint and the expected number of lost sales during a reorder cycle. Let Φ̃(·)
and ϕ̃(·) be the discrete analogues of standard Normal cumulative distribution

and probability density functions respectively (their definitions are available in

Appendix A.2).

Q(1− FRmin) =
∞∑
k=1

P (L = k)

[
mLS(SS∗, k)

]
=
∞∑
k=1

P (L = k)

[
σkϕ̃

(
SS∗

σk

)
− SS∗

(
1− Φ̃

(SS∗
σk

))]
The left-hand side of the equation expresses the maximum number of lost sales

that are acceptable under the target service level in a reorder cycle. In order to

approximate the average number of demand during a reorder cycle, Babäı and

Dallery (2006) use the EOQ model’s Q obtained in Step (1). The right-hand

side of the equation uses the function mLS(SS, L) to find the expected number

of lost sales for a given safety stock SS and a constant lead time L. Since the

lead time is a Geometrically distributed discrete random variable, we apply the

Law of Total Probability to approximate mLS(SS, L) for stochastic lead time.

(4) Decide the optimal reorder point for all periods t = 1, 2, . . . , N based on the

average demand during the protection interval ahead and the optimal safety

stock determined in Step (3)

R∗t =
∞∑
k=1

P (L = k)

[ k+T+1∑
j=1

µt+j−1 + SS∗
]
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(5) Apply a simple bisection method to find the optimal reorder quantity Q∗, which

remains identical throughout the whole planning periods t = 1, , . . . , N . Q∗

should minimize the objective function (Equation 3) subject to the service level

constraint (Equation 5) for the given sequence of optimal reorder points R∗t with

t = 1, 2, . . . , N . Set the upper bound for Q∗ relative to the size of observable

demand throughout the planning horizon. In our problem, we use the EOQ

model for the upper bound: Q∗ ∈
{

0, 3

√
2K

∑N
i=1 µt

hN

}
.

The expansion of the function mLS(SS∗, k) in Step (3), which involves σk, ϕ̃(·) and Φ̃(·),
has been derived in Babai (2005) by reformulating Equation (39). Equation (39) calculates

the expected number of demand in the protection interval that exceeds the period’s reorder

point Rt =
∑L+T+1

j=1 µt+j−1 + SS, which eventually gets lost.

mLS(SS, L) =

∫ +∞

x=
∑L+T+1

j=1 µt+j−1+SS

(
x−

L+T+1∑
j=1

µt+j−1 + SS

)
ϕ̃L+T+1(x)dx (39)

where the function ϕ̃L+T+1(x) gives the standard Normal probability mass of observing

x number of customer demand over the period of L+ T + 1.

We make the following three remarks concerning the BD algorithm. Firstly, because the

problem is in discrete times, the BD method adds 1 to the protection interval L + T + 1

to ensure the completion of possible deliveries and reviews. Secondly, applying the Law

of Total Probability introduces the summations with infinite numbers in Step (3) and (4).

Since the lead time is a discrete random variable, we can approximate these summations by

iterating over all positive integer lead times until its probability equals to 0 to an arbitrary

level of precision. In our thesis, we used 10−5 as the probability precision level. Lastly, the

optimal safety stock SS∗ in Step (3) can be determined numerically by using an algorithm

of dichotomy (Babäı and Dallery, 2006). In our experiment, we applied a simple binary

search method.

Step (5) is an extension we made to the original BD method to improve the quality of the

optimal reorder quantity Q∗. Since the original BD method reduces the problem into a one-

dimensional optimization problem where the R∗t is the only decision variable, we can first

determine an appropriate level of R∗t for an arbitrary reorder quantity Q. In this research we

use the EOQ model as addressed in the original algorithm. Once R∗t has been determined,

Q can be further improved by numerically searching for the optimal reorder quantity Q∗.

We emphasize that Step (5) is especially important for our benchmark experiment because

the traditional EOQ model does not include per unit purchasing cost p. Through numerical

optimization, we can determine Q∗ that incorporates p and conduct fair comparative study

with our own MA.
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5.4 Benchmark Results

5.4.1 Problem Setting

Our MA has been applied to determine the optimal replenishment strategy for the next

5 years of weekly inventory operations with a 98% target service level. The parameters for

the weekly demand, inventory settings and costs have been set according to Table 4. Both

our MA and the benchmark BD method were used to solve this problem under identical

conditions and the results were compared in terms of expected total inventory cost, robust-

ness and computational time. The values in the curly brackets in Table 4 were selected

individually depending on the problem instance. We emphasize that the review cost r is set

equal to 0 since the BD method does not incorporate r.

Table 4: Design parameters for the experiment

Inventory plan

Planning horizon (N) 5 years Time unit Weeks
Seasonal cycle length (Y ) 52 Target service level (FRmin) 98%
Maximum review time (Tmax) 8

Demand characteristics

Number of seasons (m) 4 Mean demand level (D) 200
Demand standard deviation (σ) 20 Seasonality amplitude 1 (E1) 150
Seasonality amplitude 2 (E2) {0, 1} Seasonality lag 1 (v1) 0
Seasonality lag 2 (v2) 0

Lead time and cost

Lead time rate (q) 0.5 Set up cost per order (K) {20, 50, 80}
Holding cost per unit per time (h) {0.2, 0.4, 0.6} Review cost per review (r) 0
Purchase cost per unit (p) 1

As one can observe, only three problem parameters were adjusted to generate 18 unique

problem instances.

Figure 28: Seasonal demand with symmetric (E2 = 0) and asymmetric (E2 = 1) amplitudes

We tested our algorithm on all 18 combinations of K ∈ {20, 50, 80}, h ∈ {0.2, 0.4, 0.6}
and E2 ∈ {0, 1} while other design parameters were set fixed according to Table 4. We refer

to a problem instance with a unique combination of these three parameters as a scenario.
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Setting the seasonality amplitude E2 equal to 0 generates a symmetrical seasonal demand

pattern with a single peak and a trough during a demand cycle. But when its value is set

equal to 1, the demand fluctuates more intensely with multiple peaks and troughs within a

cycle. Figure 28 demonstrates both symmetric and asymmetric seasonal demand patterns

generated by setting E2 = 0 and 1. The complete list of scenarios is available in Appendix B.

For clarity, we briefly describe the characteristics of each problem scenario. The scenarios

with odd-valued indices (1, 3, . . . , 17) consider symmetric demand seasonality with E2 = 0

while the scenarios with even-valued indices (2, 4, . . . , 18) have asymmetric demand season-

ality with E2 = 1. Also, each of three equally sized subsets of 18 scenarios ({1, 2, . . . , 6},
{7, 8, . . . , 12}, {13, 14, . . . , 18}) assigns a unique setup cost from K = 20, 50, 80, respectively.

Finally, within each of these subsets, every successive pair of scenarios applies the same hold-

ing cost from the set h ∈ {0.2, 0.4, 0.6} (e.g., for the first subset {1, 2, . . . , 6}, each pair of

scenarios {1, 2}, {3, 4} and {5, 6} applies h = 0.2, 0.4, 0.6 respectively).

5.4.2 Performance Comparison

Figure 29 graphically summarizes the performance of the solutions determined by the

MA and the BD method. Each box plot illustrates the distribution of the expected total

costs for the optimal solutions found by 10 independent MA runs in respective problem

scenario. The band inside the box represents the median value while the bottom and the

top of the box represents the first and the third quartile of the distribution. The upper and

lower tails represent the maximum and the minimum value. The length of each box plot is

inspected to assess the robustness and convergence of the algorithm, since the MA termi-

nates as soon as the maximum number of generations M is reached. Accordingly, a long

box may imply that the MA was not able to produce consistently good solution and that its

performance is sensitive to inventory setting. On the contrary, the BD method was executed

only once because the algorithm does not involve random variables in its procedure unlike

the MA, which incorporates random variables in the parent selection, the reproduction and

the LSA.

Figure 29: Box plot of expected total costs of 10 optimal solutions found by the MA and the optimal
solution by the BD algorithm
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Based on the results in Figure 29, it is clear that the MA is outperforming the BD method

for most of the scenarios. We observe that for all of the scenarios the optimal solutions by

the MA and the BD method satisfied the 98% minimum target service level. The increas-

ing pattern of the expected total cost within each of three scenario subsets {1, 2, . . . , 6},
{7, 8, . . . , 12} and {13, 14, . . . , 18} is due to the increasing unit holding cost h by 0.2 units.

Indeed, as we explained earlier in Section 5.4.1, each of these scenario subsets applies a

different unit holding cost: h = 0.2, 0.4, and 0.6 respectively. Besides the increase in the

average cost level, the size of the cost difference between the MA and the BD method also

increases for increasing h, which implies that the optimal solution from the BD method

is holding excessive inventory compared to the solution by our MA. Furthermore, the BD

method is inefficient at handling irregular, asymmetric seasonality since the average costs

for asymmetric scenarios with even number indices are on average 3.22% higher than for the

symmetric scenarios with odd number indices. On the other hand, the MA showed superior

performance with irregular seasonality: the optimal expected costs for asymmetric scenarios

were on average 2.89% lower than for symmetric scenarios, which suggests that the MA is

more robust to irregular seasonal patterns. Finally, the increasing setup cost K appears to

complicate the MA’s convergence as the average length of the box plots for higher k tends

to increase. For instance, the average length of box plots is larger for scenarios 13, 14, . . . , 18

than for scenarios 7, 8, . . . , 12. But this is not so evident from Figure 29 and therefore it is

more closely examined in Section 5.5.2.

The cost gap between the MA and the BD method is illustrated in Figure 30, plotting

one-to-one comparison of each of 10 MA solutions to the corresponding BD solution in

every scenario. By our definition of benchmark gap in Equation (38), negative-valued gap

indicates that the considered MA solution achieves a lower cost (hence a better quality)

than the associated BD solution.

Figure 30: Box plot of cost gaps of 10 optimal solutions by the MA against the solution produced by BD
method

According to Figure 30 and Table 12, the MA saves average 16% of expected total cost

compared to the BD method. Moreover, the average of worst-case cost gap, which com-

pares each scenario’s most costly solution among the 10 MA solutions to the optimal BD

solution, is −8.56%. Therefore, these gaps strongly suggest that the quality of the solu-

tions produced by the MA are superior on average to that of the solutions made by the BD

method. However, the size of each individual gap tends to vary widely for different problem
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scenarios. It is mainly due to the lack of flexibility in the BD method, which determines its

reorder points based on the simple EOQ model and a constant number of safety stock. For

scenarios that require smaller safety stock for the BD method (e.g., scenario 14 and 15), the

optimal BD solutions show competitive results to the MA solutions, while for the opposite

types of problems the solution qualities are quite poor (e.g., scenario 5 and 6). Overall, the

performance of the proposed MA can be seen more superior to the BD method, but the

magnitude of cost savings can vary per problem instance.

We confirmed that the average computational time required by a single MA execution

is approximately 268 seconds for all scenarios. This is significantly longer than the BD

method, which terminates almost instantly. Requiring more computational requirements

may be a significant drawback of the MA when the problem is considered in the context of

online optimization, which would require real-time updates of the reorder policies. However,

in practice the demand forecasts and replenishment schedules for fast-moving products are

typically planned on a weekly or a monthly basis (Bilgen and Günther, 2010; Thomassey,

2014). Considering that the solutions from the MA attain better overall quality than the BD

solutions, one should not simply understate the practicality of applying the MA in real-life

inventory systems. In Section 5.5, the impact of different inventory settings on the total

computational time are further investigated.

5.4.3 Strategy Comparison

Symmetric seasonality: Single simulation performance

The three largest factors that cause the MA to achieve lower average costs than the BD

method are its dynamic safety stock, dynamic reorder quantity and operation of anticipation

inventory. Despite its simplicity, the BD method assumes for a constant safety stock and

a static reorder quantity, which sacrifices flexibility and responsiveness to demand fluctu-

ations. In this section, we consider the optimal BD and MA strategies found for scenario

1 to understand the optimal structure and characteristics for handling symmetric demand.

Consider Figure 31, which shows an instance of the stochastic simulation of the optimal

replenishment strategies found by both methods in scenario 1. Identical demand and lead

time realizations were used for both methods to make these graphs. For clear illustrations,

the graphs present the results for the first two seasonal cycles (excluding the initial cycle for

simulation warm-up) and leave out three remaining cycles. Also, we selected MA solution

that has achieved the best performance among 10 MA solutions from 10 MA runs.



5. COMPUTATIONAL STUDY 54

(a) Inventory situation of the optimal solution by the
MA

(b) Inventory situation of the optimal solution by the
BD method

(c) Reorder point and quantity of the optimal solu-
tion by the MA

(d) Reorder point and quantity of the optimal solu-
tion by the BD method

(e) Cost profile of the optimal solution by the MA (f) Cost profile of the optimal solution by the BD
method

Figure 31: Stochastic simulation instance of the optimal replenishment strategies found by the MA and
the BD method in scenario 1

Although optimal reorder points in the BD strategy are dynamically adjusted to handle

demand’s seasonal fluctuation, it uses a constant reorder quantity throughout the planning

horizon. A direct consequence of this is the excess stock during off-seasons and an increased

risk of stock-out during peak seasons. As can be seen from Figure 31b, the inventory level

changes more rapidly with the BD solution than with the MA solution in Figure 31a. Since

the BD solution sets a high reorder quantity with relatively low reorder points, every new

order arrival sharply increases the inventory level. However, large number of leftover batches

form high inventory level during off-seasons (weeks [79, 98] and [131, 149]). This has driven

up the holding cost substantially as shown in Figure 31f. Also, because of its low reorder
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points by the end of the peak seasons (weeks [70, 77] and [122, 129] in Figure 31d) the risk

of stock-out is high when the lead time is unexpectedly long. Observe that in week 129 the

inventory level hits zero due to unexpectedly long lead time.

The results for the optimal MA solution illustrated in Figure 31a and 31c show clear

differences to the optimal BD solution. Firstly, the inventory level depicted in Figure 31a

changes more smoothly and in accordance with the seasonal fluctuations. The inventory

level is high for peak seasons to reduce stock-out risks, while it is kept low for off-seasons to

minimize the holding cost. The primary driver of such a smooth behavior is the solution’s

extremely seasonal reorder policy. The policy shown in Figure 31c sets a very high reorder

point during peak seasons (equal to 3766) while keeping the reorder quantity low (equal to

552). This results in more frequent replenishments with small batch sizes, improving its

overall responsiveness to demand volatility. The review time is set equal to 2 units instead

of 1 unit for this reason: even more frequent replenishments will needlessly increase both

order setup and holding cost. During off-seasons, both reorder point and reorder quantity

are kept low to reduce excess inventory.

Figure 31e and 31f demonstrate the expected proportion of each cost component relative

to the total expected cost for MA and BD optimal solutions. For the BD method, the

expected holding cost is the most dominating component of the expected total cost because

of the excess inventory during off-seasons. For the MA, on the other hand, the size of total

holding cost and purchasing cost are more balanced. In fact, the expected total reordering

cost (i.e., sum of expected total setup cost and purchasing cost) makes up to 48.5% of the

expected total cost, which is almost equal to the size of expected holding cost (51.5%).

This is a clear indication that the optimal MA solution is more efficient in managing excess

inventory and making balanced replenishment decisions.

An important aspect of the optimal MA solution is the operation of anticipation in-

ventory in order to minimize the impact of seasonal changes. Consider week 75 and 127

in Figure 31c, where transitions from the highest to the lowest reorder policy takes place.

Besides other elements, the anticipatory timing of these transitions make them effective to

prepare for the upcoming demand fall. Observe that these transitions take place during

peak seasons and not by the start of subsequent off-seasons. As a consequence, the average

inventory level in Figure 31a starts to drop already during peak season and reaches to a low

point by the start of off-seasons (week 85 and 137). This is a type of anticipatory strategy

that uses up any accumulated inventory during peak season in order to limit redundant in-

ventory during subsequent off-seasons. An opposite type of anticipatory move takes place in

week 92 and 144 to prevent stock-out situations for the upcoming demand peak. In Figure

31c, the reorder policy shifts to a higher level before the end of off-seasons (week 92 and

144). Then, because of finite lead time, the inventory level starts to increase only by the

end of the off-seasons (week 99 and 147 in Figure 31a). By keeping the reorder policy at

its high level during the peak season, the inventory level continues to rise along with the

demand and further reduces the risk of running out of stock. Therefore, preparing for the

peak season early during the off-season could secure a sufficient service level against the

sharp demand increase.
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Symmetric seasonality: Average simulation performance

Above, we have looked into the performance of the optimal MA and BD solutions in

a single instance of inventory simulation. To understand their average performance for

different realizations of stochastic demand and lead time, we summarized their results for 100

different randomly generated simulation instances. Figure 32 shows the average performance

of the optimal MA and BD strategies for 100 different demand and lead time scenarios.

(a) Average inventory situation of the optimal solution
produced by the MA method

(b) Average inventory situation of the optimal solution
produced by the BD method

(c) Cost profile of the optimal solution produced by the
MA method

(d) Cost profile of the optimal solution produced by the
BD method

Figure 32: Average simulation results of the optimal replenishment strategies found by the MA and the
BD method in scenario 1

The average demand, inventory level and inventory position over 100 random simula-

tion instances for the optimal MA and BD solutions are shown in Figure 32a and 32b. As

discussed earlier, the optimal MA strategy operates anticipation stock to protect from sea-

sonal shocks. This is observed from the average inventory level in Figure 32a, which rises

along with climbing demand (week 90 and 147) and starts to fall before the end of the peak

season (week 65 and 113). Furthermore, the gap between inventory position and inventory

level remains wide during peak seasons because of the solution’s high reorder point, but it

narrows quickly before the end of the peak season, indicating that replenishment decisions

are responsive to anticipated seasonal fluctuations. On the other hand, the average inven-

tory level for the optimal BD strategy in Figure 32b is somewhat bumpy and insensitive to

seasonal demand fluctuations. Since replenishments are made less frequently and in larger

batches, both inventory position and inventory level tend to fluctuate during peak seasons.

Also because this strategy does not employ anticipation inventory the inventory level is kept
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very high even during off-seasons (weeks [80, 95] and [130, 149]). Finally, as we saw earlier

the holding cost is still the most dominating cost component of the BD strategy, unlike the

balanced cost profile of the MA strategy according to Figure 32c and 32d.

Symmetric seasonality: Average replenishment strategy

Recall that for our benchmark experiment the MA was executed for 10 times, and we

compared its best, worst, median and average performance to the BD method under differ-

ent problem settings. During this procedure, each of 10 individual MA executions produced

a unique optimal replenishment strategy that composed of radically different reorder pa-

rameters due to the special multi-modality of our objective function. This implies that two

very different strategies may have similar objective value, while two very similar strategies

may achieve largely different performance. Figure 33 presents first four optimal strategies

found from four different MA executions in scenario 1 that attained similar level of expected

total cost. These four strategies all fulfilled the 98% target service level and the difference

between their expected total costs was very small; the largest difference was less than 1%

of the average of their expected total costs.

(a) Optimal strategy from the first MA run (b) Optimal strategy from the second MA run

(c) Optimal strategy from the third MA run (d) Optimal strategy from the fourth MA run

Figure 33: Four optimal replenishment strategies produced by the MA in scenario 1

All four strategies commonly have higher reorder points than the associated reorder

quantities and the transitions between seasons take place prior to the actual transitions in

demand. However, the magnitude of the reorder points and reorder quantities is clearly

different between strategies, and the seasonal transitions happen at slightly different times

for different reorder policies. Such differences may indicate that the MA has not converged
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to the global optimum and that it would require more iterations. However, for a limited

computational budget, making iterations until perfect convergence is not realistic and may

even be unnecessary. Indeed, we can already identify common characteristics among these

four strategies and gain insights of the optimal features that are essential for managing

seasonal demand. Firstly, considering that an unreasonably high (low) reorder point is

mainly to encourage (avoid) issuing a new replenishment order when possible, their precise

values might be less important than how they first appear. Secondly, the absolute value

of reorder quantities has more significant impact on the amount of inventory throughout

the cycle. This is why even minor adjustments of reorder quantities across seasons could

bring such dramatic changes in the inventory level. Lastly, one can observe that the reorder

quantities reflect the length of review time. For a shorter (longer) review time, the average

reorder quantities are lower (higher) since replenishment decisions can be made more (less)

frequently. Therefore, the dramatic difference in parameters’ precise values may at first

appear to be random and difficult to generalize, but in fact they share important features

that can explain their performance similarity.

To better visualize the common features, an average of 10 optimal replenishments found

by the MA can be plotted. We mention that this is nothing more than the simple arithmetic

mean of 10 optimal replenishments found by the MA, which defines the average reorder point

and reorder quantity at time t as R̄t = 1
10

∑10
i=1 Rt,i and Q̄t = 1

10

∑10
i=1 Qt,i with Rt,i and Qt,i

being the optimal reorder point and reorder quantity at time t determined from the ith

MA run, respectively. The average review time T̄ is also determined in a similar fashion.

Since taking a simple average implies overlooking the correlation between seasons, using

this type of averaged strategy incurred an average of 46.62% higher expected total cost for

all scenarios than the average performance of an optimal replenishment strategy produced

by a single execution of the MA (full results are available in Table 15 of Appendix B.2.3).

Hence, we only use this graph with an intention to illustrate the common features among

the optimal solutions found by different MA executions, and not for actual implementation.

Figure 34 shows the average of 10 optimal strategies from 10 MA runs. The graph clearly

reflects above-mentioned common characteristics in the optimal replenishment strategies:

(1) anticipatory timing, (2) wide gap between reorder point and reorder quantity, and (3)

stable and low reorder quantity with more dramatic and high reorder point.

Figure 34: Average cost of 10 optimal solutions produced by the MA in scenario 1
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Asymmetric seasonality: Single simulation performance

An asymmetric demand series has multiple peaks and troughs within a seasonal cycle

and changes more rapidly over time. Consequently, the optimal replenishment strategy

for symmetric seasonal demand may be inefficient to manage asymmetric seasonality. To

understand how the MA and the BD method handle asymmetric demand, we investigated

their optimal strategies in scenario 2, which generates asymmetric demand with E2 = 1.

Figure 31 presents a simulation instance of the optimal replenishment strategy found by the

MA and the BD method. For a better illustration, we have selected the MA solution that

has achieved the best performance among 10 MA solutions.

(a) Inventory situation of the optimal solution by the
MA

(b) Inventory situation of the optimal solution by the
BD method

(c) Reorder point and quantity of the optimal solu-
tion by the MA

(d) Reorder point and quantity of the optimal solu-
tion by the BD method

(e) Cost profile of the optimal solution by the MA (f) Cost profile of the optimal solution by the BD
method

Figure 35: Stochastic simulation instance of the optimal replenishment strategies found by the MA and
the BD method in scenario 2
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The optimal MA strategy for asymmetric demand seems similar to the strategy for sym-

metric demand. As shown in Figure 35c, both reorder point and reorder quantity shift

together with demand seasonality, and the reorder point is higher than the reorder quantity.

Also, their transition from peak season to off-season occurs earlier in anticipation of the

immediate decline in demand to reduce excess inventory in off-season. As a result, the in-

ventory level demonstrated in Figure 35a develops seasonally in accordance to the demand

level (week 67 and 119). However, there is a remarkable difference from the symmetric

seasonality case, which is caused from setting higher reorder quantity for peak season. By

doing so, the inventory level could grow very quickly for rising demand unlike the symmetric

strategy that raises the inventory level more gradually (week 101 and 151 in Figure 35a).

Also, reorder quantity is kept at a reasonably high level during off-season to protect from

the secondary demand peak in week 89 and 141.

The optimal strategy produced by the BD algorithm creates more extreme variations

of the inventory level because of excessively high reorder quantity. In Figure 35b, the in-

ventory level strongly fluctuates between 3,300 and 0. Accordingly, the amount of excess

stock during off-season remains high as the strategy does not make anticipatory decisions.

Finally, the strategy’s chance of facing stock-out during peak season is very high because of

stochastic lead time. In weeks 75, 113 and 123 of Figure 35b, the inventory level approaches

to zero due to unexpectedly long lead time. Identical to the symmetric seasonality case,

the excess inventory added significant weight to the expected total holding cost and created

an unbalanced cost profile in Figure 35f. This is very opposite to the balanced profile of

the MA solution in Figure 35e that weighs both expected holding cost and the expected

reordering cost about equally.
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Asymmetric seasonality: Average simulation performance

The optimal strategies’ average performance over 100 different simulation instances is

shown in Figure 36.

(a) Average inventory situation of the optimal solution
produced by the MA

(b) Average inventory situation of the optimal solution
produced by the BD method

(c) Cost profile of the optimal solution produced by the
MA

(d) Cost profile of the optimal solution produced by the
BD method

Figure 36: Average simulation results of the optimal replenishment strategies found by the MA and the
BD method in scenario 2

In case of the optimal BD solution the size of redundant inventory in off-season is sub-

stantial (weeks [75, 100] and [125, 149] in Figure 36b) compared to the optimal MA solution

(same weeks in Figure 36a). Comparing the average cost charts in Figure 36c and 36d, it

is more evident that the optimal BD solution is carrying excess inventory, which has driven

up the expected total holding cost, while the optimal MA solution is carefully balancing the

expected costs of holding and reordering decisions. Hence, more frequent replenishments in

smaller batch sizes can be very effective in reducing the excess inventory during off-seasons

and handling irregular seasonality.

Asymmetric seasonality: Average replenishment strategy

The simple average of 10 optimal replenishment strategies identified by 10 independent

MA runs in scenario 2 is plotted in Figure 37. Again, this result is presented only to demon-

strate the common properties among those 10 different MA solutions and not for the actual

implementation (Table 15 in Appendix B.2.3 demonstrates the performance loss by imple-

menting the average strategy). We can confirm that the gap between the reorder point and
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the reorder quantity is noticeably smaller and that the reorder quantities are more sensitive

to the demand seasonality than for the symmetric demand example in Figure 34. One can

also observe that the reorder point is adjusted about 6 weeks prior to the actual demand in

peak seasons. See week 57, for an example, where the reorder point dips during the peak

season in response to the intra-peak decline of demand in week 63.

Figure 37: Average of 10 optimal solutions produced by the MA in scenario 2

To summarize, the optimal replenishment strategy found by the proposed MA employs

anticipation stock to manage the inventory level throughout the seasons and to reduce

the expected total inventory cost for both symmetric and asymmetric seasonal demand.

Also, the optimal MA strategy keeps the reorder quantity low while setting the reorder

point high in order to maintain flexibility and agility against seasonal demand fluctuations.

The solution by the BD method, on the other hand, is not very capable of preventing

excess inventory during off-seasons and of circumventing the stock-out risk when the lead

time is unexpectedly longer than usual. Therefore, our MA could deliver substantial cost

savings and improvement in service stability, which are consequential enough to offset its

computational burden for common practical inventory problems.
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5.5 Numerical Analysis

In this section, a more detailed simulation-based numerical analysis is presented to assess

the influence of problem parameters on the optimal solutions of the proposed MA. Earlier

in Section 5.4 the overall performance of our MA has been discussed in comparison to the

benchmark BD method. In this section, we focus on identifying the key factors that have

caused the MA’s superior or inferior performance in the benchmark experiment. The central

purpose of our analysis is to provide empirical evidence for the algorithm’s robustness to

experiment conditions including demand seasonality, cost structure and more. Therefore,

through this chapter we aim to provide a valuable insight of the optimal replenishment

strategy’s practical applicability.

For a concise investigation within limited time constraint, the analysis was performed

in two representative problem instances: scenario 1 and 10. These two scenarios were most

appropriate to examine the algorithm’s sensitivity to symmetry or asymmetry of demand

seasonality as well as to different cost structures. Additionally, we observed the impact of

different problem parameters by altering their values one at a time while keeping all the

other parameters fixed at their original values. In Section 5.5.1, we investigate the effect of

demand seasonality in the performance of the optimal replenishment strategy. The MA’s

sensitivity to different cost parameters (Section 5.5.2), target service level (Section 5.5.3),

planning horizon (Section 5.5.4) and the number of seasons (Section 5.5.5) will be further

examined.

5.5.1 Effect of Demand Seasonality

The most influential factor to the performance of the proposed algorithm is the sea-

sonality in demand. Incorrect treatment of demand seasonality can result in superfluous

amount of inventory during off-seasons and serious risk of losing demand during peak sea-

sons. Similarly, applying a seasonal replenishment strategy to manage stationary demand

may bring costly consequences. In this section, we provide the results from three separate

sub-experiments that demonstrate the impact of incorrect seasonality management. The

purpose of first and second sub-experiment is to observe the impact of incorrectly apply-

ing seasonal (stationary) replenishment strategy to stationary (seasonal) demand. The last

sub-experiment explicitly illustrates the benefit of applying anticipation inventory.

Seasonal policy for stationary demand

In many practical retail inventories, the reorder policy is calculated for the inventory’s mid-

term operation spanning several weeks or months (Bilgen and Günther, 2010; Thomassey,

2014). But in most real-life retail environment, the strength of seasonality is volatile through-

out the time. For example, once very seasonal demand for a popular fashion item may be-

come more stationary when the item loses popularity over weeks and only regular customers

insist to purchase the item. Hence, the cost of managing (nearly) stationary demand with

the old seasonal replenishment strategy may be significant. To test this premise, we have

designed following simple experiment: first, the optimal seasonal replenishment strategy is

determined by executing the MA for scenario 1 and 10 with seasonal demand. Second, a

series of stationary demand that is analogous to the seasonal demand is generated by ran-

domly resampling the seasonal demand for each time period without replacement. Finally,

the seasonal replenishment strategy is applied to the resampled stationary demand and its

performance is evaluated.
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Figure 38 illustrates the average simulation results of applying the optimal seasonal

policy in scenario 1 to simulated stationary demand. These graphs were produced by per-

forming 100 simulation replications and averaging their demand, cost, inventory position

and inventory level.

(a) Average inventory situation in seasonal demand (b) Average inventory situation in stationary demand

(c) Optimal seasonal policy in seasonal demand (d) Optimal seasonal policy in stationary demand

(e) Cost profile of seasonal policy in seasonal demand (f) Cost profile of seasonal policy in stationary demand

Figure 38: Average results of seasonal policy for seasonal and stationary demand in scenario 1

Managing stationary demand with a seasonal replenishment strategy does not affect the

expected total cost significantly (TC in Figure 38f), but the expected fill rate denoted by

FR declines by 1.2% below the 98% target level. It is natural to observe a lower service

level because of the seasonal policy’s low reorder quantity during the periods that originally

belonged to off-season (e.g., from week 80 to 95). Also, the excess inventory during the
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weeks that originally saw high demand causes a significant increase in the total holding cost

relative to other replenishment costs. Incorrect application of seasonal strategy to stationary

demand incurs a 2.92% increase of the expected total cost. This suggests that erroneously

using a seasonal policy to handle stationary demand may lead to serious consequences of

observing an insufficient service level as well as experiencing a noticeable increase in the

expected total cost. We refer the readers to Appendix B.3.1 for the complete table of results

for scenario 1 and 10.

Stationary policy for seasonal demand

Given the optimal stationary (i.e., single-season) policy determined under stationary de-

mand, experimenting its performance under non-stationary seasonal demand may provide

valuable insights for practical applications. To conduct an unbiased experiment, we had

to generate a time series of seasonal demand that is analogous to the original stationary

demand series. Yet, unlike the stationary series that does not have autocorrelation struc-

ture (i.e., correlation between demand in different periods), demand in the seasonal series is

naturally autocorrelated. Therefore, we applied the same resampling procedure as before to

build a stationary demand series that was originally a seasonal series. Firstly, we generated

Smax = 200 random instances of seasonal demand, where each instance spans from week 1

until the planning horizon of N = 5 years. Secondly, every instance of seasonal demand was

randomly re-sampled without replacement to generate 200 unique instances of stationary

demand. Finally, the optimal stationary policy was determined based on these stationary

demand series using the proposed MA. When evaluating the optimal stationary policy un-

der seasonal demand, we used the original seasonal demand that was used to create the

stationary series.
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(a) Average inventory situation in stationary demand (b) Average inventory situation in seasonal demand

(c) Optimal stationary policy in stationary demand (d) Optimal stationary policy in seasonal demand

(e) Cost profile of stationary policy in stationary de-
mand

(f) Cost profile of stationary policy in seasonal demand

Figure 39: Average results of stationary policy for seasonal and stationary demand in scenario 1

Figure 39 illustrates the performance of the optimal stationary policy under seasonal

demand in scenario 1. As shown in Figure 39b the inventory level oscillates in an opposite

direction to the demand series due to constant reorder policy. Since the stationary policy

uses a fixed number of safety stock that is determined by averaging the expected demand

throughout the seasonal cycle, it is sensitive to unexpectedly high demand during peak sea-

son (e.g., low inventory level in week 65 and 117). Accordingly, the average fill rate (FR)

stays at 94.1%, which is much below the 98% minimum service level. On the other hand, the

expected total cost (TC) under stationary demand is slightly lower than the expected total

cost under seasonal demand (by 1.77%), but this is because the policy does not adhere to

the minimum service level. Considering the policy’s unreasonably high excess stock during
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off-season in Figure 39b (e.g., excessively high inventory level in week 89 and 141), apply-

ing stationary policy to seasonal demand cannot be seen adequate. The complete table of

results for scenario 1 and 10 is available in Appendix B.3.1.

Anticipation inventory

Anticipation inventory is an important part of the total inventory when dealing with sea-

sonality in product demand. By maintaining an adequate level of anticipation inventory,

one can reduce the risk of shortage during peak seasons and avoid building excess inventory

during off-seasons. In the context of our replenishment system, the anticipation inventory

can be built by placing new replenishment orders before the actual start of demand shift.

Therefore, the key decision variables for optimizing the size of anticipation inventory are the

size of ordering parameters Rt and Qt as well as the timing of seasonal adjustments.

For comparison, we produced a replenishment strategy that does not operate anticipation

inventory by optimizing for each season in a piece-wise manner. First, m = 4 unique seasons

were identified by minimizing the mean squared error (MSE) between the ith season’s mean

demand µ̂i and the average period demand µt for time t that belongs to the season. We

mention that the seasons are defined based on the mean demand during a seasonal cycle of

length Y (i.e., the MSE is computed for µt with t = 1, 2, . . . , Y ), and not for the planning

horizon N because the same seasonal cycle repeats for an integral number of times to form

the planning horizon. Then we fitted a discrete Normal distribution to each of these seasons

by approximating the mean µ̂i and standard deviation σ̂i as follows

µ̂i =

ωstart
i +ωlength

i −1∑
t=ωstart

i

µt

ωlength
i

(40)

σ̂i =
σ

ωlength
i

(41)

where ωstart
i and ωlength

i are ith season’s start time and length defined within a seasonal

cycle.

Treating each season separately, we optimized m = 4 different problems with respective

stationary demand that has mean µ̂i and standard deviation σ̂i. Figure 40 demonstrates the

performance of the optimal piece-wise strategy that does not employ anticipation inventory.

We mention that the following piece-wise strategy was determined by setting 99% target

service level for each of 4 piece-wise problems instead of the original 98% level. This was

to ensure that the resulting piece-wise policy is feasible under 98% target service level. By

confirming that both non-anticipatory strategy and the optimal MA solution are feasible at

98% minimum level, we could make a more fair and meaningful comparison.
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(a) Average inventory situation for piece-wise strategy(b) Average inventory situation for optimal MA solu-
tion

(c) Optimal stationary policy for piece-wise strategy (d) Optimal stationary policy for optimal MA solution

(e) Cost profile of stationary policy for piece-wise strat-
egy

(f) Cost profile of stationary policy for optimal MA so-
lution

Figure 40: Average simulation results of non-anticipatory piece-wise strategy and optimal MA solution in
scenario 1

Notice that the optimal piece-wise strategy illustrated in Figure 40c switches its reorder

policy to next season at the exact moment of demand shift. This is an example of a non-

anticipatory strategy because its reorder policy in each season does not reflect the expected

demand in the subsequent season. If lead time was zero, such strategy could have been effec-

tive at handling seasonality without having to build costly anticipation stock. But because

of stochastic non-zero lead time the piece-wise strategy bears a high shortage risk when

demand starts to pick up. See week 102 in Figure 40a where the inventory level reaches its

lowest point due to delayed receipts. Moreover, unlike the optimal MA solution in Figure

40b, which has gradually declining inventory level until the end of peak season, the inventory
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level for the piece-wise policy stays high until the end of peak season. Consequently, the

high leftover stock from the peak season is directly passed onto the off-season and remains

unconsumed (week 89 and 145). This has driven up the expected total holding cost sub-

stantially, which explains the large 14.49% cost gap between the piece-wise strategy and the

optimal MA solution (Figure 40f and 40e). The complete table of results for scenario 1 and

10 is available in Appendix B.3.1.

In conclusion, our analysis suggests that the impact of inaccurate treatment of demand

seasonality puts both service level and inventory cost at a high risk. A naive application of

seasonal policy to stationary demand or stationary policy to seasonal demand can create a

large number of lost sales during periods where high demand is expected, while too much

inventory remains redundant during periods of low expected demand. Finally, we observed

that the benefit of anticipation inventory is significant at maintaining a sufficient service

level from sudden demand shocks while preventing any excess inventory during off-seasons.

5.5.2 Effect of Cost Structure

The problem’s cost structure is an important consideration when determining the opti-

mal replenishment strategy for seasonal demand. Each of four cost parameters: order setup

cost K, holding cost h, purchase cost p and review cost r, makes different impact on the

performance of the optimal solution. If K is too high (low) compared to h, holding more

(less) inventory and procuring less (more) may be more profitable for the expected total

cost. Also, since unit purchase cost p can be classified as a variable setup cost, its value has

a direct impact in determination of the reorder quantity. Lastly, the review cost counteracts

the benefit of frequent inventory review and necessitates a careful decision of when to review

the inventory position. In this section, we examine the impact of each cost parameter on

the optimal solution quality.

To experiment the algorithm’s sensitivity to different cost parameters, the MA was exe-

cuted 10 times under 37 different cost configurations. While holding all the other parameters

fixed, each cost parameter was iteratively selected from the following sets:

K ∈ {10, 20, 30, 50, 100, 200, 300, 400, 500}

h ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1, 2, 3, 4}

p ∈ {0, 1, 2, 3, 4, 5, 10, 20, 30}

r ∈ {0, 5, 10, 20, 30, 40, 50, 60, 70, 100, 200, 300}

In order to assess the MA’s degree of convergence in each problem instance, we also

examined the coefficient of variation, which is the ratio of the standard deviation to the

mean. For each problem instance, we calculated the mean and the standard deviation of

the expected total costs of 10 optimal MA solutions. A lower coefficient of variation implies

that the algorithm was able to converge and produce consistent outcomes, hence attaining

a smaller variance among different MA solutions.

Figure 41 shows the effects of different cost parameters on the expected total cost. To

help visualize the trend, we connected the median value of each box plot by a straight line.

From the diagrams, one can observe that the expected total cost increases approximately

linearly with all cost parameters except for the review cost.
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(a) Total cost for different cost parameters

(b) Coefficient of variation for different cost parameters

Figure 41: Results for different cost structure

In Figure 41b the coefficients of variation for each cost component generally decrease as

per unit value of each cost parameter increases. This is mainly because of the increase in

the magnitude of the expected total cost and hence does not necessarily indicate that the

MA converges better for higher cost parameters.

Consider the expected holding cost in Figure 41a. Starting from the initial holding cost

of h = 0.2 per unit per time unit, an increase in h by 0.1 unit increases the optimal expected

total cost by 11.86% on average. At first glance, it appears as if the performance of the

MA is extremely sensitive to the changes in h for such a dramatic increase of the expected

total cost to happen from a minor increase of h. However, one should remember that h is

defined in terms of the number of items held per time unit. Considering that the average

size of demand per week is set equal to 200 in our experiment, the average size of inventory

level per time unit is usually at around 800 units (see Figure 32a). This leads to an average

208, 000 units of total inventory level during 5 years. Therefore, the dramatic change in

the total holding cost is mainly due to the large magnitude of product units involved in the

experiment, and not necessarily because the MA is particularly sensitive to h. Moreover, the

coefficient of variation for 10 optimal expected total costs is below 10% for all h, indicating

that the MA maintains consistent solution quality for different values of h.

A unit change in the order setup cost K changes the optimal expected total cost by

0.08% on average, which is much smaller than the effect of change in h by 0.1 unit. In

addition, the coefficient of variation remains below 10% for all K values, indicating that the

MA is robust to K. A similar conclusion can be drawn for the unit purchasing cost p, which

increases the expected total cost by 18.78% on average for a unit increase of its value.

Finally, the relationship between the optimal expected total cost and the review cost

per review r can be modeled by a piece-wise linear model with a breakpoint at r = 100. A

unit decrease of r from 100 reduced the expected total cost by an average 0.0839%, and a
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unit increase from 100 increased the cost at a lower average rate of 0.0119%. An interesting

observation is that with stochastic lead time and seasonal demand, zero or almost zero r

does not always imply a smaller value for the optimal review time. Figure 42 demonstrates

the optimal review times for different values of r. One can observe that the optimal re-

view time becomes longer for higher r, but it is not very clear whether a lower r leads

to a shorter review interval. One of the main reasons for this result is to avoid triggering

too many replenishment orders during peak seasons where both the reorder point and the

reorder quantity are high. In particular, more frequent review together with high reorder

point issues new replenishment orders more frequently, resulting in significantly higher setup

cost as well as more exposure to lead time volatility.

Figure 42: Effect of review cost on the optimal review time in scenario 1

Overall, all four cost parameters led to an approximately linear increase in the optimal

expected total cost. Nevertheless, the performance of the MA remained consistent regardless

of the changes in the cost parameters. The results for scenario 10 can be found in Appendix

B.3.2.

5.5.3 Effect of Target Service Level

So far, we have considered the replenishment system with a 98% target service level.

However, different target service levels could create different impacts on the solution quality.

In this section, we investigate the impact of different target service levels on the optimal

expected total cost by evaluating the optimal solutions under 6 different target service levels.

The following set contains the target service levels that we have experimented with

FRmin ∈ {90%, 92.5%, 95%, 98%, 99%, 100%}

Figure 43 illustrates the effect of minimum target service level on the optimal expected

total cost.
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Figure 43: Sensitivity results for target service levels in scenario 1

The graph clearly shows that a higher target service level increases the optimal ex-

pected total cost. When service requirement is tight, the optimal replenishment strategy

puts much more weight on minimizing the number of lost sales in spite of carrying more

inventory. Accordingly, the average holding cost becomes higher and increases the expected

total cost. Moreover, an interesting observation is the exponential rate of increase in the

optimal expected total cost. Starting from the 99% target level, 1% decrease in the target

level decreases the total cost by an average 5.65%, while the increase to 100% target level

shoots up the total cost by 58.59%. This result implies that allowing for 1% room for lost

sales may be much more cost-effective than enforcing a perfect 100% service level.

At 100% target service level, the coefficient of variation of 10 optimal MA solutions

escalates to 20% from the average of 8.7% for lower levels. It is because a very tight

constraint can seriously complicate the problem for solving. While the MA was able to

converge to a reasonable degree of precision for lower target levels, requiring 100% made the

MA quite unstable.

5.5.4 Effect of Planning Horizon

When determining an optimal replenishment strategy, setting an appropriate value for

the planning horizon N is crucial. A short-term strategy that achieves the best performance

for a short planning horizon may be ineffective for long-term inventory systems because

of potential over-fitting error. Conversely, a long-term strategy may jeopardize short-term

performance to achieve stable long-term performance. In this experiment, we investigated

the significance of different planning horizons on the solution quality. Considering a seasonal

cycle of 52 weeks, we defined a set of 5 candidate planning horizons as below. We mention

that these lengths exclude the warm-up period of one seasonal cycle (1× 52 weeks).

N ∈ {104 (2 cycles), 156 (3 cycles), 208 (4 cycles), 312 (6 cycles), 468 (9 cycles)}

Figure 44 shows the total expected costs of 10 optimal replenishment strategies identified

by 10 independent MA executions for each different length of planning horizon.
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Figure 44: Sensitivity results for planning horizon in scenario 1

As the planning horizon increases by one time unit, the expected total cost increases

linearly by 0.457% on average. It is a reasonable outcome considering that an extension of

planning horizon also expands the number of periods with positive inventory level, causing

the total holding cost to increase proportionally. In addition, the amount of computation

time increases linearly as the horizon increases. A unit increase of planning horizon increases

the CPU time by 0.63 seconds on average, implying an average computation time of 370.4

seconds (6.17 minutes) for a long-term problem spanning 10 years ahead. This suggests that

our algorithm is computationally efficient and stable even for large-scale problems. Finally,

the coefficient of variation graph demonstrates that the MA is able to produce consistent

solutions to both short-term and long-term problems.

5.5.5 Effect of Number of Seasons

In this experiment, we examine the impact of having different number of seasons in a

replenishment strategy m on the optimal cost and the MA’s overall performance. The value

of m was adjusted for 6 times according to the set

m ∈ {1, 2, 3, 4, 5, 6}

Figure 45 shows the optimal expected total costs, coefficients of variation and average

computation times identified by 10 different MA runs for above-specified number of seasons.

Figure 45: Sensitivity results for number of seasons in scenario 1

According to Figure 45, the reduction of the expected total cost due to increased number

of seasons is very evident. Extending m by one more season adds extra flexibility to handle

demand non-stationarity, reducing the expected total cost by an average 4.13%. However,
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the computation time increases by 6.49 seconds on average by adding one more season.

Therefore, the average time required for determining a fully dynamic model with m = Y =

52 is projected as 508.4 seconds. Lastly, the coefficient of variation for different number of

seasons remains below 10% and it approximately decreases as more seasons are considered.

This suggests that allowing for more seasons can facilitate more reliable performance and

convergence of the MA.

5.6 Algorithm Testing

In our simulation-based optimization algorithm four unique components have been inte-

grated: dynamic resampling (Section 4.3.3), adaptive fitness function (Section 4.4.4), pop-

ulation initialization heuristic (Section 4.4.5) and LSA (Section 4.4.9) for effective manage-

ment of the problem’s stochasticity as well as enhancement of the algorithm’s search perfor-

mance. In order to demonstrate the effectiveness and the contribution of these components

to the algorithm’s optimization performance, we have conducted several computational ex-

periments to each of these components one at a time. To keep our report compact, in this

section we only provide a summary of all experiments’ main procedures and their key results

instead. The complete results of our tests can be found in Appendix B.4 together with more

detailed explanation.

Table 5 and 6 provide the summary of our computational experiments for each of four

algorithm components. The column Index contains the index of each sub-experiment con-

ducted to individual component while Experiment description and Key results columns

contain the settings and the key takeaways of each sub-experiment. We emphasize that

when conducting each of the sub-experiments for each component, all the other operators

and components in the algorithm were held fixed identical to the setting described in Sec-

tion 5.2. Also, all sub-experiments were conducted both in scenario 1 and 10 to examine

if the effect of each component is systematically dependent on different demand and cost

structure. Finally, the MA was executed 10 times for every sub-experiment in case the

sub-experiment requires an execution of the MA, and the remarks in the Key results are

based on the average results from these 10 MA runs.
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Table 5: Summary (1) of experiment settings and key results from the algorithm testing

Component Index Experiment description Key results

Dynamic
resampling
technique

1

MA with single-sample estimates:
We have executed the MA based on
noisy estimates of the expected total
cost and expected fill rate that re-
sulted from a single simulation repli-
cation for each solution, instead of
performing multiple simulation replica-
tions. Then the quality of the op-
timal solution based on single-sample
estimates was verified against its true
quality that is based on noiseless esti-
mates.

• Significant overestimation of the so-
lution’s true performance: in sce-
nario 1, the true performance of the
solution obtained from single-sample
estimates is actually 7.15% more ex-
pensive and achieves 1.34% lower ser-
vice level on average

• In scenario 10, the problem of overes-
timation is even more severe, attain-
ing 20.01% of bias compared to the
solution’s true expected total cost
and 1.03% overestimation of the true
service level on average

• The estimation bias seems to get
larger for a higher per unit per time
unit holding cost h

2

MA with deterministic simulation:
We have investigated the impact of
optimizing the replenishment strategy
based on deterministic simulation (i.e.,
deterministic demand and lead time)
instead of stochastic simulation. There-
fore, demand dt and lead time Lt in
each time period were replaced by their
mean values µt and 1/q, and we have
evaluated the optimal solution from the
MA in comparison to its true perfor-
mance.

• Significant overestimation of the so-
lution’s true performance: in sce-
nario 1, the true performance of the
solution obtained from deterministic
simulation is actually 13.9% more ex-
pensive and achieves 6.74% lower ex-
pected service level on average

• In scenario 10, the problem of over-
estimation is even more severe, at-
taining 15.27% of bias compared to
the solution’s true expected cost and
6.5% overestimation of the true ex-
pected service level on average

• The estimation bias in the expected
service level seems more substantial
than in the expected total cost

• Compared to the single-sample es-
timates, the consequence of apply-
ing the deterministic simulation a lot
more severe

3

Sample size efficiency: We have es-
timated the expected total cost and
expected fill rate of 10, 000 randomly
generated replenishment strategies us-
ing the proposed dynamic resampling
technique. Then we have evaluated the
efficiency of its estimation: we evalu-
ated the extra number of samples re-
quired by the proposed technique com-
pared to the ideal sample size, which
has been derived from the true value of
the expected total cost and expected fill
rate.

• Approximately 5 times higher sample
size was required than the ideal size

• Sample size required by the proposed
technique remained consistent in dif-
ferent scenarios
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Table 6: Summary (2) of experiment settings and key results from the algorithm testing

Component Index Experiment description Key results

Fitness
function

1

Benefit of adaptive fitness func-
tion compared to static fitness
function: The performance of the MA
with the adaptive NFT fitness func-
tion has been compared to the perfor-
mance with static fitness function us-
ing a static penalty coefficient. The
static penalty coefficient was set at a
very high level to prevent producing in-
feasible solutions.

• The comparative experiment
brought mixed results. While
utilizing the NFT function obtained
significant improvement in scenario
10, the benefit in scenario 1 was not
significant at 95% confidence level

• The MA’s convergence rate with
the NFT function was substantially
higher than with the static fitness
function

Population
initialization
method

1

Population quality compared to
a randomly generated population:
In this experiment the quality of the
population generated by our initializa-
tion method has been compared to a
randomly generated population. The
average expected cost and expected fill
rate of all individuals in the popula-
tion have been considered as well as the
number of feasible solutions identified
in the population.

• Substantial improvement from a pure
randomization: average 30% cost im-
provement in scenario 1 and 39% im-
provement in scenario 10

• Noticeably more feasible solutions
were generated using the proposed
method than through pure random-
ization

LSA

1

Effect of LSA: The effectiveness of
the LSA has been examined by mea-
suring the improvement in the opti-
mal expected total cost by integrating
the LSA into the MA. Furthermore, we
have analyzed the impact of applying
the LSA to different type and number
of individuals in each generation: appli-
cation to 5, 10, 15 or 20 individuals se-
lected based on their fitness value (best
or worst) or selected at random.

• Observed an average 17% cost im-
provement by integrating the LSA

• Applying the LSA to 5 more individ-
uals in each generation brought ap-
proximately 5.56% cost reduction

• Applying the heuristic to randomly
selected individuals instead of the
best (fittest) or the worst (least fit)
individuals in each generation led to
more robust outcomes (i.e., smaller
cost variance)

2

Relative contribution of each op-
erator in the LSA: The average per-
centage contribution of each LSA op-
erator to the fitness improvement has
been measured by performing the MA
10 times in scenario 1 and 10. The LSA
was applied to 20 randomly selected in-
dividuals in each generation.

• The neighborhood operators Copy-
Seasons and ChangeReviewTime
attained the largest improvement of
the fitness value

• All operators showed positive contri-
bution to the improvement of fitness
value
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6 Conclusion

6.1 Introduction

In this final section, we conclude our paper with a comprehensive overview of the main

findings from our research. In Section 6.2 we reflect on the results from the benchmark

experiments, numerical analysis and algorithm testing, and discuss their implications for

both theoretical and practical applications. In Section 6.4 all the limitations of our method

and analysis are discussed with their potential impacts on the algorithm’s performance.

Finally in Section 6.5 we draw an overall conclusion and propose directions for further

research.

6.2 Discussion

The proposed MA obtained remarkable results in both the benchmark experiment and

the numerical analysis, which have important implications for both academics and practi-

tioners. In this section we discuss these implications in detail.

Our research has made several important contributions to the field of inventory optimiza-

tion with seasonal demand. First of all, our problem is unique in that it considers demand

that is both stochastic and seasonal unlike many other problems in the literature that either

consider stochastic stationary demand or deterministic seasonal demand. Moreover, our

problem defines the optimal solution as a seasonal strategy with a finite number of seasons,

which is a generalization of strategies with static and completely dynamic reorder policies.

We have formulated our problem as a stochastic non-linear programming problem and

identified the difficulty of solving this problem using conventional stochastic programming

algorithms due to extensive recurrence of non-linear constraints. Alternatively, we designed

and developed a discrete-event simulation model that could make reliable estimation of the

expected total cost and expected fill rate without needing to reformulate the original prob-

lem into a deterministic linear problem.

Additionally, our unique Memetic Algorithm has been validated against a benchmark

model by Babäı and Dallery (2006) and has shown to achieve superior performance in terms

of the solution quality and robustness. The optimal solution identified by the MA incurred

significantly lower expected total cost than the optimal solution from the benchmark algo-

rithm. Also, the MA’s performance was consistent for all problem instances regardless of

cost structure and asymmetry in seasonality. For the best performance, we have designed

and incorporated a unique LSA that fully leverages problem characteristics and enhances

the overall solution quality. On the other hand, the proposed MA has an important draw-

back of requiring significantly more computation time. However, considering that typical

retail inventories in practice update their replenishment strategies on a weekly or a monthly

basis (Bilgen and Günther, 2010; Thomassey, 2014), the MA is more than fast enough for

solving the large-scale problems in commercial inventories.

Through numerical analysis, we have observed that overlooking demand seasonality can

lead to serious loss in both the steady-state service level and the cost efficiency. Especially

when a static reorder policy is applied to manage highly seasonal demand, the inventory

can face enormous shortages during peak season and dangerous instability of the overall
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inventory level. Furthermore, we have found that the operation of anticipation inventory is

absolutely crucial for protecting inventory from the sharp increase in demand under stochas-

tic lead time and from having costly overstock during off-season by gradually reducing the

inventory level in anticipation. The MA could consistently provide good solutions for differ-

ent problem parameters including cost structure, planning horizon, target service level and

number of seasons. Among these parameters, the effect of the latter two were of particular

interest. Firstly, setting a higher target service level caused the optimal cost to rise at an

exponential rate and increasingly complicated the convergence of the algorithm. Secondly,

applying more seasonal and more dynamic policy was clearly more beneficial to the optimal

total cost and the algorithm’s convergence.

The performance of the unique operators that we have designed (or adapted from the

existing literature) for improvement of our Memetic Algorithm was also evaluated. Through

comparative experiments we have observed that the population initialization method and

the LSA provided substantial improvements of the solution quality. We have also found

that applying the dynamic resampling technique provided much better estimation of the

expected total cost and fill rate than applying the single-sample technique or approximating

the performance with deterministic simulation. Yet, using the adaptive Near-Feasiblity

Threshold (NFT) fitness function instead of a static-penalty fitness function caused only a

minor improvement, delivering an average of 4.7% cost saving compared to using the static

function. However, the algorithm’s convergence was significantly faster and more stable

using the NFT function, encouraging its application in many practical situations where the

maximum amount of computational time and resource is limited.

6.3 Recommendations

As the results of our experiments suggest, the potential benefit of applying the proposed

simulation-based optimization model is significant compared to the existing method in the

literature. Besides producing better optimal solutions than the benchmark algorithm in

terms of the expected total cost, our approach is noticeably more flexible at handling a

variety of inventory systems that cannot be incorporated in the benchmark model. More

specifically, our inventory simulation model can be easily modified to simulate new inventory

events as well as different demand and lead time distributions. Due to the independence

between the simulation and the optimization model, the performance of the operators in the

MA is not influenced from the adjustments made to the simulation model. Therefore, the

proposed simulation-based optimization algorithm can be easily tailored to various inven-

tory systems that manage different types of products with different demand and lead time

characteristics.

We mention that special care should be taken when applying our algorithm in practice

because the algorithm makes certain assumptions that might not be suitable for certain

inventory systems. For example, the simulation model assumes that in each period at most

one replenishment order can be placed. However, if the inventory applies a continuous review

replenishment system, multiple reorders may have to be arranged within the same period

in order to reach sufficient level of inventory position. In Section 6.4 we elaborate on the

algorithm’s assumptions and their potential limitations for its practical implementation.

Additionally, despite the algorithm’s robust performance, which is observed from fairly
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small coefficient of variation between multiple MA runs, we recommend executing the MA

for a sufficient number of times (e.g., 5 to 10 times) to ensure that no “bad luck” solution is

accidentally chosen. Due to the algorithm’s reasonably small computation time, this must

be viable in most real-life situations. Furthermore, performing multiple executions allow

the inventory manager to examine and compare each individual solution, besides the quan-

titative measures (i.e., expected total cost and service level), in terms of other qualitative

aspects of the solution. As a result, the inventory manager is enabled to correctly choose

the replenishment strategy that is more suitable for the considered inventory system, which

might be slightly more expensive or that might have service level moderately below the

target service level.

Finally, it is important that accurate data are entered to the proposed algorithm. Al-

though this may appear obvious, many retail inventories do not keep accurate record of the

information that is utilized in the algorithm. More specifically, if inaccurate cost parame-

ters are input into the algorithm, the algorithm may produce an impractical replenishment

strategy. Consider an example where the holding cost per unit per time unit is set abnor-

mally high. In this case the algorithm is most likely to produce a Just-In-Time strategy that

keeps the inventory level close to zero by avoiding reordering before the customer orders are

actually received. However, this type of strategy may be ineffective for products with highly

seasonal demand and unstable delivery lead time. Therefore, providing incorrect input data

is most likely to make heavy impact on the performance of the algorithm.

6.4 Limitations

The proposed algorithm is capable of determining an efficient replenishment strategy for

a product with stochastic seasonal demand. Also, the computational results are remarkable

with significant practical and theoretical implications. However, the algorithm bears impor-

tant limitations that need to be taken into account when interpreting these results. Firstly,

our inventory simulation model, which was developed to estimate the expected total cost

and the fill rate of a candidate replenishment strategy, makes certain assumptions that may

be unrealistic in practice. These assumptions are:

• Exact value of the mean demand quantity for the future is known in advance

• Demand quantity in each time period is discrete Normally distributed with the iden-

tical standard deviation

• Demand and reorder policy are discrete valued

• Inventory dynamics follow a discrete time system with discrete lead time

• Inventory has three unique events that happen in the sequence of REVIEW, ARRIVAL

and DEMAND.

Obviously, these assumptions may deceive the applicability of the produced solutions in

practice because several of these assumptions are simply not achievable in real-life. The

first assumption that the mean demand quantity in the future is known exactly in advance

is perhaps the most unrealistic condition that no real-life inventory managers have access

to. However, most of commercial inventories nowadays operate based on demand forecasts

that are generated using extensive volume of historical customer orders as well as real-time

customer information. Accordingly, these forecasts can be quite accurate estimates of the

true mean of the future demand, suggesting that the first assumption is replicable in practice
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using the forecast values. Furthermore, the uncertainty in the forecast is typically modeled

by a standard probability distribution, such as Normal or Gamma distribution, in order to

provide a prediction interval. We highlight that despite having restricted our attention to

discrete Normally distributed demand with a constant standard deviation in our research,

we can still apply our algorithm to a general class of demand distribution as long as they can

be numerically simulated. Thus, one can apply our algorithm with any available forecast

distributions.

The third and fourth assumptions of discrete-valued problem parameters may be unsuit-

able to some real-life situations, although these conditions can largely simplify our simulation

model and optimization procedure. Considering the third assumption, we emphasize that

except for the industry that deals with continuous units of commodities (e.g., oil, gas and

electricity), consumer products are commonly sold in discrete units (Axsäter, 2015). Thus,

it is reasonable to assume that both demand and reorder policy will be expressed in discrete

units. On the other hand, the fourth assumption of discrete time system is based on the

observation that in practice the inventory’s key performance indices as well as its transaction

data are recorded in discrete time units (e.g., dates, weeks or months) (Axsäter, 2015). The

last assumption was imposed as a bare minimum to develop a functional simulation model

of a typical inventory replenishment system. In case of adapting the simulation model to a

more complex real-life inventory system, it is rather straightforward to make adjustments

to the event set due to the model’s event-driven structure.

Besides the simulation model, the Memetic Algorithm has been developed under certain

assumptions that can pose limitations in practice. The first assumption is that the inven-

tory manages only a single type of item. Many commercial inventories stock and manage

thousands of different products, each with different demands, lead time and cost param-

eters. Hence, applying our algorithm to every single product at a time will be inefficient

in practice. Instead, the algorithm can be applied in a group level; the products can be

categorized into a number of groups that have similar demands, lead times and cost charac-

teristics and the algorithm can determine the replenishment strategy that achieves the best

average performance for each group. Also, we assumed that the inventory has an unlimited

storage capacity, which is debatable in many real-life situations. Every physical inventory is

bounded to a limited storage space and therefore an unlimited stocking capacity might be

illogical. Yet, unlimited capacity situation may as well occur in practice when extra storage

space is acquired from a rented warehouse. Hence, all the replenishment orders that exceed

the storage capacity of the original warehouse are stocked in the rented warehouse instead

(Chung et al., 2009). However, we emphasize that because of our simulation model’s flex-

ibility, the capacity restriction can always be incorporated without affecting the operators

of the MA.

Finally, although we have attempted to test and analyze our algorithm extensively on

all possible problem instances, we had to limit our numerical analysis to scenario 1 and 10

because of the small time frame of our research. Since our algorithm is mainly intended

for practical implementation, it would be more desirable to extend the computational study

with more problem instances.
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6.5 Conclusions and Further Research

The first objective of our research was to develop an effective methodology to optimize

replenishment strategy under stochastic seasonal demand. Therefore, we have developed

a new simulation-based optimization method that could produce a cost-effective replenish-

ment strategy with periodic review and seasonal reorder policy under demand and lead time

uncertainty. Our method was unique in that it utilizes the problem’s seasonality charac-

teristics for optimization without violating problem constraints. We also implemented an

effective framework for selecting the algorithm’s parameters for its robust performance.

Our second objective was to verify the performance and robustness of the proposed al-

gorithm under various problem instances. Based on the extensive benchmark experiments

with a model by Babäı and Dallery (2006), we have observed that the optimal solutions

from the proposed method achieve an average 16% reduction in the expected total cost and

are more robust to demand and cost structure. We further illustrated common features

of the optimal replenishment strategy under symmetric and asymmetric demand seasonal-

ity, where reorder policies are adjusted earlier in anticipation to the upcoming demand shifts.

The last objective was to analyze the impact of different problem parameters on the

quality of the optimal solution. Our numerical analysis demonstrated the significance of ap-

plying a seasonal policy to manage seasonal demand for adequate service level. The benefit

of utilizing anticipation inventory was clear for protecting service level from demand fluctu-

ations while keeping the inventory level low whenever possible. Also, our algorithm showed

robust performance to different cost structure, target service level and planning horizon,

which was observed from its stable performance variance regardless of these parameters’

values. The results further suggested that under seasonal demand, applying more dynamic

replenishment strategy with more seasons could significantly reduce the expected total cost

by 15% on average. Finally, we have confirmed that the algorithm’s four special components:

resampling method, fitness function, population initialization method and LSA achieved an

average 17% reduction on the solution’s expected total cost.

Our research can be further generalized in several different directions. Firstly, one can

apply our method in a multi-item inventory system instead of a single-item inventory system.

However, this would require additional analysis for the optimal for replenishment decisions

since different combination of products can be ordered jointly to achieve economies of scale

through product discount or through synchronized replenishment. Secondly, the algorithm

can be implemented to minimize the total supply chain cost in the multi-echelon logistics

network, in which the effect of interaction between different inventories in different echelons

should be considered. Thirdly, the algorithm’s performance in a distribution-free environ-

ment can be examined. Our problem assumes that demand and lead time follow parametric

discrete distribution, while in reality they do not easily fit into available standard parametric

distributions. Indeed, for relatively new or slow-moving products, modeling their demand

and lead time with empirical methods may be more effective due to limited historical data

or intermittent values of demand and lead time. Lastly, the performance of the proposed

algorithm with other types of dynamic reorder policies, such as (T, st, St) and (T,Rt, nQt)

can be further investigated.
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Yeniay, Ö. (2005), ‘Penalty function methods for constrained optimization with genetic

algorithms’, Mathematical and computational Applications 10(1), 45–56. Multidisciplinary

Digital Publishing Institute, Basel, Switzerland.

Yilmaz, C. (1992), ‘Incremental order quantity for the case of very lumpy demand’, Inter-

national Journal of Production Economics 26(1-3), 367–371. Elsevier, London, UK.



REFERENCES 89

Zangwill, W. I. (1966), ‘A deterministic multi-period production scheduling model with

backlogging’, Management Science 13(1), 105–119. INFORMS, Catonsville, Maryland.

Zipkin, P. (1986), ‘Stochastic leadtimes in continuous-time inventory models’, Naval research

logistics quarterly 33(4), 763–774. Office of Naval Research, Arlington, VA.

Zipkin, P. (2008a), ‘Old and new methods for lost-sales inventory systems’, Operations

Research 56(5), 1256–1263. INFORMS, Catonsville, Maryland.

Zipkin, P. (2008b), ‘On the structure of lost-sales inventory models’, Operations research

56(4), 937–944. INFORMS, Catonsville, Maryland.



A. SUPPLEMENTARY MATERIALS 90

Appendix A Supplementary Materials

A.1 Axäter’s Expected Fill Rate

Axsäter (2015) formulated the expected negative inventory levels in terms of integral

loss function H(x)

H(x) =

∫ ∞
x

G(v)dv =
1

2
[(x2 + 1)(1− Φ̃(x))− xϕ̃(x)] (42)

The expected lost sales right after a possible delivery is

E(IL′i)
− =

∫ 0

−∞
F (x)dx =

(s′i)
2

Q̂i

[
H
(R̂i − µ′i

s′i

)
−H

(R̂i + Q̂i − µ′i
s′i

)]
(43)

Equivalently, the expected lost sales before the next possible delivery is

E(IL′′i )
− =

∫ 0

−∞
F (x)dx =

(s′′i )
2

Q̂i

[
H
(R̂i − µ′′i

s′′i

)
−H

(R̂i + Q̂i − µ′′i
s′′i

)]
(44)

A.2 Discrete Normal Distribution

Roy (2003) presented a discrete Normal distribution that follows a continuous Normal

distribution N (µ, σ) where µ and σ are its mean and standard deviation respectively. The

probability mass function of the discrete Normal distribution is

P (Y = k) = Φ

(
k + 1− µ

σ

)
− Φ

(
k − µ
σ

)
, k = 0,±1,±2, . . . ;σ > 0;−∞ < µ < +∞

where Φ(x) is the cumulative distribution function of the continuous standard Normal dis-

tribution. If µ = 0 and σ = 1, then the discrete version of the standard Normal distribution

can be obtained as

ϕ̃(k) = Φ(k + 1)− Φ(k), k = 0,±1,±2, . . . ;σ = 1;µ = 0

The cumulative distribution of the discrete Normal distribution is obtained as

P (Y ≤ k) =
∑
k̂≤k

P (Y = k̂)

The cumulative distribution function of the standard Normal mass function is denoted as

Φ̃(k).

We chose for this definition of discrete Normal distribution by Roy (2003) as it attains

the same survival function (and therefore the same cumulative probability distribution) as

the continuous analogue.

Figure 46 shows an example of the presented discrete Normal distribution



A. SUPPLEMENTARY MATERIALS 91

Figure 46: An example discrete normal distribution

A.3 Discrete-Event Simulation Algorithm

The DES model for inventory replenishment system consists of three events and a list

of state and counter variables. In this section, we introduce the relevant notation and the

simulation algorithm.

Events

• REVIEW: reviewing inventory position

• ARRIVAL: replenishment arrival

• DEMAND: serving customer demand

Event list

• tA: time for the next order arrival

• tD: time for the next demand observation

• tR: time for the next inventory review

• tlistA : list of arrival times of scheduled orders

• tlistD : list of times with positive demand

• tlistR : list of scheduled review times

Variables

• t̃: simulation clock

• t̃′: time of the last event update

• ILt: inventory level at the end of time t

• IPt: inventory position at the end of time t

• LSt: lost sales at the end of time t

• A(t): scheduled order arrival at time t

• bO: total number of replenishment orders placed

• bD: total number of demands observed

• bA: total number of replenishment orders arrived
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• bR: total number of reviews

• HC: total holding cost

• SC: total order setup cost

• PC: total purchase cost

• RC: total review cost

• TC: total inventory cost

Parameters

• S̃: total number of simulation runs

• Ñw: number of warm-up periods (< N)

• P = {(T,Rt, Qt)|t = 1, . . . , N)}: replenishment strategy

In order to reach the steady-state conditions, a finite length of warm-up periods Ñw are

required. This is especially important if the starting conditions were set arbitrarily and can

lead to under(over) estimation of system performance.
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Discrete Event Simulation Algorithm

(0) Initialize

(0.1) Set starting values for simulation clock and last event time:

t̃ = t̃′ = 0

(0.2) Set initial values for inventory situation:

ILt = IPt = LSt = A(t) = 0 for t = 1, 2, . . . , N

(0.3) Initialize state variables:

TC = HC = SC = PC = RC = bA = bD = bR = bO = 0

(0.4) Set simulation warm-up time and total planning horizon such that Y ≤
Ñw < N , and set the total number of simulation runs S̃ ≥ 1

(0.5) Sample demand dt from its probability distribution for t = 1, 2, . . . , N

(0.6) Initialize lists of time variables:

(0.6.1) tlistD = list of times t ∈ {1, 2, . . . , N} with positive demand dt > 0. Sort

tlistD in an increasing order of demand time

(0.6.2) tlistR = {T, 2T . . . , bN
T
cT}. Sort tlistR in an increasing order of review

time

(0.6.3) tlistA = ∅
(0.6.4) tD = first entry in list tlistD , tR = first entry in list tlistR , tA =∞

(1) REVIEW

Event condition: If tR ≤ min{tA, tD} and tR ≤ N

(1.1) t̃ = tR

(1.2) If IPt̃ ≤ Rt̃

(1.2.1) Schedule a new ARRIVAL event:

(1.2.1.1) Sample Lt̃ from the Geometric distribution

(1.2.1.2) Prevent order crossing: If t̃ + Lt̃ is smaller than any arrival times

in tlistA , re-sample Lt̃ by returning to Step (1.2.1.1)

(1.2.1.3) Add t̃+Lt̃ at the end of the list tlistA and set tA = first entry in tlistA

(1.2.1.4) If t̃+ Lt̃ ≤ N : A(t̃+ Lt̃) = A(t̃+ Lt̃) +Qt̃

(1.2.2) IPt̃ = IPt̃ +Qt̃

(1.2.3) Warm-up periods: If t̃ > Ñw

(1.2.3.1) bO = bO + 1

(1.2.3.2) SC = SC +K

(1.2.3.4) PC = PC + pQt̃

(1.3) Warm-up periods: If t̃ > Ñw

(1.3.1) bR = bR + 1

(1.3.2) HC = HC + (t̃− t̃′)hILt̃
(1.3.2) RC = RC + r
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(1.4) t̃′ = t̃

(1.5) Update tR and tlistR :

(1.5.1) Delete the first entry (which equals to tR) in tlistR

(1.5.2) If tlistR 6= ∅: Set tR equal to the new first entry in tlistR .

If tlistR = ∅: Set tR =∞

(2) ARRIVAL

Event condition: If tA ≤ min{tD, tR} and tA ≤ N :

(2.1) t̃ = tA

(2.2) ILt̃ = ILt̃′ + A(t̃)

(2.3) Warm-up periods: If t̃ > Ñw:

(2.3.1) HC = HC + (t̃− t̃′)hILt̃
(2.3.2) bA = bA + 1

(2.4) t̃′ = t̃

(2.5) Update tA and tlistA :

(2.5.1) Delete the first entry (which equals to tA) in tlistA

(2.5.2) If tlistA 6= ∅ and the new first entry in tlistA ≤ N : Set tA = the new first

entry in tlistA

(2.5.3) Else: Set tA =∞

(3) DEMAND

Event condition: If tD ≤ min{tA, tR} and tD ≤ N :

(3.1) t̃ = tD

(3.2) LSt̃ = max{dt̃ − ILt̃′ , 0}
(3.2) ILt̃ = max{ILt̃′ − dt, 0}
(3.3) IPt̃ = IPt̃′ + LSt̃

(3.4) Warm-up periods: If t̃ > Ñw

(3.4.1) HC = HC + (t̃− t̃′)hILt̃
(3.4.2) bD = bD + dt̃

(3.5) t̃′ = t̃

(3.6) Update tD and tlistD :

(3.6.1) Delete the first entry (which equals to tD) in tlistD

(3.6.2) If tlistD 6= ∅: Set tD = the new first entry in tlistD

(3.6.3) Else: Set tD =∞
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(4) Repeat Steps (1)-(3) until min{tA, tD, tR} > N

(5) Save simulation results for t̃ = Ñw + 1, Ñw + 2, . . . , N

(5.1) FR(P) = 1−
∑N

t=Ñw+1
LSt

bD

(5.1) TC = HC + SC + PC +RC

(6) Repeat Steps (0)-(5) for S̃ number of times and return the average value of

output variables over S̃ replications:

TC S̃, FRS̃, SC S̃, HC S̃, RC S̃, PC S̃, bOS̃, bDS̃, bAS̃, bRS̃
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Appendix B Computational Results

B.1 Taguchi Experiment

B.1.1 Orthogonal Array

We use the standard L18 orthogonal array for the algorithm with a parameter of 2 levels

and 7 parameters of 3 levels, which is shown by Table 7. The first column lists the level for

the 2-level parameter for each experiment, and the next seven columns assign a unique level

for the 3-level parameters to each experiment.

Table 7: L18 orthogonal array for a parameter with 2 levels and 7 parameters with 3 levels

Parameter
Experiment
Number

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2
3 1 1 3 3 3 3 3 3
4 1 2 1 1 2 2 3 3
5 1 2 2 2 3 3 1 1
6 1 2 3 3 1 1 2 2
7 1 3 1 2 1 3 2 3
8 1 3 2 3 2 1 3 1
9 1 3 3 1 3 2 1 2
10 2 1 1 3 3 2 2 1
11 2 1 2 1 1 3 3 2
12 2 1 3 2 2 1 1 3
13 2 2 1 2 3 1 3 2
14 2 2 2 3 1 2 1 3
15 2 2 3 1 2 3 2 1
16 2 3 1 3 2 3 1 2
17 2 3 2 1 3 1 2 3
18 2 3 3 2 1 2 3 1

For the given set of GA parameters and their three levels as in Table 1, we translated

the orthogonal array in Table 7 using the level definitions. The first column and the last

two columns are removed from the orthogonal array because our experiment only has 5

parameters, each with 3 levels of value.
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Table 8: L18 orthogonal array with level definitions given in Table 1

Parameter

Experiment
Number

Maximum
generation
(M)

Population
size
(P )

Tournament
probability
(λt)

Crossover
rate
(λc)

Mutation
rate
(λm)

1 100 20 0.5 0.25 0.05
2 100 50 0.7 0.5 0.1
3 100 100 1 0.7 0.3
4 200 20 0.5 0.5 0.1
5 200 50 0.7 0.7 0.3
6 200 100 1 0.25 0.05
7 400 20 0.7 0.25 0.3
8 400 50 1 0.5 0.05
9 400 100 0.5 0.75 0.1
10 100 20 1 0.75 0.1
11 100 50 0.5 0.25 0.3
12 100 100 0.7 0.5 0.05
13 200 20 0.7 0.75 0.05
14 200 50 1 0.25 0.1
15 200 100 0.5 0.5 0.3
16 400 20 1 0.5 0.3
17 400 50 0.5 0.75 0.05
18 400 100 0.7 0.25 0.1

B.1.2 Experiment Setting

Experiment parameters for Taguchi experiments are shown in Table 9.

Table 9: Experiment parameters for Taguchi method

Inventory plan

Planning horizon (N) 5 years Time unit Weeks
Seasonal cycle length (Y ) 52 Target service level (FRmin) 98%
Maximum review time (Tmax) 8

Demand characteristics

Number of seasons (m) 4 Mean demand level (D) 200
Demand standard deviation (σ) 20 Seasonality amplitude 1 (E1) 150
Seasonality amplitude 2 (E2) 0 Seasonality lag 1 (v1) 0
Seasonality lag 2 (v2) 0

Lead time and cost

Lead time rate (q) 0.5 Set up cost per order (K) 20
Holding cost per unit per time (h) 0.2 Review cost per review (r) 0
Purchase cost per unit (p) 1

B.1.3 Signal-to-Noise Results

The average S/N ratios for each of their three levels from the five GA parameters are

presented in Table 10. The reported values are the average S/N ratios from 10 indepen-

dent GA executions (i.e., MA without the LSA) under the experiment setting described in

Appendix B.1.2.
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Table 10: Average S/N ratios for all parameters, where larger value is better

Parameters
Maximum
generation
(M)

Population
size
(P )

Tournament
probability
(λt)

Crossover
rate
(λc)

Mutation
rate
(λm)

Level 1 -266.06 -264.59 -266.12 -263.48 -263.01
Level 2 -264.33 -264.01 -264.40 -265.24 -263.65
Level 3 -262.63 -264.43 -262.51 -264.30 -266.36
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B.2 Benchmark Experiment

B.2.1 Experiment Scenarios

Table 11 contains 18 different experiment scenarios used for our benchmark experiments.

18 unique combinations of setup cost K, holding cost h and symmetry coefficient E2 are

considered.

Table 11: Complete list of experiment scenarios

Scenario Setup cost (K) Holding cost (h) Symmetry coefficient (E2)

1 20 0.2 0
2 20 0.2 1
3 20 0.4 0
4 20 0.4 1
5 20 0.6 0
6 20 0.6 1
7 50 0.2 0
8 50 0.2 1
9 50 0.4 0
10 50 0.4 1
11 50 0.6 0
12 50 0.6 1
13 80 0.2 0
14 80 0.2 1
15 80 0.4 0
16 80 0.4 1
17 80 0.6 0
18 80 0.6 1

B.2.2 Benchmark Results

Table 12 and 13 contain the expected total cost and fill rate of the optimal MA and

the BD solutions for all 18 different problem scenarios. In Method column, we report which

method has been used. In Type column, the type of result contained in the corresponding

row is stated. The Average type row contains the arithmetic mean of 10 optimal solutions’

performances. Meanwhile each of the rows with type Median, Best and Worst contains

the performance of a solution that attained the median, minimum and maximum total cost

out of 10 optimal solutions. Since the BD method has been executed only once while the

MA has been executed 10 times, Type for the BD method is fixed as Average. In Scenario

column, the problem scenario is reported. TC and FR column respectively contains the

expected total cost and the fill rate of associated optimal solution. The columns TC Gap

and FR Gap contain the percentage difference between the results of the MA executions and

of the BD method. Negative-valued percentage gap indicates that the MA solution attains

a lower value than the BD solution. Finally, CPU time contains the average computational

time required for optimizing with the considered method under the corresponding scenario.
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Table 12: Complete results obtained by the MA and the BD method (1)

Method Type Scenario TC FR
TC
Gap

FR
Gap

CPU time
(sec)

BD Average 1 127,222 0.9871 - -
MA Average 108,190 0.9815 -14.96% -0.5673% 282.3

Median 108,882 0.9858 -14.42% -0.1317%
Best 104,349 0.9805 -17.98% -0.6686%
Worst 115,003 0.9804 -9.60% -0.6788%

BD Average 2 134,968 0.9766 - -
MA Average 107,441 0.9823 -20.40% 0.5837% 228.8

Median 107,555 0.9809 -20.31% 0.4403%
Best 99,195 0.9805 -26.50% 0.3993%
Worst 114,606 0.9825 -15.09% 0.6041%

BD Average 3 185,097 0.9760 - -
MA Average 161,293 0.9831 -12.86% 0.7275% 279.3

Median 162,454 0.9830 -12.23% 0.7172%
Best 152,566 0.9806 -17.58% 0.4713%
Worst 168,244 0.9846 -9.10% 0.8811%

BD Average 4 209,419 0.9846 - -
MA Average 158,928 0.9831 -24.11 % -0.1523% 285.6

Median 154,752 0.9814 -26.10% -0.3250%
Best 146,685 0.9886 -29.96% 0.4063%
Worst 177,213 0.9810 -15.38% -0.3656%

BD Average 5 295,127 0.9875 - -
MA Average 201,746 0.9818 -31.64% -0.5772% 276.8

Median 202,671 0.9812 -31.33% -0.6380%
Best 196,070 0.9824 -33.56% -0.5165%
Worst 209,755 0.9807 -28.93% -0.6886%

BD Average 6 300,920 0.9785 - -
MA Average 199,866 0.9819 -33.58% 0.3475% 264.8

Median 200,755 0.9867 -33.29% 0.8380%
Best 189,694 0.9803 -36.96% 0.1840%
Worst 207,085 0.9827 -31.18% 0.4292%

BD Average 7 130,332 0.9738 - -
MA Average 111,808 0.9835 -14.21% 0.9961% 275.7

Median 111,599 0.9834 -14.37% 0.9858%
Best 102,757 0.9811 -21.16% 0.7496%
Worst 117,678 0.9814 -9.71% 0.7804%

BD Average 8 118,518 0.9763 - -
MA Average 109,838 0.9824 -7.32% 0.6248% 242.4

Median 109,666 0.9801 -7.47% 0.3892%
Best 103,660 0.9822 -12.54% 0.6043%
Worst 116,169 0.9834 -1.98% 0.7272%

BD Average 9 205,509 0.9842 - -
MA Average 174,179 0.9823 -15.25% -0.1931% 267.2

Median 146,458 0.9870 -14.14% 0.2845%
Best 154,200 0.9825 -24.97% -0.1727%
Worst 189,359 0.9801 -7.86% -0.4166%
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Table 13: Complete results obtained by the MA and the BD method (2)

Method Type Scenario TC FR
TC
Gap

FR
Gap

CPU time
(sec)

BD Average 10 226,370 0.9805 - -
MA Average 161,616 0.9822 -28.61% 0.1734% 287.1

Median 159,510 0.9832 -29.54% 0.2754%
Best 150,111 0.9820 -33.69% 0.1530%
Worst 180,614 0.9828 -20.21% 0.2346%

BD Average 11 262,774 0.9751 - -
MA Average 214,681 0.9827 -18.30% 0.7794% 269.8

Median 210,176 0.9900 -20.02% 1.5280%
Best 189,140 0.9817 -28.02% 0.6769%
Worst 237,365 0.9821 -9.67% 0.7179%

BD Average 12 276,785 0.9737 - -
MA Average 210,183 0.9819 -24.06% 0.8421% 266.6

Median 211,090 0.9802 -23.74% 0.6676%
Best 199,503 0.9800 -27.92% 0.6470%
Worst 225,338 0.9801 -18.59% 0.6873%

BD Average 13 121,711 0.9801 - -
MA Average 111,242 0.9846 -8.60% 0.4891% 249.9

Median 111,182 0.9850 -8.65% 0.4999%
Best 109,600 0.9878 -9.95% 0.7856%
Worst 112,702 0.9810 -7.40% 0.0918%

BD Average 14 117,112 0.9863 - -
MA Average 110,620 0.9830 -5.54% -0.3346% 258.6

Median 107,905 0.9824 -7.86% -0.3954%
Best 105,685 0.9838 -9.76% -0.2535%
Worst 118,882 0.9808 1.51% -0.5576%

BD Average 15 171,283 0.9716 - -
MA Average 173,632 0.9819 1.37% 1.0601% 275.3

Median 176,029 0.9819 2.77% 1.0601%
Best 158,982 0.9862 -7.18% 1.5027%
Worst 182,319 0.9803 6.44% 0.8954%

BD Average 16 210,286 0.9864 - -
MA Average 166,390 0.9833 -20.87% -0.3143% 289.0

Median 170,219 0.9813 -19.05% -0.5170%
Best 149,026 0.9807 -29.13% -0.5779%
Worst 179,880 0.9805 -14.46% -0.5981%

BD Average 17 291,033 0.9826 - -
MA Average 233,382 0.9833 -19.81% -0.3143% 258.4

Median 240,318 0.9813 -17.43% -0.5170%
Best 201,413 0.9807 -30.79% -0.5779%
Worst 265,405 0.9805 -8.81% -0.5981%

BD Average 18 239,824 0.9772 - -
MA Average 216,761 0.9822 -9.62% 0.5117% 272.4

Median 216,326 0.9830 -9.80% 0.5935%
Best 203,917 0.9811 -14.97% 0.3991%
Worst 231,129 0.9822 -3.63% 0.5117%

In Table 14 the optimal solutions found by the MA with m = 4 for all 18 different

scenarios are presented. The Review Time column contains the optimal review time T

of the associated optimal solution. For each season i = 1, 2, 3, 4 we report the season’s

replenishment strategy in brackets: [R̂i; Q̂i; ω
start
i ; ωend

i ]. R̂i and Q̂i are the season i’s

reorder point and reorder quantity. ωstart
i and ωend

i are the season’s start time and end

time, defined within the seasonal cycle of length Y = 52. Therefore, ωstart
i ∈ [1, 52] and

ωend
i ∈ [1, 104] where ωend

i ≥ ωstart
i . We remark that the upper bound for ωend

i is 104 and not

52 because if season i’s end time ωend
i exceeds the cycle length, then the season continues to
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the next cycle as long as it does not overlap with other seasons in the next cycle. Therefore,

if a season ends at time ωend
i > 52, we split the season into two smaller seasons where the

first season starts and ends at period ωstart
i and 52, while the second season starts and ends

at period 1 and ωend
i − 52.

Table 14: Optimal solutions obtained by the MA

Method Type Scenario
Review
Time
(T )

Season

1 2 3 4

MA Median 1 4 [2,684; 1,148; 42; 62] [2,685; 1,148; 11; 22] [807; 1,149; 23; 28] [178; 667; 29; 41]
Best 2 [3,766; 1,552; 1; 40] [650; 151; 23; 40] [1213; 552; 41; 44] [3,766; 552; 45; 52]
Worst 3 [2,838; 1,062; 1; 17] [697; 1,274; 18; 25] [699; 1,305; 26; 48] [2,838; 1,093; 49; 52]

MA Median 2 2 [1,946; 1,037; 1; 11] [1,983; 1,216; 12; 16] [521; 1,437; 17; 46] [1,970; 862; 47; 52]
Best 2 [1,967; 1,332; 1; 6] [1,886; 1,178; 7; 16] [611; 386; 17; 44] [1,967; 1,332; 45; 52]
Worst 4 [3,065; 1,414; 48; 57] [9,264; 1,344; 6; 11] [ 2,861; 1,344; 12; 15] [882; 1,344; 16; 47]

MA Median 3 2 [5,383; 728; 47; 70] [584; 157; 19; 30] [584; 157; 31; 39] [584; 728; 40; 46]
Best 3 [2,028; 1,260; 52; 70] [1,390; 405; 19; 33] [955; 556; 34; 47] [955; 1,138; 48; 51]
Worst 4 [9,785; 1,436; 49; 53] [9,785; 1,436; 2; 16] [915; 910; 17; 27] [915; 910; 28; 48]

MA Median 4 2 [1,737; 1,162; 45; 57] [1,737; 1,162; 6; 19] [414; 1,162; 20; 32] [414; 1,162; 33; 44]]
Best 2 [1,907; 713; 52; 68] [777; 460; 17; 35] [777; 460; 36; 42] [1,907; 713; 43; 51]
Worst 4 [4,342; 1,161; 50; 53] [6,733; 1,640; 2; 9] [2,639; 585; 10; 38] [4,272; 585; 39; 49]

MA Median 5 4 [2,462; 1,342; 51; 69] [9,250; 661; 18; 21] [4; 1,303; 435; 22; 42] [1,257; 435; 43; 50]
Best 3 [2,346; 913; 47; 58] [2,346; 913; 7; 22] [788; 373; 23; 35] [788; 373; 36; 46]
Worst 4 [4,783; 16,43; 1; 17] [582; 961; 18; 26] [780; 470; 27; 45] [5,140; 918; 46; 52]

MA Median 6 4 [2,764; 1,037; 1; 9] [5,324; 1,037; 10; 16] [4,019; 506; 17; 45] [5,873; 1,591; 46; 52]
Best 2 [2,214; 632; 43; 68] [668; 464; 17; 27] [668; 404; 28; 31] [625; 404; 32; 42]
Worst 4 [8,761; 1,405; 45; 53] [2,494; 1,335; 2; 13] [1,784; 665; 14; 17] [1,224; 490; 18; 44]

MA Median 7 4 [9,403; 1,157; 50; 54] [2,246; 1,280; 3; 23] [1,279; 673; 24; 28] [1,279; 673; 29; 49]
Best 1 [1,501; 1,256; 1; 20] [784; 569; 21; 26] [722; 569; 27; 48] [7,446; 569; 49; 52]
Worst 5 [5,789; 1,587; 52; 55] [4,633; 1,587; 4; 21] [5; 1,146; 788; 22; 32] [1,584; 788; 33; 51]

MA Median 8 4 [2,144; 1,350; 48; 54] [2,144; 1,350; 3; 13] [2,090; 491; 14; 25] [2,090; 491; 26; 47]
Best 2 [1,714; 1,349; 46; 55] [1,714; 654; 4; 10] [1,714; 1,924; 11; 17] [532; 951; 18; 45]
Worst 5 [3,752; 1,786; 1; 10] [2,394; 718; 11; 29] [2,394; 320; 30; 41] [8,985; 1,551; 42; 52]

MA Median 9 3 [4,019; 998; 48; 69] [5,629; 1,217; 18; 21] [802; 858; 22; 25] [698; 801; 26; 47]
Best 3 [2,387; 818; 44; 56] [2,044; 1,083; 5; 16] [2,387; 699; 17; 23] [1,106; 221; 24; 43]
Worst 6 [4,046; 1,929; 47; 58] [3,169; 2,418; 7; 16] [2,067; 1,280; 17; 23] [901; 658; 24; 46]

MA Median 10 3 [1,873; 1,376; 45; 69] [502; 1,149; 18; 31] [502; 1,149; 32; 38] [337; 1,314; 39; 44]
Best 2 [2,031; 890; 51; 68] [516; 862; 17; 38] [516; 1,009; 39; 44] [2,136; 743; 45; 50]
Worst 2 [1,745; 1,625; 50; 59] [1,997; 1,636; 8; 13] [1,045; 927; 14; 19] [1,045; 927; 20; 49]

MA Median 11 4 [ 3,037; 1,470; 51; 71] [1,063; 453; 20; 24] [1,063; 453; 25; 46] [1,172; 468; 47; 50]
Best 4 [2,393; 1,236; 45; 72] [810; 212; 21; 31] [ 360; 212; 32; 38] [8,143; 528; 39; 44]
Worst 6 [9,553; 1,937; 52; 72] [1,301; 596; 21; 40] [ 5,029; 966; 41; 47] [5,029; 966; 48; 51]

MA Median 12 1 [1,912; 1,062; 48; 61] [1,912; 1,062; 10; 15] [320; 527; 16; 36] [1,936; 358; 37; 47]
Best 3 [2,292; 895; 49; 67] [7,310; 353; 16; 22] [782; 353; 23; 44] [8,207; 1,560; 45; 48]
Worst 5 [6,681; 1,606; 42; 56] [6,159; 603; 5; 8] [9,921; 2,029; 9; 13] [2,673; 513; 14; 41]

MA Median 13 4 [6,653; 1,687; 52; 55] [2,350; 1,771; 4; 19] [6,305; 267; 20; 41] [1,379; 826; 42; 51]
Best 4 [2,555; 1,279; 51; 56] [2,555; 1,279; 5; 23] [954; 365; 24; 29] [4,259; 465; 30; 50]
Worst 6 [4,784; 1,919; 47; 54] [6,471; 1,919; 3; 18] [2,213; 575; 19; 29] [1,273; 547; 30; 46]

MA Median 14 1 [1,583; 1,204; 1; 11] [1,567; 859; 12; 18] [766; 851; 19; 48] [1,622; 1,110; 49; 52]
Best 4 [3,492; 1,179; 41; 60] [4,844; 1,179; 9; 17] [846; 447; 18; 22] [846; 447; 23; 40]
Worst 4 [2,075; 2,227; 51; 68] [522; 5,537; 17; 20] [56; 965; 21; 27] [1,437; 719; 28; 50]

MA Median 15 4 [7,103; 1,138; 1; 22] [1,657; 626; 23; 26] [1,657; 627; 27; 48] [3,635; 1,000; 49; 52]
Best 2 [1,773; 861; 49; 64] [2,041; 861; 13; 19] [1,023; 382; 20; 44] [1,023; 382; 45; 48]
Worst 8 [8,939; 2,256; 47; 72] [1,168; 776; 21; 35] [870; 776; 36; 41] [8,474; 1,439; 42; 46]

MA Median 16 6 [2,472; 1,853; 50; 70] [1,216; 517; 19; 38] [1,216; 517; 39; 42] [2,472; 1,854; 43; 49]
Best 2 [1,976; 984; 45; 63] [1,976; 417; 12; 18] [817; 287; 19; 39] [ 797; 417; 40; 44]
Worst 2 [5,348; 767; 49; 55] [2,188; 846; 4; 8] [2,050; 1,560; 9; 13] [1,379; 485; 14; 48]

MA Median 17 5 [6,390; 1,620; 50; 53] [6,390; 1,620; 2; 12] [6,390; 1,620; 13; 17] [6,742; 587; 18; 49]
Best 2 [2,017; 846; 51; 73] [474; 612; 22; 31] [474; 268; 32; 42] [724; 1,585; 43; 50]
Worst 2 [2,492; 400; 47; 53] [2,732; 1,180; 2; 19] [3,240; 232; 20; 30] [590; 759; 31; 46]

MA Median 18 4 [6,670; 1,551; 47; 56] [1,418; 2,309; 5; 15] [1,401; 2,359; 16; 19] [1,153; 513; 20; 46]
Best 2 [2,469; 662; 44; 66] [799; 747; 15; 21] [742; 269; 22; 28] [742; 269; 29; 43]
Worst 3 [1,935; 2,493; 48; 54] [1,784; 1,756; 3; 14] [3,567; 376; 15; 32] [3,567; 376; 33; 47]

B.2.3 Average Replenishment Strategy Results

In Table 15, the performance of the average replenishment strategy, which results from

averaging 10 optimal replenishment strategies produced by 10 MA executions with m = 4 for

all 18 different scenarios. Each of the columns TC Gap and FR Gap contains the percentage

deviation of the average strategy’s expected total cost (TC) and expected fill rate (FR) from

the average TC and FR of 10 optimal MA solutions in each scenario (i.e., TC and FR of

Average type solutions in Table 12 and 13).
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Table 15: Performance of average replenishment strategies that result from averaging 10 optimal MA
solutions in each scenario

Scenario TC FR
TC
Gap

FR
Gap

1 139,208 0.9974 28.67% 1.62%
2 138,073 0.9964 28.51% 1.44%
3 255,173 0.9984 58.20% 1.56%
4 234,695 0.9967 47.68% 1.38%
5 259,674 0.9922 28.71% 1.06%
6 362,356 0.9990 81.30% 1.74%
7 135,963 0.9953 21.60% 1.20%
8 145,924 0.9982 32.85% 1.61%
9 261,173 0.9990 49.95% 1.70%
10 216,343 0.9961 33.86% 1.42%
11 392,325 0.9996 82.75% 1.72%
12 296,895 0.9960 41.26% 1.44%
13 168,147 0.9994 51.15% 1.50%
14 157,443 0.9980 42.33% 1.53%
15 302,902 0.9999 74.45% 1.83%
16 193,580 0.9928 16.34% 0.97%
17 404,138 0.9990 38.86% 1.60%
18 391,522 0.9987 80.62% 1.68%

Average 46.62% 1.50%
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B.3 Numerical Analysis Results

B.3.1 Demand Seasonality Results

Table 16 contains the result of applying an optimal seasonal replenishment strategy

to compatible stationary demand. The experiment was conducted in both scenario 1 and

10, and the MA was executed for 10 times. The optimal seasonal strategy has been de-

termined by optimizing the inventory under seasonal demand and the Seasonal Demand

column contains the optimization results. Stationary Demand column contains the sea-

sonal strategy’s performance under stationary demand. Columns TC and FR contain op-

timal expected total cost and fill rate respectively. Columns SC,HC, PC, and RC include

the percentage contribution of the setup cost, holding cost, purchase cost and review cost

to the expected total cost TC. In Gap column, the seasonal strategy’s optimal perfor-

mance under seasonal demand is contrasted with its performance under stationary demand.

The gaps for TC and FR are computed by (TCstationary − TCseasonal)/TCseasonal × 100 and

(FRstationary−FRseasonal)/FRseasonal× 100, where TCseasonal and FRseasonal are the strategy’s

optimal total cost and fill rate under seasonal demand and TCstationary and FRstationary are

the strategy’s simulated total cost and fill rate under stationary demand.

Table 16: Results of applying seasonal policy to stationary demand

Scenario Type
Seasonal Demand Stationary Demand Gap

TC SC HC PC RC FR TC SC HC PC RC FR TC FR
1 Average 110,073 1.13% 54.12% 44.75% 0% 0.9822 119,001 0.632% 66.28% 33.10% 0% 0.9018 8.11% 8.19%

Median 108,061 1.12% 51.55% 47.25% 0% 0.9848 119,258 0.830% 56.80% 42.37% 0% 0.9153 10.36% -7.06%
Best 103,794 1.19% 51.88% 46.93% 0% 0.9806 107,532 0.850% 56.48% 42.67% 0% 0.8921 3.66% -9.02%

Worst 123,313 1.13% 54.51% 44.36% 0% 0.9855 134,743 0.709% 62.15% 37.14% 0% 0.9244 9.27% -6.20%
10 Average 166,595 1.80% 66.32% 31.87% 0% 0.9839 197,825 0.903% 79.19% 19.90% 0% 0.9079 18.75% -7.73%

Median 156,451 1.83% 66.03% 32.13% 0% 0.9830 211,709 1.003% 77.15% 21.84% 0% 0.9542 35.32% -2.92%
Best 148,526 1.94% 64.56% 33.50% 0% 0.9853 155,989 0.999% 76.99% 22.01% 0% 0.8860 5.03% -10.08%

Worst 207,898 1.80% 66.33% 31.87% 0% 0.9859 237,433 0.857% 79.76% 19.38% 0% 0.9634 14.21% -1.78%

Table 17 contains the result of applying an optimal stationary replenishment strategy to

compatible seasonal demand. The experiment was conducted in both scenario 1 and 10, and

the MA was executed for 10 times. The optimal stationary strategy has been determined

by optimizing the inventory under stationary demand and the Stationary Demand column

contains the optimization results. Seasonal Demand column contains the stationary strat-

egy’s performance under seasonal demand. In Gap column, the stationary strategy’s optimal

performance under stationary demand is contrasted with its performance under seasonal de-

mand. The gaps for TC and FR are computed by (TCseasonal−TCstationary)/TCstationary×100

and (FRseasonal − FRstationary)/FRstationary × 100.

Table 17: Results of applying stationary policy to seasonal demand

Scenario Type
Stationary Demand Seasonal Demand Gap

TC SC HC PC RC FR TC SC HC PC RC FR TC FR
1 Average 100,992 0.10% 77.15% 21.84% 0% 0.9834 98,955 0.98% 47.51% 51.50% 0% 0.9409 -2.02% -4.32%

Median 101,088 0.13% 46.12% 52.55% 0% 0.9825 99,207 0.96% 48.56% 50.47% 0% 0.9417 -1.86% -4.15%
Best 99,418 0.13% 47.18% 51.53% 0% 0.9816 95,983 0.95% 48.96% 50.08% 0% 0.9346 -3.46% -4.79%

Worst 102,509 0.12% 48.44% 50.29% 0% 0.9806 101,776 0.94% 49.57% 49.49% 0% 0.9466 -0.72% -3.47%
10 Average 150,359 2.18% 64.57% 33.24% 0% 0.9815 150,358 2.12% 65.64% 32.24% 0% 0.9434 0% -3.87%

Median 150,411 2.30% 62.72% 34.98% 0% 0.9812 150,327 2.19% 64.43% 33.37% 0% 0.9464 -0.06% -3.55%
Best 145,570 2.68% 63.38% 33.94% 0% 0.9830 144,837 1.95% 65.91% 32.14% 0% 0.9369 -0.50% -4.69%

Worst 155,272 2.55% 65.72% 31.73% 0% 0.9815 157,687 2.53% 65.64% 31.41% 0% 0.9492 1.55% -3.29%

Table 18 contains the result of applying a piece-wise strategy to handle seasonal demand.

The experiment was conducted in both scenario 1 and 10, and the MA was executed for
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10 times. The optimal piece-wise strategy has been determined by optimizing the reorder

policy for each season individually instead of jointly. In Non-anticipatory policy column

the piece-wise strategy’s performance in seasonal demand is contained. Optimal policy by

MA column contains the optimal results of the anticipatory seasonal strategies determined

by the MA. In Gap column, the pice-wise strategy’s performance is contrasted with the

performance of the optimal replenishment strategy by MA. The gaps for TC and FR are

computed by (TCpiece-wise − TCMA)/TCMA × 100 and (FRpiece-wise − FRMA)/FRMA × 100,

where TCpiece-wise and FRpiece-wise are the expected total cost and the expected fill rate of

the piece-wise strategy, while TCMA and FRMA are the optimal total cost and the fill rate

of the optimal strategy found by the MA.

Table 18: Results of piece-wise non-anticipatory policy

Scenario Type
Non-anticipatory policy Optimal policy by MA Gap

TC SC HC PC RC FR TC SC HC PC RC FR TC FR
1 Average 123,134 1.02% 58.92% 40.05% 0% 0.9882 110,073 1.13% 54.12% 44.75% 0% 0.9822 11.87% 0.61%

Median 123,082 1.16% 59.26% 39.56% 0% 0.9892 108,061 1.12% 51.55% 47.25% 0% 0.9848 13.90% 0.45%
Best 120,601 1.16% 59.27% 39.57% 0% 0.9887 103,794 1.19% 51.88% 46.93% 0% 0.9806 16.19% 0.83%

Worst 125,575 1.13% 60.87% 39.00% 0% 0.9841 123,313 1.13% 54.51% 44.36% 0% 0.9855 1.83% -0.14%
10 Average 187,726 1.61% 72.51% 25.88% 0% 0.9855 166,595 1.80% 66.32% 31.87% 0% 0.9839 12.69% 0.16%

Median 187,313 1.56% 72.18% 26.26% 0% 0.9859 156,451 1.83% 66.03% 32.13% 0% 0.9830 19.73% 0.30%
Best 180,048 1.58% 71.63% 26.78% 0% 0.9845 148,526 1.94% 64.56% 33.50% 0% 0.9853 21.22% -0.08%

Worst 192,356 1.80% 69.15% 29.05% 0% 0.9822 207,898 1.80% 66.33% 31.87% 0% 0.9859 -7.48% -0.38%

B.3.2 Cost Structure Results

Figure 47 shows the effects of different cost parameters on the total cost in scenario 10.

To help visualize the trend, we connected the median value of each box plot by a straight

line.

(a) Total cost for different cost parameters

(b) Coefficient of variation for different cost parameters

Figure 47: Results for different cost structure in scenario 10

Figure 48 illustrates the optimal review time for different review costs.
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Figure 48: Effect of review cost on optimal review time in scenario 10

B.3.3 Target Service Level Results

Figure 49 illustrates the effect of minimum target service level on the optimal expected

total cost in scenario 10.

Figure 49: Sensitivity results for target service levels in scenario 10

B.3.4 Planning Horizon Results

Figure 50 shows the expected total costs of 10 optimal replenishment strategies identified

by 10 independent MA executions for each different level of planning horizon in scenario 10.

Figure 50: Sensitivity results for planning horizon in scenario 10

B.3.5 Number of Seasons Results

Figure 51 shows the optimal expected total costs, coefficients of variation and compu-

tation times identified by 10 different MA runs for different number of seasons in scenario



B. COMPUTATIONAL RESULTS 107

10.

Figure 51: Sensitivity results for number of seasons in scenario 10
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B.4 Algorithm Testing Results

In this section, we evaluate the effectiveness of the proposed MA by analyzing the impact

of each operator. The testing experiments were conducted by isolating effect of the interested

operator from all other operators. As explained earlier in Section 5.5, we conducted the

experiments in scenario 1 and 10.

B.4.1 Resampling Method

To handle stochasticity of the considered inventory system, our MA uses a dynamic re-

sampling technique that dynamically determines the appropriate number of demand and

lead time scenarios for reducing the measurement noise to below a threshold standard error.

For a limited computational budget, the size of simulation sample (i.e., number of simu-

lated demand and lead time scenarios) is an important factor to the algorithm’s accuracy

and computational performance. In this section, we examine the accuracy of the proposed

resampling method by comparing with different types of noise handling techniques.

Single-sample simulation

The first comparison involves the MA performance without any kinds of resampling. In

this sub-experiment, we simulate only one randomly selected demand and lead time scenario

(i.e., single unique sequence of dt and Lt for t = 1, . . . , N) to estimate the expected total

cost and the fill rate of a replenishment strategy P .

Table 19 presents the bias of the optimal solution produced by the MA that estimates

the performance measures (i.e., expected total cost and fill rate) based on a single instance of

demand and lead time. For each of scenario 1 and 10, we executed the single-sample MA 10

times and identified the average, best and worst optimal solutions from those 10 solutions.

In the Single sample column, the estimated performance measures are presented from the

single-sample MA. The Dynamic sample column contains the performance estimation of

those single-sample optimal solutions using the proposed dynamic resampling technique.

The True value column contains the unbiased estimation of the solutions’ true performance

by simulating their performance 10, 000 different demand and lead time instances. The Gap

column compares the solution’s true value and the single-sample estimates of the expected

total cost and the fill rate. Any negative percentage gap indicates that the performance

measure (i.e., TC or FR) from the single-sample MA is higher than the true performance

measure.

Table 19: Simulation comparison of replenishment strategies identified by the single-sample MA

Single sample Dynamic sample True value

Scenario Strategy Sample TC FR Sample TC FR Sample TC FR
TC
gap

FR
gap

1 Average 1 101893 0.983 133 110064 0.969 10000 109739 0.97 -7.15% 1.34%
Best 1 90157 0.982 114 89573 0.960 10000 89440 0.958 -0.801% 2.51%

Worst 1 116633 0.983 199 137468 0.985 10000 137083 0.984 -14.9% -0.102%
10 Average 1 151972 0.986 214 188763 0.974 10000 190005 0.976 -20.01% -1.03%

Best 1 133780 0.980 124 139685 0.957 10000 139230 0.962 -23.70% -1.87%
Worst 1 172234 0.985 215 220966 0.98 10000 221315 0.98 -39.55% -0.51%

The estimation bias of optimizing for a single instance of demand and lead time is signif-
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icant for both symmetric (scenario 1) and asymmetric (scenario 10) seasonality cases. The

average size of the gap between the true performance value and the single-sample estimation

is large for both the expected total cost and the expected fill rate. In general, the optimal

strategy produced from the single-sample simulation is in fact more costly than the estima-

tion in single-sample (i.e., negative gap from its true TC) and its service level is significantly

worse than the simulated instance (i.e., positive gap from its true FR).

Deterministic simulation

A deterministic counterpart of the stochastic simulation model replaces any random vari-

ables with fixed deterministic values. Thus, the demand and lead time scenarios are not

randomly generated from their distribution. Instead, their mean value µt and 1/q is used.

Accordingly, resampling techniques are not necessary. However, estimating the performance

in the stochastic system with an analogous deterministic model may draw biased conclu-

sions. In Table 20, the optimal solutions found by the deterministic simulation are compared

to their true performances. The column True value contains the true performance measured

estimated by simulating the solution for 10, 000 different demand and lead time scenarios.

The columns TC gap and FR gap each contains the percentage deviation of the determin-

istic estimates to the true estimates. The Dynamic sample column contains the estimated

stochastic performance using the proposed resampling technique.

Table 20: Simulation comparison of replenishment strategies identified by the deterministic MA

Deterministic
simulation

Dynamic
sample

True value

Scenario Strategy Sample TC FR Sample TC FR Sample TC FR
TC
gap

FR
gap

1 Average 1 81665 0.981 175 94910 0.921 10000 94882 0.919 -13.9% 6.74%
Best 1 63205 0.980 130 66893 0.81 10000 67802 0.801 -6.78% 22.4%

Worst 1 102936 0.980 122 110600 0.942 10000 110763 0.943 -7.07% 4.26%
10 Average 1 142388 0.983 272 178219 0.923 10000 168046 0.923 -15.27% 6.5%

Best 1 85716 0.980 114 116434 0.886 10000 115642 0.881 -58.54% 11.2%
Worst 1 183337 0.982 369 231874 0.973 10000 233125 0.975 -63.23% 7.18%

Approximating the results of the stochastic simulation with the deterministic simulation

model generates an average 14% under-estimation of its true expected total cost and a 6.6%

over-estimation of its true fill rate.

Efficiency of proposed resampling method

Assuming that the true noiseless fitness value of a replenishment strategy can be obtained

by calculating its average performance under 10, 000 randomly generated demand and lead

time scenarios, we can approximate the gap between the ideal sample size and the sample

size of the proposed method. The ideal sample size was calculated by iteratively increasing

its sample size until the sample fitness value was within a 0.1% tolerance level from the

true fitness value. Our method, on the other hand, did not know the true fitness value and

determined the sample size until the standard error of the fitness value reached below the

threshold nthr = 1%. In Table 21 the average sample size required by the proposed dynamic

resampling method is compared to the ideal sample size for 1, 000 randomly generated re-

plenishment strategies. In Sample size standard deviation column, the standard deviation

of the sample size calculated by each method for 1, 000 random replenishment strategies are
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presented. It shows that the proposed resampling requires approximately 5.6 times more

samples than the ideal sample size.

Table 21: Accuracy comparison of the proposed resampling technique

Ideal sample Dynamic resampling Comparison

Scenario
Sample size
mean

Sample size
standard
deviation

Sample size
mean

Sample size
standard
deviation

Mean
sample size
gap

1 82.88 348.87 571.08 167.53 589.04%
10 84.78 338.74 532.64 162.10 528.26%

B.4.2 Fitness Function

In our MA, we adapted a Near-Feasibility Threshold (NFT) fitness function proposed

by Coit et al. (1996). The proposed form of fitness function is both dynamic and adaptive

to the optimization procedure. In this section, the benefit of using this particular fitness

function will be evaluated by comparing with another possible form of fitness function.

The simplest method of penalizing violation of the target service level is to use a constant

penalty coefficient (Deb, 2000). We refer to this type of function as static fitness function

because of the static value of penalty coefficient. While fixing the penalty coefficient con-

stant, a common approach to set the total penalty term in the literature is to reflect the

distance to feasibility (Deb, 2000). In our experiment, we use a simple difference between

the target level and the observed fill rate as a distance metric of the feasibility. Therefore,

the static fitness value of a replenishment strategy P takes the form

gSTATIC(P) = f(P) + CSTATICδ(P) (45)

where CSTATIC is a positive penalty coefficient imposed for constraint violation and 0 ≤
δ(P) ≤ 1 is the positive distance to feasibility, as defined in Equation (25). In our exper-

iment, we set a high CSTATIC value to heavily penalize infeasible solutions. CSTATIC is set

equal to 10 times the average total cost of the individuals in the initial population.

Figure 52 shows the optimization results by using the static fitness function and the

adaptive NFT function in scenario 1 and 10.
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(a) Optimal costs in scenario 1

(b) Optimal costs in scenario 10

Figure 52: Optimization results with the NFT and the static fitness functions

We conducted a standard t-test to determine if the difference between the optimal ex-

pected total costs from the NFT and the static fitness functions is significant. Table 22 shows

the results from the t-test. While the difference in scenario 10 is significant at 99% confidence

level (i.e., p-value 0.0087 < 0.01), it is not true in scenario 1 (i.e., p-value 0.0545 > 0.01).

Therefore, the adaptive NFT function makes mixed impacts on the final quality of the

optimal solution.

Table 22: Results of t-test for the NFT and the static fitness function

Scenario Function Samples Mean t p

1 NFT 20 108,369 -2.057 0.0545
Static 20 116,511

10 NFT 20 153,565 -2.943 0.0087
Static 20 116,511

Figure 53 show the average convergence of the optimal expected total cost identified by

the NFT and the static function during 10 MA executions in scenario 1 and 10. In order to

make a fair comparison we plotted the evolution of optimal expected total cost instead of

the fitness value, since in the latter case the results can be misinterpreted due to different

definition of the fitness function.
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(a) Average cost development in scenario 1 (b) Average cost development in scenario 10

Figure 53: Average convergence rate of the optimal expected total costs using the NFT and the static
fitness functions

The NFT function achieves significantly faster convergence than the static function,

especially during the first three generations. This is due to the dynamic penalty function

that allowed the algorithm to effectively explore the search space without boundaries in

early generations.

B.4.3 Initial Population Generation Method

An effective population initialization approach can remarkably accelerate convergence of

the optimization process and improve overall solution quality (Rahnamayan et al., 2007).

In our research, we produced initial population by developing a unique heuristic method

that incorporates the analytical model proposed by Axsäter (2015). In this section, we

examined the benefit of our initialization approach by comparing the quality of the initial

population generated by our approach to a random initialization procedure, which is the

most commonly selected approach in the literature (Rahnamayan et al., 2007; Janecek and

Tan, 2011).

Table 23 contains the experiment results for two different methods of population initial-

ization. For each of two scenarios, we generated 5 independent populations of 50 individuals

each. Two columns Randomization and Proposed method show the mean (µ) and the stan-

dard deviation (σ) of expected total cost (TC) and expected fill rate (FR) of the individuals

contained in the population, as well as the number of feasible individuals (nfeasible) out of

50 individuals.

Table 23: Simulation experiment for the performance of the population initialization method

Randomization Proposed method

Scenario Population µTC σTC µFR σFR nfeasible µTC σTC µFR σFR nfeasible
µTC

Gap
µFR

Gap

1 1 407334 96654 0.994 0.0197 46 292294 34641 0.999 0.000825 50 28% 0%
2 384235 116016 0.975 0.0722 41 285758 37971 0.999 0.000931 50 26% -2%
3 403138 95475 0.993 0.0196 46 288330 41004 0.999 0.000858 50 28% -1%
4 423218 110440 0.989 0.0355 45 295519 33970 0.999 0.00428 49 30% -1%
5 390440 130682 0.985 0.0311 41 296205 29301 0.999 0.000603 50 24% 0%

10 1 777655 197187 0.987 0.0598 46 439818 20330 0.985 0.00569 46 43% 0%
2 699083 197242 0.983 0.0424 41 437426 20802 0.981 0.034 45 37% 0%
3 687568 189517 0.98 0.0768 45 438664 18661 0.986 0.00605 46 36% -1%
4 756121 225309 0.991 0.0314 47 440101 22809 0.984 0.0053 47 42% 1%
5 708086 198846 0.988 0.0536 47 436116 27221 0.981 0.0336 48 38% 1%

One can observe that the proposed initialization method produces a better quality pop-

ulation than the pure random guess. For both scenarios, the average cost savings are sig-
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nificant (33.2%) and the proportion of feasible solutions is reasonably high: 90.6% of total

population were feasible.

We mention that the proposed experiment is intended to observe the direct impact only,

and not necessarily the indirect consequences of the proposed initialization method. Ob-

viously, generating a good quality initial population can make the search process converge

faster. Yet ironically, this may also increase the risk of premature convergence by neglect-

ing a lower quality solution in a better search space while appreciating the solutions that

are actually local-optima trapped in a highly multimodal search space. Nevertheless, our

algorithm applies a high number of generations (P ) and a powerful LSA to identify a more

desirable search space as the search progresses.

B.4.4 Local Search Algorithm

An important factor of the proposed MA is the LSA. The effectiveness of the LSA was

directly examined by comparing the performance of the MA with the LSA to the MA with-

out the LSA. As we applied the LSA to a subset of best individuals in each generation,

different sizes of the subset are examined.

In Figure 54, the optimal expected total costs for 10 different MA replications in Scenario

1 are presented for different number of individuals nLS that are improved by the LSA in

each generation: nLS ∈ {5, 10, 15, 20}. To visualize the benefit of the LSA, we also produced

the solutions from the MA without the LSA and plotted their expected total cost in “OFF”

category. The individuals for the LSA were selected randomly from the generation.

Figure 54: Test results for the LSA

Including the LSA reduced the expected total cost by more than 17%. Also, there is

a clear benefit of applying the LSA to more individuals in the population since applying

to 5 more individuals saved 5.56% of the expected total cost. However, the computation

time also increases significantly for an increasing number of LSA applications, increasing

approximately 2.5% of total CPU time for one more individual.

To achieve the best optimization performance, an appropriate subset of individuals need

to be selected for the LSA in each generation. We considered three types of individual subsets

with different sizes. The subset may consist of best (with the lowest fitness value), worst

(with the highest fitness value) or randomly selected nLS number of individuals, where nLS
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varies in the set {5, 10, 15, 20}. Figure 55 demonstrates the effects on algorithm performance

for each of these subsets.

Figure 55: Effect of the LSA with different number and type of individuals in each generation

It is not very evident for which class of individuals the LSA achieves the maximum

performance. However, applying the LSA to randomly selected individuals achieves the

smallest average cost variance, irrespective of how many individuals have been selected.

There are six different operators involved in the LSA and each of these operators has

different magnitude of impact on the optimal solution. To better understand which operators

obtain the most and the least improvement during the search, the percentage contribution

of each local operator has been graphically shown in Figure 56. The size of contribution

was estimated by the amount of total reduction in the fitness value of all solutions that

have been improved through the LSA. The graph shows the average improvement result of

scenario 1 and 10.

Figure 56: Average improvement of fitness value by each LSA operator

It is clear that three neighborhood operators: ChangeReviewTime, CopySeasons
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and StretchSeasons obtain the largest improvement in the fitness function, each con-

tributing an average 16%, 39% and 19% reduction of the fitness value during the LSA.

The effects of remaining three operators RearrangeSeasons, DragSeasons and DSPSA

are relatively small, attaining less than 10% average improve in the fitness value. How-

ever, all six operators still make positive contributions to the performance of the algorithm.

Furthermore, considering that the performance of each operator is dependent on the adjust-

ments made by its preceding operators, carelessly removing the operators that showed little

contributions may substantially deteriorate the algorithm’s final performance.
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