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Abstract

Mobile robot localization and mapping in unknown environments is a fundamental require-

ment for effective autonomous navigation. Three different approaches to localization and

mapping are presented. Each is based on data collected from a robot using a dense range

scanner to generate a planar representation of the surrounding environment. This exter-

nally sensed range data is then overlayed and correlated to estimate the robot’s position

and build a map.

The three approaches differ in the choice of representation of the range data, but all

achieve improvements over prior work using detailed sensor modeling and rigorous book-

keeping of the modeled uncertainty in the estimation processes. In the first approach, the

raw range data points collected from two different positions are individually weighted and

aligned to estimate the relative robot displacement. In the second approach, line segment

features are extracted from the raw point data and are used as the basis for efficient and

robust global map construction and localization. In the third approach, a new multi-scale

data representation is introduced. New methods of localization and mapping are developed,

taking advantage of this multi-scale representation to achieve significant improvements in

computational complexity. A central focus of all three approaches is the determination

of accurate and robust solutions to the data association problem, which is critical to the

accuracy of any sensor-based localization and mapping method.

Experiments using data collected from a Sick LMS-200 laser scanner illustrate the ef-

fectiveness of the algorithms and improvements over prior work. All methods are capable

of being run in real time on a mobile robot, and can be used to support fully autonomous

navigation applications.
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Chapter 1

Introduction

1.1 Motivation

Autonomous robot navigation has long been a goal of researchers for applications rang-

ing from military supply convoys, to space exploration, to autonomous highway driving.

A critical requirement of higher level navigation applications is that the robot has some

reasonable knowledge of its current position with respect to a fixed reference frame. For

example, in navigation applications that entail motion to a target position, the robot needs

an accurate estimate of its current position to plan a path to the goal and to confirm suc-

cess. Similarly, for exploration applications, position information can be used and recorded

to avoid redundant coverage. The process of position estimation with respect to a fixed

reference frame is defined as the localization of the robot.

A mobile robot can localize itself using two different classes of on-board sensors: pro-

prioceptive sensors and exteroceptive sensors. Proprioceptive sensors, such as encoders or

inertial measurement units (IMUs), measure the motion of the robot, acquiring data that

can be integrated to estimate relative robot displacement. This method of localization is

called odometry, or dead reckoning, and when used alone, the integrated error in global

position grows without bound over time.

Exteroceptive sensors, such as laser range scanners or cameras, take measurements from

the external environment. This data can be correlated at subsequent robot positions to

compute relative pose or displacement estimates, which can improve and sometimes replace

odometry. Externally sensed data may also be correlated with data from a global map,

giving a global position measurement and bounding the overall position error. If a global

map is not initially available, it is possible for the robot to build a global map with the
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externally sensed data, while using this map to localize. This approach is commonly called

simultaneous localization and mapping (SLAM).

This dissertation focuses on localization and mapping using exteroceptive sensors, so

the rest of the material is prefaced with a discussion of the several methods used to localize

a robot with externally acquired data.

One method of exteroceptive sensor–based localization involves modifying the environ-

ment through the placement of easily detectable and identifiable passive or active beacons

in known locations, which can then be used as references to triangulate the robot’s position

[MM92]. Global positioning system (GPS) based localization falls into this category, as the

known global reference map consists of the instantaneous positions of the satellites, and the

on-board exteroceptive sensor is the GPS receiver. The simplicity and improving accuracy

of GPS-based localization makes it popular for outdoor autonomous applications, but for

indoor applications, near tall buildings or high terrain, or in inclement weather, GPS sig-

nals can degrade significantly or drop out completely. For truly robust navigation, complete

reliance on GPS for localization, even in an outdoor environment, may not be adequate.

Another exteroceptive sensor-based localization method involves comparing the on-

board sensor data to a known map representing the geometry of the surrounding envi-

ronment. This map can be taken from a blueprint, satellite photos, or other previously

built map [BEFW97]. This method is more flexible but more complex than the artificial

beacon method, as the correlation of sensed data with the known global map requires a

non-trivial solution to the data association problem, while the beacon methods often ben-

efit from uniquely identifiable features by design. Though this localization method does

not require preconditioning of the environment through beacon placement, it is constrained

by the need for prior knowledge of the environment and is therefore not suitable for many

applications.

Alternatively, it is possible to develop a method which localizes the robot without any

prior knowledge or conditioning of the environment. In this case the map is created as

the robot navigates through the environment. This method is the most flexible in that it

requires no prior knowledge or restructuring of the environment, but it is also the most

difficult to implement efficiently and robustly. This problem has been the primary focus

of localization and mapping research in the last 20 years and has resulted in a range of

methods with different map representations and estimation schemes [Thr02].
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One early mapping method represents the map as an occupancy grid [Elf89]. As obsta-

cles are detected, the corresponding cell in the rasterized map is incremented to create a

gridded representation of the environment. In contrast, early work by Chatila and Laumond

[CL85] introduces a feature-based representation using polyhedra to describe the environ-

ment boundaries. Feature-based map representations are often more complex to construct

than grid-based maps, as the features need to be extracted from the raw data. Yet these

maps are not constrained in their precision like the grid maps, whose precision is limited

by choice of cell size. This means that a sparse feature map can hold a much more efficient

and accurate representation of the environment than a grid-based counterpart.

Of course, the data representation underlying these feature-based mapping methods can

vary drastically, and may depend on the type of external sensor or sensors being used. Some

algorithms use cameras as the primary sensor and use features extracted from camera frames

as the basis for mapping and localization [AF89, AH93]. Sonar range sensors [Cro89] are

commonly used, as are laser radar scanners or ladars [ABL+01]. A variety of feature types

have been developed for extraction from laser range scanner data. These include corners

[AMTS04], lines [CT99, AD04], principal components [VK99], or even the raw range data

points themselves [LM97b]. Multi-sensory methods also exist which merge and combine

information from both range and camera sensors [NTHS99, NW00].

The most successful schemes to estimate map coordinates and robot position have in-

volved probabilistic techniques. These schemes implement a SLAM approach where data is

collected from an uncertain position and assembled into a map while using that uncertain

map to assist in localization. Early work by Smith and Cheeseman [SC86] introduced a

probabilistic framework for map building and localization. One current SLAM technique

uses an expectation maximization (EM) algorithm to build the map and localize the robot

[TFB98]. This algorithm can be used to focus on robust determination of feature correspon-

dences [DSTT01]. Another common approach to SLAM uses Kalman filters to estimate the

robot position and build the map [RB00a, CMNT99, MDWD02, DDWB00].

There are three primary challenges common to localization and mapping methods, which

are the focus of this dissertation:

Problem 1) Sensor noise compensation: Without sensor noise, dead reckoning

would be a sufficient localization method. Unfortunately, small errors in dead reckoning

integrate and cause the position error to grow over time. Though external sensors can be
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used to help bound this error, these sensors also provide noisy measurements, which must

be addressed.

Problem 2) Data association accuracy: For methods that localize the robot using

external sensor information, it is necessary to establish correspondences between data col-

lected across different robot positions. If accurate correspondences cannot be determined,

then the sensor information is useless for localization. The details of the data association

problem differ between the approaches mentioned above, but it is essential for accurate

and robust localization and mapping. Data association is made especially difficult in the

presence of the sensor noise discussed above.

Problem 3) Robustness to unmodeled errors: In any real-world application there

will be events or sensory readings that are outliers when compared to normal operations. For

example, wheel slippage due to difficult terrain can cause unmodeled odometry error when

integrating wheel rotation. Also a closed door or moved table can introduce discrepancies in

external sensor measurements, which are far larger than can be explained by sensor process

noise. It is critical that localization methods be robust to, and recover from, these types of

unmodeled errors.

The following section summarizes the localization and mapping methods I have de-

veloped, and highlights how these methods contribute to the current state of research in

robotics.

1.2 Summary of Contributions and Related Work

I developed three exteroceptive sensor-based approaches to localization and mapping pre-

sented here. This work assumes planar motion of the robot in SE(2), with no prior knowl-

edge of the environment and no communication with beacons such as GPS satellites. The

primary sensor used in this work is a dense planar range scanner that returns range point

measurements of nearby obstacles. The range scanner is configured to collect data in a

plane parallel to the ground surface.

Chapter 2 introduces common methodologies used in these three approaches. Included

are introductions to the chi-square test, the maximum likelihood estimation technique, the

Kalman filter, and the Hough transform. Also in this chapter the primary sensors are

introduced, along with noise models and common frame transformations for the data.
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Chapter 3 introduces a weighted scan matching technique that uses dense laser range

scan data to compute relative position and orientation displacement of the robot. In the

standard unweighted scan matching approach by Lu and Milios [LM97b, LM97a], raw range

point data taken from two different robot positions is aligned to generate an updated es-

timate of the relative position and orientation displacement. The method first determines

a set of point pairs that correspond across the two sets of range point data. The method

then calculates the relative position and orientation displacement between the robot posi-

tions, which minimizes the sum of the distances between the range point pairs. Because

the true data association between points is unknown, an iterative technique is developed,

and the point correspondences are recalculated at each iteration-based on the closest point

technique. A reasonable initial guess is required so that the method will converge to an

accurate estimate

The weighted scan matching algorithm that I developed improves upon the standard

approach through rigorous individual noise modeling of the underlying sensing and geom-

etry. Modeling for the correspondence error between individual pairs of matching points

compensates for the fact that even if two scans are perfectly aligned, the points from dif-

ferent scans rarely sample the exact same spot in the environment. Such correspondence

error modeling also helps to reduce the effect of mismatched points in the displacement

estimate. This results in a more accurate displacement estimate and a more accurate co-

variance calculation for the estimation process. Improved covariance is especially important

for applications where the displacement estimate is fused with measurements from other

sensors [RB02].

The results presented in this chapter compare my weighted technique with the standard

unweighted approach, showing an improved accuracy in the overall displacement estimate,

and a greater robustness to poor initial displacement guesses.

Chapter 4 introduces a localization and mapping process-based on line segment features

extracted from the range scan data. The use of this type of feature-based representation

adds complexity to the computation (due to the extraction process), but enables more pow-

erful mapping and localization techniques than is possible using the point-based approach

of Chapter 3. Specifically, the features can be assembled into a line-based map and used to

globally localize the robot as part of a SLAM technique. While there are many line-based

approaches to localization and mapping [RB00b, MNRS97, BA00, GMR98], this work in-
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troduces significant contributions over prior methods. One contribution of my work is a

feature extraction method that takes into account detailed sensor models. Another set of

contributions involve techniques for feature correspondence and merging that enable prob-

abilistically sound localization and mapping using long line segment features. These long

line segment features are constructed by merging together features detected from multiple

positions. Unlike in prior work, the features can have a length of many times the maximum

range and field of view of the sensor and can span gaps in the environment. Also unlike prior

work, this method also enables effective feature correspondence and merging of short line

segment features, even lines with no length extracted from an isolated point. This allows

for accurate line segment approximation of curved edges and enables effective mapping and

localization using contours in the environment that aren’t strictly straight lines.

Like Castellanos and Tardos [CT99, CMNT99], my line segment feature representation

is based on the polar form of the line. This polar representation is augmented with end-

point position information. To extract the line segment features, I first use the Hough

transform [JC98, FLW95, IN99] to initially group collinear range scan points, then com-

pute an optimally fit line for the individually weighted points using a maximum likelihood

approach.

Some methods describe line segments as a pair of Cartesian endpoints [AF89], but a

polar representation enables a more straightforward comparison of the underlying infinite

line of different features. This allows for the merging of lines that do not necessarily share

common endpoints. Because of this approach, long lines can be assembled over multiple

scans. In addition, lines that span gaps in the segments (e.g., a set of lines representing a

long wall with open doors) can be merged.

The polar representation unfortunately introduces nonlinear effects caused by the cou-

pling between line orientation and position. Castellanos and Tardos compensate for these

effects in their localization and mapping methods by only considering lines that have a

low uncertainty in orientation. This has the effect of eliminating shorter lines, which tend

to have a higher orientation uncertainty. I have developed methods of feature comparison

and merging that adjust for the nonlinear effects, and allow for the inclusion of short, even

point-like line segments into the localization and mapping process.

The results of this chapter show the benefits of a feature-based approach over the point-

based approach introduced in Chapter 3. Data is also presented to highlight the benefits of
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a full data representation over the abbreviated feature set of Castellanos and Tardos.

Chapter 5 introduces a multi-scale approach to localization and mapping. There are

numerous examples of multi-scale feature extraction and matching methods in the vision

community [PM90, WRV98, KB01, Low99], but few approaches to mobile robot localization

and mapping have taken advantage of these methods. The few attempts at multi-scale data

processing for the purpose of mobile robot localization [MDWD02, PR98, TMK04, MT04]

focus mostly on noise reduction. They do not attempt the multi-scale feature extraction

and correspondence that allows for the significant computational gains demonstrated by my

method.

My feature extraction method uses a novel approach to a multi-scale Hough transform,

with some similarities to the work of Magli and Olmo [MO01]. The feature itself is a block

like feature where the width of the block relates to the scale of extraction. At a very

fine scale, a block with near zero width behaves like a line segment feature, as outlined

in Chapter 4. The extraction process uses the same sensor noise model as in the previous

chapters.

This chapter also introduces a method of establishing feature correspondences that take

into account the flexibility of feature description at the coarse scales, while allowing for

detailed matching when available. The map representation can be maintained in a tree

structure, which allows for significant performance improvements in data correspondence

through a tree-based search method.

Also introduced is a multi-scale approach to the “kidnapped robot problem”[Eng94], a

problem in which the robot loses knowledge of its position and must recover by relocalizing.

This novel multi-scale approach uses a coarse first search across the map for candidate

locations, and demonstrates substantial computational benefits for large maps.

The results in this chapter demonstrate use of the multi-scale approach to assist in

efficient data correspondence and robust localization. Results for a Kalman filter based

SLAM method are presented for multiple scales. The maps built using the SLAM method

are used as the reference for tests of the multi-scale approach to the kidnapped robot

problem. These multi-scale results do not have a directly comparable method, so most

analysis is done in comparison to single-scale feature methods.

Chapter 6 presents a summary of the results of each method and how each method

contributes to the challenges of sensor noise compensation, data association, and robustness.
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I also present a description of how these methods could be improved and extended in future

work.
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Chapter 2

Background

Several common methods used repeatedly in this work are introduced here. First the basics

of the chi-square hypothesis are reviewed, which is a critical component of my feature

correspondence methods. The maximum likelihood framework for parameter estimation is

then introduced, as well as the equations for the extended Kalman filter. Finally the Hough

transform based pattern detection method is described, which is the basis of the feature

extraction approaches used in Chapters 4 and 5.

2.1 Chi-Square Test

The chi-square test is a common method used to test the goodness of fit of a hypothetical

assumption. This test consists of the computation of a chi-square distributed random

variable D, corresponding to the measurement and model being tested. The value is then

compared with chi-square distribution probability tables to determine the probability that

the error seen would be generated by the given model. A threshold can be set such that

measurements that are determined to have a low probability of being generated by the

model result in the dismissal of the model hypothesis as false.

Given an n-dimensional random variable V and a measurement of this variable V̂ , the

assumption to be validated is that V has a zero mean, normal distribution with a covariance

represented by an n× n covariance matrix PV . The D2 value can be calculated as follows:

D2 = (V − V̂ )T (PV )−1(V − V̂ ). (2.1)

Note that with the assumptions of a normal distribution on the random variables, the
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value of D is equivalent to the Mahalanobis distance, which is a unitless distance metric

between random variables that is weighted by the relative uncertainty.

The threshold can then be set to a value χ2(P, n), determined by a chi-square distribu-

tion table, where n is the degrees of freedom and P is the probability that the given value V̂

of V could be generated by the model which has been assumed to be true. In my methods,

I set the threshold for a very low probability P as I don’t want to throw away a hypothesis

that has any reasonable chance of being true. The hypothesis can be invalidated if

D2 > χ2(P, n). (2.2)

It is important to note that while a high value of D2 does imply a low probability of model

accuracy, the converse is not necessarily true. Even in the case where a single measurement

exactly matches the model such that D2 = 0, one can only claim with any degree of

certainty that there is not a significant reason to abandon the model. The test alone does

not imply that there is a high probability of the model being accurate. The chi-square test

is an effective method of eliminating untrue hypotheses, but model validation methods may

require an additional, alternate test to detect and reduce instances of wrongly accepting a

false hypothesis.

2.2 Maximum Likelihood

The maximum likelihood (ML) method is a framework for parameter estimation given a set

of independent measurements of a random variable. In this method, a likelihood function is

defined as the product of the likelihood functions of each of n independent measurements.

Given a set of measurements {x̂1, ..., x̂n} and the parameters to be estimated g = g1, ..., gm

the likelihood function for each measurement can be represented as f(x̂i, g). The likelihood

function is then

L({x̂k}|g) = f(x̂1, g)f(x̂2, g) · · · f(x̂n, g). (2.3)

The goal is to determine the value of g that maximizes the likelihood function L. To do this

L is differentiated with respect to g and arrive at the following conditions for maximizing

the likelihood function:
∂L
∂g1

= 0, · · · , ∂L
∂gm

= 0. (2.4)
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It is often beneficial to consider the log of the likelihood function when determining these

partial derivatives as the likelihood and log-likelihood have the same extrema.

∂ ln(L)

∂g1
= 0, · · · , ∂ ln(L)

∂gm
= 0. (2.5)

2.2.1 A Simple ML Example

In a fundamental example of estimating the mean x of a normal distribution and measure-

ments {x̂1, ..., x̂n} each with variance σ, let g = x and compute the likelihood function as

follows:

L({x̂k}|x) =

(
1

σ
√

2π

)n
eM (2.6)

with

M =

n∑

k=1

−1

2

(
x̂i − x

σ

)2

. (2.7)

Then set the log of the likelihood function equal to zero and solve the partial derivative

with respect to x:

∂ ln(L({x̂k}|x))
∂x

=
∂M

∂x
= 0 (2.8)

n∑

k=1

(
x̂i − x

σ

)
= 0 (2.9)

x =
1

n

n∑

k=1

x̂i. (2.10)

The result is simply that the sample average of the measured values has the maximum

likelihood of being the true value of x. In this work, the same approach is used to address

more complex problems of parameter estimation.

2.3 Kalman Filter

The Kalman filter (KF) is a common tool used in localization and mapping procedures

for mobile robots [CMNT99, DDWB00]. Specifically the Kalman filter allows a method of

estimating the state of a robot, which can include both the robot’s position and orienta-

tion (or pose) as well as the positions of the sensory data of the surrounding environment

collected by the robot. The filter equations effectively bookkeep the uncertainties of the
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state variables and, with each update, the overall mean squared error is minimized. The

KF enables a simultaneous localization and mapping (SLAM) approach where the robot

builds the map while it uses this dynamically built map to localize.

The fundamental modes of the KF are propagation and update. Propagation occurs

as the robot moves with dead reckoning and the pose uncertainty increases according to

the propagation process noise. Updates occur when new measurements are made of the

environment and this information is incorporated into the filter resulting in a reduction of

overall uncertainty.

The primary assumptions for KF optimality are that the system is linear and all random

processes have a normal distribution. Due to the nonlinearities introduced by the coupling

between the orientation and position measurements, it is common to utilize the extended

Kalman filter (EKF) in SLAM implementations, which linearizes the KF equations but

relaxes the assumptions of optimality.

In discrete time the evolution of the state vector X is

X(tk) = fk(X(tk−1), u(tk−1), w(tk−1)) (2.11)

where f is a nonlinear function of the state X, the control inputs u and the process noise

w. Also consider a measurement z at time tk to be governed by

z(tk) = h(X(tk), v(tk)) (2.12)

where h is a nonlinear function of the state and measurement process noise v. The resulting

filter equations for the propagation step are

X̂k|k−1 = fk(X̂k−1|k−1)|uk−1, 0), (2.13)

Pk|k−1 = AkPk−1|k−1A
T
k +WkQk−1W

T
k . (2.14)

The estimate X̂k|k−1 represents the estimate of state X at step k given all sensed inputs up

to step k− 1, while the values of X̂k−1|k−1 and Pk−1|k−1 represent the state and covariance

estimates, respectively, at time step k − 1. As the actual value of w may not be known,

the propagation of the state is equivalent to the state evolution equation, Eq. (2.11), with
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zero process noise. Pk|k−1 is the covariance matrix for the state estimate where Ak and

Wk are Jacobian matrices of partial derivatives of f with respect to X and w. The update

equations for the EKF are

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + VkRkV

T
k

)−1
, (2.15)

X̂k|k = X̂k|k−1 +Kk(zk − h(X̂k|k−1, 0)), (2.16)

Pk|k = (I −KkHk)Pk|k−1, (2.17)

where Hk and Vk are the Jacobian matrices of partial derivatives of h with respect to X

and v calculated at each step k. The state and covariance is represented as X̂k|k and Pk|k,

respectively, and I is the identity matrix. See [WB95] for an overview of the derivation of

the general EKF equations.

2.4 Hough Transform

The Hough transform is a general pattern detection technique commonly used in machine

vision applications [DH72]. In this process, each of a set of scan points {~uk}, k = 1, ..., n

is transformed into a discretized curve in the Hough space and accumulated in a discrete

rasterized space. This is a voting scheme and the resultant peaks in the Hough space corre-

spond to patterns that “agree” with many points. Though the method can be generalized

to a wide range of patterns, the focus here is on the implementation as a line detector.

Consider an infinite polar line L with a normal distance to the origin, ρ, and a normal

angle, α, as shown in Figure 2.1. These parameters ρ and α define the dimensions of the

Hough space. Each point in the set of scan points is represented in Cartesian form with the

kth point ~uk = (xk, yk).

Define a Hough space H(i, j) as a two-dimensional raster with integer indices i and j and

define the discrete values in each dimension as α(j) and ρ(i), respectively. α(j) is discretized

in increments of Dα on the range [−π/2, π/2] and ρ(i) is discretized in increments of Dρ

on the range [−ρmax, ρmax] where ρmax is the maximum range value in the point set. The

{i, j} cell of the discretized Hough space therefore represents the range of line coordinates

[ρ(i) ±Dρ/2, α(j) ±Dα/2]. Initially the value at each cell in the Hough space is zero. For
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L

α

ρ

Figure 2.1: Infinite polar line L representation.

a given point, for all i, the position ρik of the line at angle α(i) can be calculated such that

the line would pass through point ~uk:

ρik = xk cos(α(i)) + yk sin(α(i)). (2.18)

From the value of ρik, determine the index j such that ρ(j) −Dρ/2 < ρik ≤ ρ(j) +Dρ/2.

Then increment the value at Hough space cell H(i, j). After multiple point inputs, the cell

in Hough space with the highest incremented value corresponds to the line that has the

most contributing points.
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Figure 2.2: Line representations through a single point in Cartesian space and Hough space.

Figure 2.2 shows the Hough transform of a single point v1. On the left, the point and

three lines that intersect that point are shown. On the right, the curve representing the

point in Hough space is shown. Also plotted are the three lines that are mapped to points

on the curve in Hough space. Figure 2.3 on the left shows two points and a single common

line intersecting both. The Hough space on the right shows the curve generated by each
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Figure 2.3: Line representation through two points in Cartesian space and Hough space.

point and the line determined by the peak of the Hough space at the intersection of the

curves.

In Section 4.3.1 the Hough transform is used to group collinear points and to extract

the initial guess for the line feature estimation method. In Section 5.3.1 I extend the basic

Hough transform to develop a multi-scale feature extraction method.

2.5 Sensors

My motive is to achieve effective mobile robot localization using onboard sensors. There are

two basic categories of sensors: proprioceptive and exteroceptive. Proprioceptive sensors

(such as encoders or IMUs) sense the motion of a robot and are the basis for odometry

or dead reckoning. Exteroceptive sensors (such as laser scanners or cameras) sense the

surrounding environment. In this work odometry is used as a proprioceptive sensor, and

a dense laser range scan is used as an exteroceptive sensor. In this section I outline the

geometric representation of the sensory signal, and the sensor signal uncertainty models

that will be referenced in subsequent chapters.

2.5.1 Odometry

I focus on mobile robots operating in planar environments. The configuration or pose of

the robot is defined as gi, where gi ∈ SE(2) denotes the robot’s position and orientation
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Figure 2.4: Geometry of the odometry process.

relative to a fixed reference frame, g0.

gi =




xi

yi

φi


 , (2.19)

where xi, yi, and φi are described in Figure 2.4. In this representation the robot heading is

denoted to be at angle φi such that the forward direction on the robot corresponds to the

positive x direction.

The odometry system generally estimates relative changes in the robot pose by inte-

grating over the internally measured motion of the actuators or the signals of an inertial

measurement unit (IMU). If the robot starts at pose i and moves to pose j the resulting

local displacement measurement with respect to pose i is denoted gij where

gij = g−1
i gj =




xij

yij

φij


 (2.20)

as seen in Figure 2.4. The value for gij is a random variable sampled from the robot

odometry system by integrating wheel velocity or from other methods of dead reckoning.

Odometry Noise Model

It is common to assume that the actuator or IMU noise is Gaussian, and with linear equa-

tions, gij will follow a Gaussian distribution. In any case, the covariance matrix of gij can



17

be defined as

Pgij
=




Pxx Pxy Pxφ

Pyx Pyy Pyφ

Pφx Pφy Pφφ


 . (2.21)

This is a general covariance matrix. The form of the actual covariance matrix depends

on the model of the odometry method being used. A simple, often used, model assumes the

noise in x, y, and φ is independent for a small displacement gij , in which case Pgij
simplifies

to

Pgij
=




σ2
x 0 0

0 σ2
y 0

0 0 σ2
φ


 , (2.22)

where the values σ2
x, σ

2
y and σ2

φ represent the variance in x, y and φ, respectively. As this

is represented in the robot local frame, the uncertainty in x corresponds roughly to the

uncertainty in the distance moved straight ahead while the uncertainty in y corresponds

to the possible side slip of the robot. In practice, over longer distances of integrating the

displacement, even small errors in odometry orientation estimation modeled by σ2
φ tend to

have a significant effect on the overall uncertainty of the robot pose due to the integration

of lever arm effects.

Given this representation for a local displacement and displacement covariance, the pose

transformations that are commonly used in localization and mapping methods are briefly

introduced.

Pose Transformations

Given an initial pose gi in the global frame and a measured displacement gij in a frame

local to gi, the current pose estimate gj can be calculated in the global frame as follows:

gj =




xj

yj

φj


 =




xi

yi

φi


+




cos(φi) − sin(φi) 0

sin(φi) cos(φi) 0

0 0 1







xij

yij

φij


 . (2.23)

Similarly, given two poses in the global frame gi and gj , the relative displacement be-
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tween them gij measured with respect to pose gi can be calculated as follows:

gij =




xij

yij

φij


 =




cos(−φi) − sin(−φi) 0

sin(−φi) cos(−φi) 0

0 0 1







xi − xj

yi − yj

φi − φj


 . (2.24)

Pose Covariance Transformations

Given an initial pose gi and covariance of that pose measurement Pgi
and a local displace-

ment measurement gij with local covariance Pgij
, the combined covariance Pgj

in the global

frame can be calculated as

Pgj
= QPgi

QT +KPgij
KT , (2.25)

where

K =




cos(φi) − sin(φi) 0

sin(φi) cos(φi) 0

0 0 1


 (2.26)

and

Q =




1 0 −y cos(φi) − x sin(φi)

0 1 −y sin(φi) + x cos(φi)

0 0 1


 . (2.27)

2.5.2 Range Scanner
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Figure 2.5: Geometry of the range sensing process.
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I assume that at a given pose, the robot measures the range to the boundary of its

nearby environment along rays that are separated by a uniform angle β. As outlined below,

I allow for various uncertainties in this range measurement.

Let the set of n scan points from a single pose be denoted by {~uk}, k = 1, . . . , n. The

scan point coordinates are described in the robot’s sensor frame, and thus the expression

for the kth scan point has the form

~uk = dk


cos θk

sin θk


 , (2.28)

where dk is the measured distance to the environment’s boundary in the direction denoted

by θk (see Fig. 2.5).

Range Scanner Noise Model

Range sensors can be subject to both random noise effects and bias. For a discussion of

bias, see [PKRB02]. Here I briefly review a general model for measurement noise. Recall

the representation of scan data in terms of polar coordinates (dk, θk) in Eq. (2.28). Let the

range measurement, dk, be comprised of the “true” range, dk, and an additive noise term,

εd:

d̂k = dk + εd. (2.29)

Also assume that error exists in the measurement of θ̂k, i.e., the actual scan angle differs

(slightly) from the reported or assumed angle. Thus,

θ̂k = θk + εθ, (2.30)

where θk is the “true” angle of the kth scan direction, and εθ is again an additive noise

term. Hence the measured point ~̂uk can be represented as

~̂uk = (dk + εd)


cos(θk + εθ)

sin(θk + εθ)


 . (2.31)

Zero bias assumption. I will first derive the scan point covariance with the assumption

of a negligible bias term in all random variable noise terms. In this case, the noise εd is
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assumed to be a zero-mean Gaussian random variable with variance σ2
d and the noise εθ is

assumed to be a zero-mean Gaussian random variable with variance σ2
θ (see, e.g., [AP96]

for justification). If I further assume that εθ � 1o (which is a good approximation for most

laser scanners), I can make the assumptions cos(εθ) = 1 and sin(εθ) = εθ. The measured

scan point ~̂uk can be thought of as consisting of the true component, ~uk, and the uncertain

component, δ~uk:

~̂uk = ~uk + δ~uk. (2.32)

Expanding Eq. (2.31) and using the relationship δ~uk = ~̂uk − ~uk yields

δ~uk = (dk)εθ


− sin θk

cos θk


+ εd


cos θk

sin θk


 . (2.33)

Assuming that εθ and εd are independent, the covariance of the range measurement process

for the kth range point is

Puk

4
= E[δ~uk(δ~uk)

T ]

=
(dk)

2σ2
θ

2


 2 sin2 θk − sin 2θk

− sin 2θk 2 cos2 θk


+

σ2
d

2


2 cos2 θk sin 2θk

sin 2θk 2 sin2 θk


 .

(2.34)

For practical computation, θ̂k and d̂k can be used as a good estimates for the quantities θk

and dk.

Nonzero bias assumption.

In the case of a sensor where the zero bias assumption does not sufficiently hold, a bias

term ~bk is added to Eq. (2.32):

~̂uk = ~uk + δ~uk +~bk. (2.35)

The term δ~uk is generally well modeled by a zero-mean Gaussian noise process as outlined

above in Eq. (2.33). The bias ~bk is an unknown offset that can be approximated by a term

~ok corrupted by a zero-mean additive Gaussian noise δ~bk [AP96]. The covariance of this

noise component reflects the level of confidence in the value ~ok:

~bk = ~ok + δ~bk. (2.36)
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In practice, the value of ~ok can be determined by statistical analysis of measurement data.

In Section 3.3.3 we outline in more detail an approach to incorporate these bias terms into

my weighted point-based localization methods.
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Chapter 3

Weighted Scan Matching

3.1 Introduction and Overview

This chapter introduces an algorithm to estimate a robot’s displacement from a pair of

dense range scans. This localization algorithm operates on the raw range scanner data

points. In later chapters, I will build on the methods developed here to present localization

and mapping algorithms that use higher level features, instead of the simple point range

data features used here. Here I focus primarily on the advantages of my “weighted” scan

matching algorithm compared to other methods used in the scan matching field.

Scan matching describes the process of correlating the raw range sensor points taken

from different poses to obtain an estimate of the displacement between the poses. This novel

algorithm takes into account several important physical phenomena that affect range sensing

accuracy, and that have been neglected in prior work. The experiments in Section 3.6 show

that this algorithm is not only efficient, but more accurate than nonweighted matching

methods, such as that of [LM97b]. In addition, by computing the actual covariance of

the displacements, the weighted matching algorithm provides the basis for optimal fusion

of these estimates with odometric and/or inertial measurements [RB02], and subsequently

supports localization and mapping tasks.

To best understand the content of this chapter and its contributions,. I first describe the

basic problem, then describe how the solution differs from previous ones, and the generality

of my approach.

The robot starts at an initial configuration, g1, and moves through a sequence of con-

figurations, or poses, gi, i = 2, . . . ,m. Here gi ∈ SE(2) denotes the robot’s position and

orientation relative to a fixed reference frame, g0. I assume that at each pose, the robot
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Figure 3.1: Geometry of the range sensing process. The robot acquires dense range scans
in poses i and j. The circles represent robot position, while the x-y axes denote the robot’s
body-fixed reference frames.

measures the range to the boundary of its nearby environment along rays that are separated

by a uniform1 angle, β (see Fig. 3.1). As described below, I allow for various uncertainties

in this range measurement.

Let the set of Cartesian coordinates of the ni scan points taken in the ith robot pose,

be denoted by {~uik}, k = 1, . . . , ni. The scan point coordinates are described in the robot’s

body fixed reference frame. Typically, the Cartesian coordinate of the scan point is derived

from range data according to the expression:

~uik =


x

i
k

yik


 = lik


cos θik

sin θik


 , (3.1)

where lik is the measured distance to the environment’s boundary along the k th measuring

ray. The measuring ray is oriented in the direction denoted by θ ik, where θik is the angle

made by the kth measuring ray with respect to the x-axis of the body fixed reference frame

(see Fig. 3.1).

The main goal is to accurately estimate the robot’s displacement between poses by

matching range data obtained in sequential poses. This displacement estimate can be used

as the basis for a form of odometry, or fused with conventional odometry and/or inertial

1The extension to non-uniform angle β is straightforward.
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measurements to obtain better relative robot pose estimates. These estimates in turn can

support localization and mapping procedures. First, assume that the range scans at poses

i and j have a sufficient number of corresponding points to be successfully matched (see

Section 3.4). Let {~uik, ~u
j
k} for k = 1, . . . , nij be the set of corresponding matched scan point

pairs, where nij is the number of corresponding pairs. From these pairs I first want to

estimate the relative displacement between poses i and j: gij = g−1
i gj = (Rij , pij), where

Rij =


cosφij − sinφij

sinφij cosφij


 ~pij =


xij
yij


 , (3.2)

i.e., the displacement between poses i and j is described by a translation (xij , yij) and a

rotation, φij .

Next, I consider the covariance, P ij, of the displacement estimate. This covariance has

two uses. First, it reflects the quality of the displacement estimates. Large diagonal elements

of the covariance matrix indicate increased uncertainty. Any localization process should be

aware of the level of confidence in its computed pose estimates. Second, the covariance is

also needed when combining displacement estimates with measurements provided by other

sensors. More accurate and realistic estimates of the contributing covariances lead to more

accurate overall estimates in a sensor fusion algorithm, such as a Kalman filter.

My approach differs from prior work in that the contribution of each scan point to

the final displacement estimate is individually weighted according to that point’s specific

uncertainty. The scan point uncertainties are estimated using sensor measurement noise

models as well as models of specific geometric issues within the matching process itself. To

better understand these issues, examine Figs. 3.1 and 3.2. Fig. 3.1 depicts the situation

when a range sensor (e.g., a laser range finder) samples points on a nearby wall. The

boundary points sampled in pose i are indicated by circles, and labeled by ~uik−1, ~u
i
k, and

~uik+1. The nearby boundary points sampled in pose j are indicated by X’s and are labeled

by ~ujk−1, ~u
j
k, and ~ujk+1. Prior range matching methods (e.g., [GG97, VRB02, Cox91])

have made the simplifying assumption that the range scans of different poses sample the

environment’s boundary at exactly the same points—i.e., point ~uik is assumed to be exactly

the same point as ~ujk, etc. This assumption is generally not true. In this chapter, I model

this correspondence error and incorporate this effect into the matching algorithm.
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Figure 3.2: Representation of the uncertainty of selected range scan points.

As described in Sections 3.3.1 and 3.3.3, the range measurements are corrupted by

noise and possibly a bias term that is a function of the range sensing direction, θ ik, and

the sensor beam’s incidence angle, αik (Fig. 3.1). Figure 3.2 shows the 95% confidence

level ellipses associated with the covariance estimates (calculated using the methods that

I will introduce later) of selected data points from an actual laser range scan. Clearly,

the wide variation in uncertainties seen in Fig. 3.2 strongly suggests that not all range

data points are of equal precision. Hence, this potentially large variability must be taken

into account in the estimation process. While the existence of these uncertainty sources

has previously been suggested [BB01, ABL+01, Cox91, Ada00, AP96], my algorithm is the

first to explicitly model and account for their effects within the estimation process. Some

prior work has no explicit noise modeling (e.g., [GG97]), or apply a uniform uncertainty to

all contributing points. The most complete existing methods [BB01] and [LM97a] employ

statistical methods to calculate displacement estimate uncertainty. These methods do not

take sensor uncertainty models into account in the displacement estimation process and

use an unweighted assumption for the contributing points. Also [BB01] and [LM97a] do

not use any specific sensor noise characteristics as a basis for calculating uncertainty but

instead use a numerical sample of perturbations to extract an estimate of covariance. I

am able to demonstrate significant improvements over previous unweighted methods by
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developing physically based uncertainty models for each individual point and incorporating

these models in both the displacement estimation process and the covariance calculation.

The principle behind this approach generally applies to any case of dense range data,

such as sonars, infrareds, cameras, radars, etc. The weighted matching formulation and its

solution given in Section 3.2 are independent of any sensor specifics. To use the general

results, specific models of sensor uncertainty are needed. Some detailed sensor models are

developed in Section 3.3. Since some of the assumptions underlying these sensor models are

best suited to laser range scanners, the application of the detailed sensor model formulas

is best suited to the use of laser scanners in indoor environments, though they can be

extended to structured outdoor environments. However, the general approach of Section

3.2 should work for other range sensors and other operating environments with reasonable

modifications to the sensor models.

This chapter is structured as follows: Section 3.2 describes a general weighted point

feature matching problem and its solution. Section 3.3 develops correspondence and range

measurement error models. Sections 3.4 and 3.5 summarize the point pairing selection and

sensor incidence angle estimation procedures. Experiments in Section 3.6 demonstrate the

algorithm’s accuracy, robustness, and convergence range. Direct comparisons with previous

methods (e.g., [LM97b, LM97a]) validate the effectiveness of the approach.

3.2 The Weighted Range Sensor Matching Problem

This section describes a general point feature matching problem and its solution.

3.2.1 The Measurement Model

Let the sets of Cartesian range scan data points acquired in poses i and j be denoted by

the {~̂uik} and {~̂ujk}, respectively. These measurements will be imperfect. Let {~uik} and {~ujk}
be the “true” Cartesian scan point locations. As discussed in Section 2.5.2 and Eq. (2.35),

range scan point measurements can generally be decomposed into the following terms:

~̂uik = ~uik + δ~uik +~bik

~̂ujk = ~ujk + δ~ujk +~bjk, (3.3)
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where δ~uik and δ~ujk represent noise or uncertainty in the range measurement process, while

~bik and ~bjk denote the possible range measurement “bias.” These noise and bias terms are

introduced in Section 2.5.2 and discussed in more detail with regard to the weighted sensor

matching problem in Section 3.3.3. Let (~̂uik, ~̂u
j
k) be points that are deemed to correspond in

the range scans at poses i and j. As shown in Fig. 3.1, these points are not necessarily the

same physical point, but the closest corresponding points. Accounting for the fact that scan

data is measured in a robot-fixed frame, the error between the two corresponding points is

εijk = ~̂uik −Rij ~̂u
j
k − pij (3.4)

for a given displacement (Rij , pij) between poses. Substituting Eq. (3.3) into Eq.(3.4)

results in

εijk = (~uik −Rij~u
j
k − pij)︸ ︷︷ ︸

(i)

+(δ~uik −Rijδ~u
j
k)︸ ︷︷ ︸

(ii)

+(~bik −Rij~b
j
k)︸ ︷︷ ︸

(iii)

. (3.5)

A relative pose estimation algorithm aims to estimate the displacement gij = (Rij , pij) that

suitably minimizes Eq. (3.5) over the set of all correspondences. If the dense range scans

do sample the exact same boundary points, then ~uik − Rij~u
j
k − pij = 0 when Rij and pij

assume their proper values. However, ~uik and ~ujk generally do not correspond to the same

boundary point. Hence, term (i) in Eq. (3.5) is the correspondence error, denoted by cijk :

cijk = ~uik −Rij~u
j
k − pij . (3.6)

The matching error εijk for the kth corresponding point is also a function of: (ii) the error

due to the measurement process noise, and (iii) the measurement bias error.

For the sake of simplicity, I ignore the bias offsets for now (i.e., I assume that ~bik = ~bjk=0),

but consider their effect again in Section 3.3.3.
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3.2.2 A General Covariance Model

For subsequent developments, a generalized expression must be derived for the covariance

of the measurement errors:

P ijk
4
= E

[
εijk (εijk )T

]
(3.7)

= E
[
(cijk + δ~uik −Rijδ~u

j
k)(c

ij
k + δ~uik −Rijδ~u

j
k)
T
]
,

where E[·] is the expectation operator, and I am ignoring bias effects for now. P ij
k captures

the uncertainty in the error between corresponding range point pairs. Because the range

measurement noise is assumed to be zero mean, Gaussian, and independent across measure-

ments, E[δ~uik(δ~u
j
k)
T ] = E[δ~ujk(δ~u

i
k)
T ] = 0. Practically speaking, one would expect the range

measurement noise of the kth scan point in pose i to be uncorrelated to the measurement

noise of the kth corresponding range point in pose j. Hence, this is a fine assumption in

practice.

The correspondence error, cijk , is generally a deterministic variable that is in turn a

function of the geometry of the robot’s surroundings. However, since I do not assume that

the geometry of the environment is known ahead of time, in this work I make a reason-

able probabilistic approximation to this term that accounts for the fact that the geometry

of the surroundings is a priori unknown. In this probabilistic approximating model, the

correspondence error and sensor measurement error terms are independent, and therefore

E[cijk (δ~uik)
T ] = E[cijk (δ~ujk)

T ] = E[δ~uik(c
ij
k )T ] = E[δ~ujk(c

ij
k )T ] = 0. See Section 3.3.2 for a

more detailed discussion.

With these assumptions, the covariance of the matching error at the k th point corre-

spondence of poses i and j becomes

P ijk
4
= E

[
εijk (εijk )T

]
= E

[
cijk (cijk )T

]
+E

[
δ~uik(δ~u

i
k)
T
]

+ RijE
[
δ~ujk(δ~u

j
k)
T
]
RTij

= CP ijk + NP ik +Rij
NP jkR

T
ij (3.8)

= Qijk +RijS
ij
k R

T
ij , (3.9)
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where

CP ijk = covariance associated with the approximating

correspondence error model

NP ik = measurement noise covariance of the kth scan

point in the ith pose

NP jk = measurement noise covariance of the kth scan

point in the jth pose

Qijk
4
= CP ijk + NP ik

Sijk
4
= NP jk .

The matricesQij
k and Sijk represent the configuration-independent and configuration-dependent

terms of P ijk . As shown below, the correspondence errors depend upon the sensor beam’s

incidence angle. The noise covariances will also generally be a function of the variables θ ik,

θjk, l
i
k, and ljk. Thus, the covariance matrix P ij

k would be expected to vary for each scan

point pair (see Figure 3.2 for an illustration). Hence, it is not suitable to assume, as in prior

work (e.g., [LM97a, LM97b]), that P ij
k is a constant matrix for all scan point pairs.

3.2.3 Displacement Estimation via Maximum Likelihood.

I employ a maximum likelihood (ML) framework to formulate a general strategy for estimat-

ing the robot’s displacement from a set of nonuniformly weighted point correspondences.

Let L({εijk }|gij) denote the likelihood function that captures the likelihood of obtaining the

set of matching errors {εijk } given a displacement gij . With the assumptions made above,

the k = 1, . . . , nij range pair measurements are independent 2 and therefore the likelihood

can be written as a product:

L({εijk }|gij) = L(εij1 |gij)L(εij2 |gij) · · · L(εijnij
|gij). (3.10)

2Possible dependencies of these measurements will be briefly considered in Section 3.3.2. Generally, the
only effect that will lead to dependence is possible couplings in the correspondence error that arise if the
geometry of the environment is a priori known.
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Recall that the measurement noise is considered to be a zero-mean Gaussian process. Fi-

nally, as it is shown in Section 3.3.2, the correspondence noise can be approximated by a

zero-mean Gaussian process. Neglecting the bias offset for the moment (see Section 3.3.3),

the above assumptions imply that L({εijk }|gij) takes the form:

L({εijk }|gij) =

nij∏

k=1

e−
1

2
(εij

k
)T (P ij

k
)−1ε

ij
k

2π
√

detP ijk

=
e−M

ij

Dij
, (3.11)

where M ij =
1

2

nij∑

k=1

(εijk )T (P ijk )−1εijk , (3.12)

Dij =

nij∏

k=1

2π

√
detP ijk . (3.13)

The optimal displacement estimate is the one that maximizes the value of L({εijk }|gij) with

respect to displacement. It is possible to use any numerical optimization scheme to obtain

this displacement estimate. Note however that maximizing Eq. (3.11) is equivalent to

maximizing the log-likelihood function:

ln[L({εijk }|gij)] = −M ij − ln(Dij) (3.14)

and from the numerical point of view, it is often preferable to work with the log-likelihood

function.

Before discussing the solution to this estimation problem, I first compare this formu-

lation with prior work. Most previous algorithms that take an “unweighted” approach to

the displacement estimation problem assume that all of the covariance matrices P ij
k are

uniformly the 2 × 2 identity matrix. Consequently, the maximization of the log-likelihood

function reduces to a standard least-squares problem. However, as Fig. 3.2 and the exper-

iments in Section 3.6 show, such a simplistic covariance approximation for all data points

is typically not a theoretically sound one. A scalar weighting term is allowed in [VRB02],

though no guidance was provided on how to select the value of the scalar.

The weighted estimation problem has some inherent structure that leads to efficiency in

the maximization procedure. Appendix A.1 proves that the optimal estimate of the robot’s

translation can be computed using the following closed form expression.
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Proposition 1 The weighted scan match translational displacement estimate, p̂ij, is

p̂ij = Ppp

nij∑

k=1

(
(P ijk )−1(~̂uik − R̂ij ~̂u

j
k)
)
, (3.15)

where R̂ij = R̂ij(φ̂
−
ij) is the estimated rotational matrix calculated with the current estimate

of the orientation displacement φ̂ij, and Ppp is given by the formula:

Ppp =

( nij∑

k=1

(P ijk )−1

)−1

. (3.16)

There is not an exact closed form expression for estimating the rotational displacement

φij . However, there are two efficient approaches to computing this estimate. In the first

approach, the translational estimate of Eq. (3.15) is substituted into Eq. (3.11) (or equiva-

lently, into Eq. (3.14)). Since the resulting expression is a function of the single variable φ ij ,

the estimation procedure reduces to numerical maximization over a single scalar variable

φij , for which there are many efficient algorithms.

Alternatively, one can develop (Appendix A.2) the following second order iterative so-

lution to the nonlinear estimation problem:

Proposition 2 The weighted scan match rotational displacement estimate is updated as

φ̂+
ij = φ̂−ij + δφ̂ij, where

δφ̂ij ' −
∑nij

i=1 p
T
k (P ijk )−1Jqk(∑nij

k=1 q
T
k J(P ijk )−1Jqk

) , (3.17)

where

J =


 0 −1

1 0


 ,

qk = R̂ij~̂u
j
k

pk = ~̂uik − p̂ij − R̂ij~̂u
j
k.

(3.18)

Using various experimental data, I have found that this approximation agrees with the exact

numerical solution up to 5 significant digits. However, the approximation is computationally

more efficient to implement.

3.2.4 The Algorithm and Its Initial Conditions

Props. 1 and 2 suggest an iterative algorithm for estimating displacement. An initial guess

φ̂−ij for φij is chosen. A translation estimate p̂ij is computed using Prop. 1. This estimate
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can be used with an exact numerical optimization procedure or with Prop. 2 to update the

current rotational estimate φ̂−ij. The improved φ̂+
ij is the basis for the next iteration. The

iterations stop when a convergence criterion is reached.

The initial guess, φ̂−ij , will usually be derived from an odometry estimate. However,

odometry is not necessary for the method to work. An open-loop estimate of the robot’s

displacement based on the known control inputs that generate the displacement will often

provide sufficient accuracy for an initial guess. I show in Section 3.6.1 that the algorithm’s

performance is not hampered by quite large errors in the initial value of the displacement

used as a seed for the algorithm. Note that if odometry does provides the initial guess, there

will be no correlation between the estimate arising from my scan matching algorithm and

the odometry estimate since the accuracy of the latter is not considered in the estimation

process. This simplifies subsequent fusion of these estimates that may be desired for some

applications.

I prefer an iterative algorithm for two reasons. First, nonlinear ML problems are suited

to iterative computation. Second, the correct correspondence between point pairs cannot

be guaranteed in the point correspondence problem (see Section 3.4). This is especially true

in the first few algorithm iterations, where some inaccurate initial pairings are unavoidable.

My iterative approach allows for continual readjustment of the point correspondences as

the iterations proceed.

3.2.5 Covariance of the Displacement Estimation Error

Letting p̃ij = pij − p̂ij, φ̃ij = φij − φ̂ij (i.e, p̃ij, φ̃ij are translational and the rotational

displacement error estimates), a direct calculation yields the following:

Proposition 3 The covariance of the displacement estimate is

P ij =


 Ppp Ppφ

Pφp Pφφ


 =


 E{p̃ij p̃Tij} E{p̃ijφ̃Tij}
E{φ̃ij p̃Tij} E{φ̃ijφ̃Tij}


 ,
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with

Ppφ =
1

rT

( nij∑

k=1

(P ijk )−1

)−1 nij∑

k=1

(
(P ijk )−1Jqk

)
(3.19)

Pφp = P Tpφ (3.20)

Pφφ =
1

rT
(3.21)

rT = −
nij∑

k=1

qTk J(P ijk )−1Jqk (3.22)

and Ppp is given by Eq. (3.16).

The proofs for Prop. 3 are given in Appendix A.3. For a given sensor, one must derive

appropriate uncertainty models, which are then substituted into the above procedure.

Note 1: The matrix −J (P ij
k )−1 J = 1

det(P ij
k )

P ijk in Eq. (3.22) is a positive definite

matrix and therefore Pφφ is a positive number.

Note 2: From Eqs. (3.21) and (3.22), and assuming bounded covariance (‖(P ij
k )−1‖ <

K , 0 < K <∞), it follows that

lim
‖~̂uj

k‖→∞
Pφφ = lim

‖qk‖→∞
Pφφ = 0.

This result leads to the following corollary:

Corollary 4 Matching of distant features (in the limit features at infinite distance from

the current location) minimizes the expected error in the orientation displacement estimate.

In the limit, the relative orientation error is zero.

Note 3: Since all matrices P ij
k , k = 1, . . . , nij, in Eq. (3.16) are positive definite, the

covariance of the translational estimate, Ppp, can be written as

(Ppp)
−1 =

nij∑

k=1

(P ijk )−1 > (P ijk )−1 ⇔

Ppp < P ijk , k = 1, . . . , nij . (3.23)

Here I used the notation X > Y to indicate that the difference X − Y is a positive definite

matrix. Eq. (3.23) leads to the following corollary:
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Corollary 5 Let U ij = mink=1,...,nij
P ijk denote the minimum covariance over all corre-

sponding point pairs. The translational covariance estimate Ppp given by Eq. (3.16) is

bounded above by U ij: Ppp < U ij.

This corollary states that the covariance of the translational estimate will always be less

than the best single covariance associated with any corresponding point pair.

3.3 Scan Matching Error/Noise Models

In order to derive explicit expressions for the covariances of Eq. (3.9), this section develops

models for the errors inherent in the range scan matching process. Most of the models are

quite general, though I do make a few assumptions at some points that are most appropriate

for laser range scanners.

3.3.1 Measurement Process Noise

Many range sensing methods are based on the time of flight (e.g., ultrasound and some

laser scanners) or modulation of emitted radiation [AP96, ABL+01]. The circuits governing

these measurement methods are subject to noise. These effects often can be well-modeled

in a simple way, enabling the simple computation of the covariance contributions NP ik and

NP jk . In Section 2.5.2 I derive a model for general range scan point process noise. I use Eq.

(2.34) with a zero bias assumption to define the values of the two noise terms as

NP ik =
(dik)

2σ2
θ

2


 2 sin2 θik − sin 2θik

− sin 2θik 2 cos2 θik


+

σ2
d

2


2 cos2 θik sin 2θik

sin 2θik 2 sin2 θik


 , (3.24)

NP jk =
(djk)

2σ2
θ

2


 2 sin2 θjk − sin 2θjk

− sin 2θjk 2 cos2 θjk


+

σ2
d

2


2 cos2 θjk sin 2θjk

sin 2θjk 2 sin2 θjk


 , (3.25)

where dik and djk are the range vales to the kth scan points sensed from pose i and pose j,

respectively. Similarly, θik and θjk are the heading values for these scan points. I define σ2
d

and σ2
θ as the variance terms in range and angle for the modeled range sensor.
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3.3.2 Correspondence Error

Here I analyze the correspondence error described in Section 3.2.1. I then derive a prob-

abilistic approximation to this error. My derivation assumes that the sensor beam strikes

an environmental boundary that is locally a straight line segment (Fig. 3.1). However, this

derivation can be extended to other boundary geometries, or it can serve as an excellent

tangent approximation for moderately curved boundaries.

I first develop a formula for the maximum possible correspondence error that can occur

due to the fact that the exact same boundary points are not sampled in two successive

range scans. Consider how nearby scan points will be matched in the vicinity of points ~̂uik

and ~̂ujk in Fig. 3.1. Let

δi+ = ||~̂uik+1 − ~̂uik||, δi− = ||~̂uik − ~̂uik−1|| (3.26)

denote the distance to the adjacent scan points (from pose i’s scan) near the candidate

matching point ~̂uik (see Fig. 3.1). Similarly, let δj+ = ||~̂ujk+1 − ~̂ujk|| and δj− = ||~̂ujk − ~̂ujk−1||
denote the distances to the adjacent scan points (from pose j’s scan) near the candidate

matching point ~̂ujk. The maximum distance (or error) between any pair of points that are

chosen to be in correspondence will be half of the minimum distance between adjacent scan

points. If the error is greater than this value, the point will be matched to another point,

or it will not be matched at all. On average, this error will be the minimum of (δ i+ + δi−)/4

or (δj+ + δj−)/4. Simple geometric analysis of Fig. 3.1 shows that

δi+ + δi−
4

=
lik sinβ

4

[
1

sin(αik + β)
+

1

sin(αik − β)

]

=
lik sinβ

2

[
sinαik cos β

sin2 αik − sin2 β

]
. (3.27)

Substituting j for i yields the analogous formula for (δj+ + δj−)/4.

I now propose a probabilistic model for the correspondence errors, and develop explicit

formulas for its first two moments. For simplicity, and without loss of generality, let the

robot be situated so that δi++δi− < δj++δj− (i.e., the correspondence error is defined by pose

i). Recall the correspondence error formula of Eq. (3.5): cijk = ~uik − Rij~u
j
k − pij. Letting

x be the position along the boundary relative to ~̂uik, the correspondence error is locally a
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function of x. With no correspondence error, x = 0. Since the correspondence error is

locally collinear with the boundary’s tangent, let µijk = cijk · tk be the projection of cijk onto

the unit boundary tangent vector, tk, at ~̂uik. The vector tk is positive pointing from ~̂uik to

~̂uik+1. Hence, µijk is a signed quantity, and cijk = µijk tk. The expected value (mean) of the

error in the interval x ∈ [−δi−, δi+] is

E[µijk ] =

∫ δi
+

−δi
−

µijk (x)P(x)dx, (3.28)

where P(x) is the probability that the kth scan point from pose j will be located at x.

I assume that the geometry of the robot’s surroundings is not previously known. There-

fore, it is not possible to know a priori the probabilistic distribution of the correspondence

errors, P(x). I reasonably assume that P(x) has an a priori uniform probability. That is,

the scan point ~̂ujk that is matched to ~̂uik could lie anywhere in the interval [−δi−, δi+] with

no preferred location. Hence P(x) = 1/(δi+ + δi−). Realizing that µijk (x) = x in the interval

[−δi−, δi+], evaluation of Eq. (3.28) yields

E[µijk ] =
(δi+)2 − (δi−)2

δi+ + δi−
= δi+ − δi−

= −2
lik sin2 β cosαik
sin2 αik − sin2 β

. (3.29)

Note that when the incidence angle is not normal (αik 6= 90o), the mean is non-zero. How-

ever, since the mean is proportional to sin2 β, this term is negligible when the magnitude

of β is small. Hence, the correspondence error can be practically considered to be a zero-

mean quantity when β is small (this holds for the experiments described in Section 3.6).

To compute the variance of the correspondence error (using the zero-mean assumption),

E[(µijk )2] =

∫ δi
+

−δi
−

x2

δi+ + δi−
dx =

(δi+)3 + (δi−)3

3(δi+ + δi−)
. (3.30)

Letting ηik = αik + θik, and keeping the above results in mind, the covariance of the corre-
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spondence error, CP ik of Eq. (3.9), can be found as

CP ik = E[cijk (cijk )T ] = E[(µijk )2]tkt
T
k (3.31)

=
(δi+)3 + (δi−)3

3(δi+ + δi−)


 cos2 ηik cos ηik sin ηik

cos ηik sin ηik sin2 ηik


 .

Note that this expression is a function of the sensor beam’s incidence angle, αik. In Section

3.5 I discuss how to estimate this quantity from the range scan data.

Because I do not want to assume prior knowledge of the environment’s geometry, I

consider the correspondence errors to be independent. This assumption is conservative in

that there is no assumption of structure in the environment beyond the immediate geometry

of the local point pairs. It would be possible to predict subsequent correspondence errors

along a wall (or other regular geometric structure) given the knowledge that the subsequent

corresponding point pairs did indeed come from the same exactly straight wall. With a

proper line fitting method (e.g., see [PRB03]), the correlations between correspondence

errors could be estimated from the line fitting method’s uncertainty model.3

In general, knowing that adjacent corresponding pairs lie along a common wall will

significantly reduce the magnitude of Eq. (3.30), which in turn will lead to lower variances

for most of the points along the wall. In this case, the correspondence error variance becomes

dominated by the uncertainty in the wall’s geometry, which in turn is a function of the line

fitting method. These effects can fit easily within my framework if desired, leading to even

better displacement estimates and tighter estimate covariances. However, I choose to take

a conservative approach where it is not assumed that the robot’s surrounding geometry is a

priori known. Moreover, since the reduction in uncertainty will only occur for points along

one line (or other geometric feature), in even modestly complex environments, the amount

of precision to be gained by using this approach is unlikely to be worth the complexity of

implementing these more advanced methods.

3.3.3 Measurement Bias Effects

Range measurement bias is an artifact of some range sensing methods (e.g., see [AP96]).

Since bias models will strongly depend upon the given range sensing method, it is not

3In the case of correspondence error correlations, the likelihood model of Eq. (3.10) will no longer take
a product form. The form of the likelihood model in this case will depend upon the line fitting method.
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possible to give a complete summary of bias models for common sensing methods. Instead,

I consider a general approach for calculating the effect of bias on the displacement estimate.

As introduced in Section 2.5.2, Eq. (2.36), the point bias approximations ~bik and ~bjk can

be decomposed into the following form:

~bik = ~oik + δ~bik;
~bjk = ~ojk + δ~bjk. (3.32)

To analyze the bias effect, let ε̃ijk
4
= εijk + õijk , where õijk = ~oik−Rij~o

j
k is the total constant

bias offset effect at the kth correspondence, and εijk is the previously defined matching error

(that ignored the constant bias term). Incorporating the bias offsets, the likelihood function

takes the form

L({ε̃ijk }|gij) =

nij∏

k=1

e−
1

2
(ε̃ij

k −õij
k )T (P̃ ij

k )−1(ε̃ij
k −õij

k )

2π
√

det P̃ ijk

, (3.33)

where P̃ ijk is the covariance matrix with bias uncertainty taken into account:

P̃ ijk = Q̃ijk +RijS̃
ij
k R

T
ij , (3.34)

where Q̃ijk = Qijk + BP
i
k and S̃ijk = Sijk + BP

j
k, with BP ik = E[δ~bik(δ

~bik)
T ] and BP jk =

E[δ~bjk(δ
~bjk)

T ]. That is, the covariance formula is updated to include uncertainty in the

bias term. To obtain these results, it is again assumed that the bias noise is uncorrelated

with the range measurement noise and the correspondence error (since variance in bias is

typically a function of the variability of the surface properties, rather than measurement

noise).

Following the derivations that lead to Prop. 1, one can show that the translation

estimate in this case is

p̂ij = P̃pp

nij∑

k=1

(
(P̃ ijk )−1(~̂uik − R̂ij ~̂u

j
k + õijk )

)
. (3.35)

Formulas analogous to Eq. (3.17) can be derived for the orientation estimate as well. The

previous covariance formulas take the same structure, with Qij
k and Sijk modified to Q̃ijk

and S̃ijk (i.e., to include possible bias uncertainty terms). Clearly, Eq. (3.35) shows that
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bias effects can influence the displacement estimate. However, bias models can be used to

compensate for bias effects in the estimate.

3.4 Selection of Point Correspondences

The focus of this work is to improve displacement estimation via more accurate consid-

erations of the noise and uncertainty inherent in the estimation process. However, the

displacement estimation process clearly depends upon the ability to successfully match cor-

responding points from range scans taken in adjacent poses. In order to isolate the benefits

of my estimation method, I use a simple “closest-point” rule similar to the one in [LM97b].

Given two scan sets {~̂uik} and {~̂ujk}, the outliers are removed in the first step. These are

the points visible in one scan, but not in the other (see [LM97b] for details). After removing

the outliers, the algorithm attempts to find correspondences between scan point pairs in

the two poses. For every point in pose i, the algorithm searches for a corresponding scan

point in pose j that satisfies a range criterion: the corresponding point must lie within a

given distance: ||~̂uik− ~̂u
j
k|| < d. If no points in pose j satisfy this criterion, then the point is

marked as having no correspondence. The parameter d is initially set at a value defined by

the error in the initial translation estimate (e.g., the estimated odometry error). Thereafter,

to speed convergence, d is monotonically reduced to a value whose order is the maximum

point error predicted by my noise model.

It is also possible to establish point correspondences based on a chi-square analysis of

point pairs using the detailed sensor noise models already computed in my method. Though

this approach shows promise, in my experimental tests I chose to isolate the estimation

benefits of my work. Because unweighted scan-matching methods lack the uncertainty

models to perform a chi-square based point correspondence determination process, I present

and compare results using the “closest-point” method for all tests, as this leads to the fairest

comparison procedure.

3.5 Estimating the Incidence Angle

The correspondence error model of Section 3.3.2 assumes knowledge of each scan point’s

incidence angle. While any method of incidence angle estimation can be used, I have chosen
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a method that estimates the local geometry of the scan points using a Hough transform. The

Hough transform [DH72] is a general pattern detection technique that we use to determine

an estimate of the supporting line segment about a point. The incidence angle can then

be estimated from the configuration of the line segment. In the general Hough transform

line finding technique, each scan point {xk, yk} is transformed into a discretized curve in

the Hough space. The transformation is based on the parametrization of a line in polar

coordinates with a normal distance from the line to the origin, dL, and a normal angle, φL

dL = xk sin(φL) + yk cos(φL). (3.36)

Values of φL and dL are discretized with φL ∈ {0, π} and dL ∈ {−D,D}, where D is the

maximum sensor distance reading. The Hough space is comprised of a two-dimensional hash

table of discrete bins, where each bin corresponds to a single line in the scan point space.

For each scan point, the bins in Hough space that correspond to lines passing through that

point are incremented. Peaks in the Hough space correspond to lines in the scan data set.

As the bins in the Hough space are incremented, a history of the contributing scan point

coordinates is maintained in the bin, so that when a peak is determined to represent a line,

the contributing set of points can be recovered. The incidence angles can then be estimated

for every point in the line.

The algorithm is only precise up to the level of discretization chosen for the line pa-

rameters. Both computational complexity and the memory needed for the hash table grow

with finer discretization so it is important to establish a reasonable balance between pre-

cision and computing resources. For my implementation I found a line angle measurement

precise to the nearest degree to be adequate for incidence angle estimation. Discretization

in distance was set to 10 mm, though this choice of this value is less significant as I am only

using the orientation of the fit lines.

The Hough transform is not limited only to straight line detection. It can also be used

to detect and fit simple curves such as circles and ellipses and even arbitrary shapes [Bal81].

The tangent vectors to these curves (and subsequently the incidence angle) can then easily

be estimated from the transform. For most indoor environments the line fitting method is

sufficient to determine incidence angles. More accurate line fitting methods (e.g., [PRB03]

and references therein) can be used to get more accurate estimates of incidence angle, but
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the extra computation is typically not balanced by sufficiently better estimation accuracy.

For points that are not found to be clustered into a line, an incidence angle estimate

is not calculated. These points are weighted only according to the computed measurement

noises such that the covariance of the matching error at the k th point correspondence of

poses i and j from Equation (3.8) becomes

P ijk
4
= NP ik +Rij

NP jkR
T
ij, (3.37)

where the correspondence covariance estimate CP ijk has been dropped.

3.6 Scan Matching Experiments

I implemented my method on a Nomadics 200 mobile robot equipped with a Sick LMS-

200 laser range scanner. This sensor measures the range to points in a plane at every

half degree over a 180-degree arc, as seen in Figure 3.2. For the purpose of comparison,

I implemented an unweighted least-squares scan matching algorithm analogous to that of

Lu and Milios [LM97b], hereafter called the “UWLS.” Both the weighted and unweighted

estimation algorithms used the same point correspondence algorithm so that the comparison

could fairly focus on the relative merits of both estimation schemes. Section 3.6.1 compares

the robustness and accuracy of the algorithms in four different environment geometries.

Section 3.6.2 compares results from two longer runs. Section 3.6.3 presents the estimated

computational costs of the algorithms. My experiments used the values β = 0.5o, σl = 5

mm, and σθ = 10−4 radians obtained from the Sick LMS-200 laser specifications.

3.6.1 Robustness and Accuracy Comparisons

The experiments reported in this section focus on two aspects of estimation performance:

the robustness with respect to errors in the initial displacement estimate that seeds the

iterations of the algorithm, and the accuracy of the displacement estimates. A more robust

algorithm can successfully recover from a wider range of errors in the initial displacement

guess. In practice, such errors in the initial displacement estimate come from large odometry

errors, or might arise in the absence of odometry when the initial guess is provided by an

open loop estimate of the robot’s motion response.
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Unperturbed Trial: Unperturbed Trial:
Final Error in Final Error in
Position (mm) Orientation (mrad)

Test Weighted UWLS Weighted UWLS

Fig 3.3 0.19 1.33 0.23 8.8
Fig 3.4 1.5 3.6 0.43 1.4
Fig 3.5 2.5 9.8 0.57 16.0
Fig 3.6 1.8 4.1 0.0334 0.31

Table 3.1: Errors in position and orientation for unperturbed trials.

Percentage of Converged Trials: Converged Trials:
1,525 Perturbed Average Error in Average Error in
Trials Converged Position (mm) Orientation (mrad)

Test Weighted UWLS Weighted UWLS Weighted UWLS

Fig 3.3 91.0% 64.9% 0.63 1.8 0.79 8.6
Fig 3.4 82.0% 56.9% 1.8 6.0 0.67 2.6
Fig 3.5 95.5% 31.2% 2.5 11.1 0.57 16.0
Fig 3.6 75.1% 3.0% 3.1 14.5 0.0392 0.47

Table 3.2: Statistics for perturbed trials in the robustness and accuracy comparison tests.

To test for robustness, I ran each algorithm through multiple trials with the same pair

of scans, each time only perturbing the initial displacement guess. Some initial guesses were

sufficiently poor that the algorithm converged to an erroneous solution. An estimate was

deemed successful when the true measured displacement lay within the 3σ deviation range

as defined by the algorithm’s calculated covariance (the UWLS covariance was calculated

using the formula given in [LM97a]). The initial displacements ranged from 0 to 600 mm

at 8 radial directions (every π/4 radians) at increments of 200 mm in position, and ranged

from -0.6 o 0.6 radians in orientation, at increments of 0.02 radians. For each of the 25

discrete initially perturbed positions, I tested 61 initially perturbed orientations to generate

1,525 unique initial condition perturbations. These perturbations were added to the true

displacement to create initial conditions for the 1,525 trials for each algorithm and each

environmental condition described below.

I also compared the overall accuracy of each algorithm’s displacement measurement.

The true displacements were measured by hand with an uncertainty of less than 2 mm in

displacement and 0.002 radians in orientation. I ran this robustness and accuracy test over

four different scan pairs.
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Figure 3.3: A) Experiments with initial displacement perturbations between scans taken at
a single pose. B) Close-up of robot pose with results.

Single Pose Test

The first experiment shown in Fig. 3.3 tests for robustness and accuracy while isolating the

effects of my modeling of the point correspondence error (Section 3.3.2). In this test, two

scans were taken from the exact same robot pose (i.e., the robot was not moved between

scans), with one scan comprised only of the even scan points and the second scan comprised

only of the odd scan points. In this way, correspondence errors are artificially introduced

into the two scans.

The two scans and the initially perturbed positions are shown in Fig. 3.3A. The dis-

placement estimates of the successfully converged estimates are shown in Fig. 3.3B. The

results of the two runs with unperturbed initial guesses are shown with boldfaced markers,
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along with the 3σ uncertainty boundary of these estimates (shown as dashed ellipses). Of

the 1,525 runs with initial displacement perturbations, my algorithm converged successfully

in 91.0% of the cases while the UWLS algorithm was successful in 64.9% of the cases. The

average error for successful weighted estimates was 0.63 mm and 0.00079 radians while the

average error for successful UWLS algorithm estimates was 1.8 mm and 0.0086 radians.

The error for the case when the initial displacement guess was unperturbed was 0.19 mm

and 0.00023 radians for my weighted algorithm and 1.33 mm and 0.0088 for the UWLS

algorithm. Though the true displacement between the poses was exactly zero (since the

scans were taken at the same robot pose), due to the even/odd nature of the scans no two

corresponding scan points sample the exact boundary points of the environment. The effect

of this correspondence error on the UWLS algorithm can be visualized in the presence of

three distinct local minima in Fig. 3.3B. This multi-modal result surrounding the value is

often seen in UWLS algorithm robustness test results.

Two Pose Test

Fig. 3.4 shows results from initial condition robustness testing on two scans taken in our

lab with true position and orientation displacements of 683 mm and 0.467 radians. Fig.

3.4A shows the robot poses and scans under consideration, as well as the initial perturbed

displacement guesses. Fig. 3.4B shows the results obtained by starting the algorithms from

the 1,525 different initial displacement perturbations. My algorithm successfully converged

in 82.0% of the cases while the UWLS algorithm was successful in 56.9% of the cases. The

average error for successful weighted estimates was 1.8 mm and 0.00067 radians while the

average error for successful UWLS algorithm estimates was 6.0 mm and 0.0026 radians.

The error for the case when the initial displacement guess is unperturbed was 1.5 mm and

0.00043 radians for my weighted algorithm and 3.6 mm and 0.0014 for the UWLS algorithm.

Two Pose Test with Intra-Scan Changes in the Environment

Fig. 3.5 shows the results of the same type of testing performed on a pair of scans in

which the environment changed between scans. Note that the horizontal double wall on

the lower left side of the figure is actually a table at almost exactly laser height. The first

scan sampled the wall behind the table while the second scan sampled the front edge of the

table due to small changes in floor geometry. The additional nearby obstruction to the left
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Figure 3.4: A) Experiments with initial displacement perturbations between scans taken at
different poses. B) Close-up of pose 2 with results.

of the robot was caused by a person who moved between the two scans. The range points

associated with these non-repeating objects represent 29.2% of the total number of scan

points. For the 1,525 trials with different initial displacement perturbations, my algorithm

was successful in 95.5% of the cases, while the UWLS algorithm was successful in 31.2%

of the cases. The average error for successful weighted estimates was 2.5 mm and 0.00057

radians while the average error for successful UWLS algorithm estimates was 11.1 mm and

0.016 radians. The error for the case when the initial displacement guess is unperturbed is

2.5 mm and 0.00057 radians for my weighted algorithm and 9.8 mm and 0.016 for the UWLS

algorithm. These results show that my method’s emphasis on weighting each scan point

results in superior robustness to the presence of a significant number of non-corresponding
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Figure 3.5: A) Experiments with initial displacement perturbations in a non-static environ-
ment. B) Close-up of pose 2 with results.

range points.

Two Pose Test In a Hallway

Fig. 3.6 shows the results of analogous testing done in a nearly symmetrical hallway.

In a perfectly symmetrical hallway with no discernible details along the walls, no scan-

based algorithm can effectively correct initial displacement errors in the direction along the

hallway’s main axis. In this test, a single door is open at a slight angle on the left side of

the hallway. The presence of this feature allows for possible scan matching convergence.

For the set of 1,525 initial displacement perturbations, my algorithm successfully converged

in 75.1% of the cases while the UWLS algorithm was successful in only 3.0% of the cases.

The average displacement estimate error for the successful weighted estimates was 3.1 mm

and 3.92 ∗ 10−5 radians while the average error for successful UWLS algorithm estimates
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Figure 3.6: A) Experiments with initial displacement perturbations in a hallway environ-
ment. B) Close-up of pose 2 with results.

was 14.5 mm and 0.00047 radians. The error for the case when the initial displacement

guess is unperturbed is 1.8 mm and 3.34 ∗ 10−5 radians for my weighted algorithm and

4.1 mm and 0.00031 radians for the UWLS algorithm. In effect, the weighted algorithm

better uses the hallway’s small non-symmetries to correct the position estimation along

the hallway axis. This significantly better performance is primarily due to my approach of

modeling the correspondence errors, which discounts the contributions along the hallway’s

axis (since there is very low certainty in that direction). Instead, the small asymmetries are

effectively accentuated. Conversely, in the UWLS algorithm the contributions of the non-

symmetries are effectively lost, resulting in very poor correction of position errors along the
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hallway. The plots of the uncertainty ellipses in Fig. 3.6B also show how only my weighted

algorithm’s calculated covariance reflects a greater uncertainty in the direction parallel to

the hallway, as would be expected.

3.6.2 Multi-Step Runs

The above results showed not only the improvement in robustness of my algorithm over the

UWLS algorithm, but also a significant improvement in the overall accuracy of the successful

final displacement estimates. This improvement in accuracy is best seen in longer runs with

multiple displacement estimates added end to end.

Long Run with Accurate Odometry

Fig. 3.7 shows a 32.8-meter loop path consisting of 109 poses with the final pose the same

as the starting pose. Because of the difficulty of hand measuring each pose I analyze and

compare only the initial and final positions. For each step the current and previous scans

are processed by each algorithm with odometry supplying the initial guess, and updated

displacement and covariance estimates are calculated. In order to maintain statistical inde-

pendence in my estimates, two scans were taken at each pose, with scan 1 used to match

with the pose behind and scan 2 used to match with the pose ahead. In practical ap-

plications, such a dual scan procedure would not be necessary, as a Kalman filter could

incorporate the scans while accounting for the correlation between successive displacement

estimates. However, I do not use that approach here so that I can focus directly on the

properties of the displacement estimate, and not worry about the impact of the filter on my

results.

In order to close the loop, the second scan taken at the last pose is matched with the

first scan taken at the initial pose. Therefore a perfect series of displacement estimates

added tip to tail would result in exactly a zero overall displacement estimate. For the run

shown in Fig. 3.7, the final odometry error is 1.817 meters and 0.06 radians. The final

UWLS algorithm error is 0.271 meters and 0.021 radians while the final weighted algorithm

error is 0.043 meters and 0.0029 radians. The ratio of the final translation error to total

path length is 5.54% for odometry, 0.82% for the UWLS algorithm, and 0.131% for my

weighted algorithm. Perhaps more importantly, as shown in Fig. 3.7B, the final covariance
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calculation for my algorithm clearly encompasses the true final pose within the 3σ bounds,

while the covariance calculation of the UWLS algorithm does not.

Long Run with Inaccurate Odometry

This improvement over the UWLS algorithm is even more pronounced in the presence of

poor odometry estimates. Fig. 3.8 shows an actual run where one of the odometry readings

was substantially corrupted as the robot rolled over a doorjamb when heading into the room

in the upper right hand corner of the plot. This path is a 24.2-meter loop consisting of 83

poses with the scans taken and loops closed as in the previous path. For the path shown

in Fig. 3.8 the final odometry error is 1.040 meters and 0.354 radians. The final UWLS

algorithm error is 0.919 meters and 0.200 radians while the final weighted algorithm error

is 0.018 meters and 0.013 radians. The ratio of the final translation error to total path

length is 4.30% for odometry, 3.80% for the UWLS algorithm, and 0.074% for the weighted

algorithm.

3.6.3 Comparison of Computational Demands

I implemented both algorithms in Matlab and analyzed their computational demands using

the Matlab Profiler on a desktop computer with a Pentium 4, 1.80 GHz CPU with 512

MB RAM. Within each iteration, computation is divided between the point correspondence

phase (which usually consumes the bulk of the computation) and the estimation phase.

The number of iterations required to reach convergence also affects the overall cost of

computation.

In the 109 steps of run 1 shown in Fig. 3.7, the correspondence method used on

both algorithms comprises 81.0% of the total UWLS algorithm computation time of 0.112

seconds/iteration and 44.3% of my weighted algorithm computation time of 0.205 sec-

onds/iteration. For the relatively low initial odometry errors in run 1, the UWLS algorithm

converges in an average of 12.78 iterations for an average computation time of 1.43 seconds

per displacement while my algorithm converges in an average of 10.36 iterations with a total

average computation time of 2.12 seconds per pose displacement. For larger initial odom-

etry errors, especially in orientation, the difference in iterations to convergence increases

to the point where my weighted algorithm is actually faster than the UWLS algorithm.

For the data shown in Fig. 3.4, when the orientation error is greater than 0.2 radians the
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UWLS algorithm converges in an average of 42.98 iterations for an average computation

time of 4.81 seconds per displacement while my weighted algorithm converges in an average

of 22.60 iterations for an average computation time of 4.63 seconds per displacement.

In summary, my experiments show that in real world indoor environments, my method

provides significantly greater estimation accuracy and robustness as compared to an un-

weighted approach without a significant increase in computational cost. Clearly, the com-

putational demands in the estimation phase are larger for my algorithm (as compared to

an unweighted algorithm). However, since the computations required by the estimation

part of the algorithm account for only a small portion of each iteration, and my algorithm

often converges in fewer iterations compared to the UWLS algorithm, the total run time is

reduced.

3.7 Weighted Scan Matching Conclusions

This chapter introduced a new method for estimating robot displacement based on dense

range measurements. In particular, I investigated the effects of different error and noise

sources on the convergence and accuracy properties of these motion from structure algo-

rithms. My experiments showed that careful attention to the details of error modeling can

significantly enhance overall displacement and covariance estimation accuracy.

The first part of the chapter gave a general formulation of the displacement estimation

problem using weighted point pair correspondences. A general solution to the estimation

problem and formulas for the covariance of the displacement estimate were then derived.

I gave general models for range measurement noise, bias error, and correspondence error

to apply to this problem. Although parts of this analysis were mainly aimed at planar

laser range sensors, the methods can likely be extended to algorithms for non-planar laser

scanners [LR02, JM00], where detailed uncertainty modeling has not been considered, and

other range sensors such as stereo cameras, radar, ultrasound, etc. These techniques should

also be useful for methods that use both planar laser range finders and cameras to estimate

three-dimensional motion parameters [TG02, SNC97]. The specifics of the analysis must

be modified to incorporate the appropriate error/noise models for each particular sensor.

The accurate displacement estimates afforded by this method can be fused with odome-

try estimates [RB02] to provide better robot localization capability. Similarly, the improved
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displacement estimation afforded by this method should in the future lead to more accurate

mapmaking and localization procedures.
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Figure 3.7: A) A 109-pose, 32.8-meter loop path. B) Close-Up of final path poses, shown
the covariance estimates of the weighted and unweighted algorithms.
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Figure 3.8: A) An 83-pose, 24.2-meter loop path. B) Close-up of final loop poses.
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Chapter 4

Line-Based Mapping and
Localization

4.1 Introduction and Overview

This chapter presents line feature-based methods of mobile robot mapping and localization.

First the general advantages of feature based approach are outlined, followed by the moti-

vation for my specific choice of feature representation. Methods are then presented for line

feature extraction and comparison which achieve a significant improvement over prior work

through the rigorous treatment of sensor and feature uncertainty. This approach allows for

more accurate and detailed mapping and localization methods as presented in the results

at the end of this chapter.

Feature-based Benefits and Motivation

In a feature-based approach to localization and mapping, predefined elements are extracted

from a set of raw range scan points as a sparser representation of the externally sensed

environment. Common features used in range scan based mapping methods include lines,

corners, and large discontinuities, all of which represent an abstraction of the data into an

abbreviated representation. The sparser set of features can then be used as the basis for

localization procedures and assembled into a feature-based map. The use of features brings

two significant benefits to localization and mapping methods:

1) The data abstraction introduced by features allows for a more efficient map repre-

sentation and storage. This can allow for the effective use of localization and mapping

algorithms that scale poorly with the number of elements used to represent the environ-
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ment. For example, a common method for simultaneous localization and mapping (SLAM)

method uses a Kalman filter with a state vector consisting of the robot’s pose and the

position coordinates of each element of the map. The filter simultaneously solves for the

optimal position of the robot and map elements at each time step, and effectively localizes

the robot with a dynamically updated map. This method scales with the length of the state

vector by order N 2 in computational complexity and in storage space. Therefore, using raw

data from a laser range scanner capturing 360 points per scan quickly becomes infeasible

on a moderately sized map with many scans.

2) Data association across scans can be more accurately established between features

because the individual features can have more distinguishing characteristics than raw scan

points. The data association process can also benefit from the efficient representation

discussed above as fewer features have fewer candidate matches, which can reduce false

positive and other erroneous correspondences. This has the added benefit of reducing

the computational complexity of the data association process, but establishing accurate

correspondences is a difficult problem even without considering computational constraints,

and is of critical importance for any localization and mapping method.

These significant benefits must be balanced with the challenges and potential drawbacks

of feature-based methods. For example, the feature extraction process itself introduces

additional computational cost and a new possible source of error that may outweigh the

benefits mentioned above. Also, the inherent prior assumptions that are made about the

existence of a chosen feature within the data can limit the generality of the method. For

instance, the use of corner features to localize would not be effective in a round room. My

feature choice and implementation minimizes these potential pitfalls, while realizing the

benefits discussed above.

Line Segment Motivation and Background

A line segment is a simple feature. Hence, line-based maps represent a middle ground be-

tween highly reduced feature maps and massively redundant raw sensor-data maps. Clearly,

line-based maps are most suited for indoor applications, or structured outdoor applications,

where straight-edged objects comprise many of the environmental features. My novel ap-

proach to line segment feature extraction and comparison also allows for probabilistically

accurate treatment of much shorter line segments than is seen in prior work, even down to
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single points. These shorter segments can then be used to localize the robot from aspects

of the environment with arbitrary curved contours. The result is a hybrid feature represen-

tation that takes advantage of a structured environment but has the flexibility to represent

every point in the data set.

The idea of fitting lines to range data is not a new one. The solution to the problem of

fitting a line to a set of uniformly weighted points can be found in textbooks (e.g., [P+92],

[FP02]), and others have presented algorithms for extracting line segments from range data

(e.g., [MNRS97, BA00, GMR98]). However, since these algorithms do not incorporate noise

models of the range data, the fitted lines do not have a sound statistical interpretation.

Several authors have used the Hough transform to fit lines to laser scan or sonar data (e.g.,

[JC98, FLW95, IN99]), but the Hough transform alone does not take noise and uncertainty

into account when estimating the line parameters.

The recursive mode of the Kalman-Filter was used by Ayache and Faugeras [AF89] to

extract and fit line segments to groups of noisy pixels, and has since been applied to range

data in [RB00b] and [CT99]. The methods in [AF89] and [RB00b] both specify constant

weighting for all point contributions. Castellanos and Tardos in [CT99, CMNT99] account

for the individual point uncertainties in estimating the parameters of the line. However,

they choose to calculate the covariance of the line parameters using an ad-hoc approach

that uses only the uncertainty of the line segment endpoints, and ignores the uncertainty

contribution of the interior points.

To my knowledge, the line fitting procedure presented here for a polar line representation

in the case of range data with varied uncertainty is new. A key feature and contribution of

this approach are the concrete formulas for the covariance of the line segment fits, and the

allowance of individual weighting of each measured point. This accurately modeled feature

uncertainty allows other algorithms that use the line-maps to appropriately interpret and

incorporate the line segment data. As an example, a simple set of weighted points and the

corresponding feature is shown in Fig. 4.1.

Ayache and Faugeras, as well as Castellanos and Tardos, also present methods to merge

line segments across multiple scans using a Kalman filter. Ayache and Faugeras use line

representation based on endpoint coordinates, which is far less robust to errors from occlu-

sion when mapping a real-world environment. Their focus is primarily on three-dimensional

mapping using stereo vision sensors. Castellanos and Tardos focus on mapping from planar



57

1000 1200 1400 1600 1800
−1400

−1200

−1000

−800

−600

−400

−200

0

1000 1200 1400 1600
−1400

−1200

−1000

−800

−600

−400

−200

0

Figure 4.1: Example of line segment fit: data points (left) and fitted line with a represen-
tation of its uncertainty (right).

range scans, and use a similar polar line-based representation. The work of Castellanos and

Tardos therefore offers the best point of comparison for the following benefits of my work:

1) The more accurate feature covariances computed from my method, allow for more

accurate line-based merging and mapping in a statistically sound fashion.

2) The rigorous treatment of the feature uncertainty allows line segments with high

orientation uncertainty to be accurately compared and merged. Castellanos and Tardos

make a small angle assumption in the orientation uncertainty, and their mapping methods

are therefore restricted to longer line features. Points that don’t form long lines are ignored.

The added flexibility of my approach enables the use of shorter line segments that can

describe more arbitrary contours, and allow for the use of the entire data set when localizing

and mapping.

3) Unlike prior line-based mapping methods, my methods allow for partial feature corre-

spondence, which enables three results for the matching hypothesis tests for a line segment:

correlation of just the underlying infinite line; correlation of the line and one endpoint; and

correlation of the line and both endpoints. The merging and mapping methods take advan-

tage of the partial correspondences by selectively merging the portions of the features that

match. In the line-based mapping methods of Castellanos and Tardos, the possibility of

endpoint correspondences are ignored. Alternatively the methods of Ayache and Faugeras,
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which require endpoint correlation for a positive feature match, would be susceptible to

missed matches due to occlusion effects.

4) In Chapter 5, I augment this feature representation and develop a multi-scale ap-

proach to mapping and localization. The single-scale methods developed in this chapter

form the foundation on which I build multi-scale algorithms that introduce further im-

provements to existing approaches.

Chapter Overview

This chapter first introduces the line feature representation and associated definitions.

Methods to extract these features from range point data are then presented in two steps:

1) Initial detection using a Hough transform based approach to collinear point grouping,

and 2) Optimal line fitting using a novel approach that computes feature parameters using

a detailed model of the sensor noise. Next, methods of establishing correlations of features

across scans are defined, followed by methods to merge lines and examples. The Kalman

filter equations are then derived as the basis for a line feature based SLAM method. Results

are presented for the SLAM method along with comparisons with the analogous approach

of Castellanos and Tardos.

4.2 Line Feature Definitions

This section introduces a basic line feature representation. My specific choice of feature

representation is motivated by the need for feature robustness in real-world sensor-based

applications. Even small changes in robot position can result in large differences in the raw

sensor data due to occlusion effects. A changing environment also can greatly increase the

magnitude of discrepancies across data collected at different times. A robust feature can be

defined as one that can be reliably and repeatably detected in a given environment in the

presence of occlusion effects and a moderately changing environment.

The primary parameters I use for feature comparison are the orientation and normal

position of the underlying infinite lines of features extracted from range data. As I will show

in my experimental results, these parameters are very robust when compared across range

scans, especially with regard to occlusion effects. I use a two parameter, polar representation

for the underlying infinite line. The line segment representation augments the infinite
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line representation with added endpoint parameters. I will also introduce the uncertainty

representation for the parameters of each of these features and specifically address the

nonlinearities associated with feature orientation uncertainty.

4.2.1 Infinite Line Representation

L

α

ρ

Figure 4.2: Infinite polar line L representation.

The core of my feature representation is the polar form of the infinite line. Not only is

the polar form of the line a minimal representation of the two-dimensional feature, but it

also allows for easy comparison of line orientation and normal position. I define the infinite

line L as

L =


 α

ρ


 , (4.1)

where ρ and α represent the magnitude and heading of the vector that extends from the

origin to the line and is perpendicular to the line. Thus α defines the orientation of line L,

while ρ defines the normal distance to the origin or the position of the infinite line L. See

Figure 4.2 for a graphical representation.

4.2.2 Infinite Line Covariance

Let the estimated line orientation measurement α̂ be defined as the sum of the “true”

orientation α and an error term εα:

α̂ = α+ εα. (4.2)

Similarly let the line position measurement ρ̂ be defined as the sum of the “true” position

ρ and an error term ερ:

ρ̂ = ρ+ ερ. (4.3)
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I assume the error terms εα and ερ to be zero-mean, Gaussian random variables. In

Section 4.3 I derive methods for calculating these error terms based the feature extraction

process and justify the normal distribution assumption. I define the covariance matrix

associated with line L as follows:

PL = E
[
εL(εL)T

]
, (4.4)

where E[·] is the expectation operator, and

εL =


 εα

ερ


 , (4.5)

so

PL =


 E

[
ε2α
]

E [εαερ]

E [ερεα] E
[
ε2ρ
]


 =


 Pαα Pαρ

Pρα Pρρ


 . (4.6)

Pρρ is the variance in the position ρ of the line, Pαα is the variance in the orientation α of

the line, and Pρα and Pαρ are the cross-correlation terms. Since the covariance matrix is,

by definition, positive definite and symmetric, Pρα = Pαρ.

4.2.3 Infinite Line Frame Transformations

In Sections 2.5.1 and 2.5.1 I reviewed basic frame transformations for poses in SE(2) and

their covariances. In this section I outline the frame transformations for an infinite line

feature L and covariance PL.

Coordinate Transformation

I first define a reference frame at pose i at coordinates gi as follows:

gi =




xi

yi

φi


 . (4.7)

Consider an infinite line measured in this local reference frame i where Li = [αi, ρi]. To
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Figure 4.3: Line coordinates with respect to a global frame and a frame at pose i.

transform the line coordinates into a global frame, where the line is denoted by L0,

L0 =


α0

ρ0


 =


αi + φi

ρi + δρi


 , (4.8)

where δρi is the projection of the displacement gi into the dimension normal to the line Li,

and is defined as

δρi = xi cos(αi + φi) + yi sin(αi + φi), (4.9)

as shown in Figure 4.4.

L

δρ
i

α

α
pose i

i
ρ

i

δψ
i

ρ
0

0

Figure 4.4: Line coordinates with respect to a global frame and a frame at pose i. The
values δρi and δψi represent the pose i displacement in the “ρ− ψ” frame.
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Covariance Transformations

Consider a covariance matrix PLi
of infinite line Li = [αi, ρi] measured with respect to a

pose gi. The matrix PLi
can be transformed to the global frame at pose as follows:

PL0
= HiPLi

(Hi)
T , (4.10)

with

Hi =


 1 0

δψi 1


 , (4.11)

where δψi is the projection of the pose gi into the line Li:

δψi = yi cos(αi + φi) − xi sin(αi + φi). (4.12)

It is important to note that this is a translation transformation and that the eigenvalues

of the covariance matrix are independent of the reference pose. Carrying through this

transformation yields

PL0
=


 1 0

δψi 1




 Pαα Pαρ

Pρα Pρρ




 1 δψi

0 1


 (4.13)

=


 Pαα Pρα + δψiPαα

Pρα + δψiPαα Pρρ + 2δψiPρα + (δψi)
2Pαα


 .

Further a local covariance measurement PLi
can be considered, which is taken at pose gi

where pose gi itself has a global uncertainty represented by a covariance matrix Pgi
. Let P̂L0

be the contribution of pose uncertainty Pgi
to the global uncertainty of the line measured

from pose gi. To calculate P̂L0
, first rotate Pgi

into the frame of the global line at α0 and

then remap this pose covariance matrix into the infinite line representation.

P̂L0
= KiPgi

KT
i , (4.14)
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with

Ki =


 0 0 1

1 0 0







cos(−α0) −sin(−α0) 0

sin(−α0) cos(−α0) 0

0 0 1


 (4.15)

=


 0 0 1

cos(α0) sin(α0) 0


 . (4.16)

As shown above, α0 = αi + φi from Eq. (4.31). So Ki can be defined as

Ki =


 0 0 1

cos(αi + φi) sin(αi + φi) 0


 . (4.17)

It follows that for a general Pgi
defined in Eq. (2.21), one can further compute

P̂g0 =


 Pxx cos2(α0) + 2 cos(α0) sin(α0)Pxy + sin2(α0)Pyy Pxγ cos(α0) + Pyγ sin(α0)

Pxγ cos(α0) + Pyγ sin(α0) Pγγ




=


 P̂ρρ P̂ργ

P̂γρ P̂γγ


 . (4.18)
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Figure 4.5: Projection of pose uncertainty into line L.

In Fig. (4.5) the position covariance ellipse for Pgi
is shown, as well as the projection of

this uncertainty P̂ρρ in the direction normal to the line. I can then define the transform of

the local covariance measurement to a global notion of uncertainty for the infinite line by
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combining the pose and line covariances as follows:

PL0
= HiP

j
Li
HT
i +KiPgi

KT
i , (4.19)

with H defined in Eq. (4.11) and Ki from Eq (4.17).

4.2.4 Infinite Line Center of Rotational Uncertainty

Eq. (4.11) defined a transformation Hi of the covariance of line Li from reference frame gi

to reference frame g0. For any line covariance matrix PL there exists a special value of H

defined as follows:

HP =


 1 0

δψP 1


 , (4.20)

where δψP takes the value

δψP = −Pρα/Pαα. (4.21)

This value of HP and ψP diagonalizes the covariance matrix. it holds that

PL =


 1 0

δψP 1




 σ2

α 0

0 σ2
ρ




 1 δψP

0 1


 (4.22)

or 
 σ2

α 0

0 σ2
ρ


 =


 1 0

−δψP 1


PL


 1 −δψP

0 1


 , (4.23)

where σ2
α and σ2

ρ represent variances with respect to a reference frame at which the random

variables α and ρ are independent. I then define ~VP as the point along line L that lies at

this point of random variable independence for α and ρ. I will refer to this point as the

center of rotational uncertainty and it can be computed for line L(α, ρ) and PL as follows:

~VP =


 xP

yP


 =


 ρ cos(α) − δψP sin(α)

ρ sin(α) + δψP cos(α)


 . (4.24)

Figure 4.6 shows a representation of line L with uncertainty bounds. The figure rep-

resents the orientation uncertainty bounds by red dotted lines crossed at the center of

rotational uncertainty ~VP . The uncertainty bounds in position ρ are represented by the
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Figure 4.6: Infinite line and line covariance representation. ~uP represents the center of
rotational uncertainty.

red dotted lines parallel to the original line. The green hyperbola represents the combined

uncertainty bounds for position and orientation of the line, with asymptotes defined by σα

and the distance between curves defined as 2σρ. Note the graphical representation of ψP

as the projected distance along the line to ~VP from the intersection at the closest approach

vector.

4.2.5 Line Segment Representation
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Figure 4.7: Segment S representation.

My notion of a segment feature builds upon the infinite line feature developed above.

The ends of a line segment coincident with the infinite line are represented as a scalar value

pair [ψa, ψb]. For a given feature with orientation α, I define a “ρ − ψ” frame by rotating

the origin frame through angle α as shown in Figure 4.7. The scalar values ψa and ψb are

measured with respect to the ψ axis and can take positive or negative values. I define a line
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segment S as

S =




α

ρ

ψa

ψb



. (4.25)

In general I represent the values of ψ in increasing order so ψb > ψa.

α

ρ

a2ψ

a1ψ
b1ψ

b2ψ

S

S

Figure 4.8: Segment S representation with multiple endpoint pairs.

Note that segment S can be augmented with additional endpoint pairs to represent, in

a single feature, multiple segments that share the same underlying infinite line.

S =




α

ρ

ψa1

ψb1

...

ψan

ψbn




, (4.26)

where n is the number of endpoint pairs. See Figure 4.8 for a graphical example with n = 2.

For future plots, derivations, and experimental results I assume n = 1 when referring to

line segment features, unless stated otherwise.
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4.2.6 Line Segment Covariance

Let the estimated line endpoint measurements ψ̂a and ψ̂b, be defined as the sum of the

“true” distances ψa,ψb and error terms εψa , εψa :

ψ̂a = ψa + εψa (4.27)

and

ψ̂b = ψb + εψb
. (4.28)

The error terms εψa and εψa are assumed to have a zero-mean, Gaussian distribution.

See Section 4.3.5 for more details of how these error terms are modeled in the feature

extraction methods. The line segment covariance matrix PS can be written as

PS = E
[
εS(εS)T

]
, (4.29)

where E[·] is the expectation operator, and

εS =




εL

εψa

εψb


 , (4.30)

with εL defined in Eq. (4.5). It follows that

PS =




E
[
εL(εL)T

]
E [εLεψa ] E [εLεψb

]

E
[
εψa(εL)T

]
E
[
ε2ψa

]
E [εψaεψb

]

E
[
εψb

(εL)T
]

E [εψb
εψa ] E

[
ε2ψb

]


 =




PL PLψa PLψb

PψaL Pψaψa Pψaψb

PψbL Pψbψa Pψbψb


 ,

where PL is the covariance of the underlying infinite line as defined in Eq. (4.6).

4.2.7 Line Segment Frame Transformations

Here I extend the frame transformations introduced above in Section 4.2.3 for infinite lines

to account for the augmented line segment representation with endpoint terms.
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Coordinate Transformation

Consider a line segment Si measured in a local frame with respect to pose i and transform

the line segment coordinates to the global frame as follows:

S0 =




α0

ρ0

ψ0
a

ψ0
b




=




αi + φi

ρi + δρi

ψia + δψi

ψib + δψi



, (4.31)

where δρi and δψi are the coordinates of the displacement gi projected into the ′′α − ρ′′

frame as defined above in Eqs. (4.9) and (4.12), respectively.

Covariance Transformations

Consider a covariance matrix, PSi
, of the line segment Si measured with respect to an

uncertain pose gi whose pose covariance matrix is Pgi
with respect to the global reference

frame. The matrix PSi
can be transformed to the global frame at pose i as follows:

PS0
= HSi

PSi
(HSi

)T +KSi
Pgi

KT
Si
. (4.32)

HSi
is defined as follows, extending Eq. (4.11):

HSi
=




1 0 0 0

δψi 1 0 0

−δρi 0 1 0

−δρi 0 0 1



, (4.33)
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where δψi and δψi are defined in Eqs. (4.9) and (4.12). Using the same approach outlined

in Eq. (4.17) define KSi
to be

KSi
=




0 0 1

1 0 0

0 1 0

0 1 0







cos(−αi + φi) −sin(−αi + φi) 0

sin(−αi + φi) cos(−αi + φi) 0

0 0 1


 (4.34)

=




0 0 1

cos(αi + φi) sin(αi + φi) 0

−sin(αi + φi) cos(αi + φi) 0

−sin(αi + φi) cos(αi + φi) 0



. (4.35)

4.2.8 Line Segment Center of Rotational Uncertainty

For completeness the notion of rotational uncertainty for a line introduced in Section 4.2.4

is extended to a line segment. The equations still hold for the line segment’s underlying

infinite line, but the transformation matrix HP is extended:

HP =




1 0 0 0

δψP 1 0 0

δρPa 0 1 0

δρPb 0 0 1



, (4.36)

with

δρPa = −Pψaα/Pαα (4.37)

δρPb = −Pψbα/Pαα (4.38)

and δψP defined above in Eq. (4.21). As a consequence of the above definitions

PS = HP




σ2
α 0 0 0

0 σ2
ρ 0 0

0 0 σ2
ψa

0

0 0 0 σ2
ψb



HT
P . (4.39)
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One can also compute




σ2
α 0 0 0

0 σ2
ρ 0 0

0 0 σ2
ψa

0

0 0 0 σ2
ψb




= H−1
P PS(H−1

P )T , (4.40)

where

H−1
P =




1 0 0 0

−δψP 1 0 0

−δρPa 0 1 0

−δρPb 0 0 1



. (4.41)

This transformation will determine the independent variances for all parameters in a line

segment covariance matrix.

4.2.9 Subfeature Coordinates

This section considers how to extract subfeatures from the line segment. When comparing

pairs of features across scans for possible correspondence, it can be useful to isolate specific

aspects of the features to develop a partial feature comparison. Section 4.4 introduces a fea-

ture matching method that uses partial feature comparisons to achieve improved robustness

feature variation. The subfeatures considered are the underlying line in polar coordinates

and the endpoints in Cartesian coordinates. Methods to extract these subfeatures from

the description of a line segment S are introduced as well as the means of extracting the

covariances associated with these subfeatures.

Underlying Line

Given a line segment representation, S, and its covariance, PS , the underlying line, L, and

covariance, PL, can be extracted as follows. Let

L = HS (4.42)

and

PL = HPSH
T , (4.43)
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where

H =


1 0 0 0

0 1 0 0


 . (4.44)

This simplicity of transformation allowed by my line segment representation is a feature of

its design, and is needed below for the proposed methods of line comparison and merging.

Endpoint Coordinates

α

ρ

bψ

aψS

x

y

y

x

u

u

b

b

a

a

b

a

Figure 4.9: Segment S representation.

For a given segment S the Cartesian coordinates of the segment endpoints can be cal-

culated as follows:

~ua =


 xa

ya


 = RαHaS, (4.45)

with

Ha =


 0 1 0 0

0 0 1 0


 (4.46)

and

Rα =


 cos(α) − sin(α)

sin(α) cos(α)


 . (4.47)

One can then calculate

~ua =


 xa

ya


 =


 ρ cos(α) − ψa sin(α)

ρ sin(α) + ψa cos(α)


 . (4.48)
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Similarly for ~ub:

~ub =


 xb

yb


 = RαHbS, (4.49)

with

Hb =


 0 1 0 0

0 0 0 1


 (4.50)

so

~ub =


 xb

yb


 =


 ρ cos(α) − ψb sin(α)

ρ sin(α) + ψb cos(α)


 . (4.51)

Points ~ub and ~ub are shown graphically in Fig. 4.9.

Endpoint Covariance

The covariance matrices associated with endpoints ~ua and ~ub can be defined as follows:

Pua = RαHaPSH
T
a (Rα)T (4.52)

and

Pub
= RαHbPSH

T
b (Rα)T , (4.53)

withHa andHb defined in Eqs. (4.46) and (4.50) and Rα the transformation matrix defining

a rotation through α.

σα

S

σψa

σψb

σρ

α

ρ

u

u

b

a

Figure 4.10: Segment S and endpoint covariance representation.

Fig. 4.10 shows a graphical representation of the endpoint uncertainty as ellipses defined

by a fixed confidence interval. The uncertainty bounds of the underlying line are shown as
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Figure 4.11: Segment S and endpoint covariance representation with small σα.

a hyperbola with a dotted line. The bounds defined by the endpoint uncertainty are shown

as dashed lines. Fig. 4.11 shows a similar plot for a line segment feature with very small

value of σα.

4.3 Line Segment Feature Extraction

This section outlines a process to extract line segment features from a set of range scan

points. I represent the raw range data set as introduced in Section 2.5.2, wherein U consists

of n range points with U = {~uk}, k = 1, ..., n where ~uk is the kth Cartesian point in the

range scan. An example of a simulated range scan is shown in Figure 4.12A. The goal of this

procedure is to detect m groups of points that are subsets of U (defined as {U i
S}, i = 1, ...,m)

such that the points in each subset US are collinear within a specific margin of error. From

each of these point subsets one can compute the optimal line segment parameters S and

the associated covariance matrix PS defined in Eqs. (4.25) and (4.31). The result is a set

of line segments {Si, PSi
}, i = 1, ...,m, which can be used to represent the original point

data, as seen in Figure 4.12B. Note that m is not a predetermined value.

The next chapter extends this feature extraction process to allow for computationally

efficient extraction of features at multiple geometric scales. Here my primary focus is on

accurate feature extraction and noise modeling at a single scale. Extraction is an iterative

process consisting of a preliminary step and six primary steps that are repeated for each

extracted feature.

Step 0) Preliminary definitions: Initially set Ur = U where Ur is the set of remaining

scan points not yet fit to a line segment.

Step 1) Initial line guess: Given Ur, calculate the dominant infinite line L̂ = [α̂, ρ̂] using
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Figure 4.12: A) Raw range scan points. B) Extracted line segment features.

the Hough transform as introduced in Section 2.4.

Step 2) Point grouping: Determine the subset of points UL where UL ⊂ Ur and the

subset consists of points along the line L̂ as determined by the Hough transform.

Step 3) Point noise modeling: Compute the set of point covariances PUL
for the points

in UL from a range sensor noise model.

Step 4) Weighted line fitting: Calculate optimal line segment parameters S = [α, ρ, ψa, ψb]

given UL, PUL
, and initial estimates from the Hough transform (α̂, ρ̂). For these calcula-

tions the contribution of each point is weighted according to its individual covariance. The

optimal fitting procedure is described below.

Step 5) Line segment covariance estimation: Calculate the covariance, PS , given UL,

PUL
, and line segment S. Sensor bias may also be taken into account in this calculation.

Step 6) Subsequent feature extraction: Determine the subset of points US that lie

within the uncertainty bounds of the line segment S where US ⊂ UL. Remove US from Ur

and, if points remain in Ur, go to step (1) to extract additional features.
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Steps 1 through 5 define the extraction of a single line segment feature and step 6

removes the points used in the new feature from consideration and checks if subsequent

feature extraction is warranted. The following subsections address each of these steps in

more detail.

4.3.1 Initial Line Guess

I use a Hough transform as the basis for the initial line guess. The Hough transform is a

pattern detection method that is effective at estimating the existence and position of lines in

noisy point data. It is a voting method that uses a discretized accumulator in a transformed

space called a Hough space. Each scan point votes in this space and a peak corresponds to

the line parameters that define the line with the most points in it. Section 2.4 introduces

the Hough transform in more detail.

Figure 4.13A shows the rasterized Hough space with accumulated votes from all range

scan points shown in Figure 4.12A. The darker colors represent Hough space cells with more

votes. The peak cell lies at coordinates (ρ̂, α̂) in Hough space as shown. Figure 4.13B shows

the infinite line defined as L̂ = [α̂, ρ̂] in Cartesian space corresponding to this peak. The

data sets in these figures have been simulated, with noise added to create a clear example

for reference.

As discussed in Section 2.4, the choice of discretization level of the Hough space can

have a significant effect on final point groupings and computational time. If the Hough

space cells are too small, only perfectly aligned points would accumulate votes. Because

of the imperfection in the data from sensor noise, even a scan of a perfectly straight wall

would spread votes out across many cells and could result in false peak detection. Also the

computational time to increment the Hough space is proportional to the number of cells in

the α dimension. If the Hough space cells are large, there is some computational benefit,

but the resolution of the line guesses decreases. In this approach, the discretization size in

ρ is defined as Dρ and is set to be equal to the 3σ value of the modeled point noise. The

discretization size in α is defined as the following function of Dρ:

Dα = arctan

(
Dρ

ρmax

)
, (4.54)

where ρmax is the maximum sensing range. Dα is roughly the range of orientation for a
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long line given a normal variation in end position of Dρ.
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Figure 4.13: A) Hough space accumulator. B) Extracted infinite line.

4.3.2 Point Grouping

Given the estimated infinite line L̂, the subset containing points that lie along the line can

be defined as UL. This set can be computed explicitly by first calculating the distance δk

of each point in Ur to line L̂ = [α̂, ρ̂] as follows:

δk = |xk cos(α̂) + yk sin(α̂) − ρ̂|, (4.55)

where uk = [xk, yk] is the kth point in Ur. The points where δk is less than a distance

threshold can then be grouped into UL. A reasonable value for the threshold is Dρ, which

is equivalent to the Hough space discretization cell size in the ρ dimension. Alternatively,

some computational efficiency can be gained by maintaining a list of pointers at each cell

in Hough space of the points that contributed a vote to that cell. In this case UL is simply

determined to be the set of points associated with the peak cell in Hough space found

in Section 4.3.1. Figure 4.14A shows the selected points along the infinite line estimate

shown in Figure 4.13B. The output is a collinear subset containing s points defined as
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UL = {uLk
}, k = 1, ..., s.

4.3.3 Point Noise Modeling

A range point noise model was described in some detail in Section 2.5.2. The covariances for

each point in UL, are estimated according to Eq. (2.34), repeated again here for reference:

Puk
=

(dk)
2σ2

θ

2


 2 sin2 θk − sin 2θk

− sin 2θk 2 cos2 θk


+

σ2
d

2


2 cos2 θk sin 2θk

sin 2θk 2 sin2 θk


 .

The variables dk and θk represent the range and heading values for the scan points, and σ2
d

and σ2
θ are the variance terms in range and angle for the range sensing noise model. Figure

4.14A shows these covariance bounds for selected points. The dashed lines represent the 3σ

bounds on the line’s uncertainty, multiplied by 200 for visibility.

4.3.4 Weighted Line Fitting

AA

1000 mm

Point uncertainty bounds
Grouped points

BB

1000 mm

Line uncertainty bounds
Extracted line segment

Figure 4.14: A) Grouped set of collinear points. B) Optimally fit line.

The goal of the weighted line fitting method is to estimate the line segment S that best

fits the set of points UL where the kth point is individually weighted by the inverse of the

covariance matrices Puk
. A rough initial guess of the line parameters of the underlying
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infinite line L̂ = (α̂, ρ̂) is given by the Hough transform calculation. For derivations in this

chapter the subscript L will be dropped for convenience and I will refer to the set of points

to be fit as U = {uk}, k = 1, ..., j and the covariances for these points as PU = {Puk
}, k =

1, ..., j.

As defined in Section 4.2.5, Eq. (4.25) the representation of a segment S that will be

extracted from the point data as follows:

S =




α

ρ

ψa

ψb



,

where α and ρ are the polar coordinates of the segment’s underlying line. I formulate the

weighted line fitting process using a maximum likelihood approach, which is used to refine

the underlying infinite line orientation α and normal position ρ. Due to the nonlinearities

introduced by the orientation estimation process, an iterative technique is used to implement

the weighted line fitting problem:

Step 1) Compute the distance, ρ, to the line.

Step 2) Compute the center of rotational uncertainty ψP for the point set associated with

the line segment.

Step 3) Compute the line angle estimate, α, about ψP .

Step 4) Compute endpoint parameters ψa and ψb for S.

Step 5) Calculate convergence criterion and repeat from step 1 if the criterion isn’t met.

Estimation of the Distance to the Line, ρ

Consider the kth measured scan point with measured range d̂ and measured scan angle θ̂,

along with the current best guess of the parameters of the infinite line (α̂, ρ̂). To formulate

the maximum likelihood estimation of ρ I define the virtual measurement δρk as the normal

distance between the kth point and the hypothetical line:

δρk = d̂k cos(α̂− θ̂k) − ρ̂. (4.56)
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Given the covariance matrix Puk
of the kth point as modeled above, the covariance of this

virtual measurement is defined as follows:

Pδρk
= [cos(α̂) sin(α̂)]Puk

[cos(α̂) sin(α̂)]T . (4.57)

The optimal parameters of a line, L, are estimated by a maximum likelihood approach

as introduced in Section 2.2. Let L({δρk}|L) denote the likelihood function that captures

the likelihood of obtaining the errors {δρk} given a line L and a set of range points and

their associated uncertainties. If the k = 1, . . . , n range measurements are assumed to be

independent (which is usually a sound assumption in practice), the likelihood can be written

as a product:

L({δρk}|L) = L(δρ1|L)L(δρ2|L) · · · L(δρn|L).

Recall that the measurement noise is assumed to arise from zero-mean Gaussian processes,

and that δρk is a function of zero-mean Gaussian random variables. Thus, L({δρk}|L) takes

the form

L({δρk}|L) =

n∏

k=1

e−
1

2
(δρk)T (Pδρk

)−1δρk

2π
√

detPδρk

=
e−M

D
, (4.58)

where M =
1

2

n∑

k=1

(δρk)
T (Pδρk

)−1δρk (4.59)

D =
n∏

k=1

2π
√

detPδρk
. (4.60)

The optimal estimate of the displacement maximizes L({δρk}|L̂) with respect to line repre-

sentation parameters ρ, and α. Note that maximizing Eq. (4.58) is equivalent to maximizing

the log-likelihood function:

ln[L({δρk}|L̂)] = −M − ln(D) (4.61)

and from the numerical point of view, it is often preferable to work with the log-likelihood

function. Using the log-likelihood formula, I prove in Appendix B.4 that the optimal esti-

mate of the radial position ρ can be computed as
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ρ =

∑n
k=1

d̂k cos(α̂−θ̂k)
Pδρk∑n

k=1
1

Pδρk

. (4.62)

Center of Rotational Uncertainty, ψP Estimation

Unlike the calculation of the line position ρ, the calculation of the line heading α depends

on the reference frame in which the calculation takes place. This is due to the lever arm,

which effects the virtual measurements from Eq. (4.56) when computing the best fit line

orientation. Because of this effect, it is beneficial to define a reference frame that minimizes

the effect of the combined lever arms. Note that the effect of the lever arm is due to distances

along the ψ axis, parallel to the line. Therefore only the ψ position of the reference frame

is important.

I define a value along the ψ axis of the current line estimate called ψP , which refers to the

center of rotational uncertainty of the line. This term was first introduced in Section 4.2.4

when introducing aspects of infinite line rotational uncertainty. The value ψP is calculated

such that about that value, the weighted lever arm effects from all virtual measurements

from each point are balanced. Start by considering the value of the virtual measurement

δρk in the presence of a small perturbation ω in the orientation of the underlying infinite

line about a point at ψP :

δρk = (ψ̂k − ψP ) sin(ω), (4.63)

where ψ̂k is the point position along the line calculated as follows:

ψ̂k = d̂k sin(α̂ − θ̂k). (4.64)

Then compute the value of ψP that would minimize the set of weighted δρk errors under

the perturbation ω to arrive at

ψP =

∑n
k=1

ψ̂k

Pδρk∑n
k=1

1
Pδρk

. (4.65)

See Appendix B.2 for a detailed derivation of this calculation. Let

δψk = ψ̂k − ψP (4.66)
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denote the distance between the kth point and estimated center.

Line Angle, α Estimation

There is not an exact closed form formula to estimate α. However, there are two efficient

approaches to this problem. First, the estimate of α can be found by numerically maximizing

Eq. (4.58) (or Eq. (4.61)) with respect to α for a constant ρ calculated according to Eq.

(4.62). This procedure reduces to numerical maximization over a single scalar variable α,

for which there are many efficient algorithms. Alternatively, one can develop the following

second order iterative solution to this nonlinear optimization problem:

The weighted line fitting estimate for the line’s orientation α is updated as α = α̂+ δα,

where

δα = −
∑n

k=1

(
δρkδψk

Pδρk

)

∑n
k=1

(
(δψk)2

Pδρk

) , (4.67)

with δρk, Pδρk
, and δψk defined in Eqs. (4.56), (4.57), and (4.66). Using experimental data,

this approximation agrees with the exact numerical solution.

Endpoint, ψa ψb Estimation

Once the parameters of the infinite line ρ and α have been updated, the relevant line segment

bounding points are defined by the contributing points with the maximum and minimum

values of ψ̂k as calculated from Eq. (4.64). In the line segment representation of S, ψa is

set to be the minimum value of the set of points ψ̂k, and ψb is set to be the maximum value.

Convergence Criterion

If the adjustment to the angle estimate δα is greater than some threshold εα, then conver-

gence has not been established. In that case, the current estimates for α and ρ are used as

initial input guesses to the next iteration. In practice, with a reasonable initial guess for α̂

and ρ̂ from the Hough transform, the algorithm converges to a steady estimate for S in just

one or two iterations. Figure 4.14B shows the estimated line segment S computed from the

weighted points in Figure 4.14A. The shown covariance of the segment is computed in the

following section.
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4.3.5 Line Segment Covariance Estimation

The covariance of the estimated underlying infinite line L was defined in Eq. (4.6) and

takes the form

PL =


 Pαα Pαρ

Pρα Pρρ


 . (4.68)

This matrix can be calculated from the set of weighted points as follows:

Pαα =
1

∑n
k=1

(
(δψk)2

Pδρk

) (4.69)

Pρρ =
1

∑n
k=1

(
1

Pδρk

) (4.70)

Pρα = −PρρPαα
n∑

k=1

(
δψk
Pδρk

)
, (4.71)

where δρk and Pδρk
are defined in Eqs. (4.66) and (4.57), respectively. See Appendix C for

derivations of these equations. The full line segment S covariance PS augments PL with

endpoint uncertainty:

PS =




PL 0 0

0 Pψa 0

0 0 Pψb


 , (4.72)

where Pψa and Pψb
are the components of the upper and lower bound point uncertainties

along the ψ axis.

4.3.6 Subsequent Feature Extraction

The methods outlined above extract a single feature from a set of individually weighted

points. When a feature is extracted, the associated points are removed from consideration

and subsequent features are extracted from the remaining points. Figures 4.15A, B show

the Hough space accumulator and resulting infinite line estimate for the set of unused points

after the removal of the points from the first feature in 4.14A.

Figures 4.15A, B show the weighted points and the optimally fit subsequent line in this

example. These methods are repeated until there are no unused data points left in the scan.

The final line map extracted from this data set is shown in Figure 4.12B.
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Figure 4.15: A) Hough space accumulator. B) Extracted infinite line.
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Figure 4.16: A) Grouped set of collinear points. B) Optimally fit line.

4.4 Line Segment Feature Matching

This section develops methods to determine whether two line segment features, detected

independently, represent the same aspect of the environment. This is a data association
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problem that is critical to the effectiveness of any sensor-based localization and mapping

algorithm, as external sensors bring no new information to the state of the robot if cor-

respondences cannot be made between the data. My approach consists of a multi-step

hypothesis test that enables piecewise matching of the line segment features. Also, the

matching approach compensates for nonlinearities introduced by large uncertainties in line

orientation, which allows for accurate matching of short line segments.

Generally, localization methods treat the feature correspondence problem as a hypothesis

test with two possible outcomes.

Hypothesis: Feature A from pose i and feature B from pose j represent measurements of

the exact same feature in the environment

Positive Test Result: Validation of the hypothesis and a correspondence is established

and the measurements can be merged into a single feature representation.

Negative Test Result: Rejection of the hypothesis and the features are considered inde-

pendent.

There are two classes of error that can be introduced by this process. A type I error

rejects the true hypothesis. A type II error, known as a false positive, is the error associated

with validating a false hypothesis. Unfortunately, improving robustness of a hypothesis test

to one type of errors can increase the chances of the other type, so care must be taken when

designing an effective and robust test. In a sensor-based procedure that is not limited to

very simple and structured environments, these existence of even a few of these errors can

be a significant limitation in the overall effectiveness of the procedure.

In most real-world localization and mapping applications, type II errors, or false posi-

tives, are more damaging than type I errors. In the case of a Kalman filter based estimator

introduced in Section 2.3, a false positive match results in the integration of unmodeled,

erroneous information into the estimator, which not only can corrupt the accuracy of the

overall state estimation, but also corrupts the covariance of the state estimation. The result

is a high confidence in a state with unmodeled errors, which can corrupt future estima-

tions. A type I error, in contrast, leaves out useful information in the estimator, but does

not corrupt the estimate, and the covariance of the estimate remains valid for subsequent

use. Also, the existence of other correspondences among alternate features at a single pose
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can mitigate the effect of a missed feature correspondence due to redundant information

pertaining to the robot pose estimate. Therefore it can be considered preferable to have a

type I error over a type II error in a localization scheme.

While it is important to bias the test against accepting false positives, it can be very

difficult to establish a single threshold where the test sufficiently rejects type II errors

without allowing far too many type I errors. In such a case, almost no correspondences

are made and the estimator is useless. My approach is to develop a series of hypothesis

tests that allows for partial, piecewise matching of parameters in feature. I develop the

following multi-step hypothesis tests, which form the basis for the line segment feature

correspondence methods:

Hypothesis 1: Line segment Si from pose i and line segment Sj from pose j share the

same underlying infinite line.

Hypothesis 2: The line segments Si and Sj overlap and partially represent the same

portion of the environment. Hypothesis 1 must be true.

Hypothesis 3: One of the endpoints of line segments Si and Sj correspond to the same

point in the environment. Hypothesis 2 must be true.

Hypothesis 4: The other endpoint of line segments Si and Sj correspond to the same

point in the environment. Hypothesis 3 must be true.

Each hypothesis depends on the previous and each introduces an additional aspect of

potential correspondence. They also transition from comparing the most robust aspects

of the line segment feature to the least robust. I develop tests based on each of these

hypotheses in the following sections. The most important aspect of these hypothesis tests

is that they can enable partial correspondence, where only a portion of the full feature

information is validated in a match and subsequently used in a localization procedure. I

am therefore able to develop a set of very tight tests for each individual hypothesis, which

effectively rejects false positives, yet the cascading tests allow for possible partial matches

that would be otherwise rejected. This helps helps to mitigate the effect of type I errors

while keeping a very low threshold for accepting type II errors.

The following tests assume two line segment features Si and Sj defined in Section 4.2.5
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and reproduced here as follows:

Si =




αi

ρi

ψia

ψib




Sj =




αj

ρj

ψja

ψjb



. (4.73)

The tests also assume that the full covariance matrices PSi
and PSj

for these line segments

(defined in Eq. (4.31)) have been calculated. Further, all parameters must be represented

with respect to a common reference frame. Section 4.3 outlined a method of extracting

these features and covariances, and Section 4.2.7 outlined methods of transforming them

across frames.

4.4.1 Hypothesis 1 - Common Infinite Line

Hypothesis 1 deals with the most robust parameters of the line segment, the orientation

α and normal position ρ of the underlying line L. These parameters usually depend on

many range scan points, as described in Section 4.3.4. This dependence reduces the effect

of sensor noise. Also, more importantly, the parameters of the underlying line are more

robust to changes due to occlusion than the endpoint measurements. A chi-square test,

introduced in Section 2.1, is used as the basis for the hypothesis test. This test developed

here represents an improvement over previous work in that it doesn’t impose a small-angle

requirement for line orientation uncertainty.

Infinite Line Chi-Square Test

Given two line segments Si and Sj, first extract the underlying lines Li and Lj from each

segment as outlined in Section 4.2.9. Similarly, extract the covariance of the underlying

lines PLi
and PLj

from the full covariance of the segments PSi
and PSj

, respectively, using

Eq. (4.43). Then combine the covariance matrices to calculate the total relative uncertainty

of the difference between the two features:

PδL = PLi
+ PLj

. (4.74)
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The difference between the line features can be calculated as

δL =


δα
δρ


 =


αi − αj

ρi − ρj


 . (4.75)

A standard chi-square test would then compute the following:

D2 = (δL)2(PδL)−1(δL). (4.76)

This comparison test is sufficient for a pair of line segment features that both have a

very small uncertainty in orientation. When this requirement does not hold, it is important

to consider the effect of the nonlinearities involved with coupled orientation and position

uncertainties. Depending on the reference frame, a small perturbation in the difference in

orientation between lines can result in a large value of δρ due to a lever arm effect. It is

common practice in prior line-based mapping methods to use a small-angle approximation

in orientation uncertainty, which allows this cross-coupling to be adequately approximated

by a linear process. This has meant that only longer lines with sufficiently small orientation

uncertainty could be used as features.

In order to effectively use line segments with higher rotational uncertainty, the nonlin-

earities introduced by this cross-coupling must be reduced. This can be done by comparing

the features represented with respect to a reference frame from which the cross-coupling is

minimized. The position of this reference frame is defined to be at the center of rotational

uncertainty for the combined covariance matrix PδL defined in Section 4.2.4. I define this

point as ~uPδL
, and calculate its location using Eqs. (4.21) and (4.24). The line parame-

ters and covariances are transformed into a frame centered at this point using equations

from Section 4.2.7. Lines Li and Lj are transformed to L̃i and L̃j, and covariance PδL is

transformed to P̃δL. The final chi-square calculation is therefore

δL̃ = L̃i − L̃j =


δα̃
δρ̃


 =


α̃i − α̃j

ρ̃i − ρ̃j


 , (4.77)

D̃2 = (δL̃)T (P̃δL)−1(δL̃). (4.78)

I then compare this calculated value of D̃ with a threshold set using the probabilities
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of a chi-square distribution with two degrees of freedom (for the two-dimensional infinite

line), which I define as χ2. The following is a criterion to reject the hypothesis:

D̃2 > χ2. (4.79)

If the D̃ value is less than the threshold then it can be determined within the chosen

probability that the difference between line Li and line Lj can be explained by the modeled

noise and the hypothesis is not rejected. Otherwise the hypothesis is rejected outright and

no subsequent testing is done for the feature pair.

4.4.2 Hypothesis 2 - Line Segment Overlap

The second hypothesis test measures the overlap of the two line segments that were deter-

mined above to be collinear. Given the segments Si and Sj, it is first necessary to select the

segment with the least uncertain orientation estimate to use as the base segment. In this

section, it is assumed that Si is the base segment, which in practice is most often the longer

segment. The endpoints are then extracted from Sj according to the equations introduced

in Section 4.2.9 and referred to as ~uja = [xja, y
j
a] and ~ujb = [xjb, y

j
b ]. These points are then

projected points into the underlying infinite line associated with Si with orientation αi as

follows:

ψ̃ja = xja cos(−αi) + yja sin(−αi), (4.80)

ψ̃jb = xjb cos(−αi) + yjb sin(−αi), (4.81)

where ψ̃ja and ψ̃jb are the lower and upper scalar end measurements, respectively, of line

segment Sj transformed to the frame of line segment Si. One can then compare these with

the lower and upper scalar end measurements of line segment Si which are ψia and ψib,

respectively. The uncertainty measure for each of these coordinates is also considered in

this comparison. According to the structure of the line segment covariance matrices PSi
and

PSj
as shown in Eq. (4.31), the relevant variance terms are extracted and defined as P i

ψaψa

and P iψbψb
directly from line segment i. The values of P j

ψaψa
and P jψbψb

for line segment

j are extracted from a projection of the endpoint covariance calculated from Eqs. (4.52)
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and (4.53) projected into the base line segment Si. This projection method of endpoint

comparison is valid for line orientation differences that are too large to apply the small-

angle approximation used in prior work.

Because this test considers the overlap of features that have some non-zero length in

the ψ dimension, there is an interval of relative positions where the distance or cost should

be zero. I therefore develop a piecewise Mahalanobis distance metric in the ψ dimension

that is then used as the basis for an overlap chi-square test. The center values of ψ ic and ψjc

along the line segments can be computed as

ψic =
ψia + ψib

2
, (4.82)

ψjc =
ψja + ψjb

2
, (4.83)

as well as the lengths of the two line segments

`i = ψib − ψia, (4.84)

`j = ψja − ψjb . (4.85)

∆ij
ψ is defined as the maximum distance between the center values that would result in any

overlap. This can be calculated as

∆ij
ψ =

`i + `j

2
. (4.86)

So the piecewise Mahalanobis distance metric looks like this:

If |ψic − ψjc | ≤ ∆ij
ψ then

D2 = 0, (4.87)

and if ψic − ψjc > ∆ij
ψ then

D2 =
(ψic − ψjc − ∆ij

ψ )2

P iψaψa
+ P jψbψb

, (4.88)
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and if ψic − ψjc < −∆ij
ψ then

D2 =
(ψic − ψjc + ∆ij

ψ )2

P iψbψb
+ P jψaψa

. (4.89)

This is a smooth piecewise function and as the lengths of the line segments `i and `j

approach zero, the distance function approaches the standard metric for distance between

point values. I then compare D2 with a threshold χ2 set from a chi-square distribution with

a single degree of freedom. Therefore if D2 > χ2 the hypothesis can be safely invalidated

and one can conclude that the features do not overlap. If the test fails, the subsequent

hypotheses tests are not applied for this feature pair.

4.4.3 Hypothesis 3, 4 - Endpoint Matches

This test compares the values of the line segment endpoints to determine if there are zero,

one, or two matches. Here again the projected endpoint values are computed for line segment

Sj and compared with the endpoint values of Si using a chi-square test. The following two

chi-square tests are considered:

D2
a =

(ψia − ψ̃ja)2

P iψaψa
+ P jψaψa

, (4.90)

D2
b =

(ψib − ψ̃jb)
2

P iψbψb
+ P jψbψb

. (4.91)

Each of these values is compared to a threshold determined by the desired probability limit

χ2 for a single degree of freedom system. Hypothesis 3, which assumes at least one end

matches, is supported if

D2
a ≤ χ2 or D2

b ≤ χ2. (4.92)

Hypothesis 4, which assumes both ends match is supported if

D2
a ≤ χ2 and D2

b ≤ χ2. (4.93)

Recall that each of these tests requires that the previous hypothesis was validated, so the

test of Hypothesis 4 is akin to a full feature comparison in that the hypothesis is true if all

parameters of the feature match. The separation of the line segment feature comparison
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method into this tiered comparison approach allows for partial matching of line segment

features. The feature merging and localization methods developed below take advantage of

these partial matches.

4.5 Line Segment Merging

This section describes how to merge line segments found in the same scan, or across scans

taken at distinct poses. This merging allows compression and simplification of large maps

without sacrificing the precision or the knowledge of map uncertainty that is gained from

the weighted line fitting algorithm. The process of merging lines across two pose data sets

is considered in detail. Merging across multiple data sets is a natural extension. The basic

approach is simple. The candidate line pairs are first transformed into a common refer-

ence frame, and the hypothesis tests developed above are applied. A maximum likelihood

approach is then used to determine the best estimate of the line pairs to be merged. The

merging process itself depends on the results of the partial match hypothesis tests developed

in Section 4.4.

Full Merge

If the pair of line segments Si and Sj pass all of the hypothesis tests outlined above, all of

the coordinates of the features are merged. The final merged line, Sm, can be estimated

using a maximum likelihood formulation with the necessary condition for most likely line

Sm as follows:
∂M

∂Sm
= 0, (4.94)

M(Sm) =

N∑

k=1

(Sk − Sm)T (P kS )−1(Sk − Sm). (4.95)
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In at the minima of Eq. (4.95), the following holds

∂M(Sm)

∂(Sm)
= 0 ⇔

N∑

k=1

(PSk
)−1 (Sk − Sm) = 0 ⇔

N∑

k=1

(PSk
)−1 (Sk) =

(
N∑

k=1

(PSk
)−1

)
Sm ⇔

Sm =

(
N∑

k=1

(PSk
)−1

)−1 N∑

k=1

(PSk
)−1 (Sk)

Sim = P iSm

(
(PSi

)−1Si + (PSj
)−1Sj

)
(4.96)

P iSm
=
(
(PSi

)−1 + (PSj
)−1
)−1

. (4.97)

Partial Merge, No Ends Match

If the pair passes Hypothesis Tests 1 and 2 outlined above in Sections 4.4.1 and 4.4.2, then it

can be assumed that the two line segments share a common underlying infinite line and have

at least some overlap in the ψ dimension along the lines. If the pair fails Hypothesis Tests 3

and 4 such that neither endpoints overlap, then only the underlying infinite line is merged.

The underlying infinite lines, Li and Lj , are extracted from each segment using Eq. (4.42).

The covariance matrices of the underlying lines, PLi
and PLj

, are extracted from the full

covariance of the segments PSi
and PSj

, respectively, using Eq. (4.43). The corresponding

maximum likelihood calculation for these terms results in the following merged infinite line

Lm and covariance PLm :

Lim = P iLm

(
(PLi

)−1Li + (PLj
)−1Lj

)
, (4.98)

P iLm
=
(
(PLi

)−1 + (PLj
)−1
)−1

. (4.99)

The merged end pairs, ψma and ψmb , can then be selected based on the values of the

segment endpoints, which would result in the effective union of the two segments. So

ψma = min(ψia, ψ
j
a) ψmb = max(ψib, ψ

j
b) (4.100)
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and the final merged segment Sm is

Sim =




Lim

ψma

ψmb


 . (4.101)

Similarly the final covariance matrix PSm is arrived at by augmenting the merged infinite

line covariance matrix PLm with the rows and columns of PSi
and PSj

corresponding to the

selected endpoints taken in Eq. (4.100).

In some cases it can be useful to merge line segments that have no overlap, as a pair of

segments sharing a common wall, but separated by a doorway. In this case both endpoint

pair values are simply appended to the line segment representation as introduced in Eq.

(4.26).

Partial Merge, One End Matches

Consider the case where the line segments pass all hypothesis tests but test 4 outlined

in Section 4.4.3 such that only one of the two endpoints are determined to match. The

values of Si,Sj,PSi
and PSj

corresponding to the unmatched endpoint are removed and the

optimal estimates for the remaining coordinates are calculated using the above Eqs. (4.96)

and (4.97). The unmatched end values are then reinserted according to Eq. (4.100) to

reconstruct Sm and PSm .

4.5.1 Line Segment Merging Examples

These merging methods were implemented on a Nomadics 200 mobile robot equipped with

a Sick LMS-200 laser range scanner. In the experiments, the sensor noise values of σd = 5

mm, σφ = 10−4 radians were used, as obtained from the Sick LMS-200 laser specifications.

The value of the χ2 threshold was set to merge lines within the 3σ deviance threshold.

Figs. 4.17, 4.18, 4.19 show a sequence of increasingly complex data sets that were

gathered in the hallway outside of a laboratory. Fig. 4.17 graphically depicts the results

of fitting lines to a single scan taken in the hallway. The left figure shows the raw range

data along with the 3σ confidence region of selected points as calculated from the sensor

noise model. The right figure shows the fit lines along with the 3σ confidence region in ρ.
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Figure 4.17: Range data: A) Raw points and selected point covariances. B) Fit lines and
line uncertainties.

All uncertainty values have been multiplied by 50 for clarity. From the 720 raw range data

points the algorithm fit 9 lines. If it is assumed that a line segment can be represented

by the equivalent of two data points, this method have effectively compressed the data by

97.% over a point-based map. This compression not only reduces map storage space, but

it can also serve to reduce the complexity of any relevant algorithm (e.g., scan matching)

that scales to the order of number of features. Unlike other feature finders such as corner

detectors, the lines abbreviate a large portion of the data set, so overall far less information
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Figure 4.18: Range data from two poses: A) Raw points and selected point covariances. B)
Fit lines and line covariances. C) Merged lines and line covariances.

is lost in compression.

Merging lines across scans further improves compression of data. Fig. 4.18 graphically

depicts the results of fitting lines to scans taken at two poses in a hallway. The left figure

shows the raw range data, the center figure shows the lines fit to the two scans, and the right

figure shows the resulting merged lines. From the 1440 raw range data points the algorithm

fits 20 lines without merging, and 14 lines after merging. The merging step compresses the

data a further 30% for a total compression of 98.0% from the original data. Note that the

three vertical segments on the right are found to be collinear and are “merged” even though

they do not overlap.

Compression achieved by line fitting and merging is equally pronounced in large data

sets. Fig. 4.19 depicts the results of fitting lines to scans taken at eight poses in the hallway.
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Figure 4.19: Range data from eight poses – A) Raw points and selected point covariances.
B) Fit lines and line covariances. C) Merged lines and line covariances.

As above, the left figure shows the raw range data, the center figure shows the lines fit to

the ten scans, and the right figure shows the resulting merged lines. From the 5760 raw

range data points the algorithm fits 93 lines without merging and 29 lines after merging.

The merging step here compresses the data a further 68% for a total compression of 98.9%

from the original data. Note that many of the jogs in the lower portion of the hallway arise

from recessed doorways, water fountains, and other features. Note also how the method

effectively merges the broken line defined by the right wall of the hallway.

Clearly the level of compression depends upon the environment. Hallways will likely

have very high compression due to long walls that can be merged over many scans. In

more cluttered environments, the compression may not be as high, but it can still be very

effective. Fig. 4.20 shows the results of fitting lines to range scans taken at ten poses in

our laboratory. Fig. 4.20A shows the raw scan points, Fig. 4.20B shows the fitted lines,
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Figure 4.20: A) Raw points and selected point covariances. B) Fit lines and line covariances.
C) Merged lines and line covariances.
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and Fig. 4.20C shows the resulting merged lines. From the 7200 raw range data points,

the algorithm fit 141 lines without merging, and 60 lines with merging. The merging step

compresses the data a further 57% for a total compression of 98.9% from the original data.



99

4.6 Line Segment–Based Kalman Filter

This section introduces an extended Kalman filter based SLAM (simultaneous localization

and mapping) algorithm that uses line segment features as the primary representation of the

environment. Some general background information on the extended Kalman filter (EKF)

was introduced in Section 2.3. This method not only merges line segments together, but

also computes an updated estimate for the robot’s position as the map is constructed. In

this section, the equations for the extended Kalman filter itself are developed. This includes

methods to use the cascading hypothesis tests outlined in Section 4.4 to selectively update

the filter based on the type of feature correspondence established.

4.6.1 Preliminary Definitions

The EKF state vector X at time step k takes the following form:

Xk =




x

y

φ

S1

...

Sn




k

, (4.102)

where [x, y, φ] represents the robot’s pose and S1...Sn the line segment features. All variables

are represented with respect to a common global reference frame and the representation of

the line segment feature is shown in Eq. (4.25). Note that the length of the state vector is

m = 4n+ 3. The covariance for the EKF is defined as PXk
and is represented as an m×m

matrix that maintains all cross-correlations of each feature and the robot’s pose.

4.6.2 Propagation Equations

The control input for mobile robot propagation can be represented as the change in pose

uk−1 = [dx, dy, dφ] with process noise Pu, both represented in a local reference frame with

respect to the robot’s heading at step k − 1. This is generally the form of the odometry

measurement for mobile robots and is introduced in Section 2.5.1. The transformation of

the state X thorough this dead reckoning update uk−1 with measurement perturbations
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wk−1 = [εx, εy, εφ] can be calculated as follows:

Xk = fk(Xk−1, uk−1, wk−1)


xk

yk

φk

S1(k)

...

Sn(k)




=




xk−1 + (dx+ εx) cos(φk−1) − (dy + εy) sin(φk−1)

yk−1 + (dy + εy) sin(φk−1) + (dx+ εx) cos(φk−1)

φk−1 + dφ+ εφ

S1(k−1)

...

Sn(k−1)




. (4.103)

The propagation of the robot state due to robot motion and dead reckoning updates can

be described by the following equation:

X̂k|k−1 = fk(X̂k−1, uk−1, 0), (4.104)

Pk|k−1 = AkPk−1A
T
k +WkPuW

T
k . (4.105)

where Ak is defined as a Jacobian matrix of partial derivatives of f , defined in Eq. (4.103)

with respect to X, and Wk is defined as a Jacobian matrix of f with respect to w. The

result of these calculations for Ak and Wk are

Ak =




cosφk−1 − sinφk−1 −dx sinφk−1 − dy cosφk−1 0 0

sinφk−1 cosφk−1 dx cosφk−1 − dy sinφk−1 0 ... 0

0 0 1 0 0


 , (4.106)

Wk =




cosφk−1 − sinφk−1 −dx sinφk−1 − dy cosφk−1 0 0

sinφk−1 cosφk−1 dx cos φk−1 − dy sinφk−1 0 ... 0

0 0 1 0 0


 . (4.107)

4.6.3 Update Equations

In the process of mapping, consider a sensed line segment feature in the environment, S̄,

measured in the local coordinate frame. If this feature is confirmed to correspond with

the cth existing feature denoted as Sc(k), then the following process is used to incorporate

that information to update the robot state X and covariance PX . Multiple variations of
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the update equations are presented that depend on the results of the cascaded hypothesis

tests introduced in Section 4.4. Similar to the line merging approach in Section 4.5, partial

correspondences of features is allowed, and the filter is only updated with the information

given by the parameters verified to match.

The following nonlinear function hk() represents the coordinates of measurement S̄ in

terms of the current state X and a set of measurement perturbations vk = [εα, ερ, εψa , εψb ]:

S̄ = hk(Xk, vk)


αl

ρl

ψal

ψbl




=




αc(k) + εα − φk

ρc(k) + ερ − xk cos(−αc(k)) + yk sin(−αc(k))
ψa
c(k) + εψa − xk sin(−αc(k)) − yk cos(−αc(k)) + εαρl

ψb
c(k) + εψb − xk sin(−αc(k)) − yk cos(−αc(k)) + εαρl



. (4.108)

The general update equations for the extended Kalman filter are as follows:

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + VkPS̄V

T
k

)−1
, (4.109)

X̂k = X̂k|k−1 +Kk(S̄ − h(X̂k|k−1, 0)), (4.110)

Pk = (I −KkHk)Pk|k−1, (4.111)

where Hk and Vk are the Jacobian matrices of partial derivatives of hk() with respect to Xk

and vk calculated at each step k. It is these matrices, Hk and Vk that change depending on

which parameters of the line segment have been determined to correspond.

Full Feature Update

First consider the case where the feature pair has passed a test for hypothesis 4 outlined in

Section 4.4.3 and therefore all parameters of the line segment (the underlying infinite line

and both endpoints) correspond between the sensed feature S̄ and the stored feature Sc.

For simplicity the subscript k, which denotes the kth time step of the filter, will be dropped

for this derivation. The Jacobian matrix of partial derivatives of h() with respect to X can

be computed in two parts as follows:
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Hg =




0 0 1

− cos(αc) − sin(αc) 0

sin(αc) − cos(αc) 0

sin(αc) − cos(αc) 0



, (4.112)

HSc =




1 0 0 0

x sin(αc) − y cos(αc) 1 0 0

x cos(αc) + y sin(αc) 0 1 0

x cos(αc) + y sin(αc) 0 0 1



, (4.113)

with Hg relating to the derivatives of h() with respect to the pose portion of the state, and

HSc relating to the derivatives with respect to the cth feature of the state. The complete

H matrix can therefore be assembled as

H =
[
Hg 0 ... HSc ... 0

]
, (4.114)

where the position of HSc in the matrix corresponds to the position of Sc in X. The matrix

V can similarly be calculated

V =




1 0 0 0

0 1 0 0

ρl 0 1 0

ρl 0 0 1



, (4.115)

where

ρl = ρc(k) − xk cos(−αc(k)) + yk sin(−αc(k)). (4.116)

For a full feature match, these values of H and V are applied to Eqs. (4.110) and (4.111)

to calculate the updated state and covariance.

Partial Feature Update

In the case where a subset of the feature coordinates have been determined to correspond

in a feature pair, the H and V matrices are adjusted by setting the row corresponding to
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the unmatched coordinate to be all zeros. For example, in the common case when just the

underlying infinite line (α and ρ) is merged, H and V can be calculated as follows:

Hg =




0 0 1

− cos(αc) − sin(αc) 0

0 0 0

0 0 0



, (4.117)

HSc =




1 0 0 0

x sin(αc) − y cos(αc) 1 0 0

0 0 0 0

0 0 0 0



, (4.118)

where

H =
[
Hg 0 ... HSc ... 0

]

and

V =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0



. (4.119)

Similar adjustments are made in the case where only one end matches.

Endpoint Update

In the case of partial feature update where the endpoints do not correspond, it is beneficial

to extend the stored line feature given the new measurement. After merging the underlying

infinite line, either or both endpoints in the state vector can be effectively replaced with

the measured endpoint values if the new measured values extend the overall length of the

line segment. When replacing these parameters, the covariance matrix must be adjusted to

reflect the uncertainly of this new measurement as well.

New Feature Update

If a sensed feature S̄ has no correspondences, it may be a candidate to be added to the

filter. In this case, the state vector X is appended with the additional feature parameters
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represented with respect to the global coordinate frame. The state covariance matrix, PX ,

is also appended with the sensed feature covariance, PS̄ transformed to the global frame

using in Eq. (4.32) and taking into account current pose uncertainty Pg. The cross terms

between the new feature and the current pose estimate in the state can be computed as

HSPg and PgHS , where HS is defined in Eq. (4.33).

4.7 Line Segment–Based SLAM

My approach to line segment–based SLAM utilizes the methods developed above. Given an

initial state X and PX consisting only of the robot pose and pose covariance, the mapping

process can be described in the following set of steps:

Step 1) At the current pose a range scan is taken and a set of features is extracted using

methods from Section 4.3.

Step 2) Each extracted feature is compared with the stored features in the Kalman filter

state X using the methods in Section 4.4.

Step 3) Features that are shown to correspond are updated according to the process out-

lined in Section 4.6.3.

Step 4) The set of sensed features that are isolated are added to the state as shown in

Section 4.6.3.

Step 5) Propagate the state given a robot displacement g according to the methods in

Section 4.6.2. Go to Step 1.

Using this process, maps can effectively be built that accurately and efficiently describe

the environment while localizing the robot.

4.7.1 Line Segment–Based SLAM Experiments

In this section I present results using the line segment–based SLAM algorithm. As in the

previous experiments shown, all data sets were collected with a Sick LMS-200 laser range

scanner and using the sensor noise model developed in Section 2.5.2. Figure 4.21B shows

the map built with the same data presented in the previous chapter in Figure 3.8 and again

represented in raw form in Figure 4.21A. The weighted scan matching method developed
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in Chapter 3 estimates relative displacement between poses. The SLAM method presented

here estimates the global position of the robot. The benefits of this method can be seen

in the accuracy in the final robot localization after traveling the 83-pose, 24.2-meter path.

Note that the final data set in the path is taken from the exact spot that the initial data

set was taken, so the final displacement estimate should be exactly zero. The estimated

displacement for the final position is 4.5 mm while the estimated orientation is 3.3 × 10−5

radians. This shows better performance than the weighted scan matching estimates of 18

mm and 0.013 radians, but the primary benefit of the SLAM based method is that the error

will remain bounded over multiple loops unlike the displacement estimation method.

In this line segment feature based mapping method, no range data points are unrepre-

sented. Every point from the original 83 scans was fit to a line, even if that “line” was fit

to an isolated point and had zero length. The resulting data compression for this map rep-

resentation is still significant, and of the original 29,880 scan points, the final map contains

251 line segments for a total compression of over 98%.

This ability to represent lines of any length with the same feature and still merge and

localize with all of the data is a significant improvement over prior work in line feature

based localization and mapping. The methods of Castellanos and Tardos [CT99, CMNT99]

are limited in their ability to accurately compare and merge small lines as they depend on

the small-angle assumption in line orientation uncertainty. Figure 4.22 shows a map built

with a SLAM method that enforces a lower bound on the allowable feature size as would be

required in prior work. In this environment an effective map is still built and the accuracy is

comparable at the final position. In fact, in many cases it is beneficial to ignore the smaller

features, as often only the dominant lines are needed to localize the robot. My method

certainly allows this further pruning of the line map if desired, but there are cases where

the forced dropping of data in the Castellanos and Tardos method can hurt the localization

process.

For example, Figure 4.23A shows a series of hallway scans where the only discernible

feature besides the side walls is the round trash can on the left. Figure 4.23B shows the

results of localization using my approach where the round can is adequately represented and

used to correct the position of the robot in the direction along the hallway. Figure 4.23C

shows the representation and localization results for the feature representation of Castellanos

and Tardos. The can is lost and the process is unable to correct the position of the robot
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A

1000 mm

Range Point Data
Robot Poses

B

1000 mm

Line Segments
Robot Poses

Figure 4.21: Line map built with presented SLAM techniques: A) Full raw point data. B)
Full line segment map representation.

along the hallway. In these experiments the odometry estimates were perturbed by 50 mm

at each step for both methods to accentuate the differences in localization accuracy. The

error in the final position using my method was 6.5 mm while the error for the Castellanos

and Tardos method is 192.2 mm.
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1000 mm

Line Segments
Robot Poses

Figure 4.22: Full line map built with line segment length restriction.

A

1000 mm

Range Point Data
Robot Poses

B

1000 mm

Line Segments
Estimated Robot Poses
Actual Robot Poses

C

1000 mm

Line Segments
Estimated Robot Poses
Actual Robot Poses

Figure 4.23: Hallway data set: A) Raw data points. B) Full set of fit lines. C) Restricted
set of fit lines.

Computational Cost

All algorithms are implemented in Matlab and therefore not optimized for speed or efficiency.

Still, even in the best case, the computation cost for extracting these line segment features
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and performing SLAM is not insignificant. For the data set shown in Figure 4.21, operating

on a 2.0 Ghz Athlon PC with 1 GB RAM, the average computation time for complete line

extraction from data taken at a single pose was 0.83 seconds. The average time to match

and merge the line data was 5.2 seconds per pose where the computation time was heaviest

at the later poses when the map was large. These numbers are not ideal for some real time

applications, but they are certainly adequate for laptop based mobile robot applications.

A significant speed gain can be expected with the transition of the algorithms to C++ as

most computation time is spent inside loops that Matlab is unable to effectively optimize.

Chapter 5 offers further benefits to computational efficiency of these methods by introducing

a multi-scale approach.

4.8 Line Segment–Based Mapping and Localization Conclu-

sions

This chapter introduced novel approaches to line feature representation, extraction, and

data association. These approaches represent significant improvements over existing fea-

ture based mapping and localization methods. The use of features introduces improvements

over point based methods discussed in the previous chapter. The choice of line segment

representation facilitates comparison with the underlying infinite line, which is the most

robust portion of the feature. The extraction method applies a weighted line fitting algo-

rithm that takes into account the individual uncertainty of each scan point when computing

the optimal line fit and covariance. The matching methods introduce a tiered comparison

test that enables the partial matching and merging of features for finer grained selection of

feature correspondence. Also these methods compensate for the nonlinearities associated

with polar line segments to enable the matching and merging of short segments with high

orientation uncertainty. While these methods display significant improvements in quality

and accuracy, the computational cost for correspondence and mapping using these features

can be unfeasible for some high-speed or low-complexity applications. The following chapter

builds on the line segment–based approach to develop a multi-scale representation, which

offers significant benefits to computational cost and complexity while maintaining accuracy.
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Chapter 5

Multi-Scale Mapping and
Localization

5.1 Introduction and Overview

This chapter introduces multi-scale feature extraction and data correspondence methods

that have significant computational benefits when applied to a number of problems related

to localization and mapping. In Chapter 4, a method was introduced to fit lines to the

range data points in order to reduce the data complexity. In this chapter a multi-scale

version of the line segment feature is presented that represents range data as a line segment

with a non-zero width that are defined as block features. The notion of the feature scale is

associated with the block width, with the block width increasing as scale becomes coarser

as shown in Figure 5.1. The block features can encompass very short segments or even

single points in the case of unstructured data. The interrelations between features at each

scale are represented as a tree structure (Fig. 5.1A, where the red nodes and branches in

the tree correspond to the red features in the Figs. 5.1B–E).

This multi-scale tree based feature representation can be used to improve any combi-

natorial comparison or search that arises in localization and mapping methods. The most

common example is in feature correspondence. A coarse-to-fine data traversal can simplify

the computations required to determine if pairs of features, and if entire scans are a match.

To properly implement such a matching method, one needs a corresponding multi-scale

chi-square test, which is provided in this chapter.

Another example of a problem that can benefit from the multi-scale representation is the

“kidnapped robot problem” [Eng94]. This problem describes a situation where the robot
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Figure 5.1: Multi-scale range scan representation: A) scale tree graph. B–E) A sequence of
increasingly fine scale representations of the data.

is blindly moved and needs to relocalize in an environment. The solution to the kidnapped

robot problem invariably involves matches between a sensor scan from the robot’s current

configuration with a database of geometric data to find the most likely robot configuration.

The coarse scale representation allows a very efficient search of the database. Many possible

mismatches can be eliminated at the coarse scales, at which the computational complexity

of the matching procedure is small.
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Relation to prior work. It has long been recognized that the computational com-

plexity of mapping and localization can scale prohibitively with the number of landmarks

encountered and stored by the robot during its mapping and localization processes. A num-

ber of authors have focused on different techniques to reduce the computational complexity

associated with various aspects of mapping and localization. For example, sparsification of

the information matrix can significantly increase the efficiency of Kalman filter based SLAM

methods [TLK+04, WEL04]. Rao Blackwellization can increase the efficiency of particle fil-

tering based SLAM algorithms (e.g., the FastSLAM algorithm[MTKW02]). Finally, there

are feature based SLAM methods that attempt to reduce computational requirements by

reducing the feature set [NBL03]. The approach presented in this chapter uses multi-scale

feature extraction and multi-scale correspondence to reduce computational complexity, and

is most similar to the feature set reduction method.

Prior work in this area touches on some aspects of multi-scale data processing for lo-

calization, mapping, and navigation. Madhavan et al. [MDWD02] apply the classical scale-

space approach of Gaussian smoothing to range data. A number of authors use multi-scale

methods for efficient environment representation or planning [PR98, TMK04, MT04]. How-

ever, none of these works attempt multi-scale feature extraction and correspondence.

The vision community has a far richer collection of scale-space approaches. Some meth-

ods extract point-like features at multiple scales for the purpose of object matching [KB01,

Low99], and other work explores multi-scale edge detection and filtering [PM90, WRV98].

These applications fall in the same family of algorithms as my work; but with different

sensors and application goals, my implementation and focus is somewhat different.

My work uses a multi-scale Hough transform to efficiently extract multi-scale line seg-

ment features from planar range data. In the field of computer vision there are prior efforts

to develop a multi-scale Hough transform [MO01, MO00, OM99], though my particular

version of the multi-scale Hough transform is unique. The motivation for using a multi-

scale approach in much of the prior work in the computer vision field is to increase the

efficiency of the feature extraction process [PYIK89]. Similar efficiency benefits arise in my

feature extraction methods but the primary contributions of my work are the algorithms

that utilize the multi-scale feature representation. Using the multi-scale features, I intro-

duce algorithms for multi-scale feature correspondence, displacement estimation, and the

kidnapped robot problem, that take advantage of the multi-scale data structure to improve
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robustness and reduce computational complexity.

Chapter Overview

This chapter is structured as follows: Section 5.2 introduces the representation for a “block

feature,” which builds on the line segment representation developed in the previous chapter

by adding a notion of scale. Section 5.3 describes the multi-scale Hough transform process

for extracting features at each scale. Section 5.4 describes methods of matching the block

features. Section 5.5 reviews the scale tree dendrogram that organizes the multi-scale fea-

tures extracted from the Hough transform. Section 5.6 describes methods to use the scale

tree to enable efficient feature correspondence at the finest scales. Section 5.7 describes a

localization example that benefits from the scale-based approach. Section 5.8 outlines a

block based Kalman filter and SLAM method. Section 5.9 outlines the multi-scale solution

to the kidnapped robot problem and compares the computational cost with a single scale

solution.

5.2 Block Feature Definitions

This section introduces a block feature representation that forms the core of a multi-scale

feature based localization and mapping approach. The block feature extends the notion of

a line segment (Chapter 4) to a multi-scale setting and allows for flexibility in representing

complex sets of point data. Just as the line segment feature introduced in the previous

chapter extends a point feature into a length dimension, the block feature extends a line

segment feature into the width dimension.

The motivation for developing the block feature is to enable for more flexibility in

representing range data sets. The width element of a block allows for abstraction of groups

of somewhat aligned points that stray from collinearity due to environment geometry, which,

unlike sensor noise, is not adequately modelable a priori. While I do assume a Gaussian

distribution on the uncertainty of the position of the block boundaries, no assumptions

or abstractions are made on the distribution of the set of points represented inside the

block. One can therefore develop algorithms using the block feature that are less sensitive

to unmodeled effects from the scanning process and geometry and still representative of the

underlying environment. This approach enables adequate representation of an environment
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at a coarser scale with wider block features, while still maintaining the ability to represent

fine, straight line features at the finest scales as the block width approaches zero.

This feature representation also allows for the effective abstraction of groups of points

that do not form a discernible line. A block feature with a length-to-width ratio at or near

a value of 1 can be used to represent blob-like groupings of points though, the orientation

element of such a block loses relevance in localization procedures.

5.2.1 Block Feature Representation

B

bψ

aψ

ρ ρ

α

a
b

Figure 5.2: Block B representation.

A “block” is defined as a line segment with non-zero width. This is accomplished by

extending the line segment representation from a single ρ term to a pair of bounds [ρa, ρb].

Both ρa and ρb share the same orientation α and endpoint [ψa, ψb] values that define a pair

of parallel line segments. The resulting feature is a rectangle aligned at an orientation of

α, as shown in Fig. 5.4. In summary, block B is defined as

B =




α

ρa

ρb

ψa

ψb




. (5.1)

5.2.2 Block Covariance

Let the covariance of block B be denoted by PB . It extends the covariance definition for

a line segment, PS , from Eq. (4.31) by adding a row and column corresponding to the
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additional ρb term. The full covariance matrix PB can be written as follows:

PB =




Pαα Pαρa Pαρb
Pαψa Pαψb

Pρaα Pρaρa Pρaρb
Pρaψa Pρaψb

Pρbα Pρbρa Pρbρb
Pρbψa Pρbψb

Pψaα Pψaρa Pψaρb
Pψaψa Pψaψb

Pψbα Pψbρa Pψbρb
Pψbψa Pψbψb




. (5.2)

The uncertainty of ρa and the uncertainty of ρb need not be the same. See Fig. 5.3 for an

example of block covariance where the uncertainty of ρb is greater than the uncertainty of

ρa.

σα

σα

σρ
B

ρσ

σ

σ

ψ

ψ

b

a

b

a

Figure 5.3: Block B and block covariance representation.

The covariance matrices of segments Sa, Sb, and Sc contained in block B as shown in

Figure 5.5, can be computed as follows:

PSa = HSaPBH
T
Sa, (5.3)

PSb = HSbPBH
T
Sb, (5.4)

PSc = HScPBH
T
Sc, (5.5)

with HSa, HSb, and HSc defined above in Eqs. (5.24),(5.25), and (5.27).
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5.2.3 Block Frame Transformations

The frame transformations introduced in Section 4.2.7 for line segments can be naturally

extended for the block feature representation.

Coordinate Transformation

Consider a block Bi measured in a local frame with respect to pose gi = [xi, yi, φi]. The

block coordinates are transformed to a global frame representation B0, as follows:

B0 =




α0

ρ0
a

ρ0
b

ψ0
a

ψ0
a




=




αi + φi

ρia + δρi

ρib + δρi

ψia + δψi

ψib + δψi




, (5.6)

where δρi and δψi are the coordinates of the displacement gi projected into the ′′α − ρ′′

frame defined as

δψi = yi cos(αi + ψi) − xi sin(αi + ψi), (5.7)

δρi = xi cos(αi + φi) + yi sin(αi + φi). (5.8)

See Figure 4.4 for a graphical representation of these terms.

Covariance Transformations

Consider a covariance matrix, PBi
, of block Bi measured with respect to an uncertain pose,

gi, whose pose covariance matrix is Pgi
. The matrix PBi

can be transformed to the global

frame at pose i as follows:

PB0
= HBi

PBi
(HBi

)T +KBi
Pgi

KT
Bi
. (5.9)
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Define HBi
as follows, extending Eq. (4.11) defined above:

HBi
=




1 0 0 0 0

δψi 1 0 0 0

δψi 0 1 0 0

−δρi 0 0 1 0

−δρi 0 0 0 1




, (5.10)

where δψi and δψi are defined in Eqs. (5.8) and (5.7). Using the same approach outlined

in Section 4.2.7, define KBi
to be

KBi
=




0 0 1

1 0 0

1 0 0

0 1 0

0 1 0







cos(−αi + φi) −sin(−αi + φi) 0

sin(−αi + φi) cos(−αi + φi) 0

0 0 1


 (5.11)

=




0 0 1

cos(αi + φi) sin(αi + φi) 0

cos(αi + φi) sin(αi + φi) 0

−sin(αi + φi) cos(αi + φi) 0

−sin(αi + φi) cos(αi + φi) 0




. (5.12)

5.2.4 Block Center of Rotational Uncertainty

The notion of the center of rotational uncertainty for a line segment introduced in Section

4.2.8 can be naturally extended to a block. Augment the transformation matrix HP as

follows:

HPB
=




1 0 0 0 0

δψPa 1 0 0 0

δψPb 0 1 0 0

δρPa 0 0 1 0

δρPb 0 0 0 1




, (5.13)
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with

ψPa = −Pρaα/Pαα, (5.14)

ψPb = −Pρbα/Pαα, (5.15)

ρPa = −Pψaα/Pαα, (5.16)

ρPb = −Pψbα/Pαα, (5.17)

where the various covariance terms Pαα, Pρaα, etc. were defined in Eq. (5.2). It follows that

PB = HPB




σ2
α 0 0 0 0

0 σ2
ρa

0 0 0

0 0 σ2
ρb

0 0

0 0 0 σ2
ψa

0

0 0 0 0 σ2
ψb




HT
PB
. (5.18)

Equivalently, one can also compute




σ2
α 0 0 0 0

0 σ2
ρa

0 0 0

0 0 σ2
ρb

0 0

0 0 0 σ2
ψa

0

0 0 0 0 σ2
ψb




= H−1
PB
PB(H−1

PB
)T , (5.19)

where

H−1
PB

=




1 0 0 0 0

−δψPa 1 0 0 0

−δψPb 0 1 0 0

−δρPa 0 0 1 0

−δρPb 0 0 0 1




. (5.20)

In the case where δψPa = δψPb and δρPa = δρPb , the diagonalizing transformation HPB

is of the form of a pose transformation matrix outlined in Eq. (5.13). The location of the

point ~uP in Cartesian coordinates, which represents the center of rotational uncertainty for
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the block covariance, can be found as

~uP =


 xP

yP


 =


 δρPa cos(α) − δψPa sin(α)

δρPa sin(α) + δψPa cos(α)


 . (5.21)

B

ψ
P

ρ

uP

P

Figure 5.4: Block B representation.

Because the uncertainties in position and orientation are uncoupled about a reference

frame whose origin lies at ~uP , the nonlinearities introduced by the lever arm effect are

minimized when the covariance matrix is represented with respect to that frame. Therefore,

when comparing or merging block features, the effects of inherent nonlinearities can be

minimized by performing these operations at or near a frame centered at point ~uP .

5.2.5 Subfeature Coordinates

This section present methods to extract subfeatures from the block. Subfeatures are ge-

ometric elements of the block that may be useful to isolate for a targeted comparison or

feature merge. Here I present the simple processes to extract the underlying line segments

from the original block B. Section 4.2.9 introduced methods for extracting endpoints from

line segment features.

From this block feature one can extract the inner and outer line segments:

Sa = HSaB, (5.22)

Sb = HSbB, (5.23)
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Figure 5.5: Block B with subsegment and subpoint features shown.

with

HSa =




1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1



. (5.24)

HSb =




1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



. (5.25)

The line segment Sc, which corresponds to the center of the block, can be calculated as

Sc = HScB, (5.26)

with

HSc =




1 0 0 0 0

0 .5 .5 0 0

0 0 0 1 0

0 0 0 0 1



. (5.27)

The endpoints of these segments can also be easily calculated as shown in Eqs. (4.45)

and (4.49). See Fig. 5.5 for a graphical representation of these subfeatures of a given block

B.
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5.3 Block Feature Extraction

The goal of the feature extraction process is to sort a set of n range points U = {u1, ..., un}
into m roughly collinear point subsets Uk, k = 1, . . . ,m while at the same time estimating

the block parameters (B, PB). Note that m is not a predetermined value, and it will depend

upon the scale. Extraction of the m feature coordinates is an iterative, two step process. In

the first step, the underlying line coordinates [α, ρa, ρb] are extracted from the data using

an augmented Hough transform (see below). In the second step, the endpoints [ψa, ψb] are

estimated. Because of truncation performed during the endpoint estimation, the second

step can have an effect on the optimal estimation of the underlying infinite line coordinates.

Therefore, these steps are repeated iteratively until the process stabilizes, usually in three

or fewer iterations.

5.3.1 Multi-Scale Hough Transform

To extract the underlying infinite line coordinates [α, ρa, ρb], the range points are first

transformed using a multi-scale version of the Hough transform. Let us first briefly review

the classical Hough transform. Define a Hough space H(i, j) as a two-dimensional raster

with integer indices i and j indexing the variables ρ(i) and α(j), respectively. The variable

α(j) is discretized in increments of Dα on the range [−π/2, π/2] and the variable ρ(i) is

discretized in increments of Dρ on the range [−dmax, dmax], where dmax is the maximum

range value to be expected in the data point set. The discretization level Dα is chosen as

a function of the discretization level Dρ and the maximum sensor range lmax:

Dα = tan−1(Dρ/lmax) . (5.28)

Cell {i, j} of the discretized Hough space therefore represents the range of line coordinates

[ρ(i) ±Dρ/2 α(j) ±Dα/2]. The content of each cell in the Hough raster is initially set to

zero. For each range point, for all i one calculates the position ρik of the line at angle α(i)

that would pass through point k:

ρik = xk cos(α(i)) + yk sin(α(i)), (5.29)



121

where xk, yk are the coordinates of the kth range data point. From this value of ρik, deter-

mine the index j∗ such that ρ(j∗)−Dρ/2 < ρik ≤ ρ(j∗) +Dρ/2. The value at Hough space

cell H(i, j∗) is incremented. This process is repeated for every range point. The cell in

Hough space with the highest incremented value corresponds to the line that has the most

contributing points.

The traditional Hough transform simply detects peaks in the Hough space and defines

lines from the peaks’ coordinates. This technique is extended here in order to determine a

sense of the scale in the width of the detected lines. First determine the angle coordinate α

of a peak in the Hough space. Then extract the one-dimensional signal Γ(i) = H(i, α) that

corresponds to the magnitudes of the set of lines at all values of ρ that have an orientation

of α. Then convolve Γ(i) with a discretized version of the derivative of the Gaussian whose

variance σρ is defined as the “scale” of the extraction. This convolution acts as an edge

detector and the values of ρa and ρb are set to the dominant maximum and minimum of

the convolved signal at the given scale.

Fig. 5.6B shows a Hough transform for the set of points in Fig. 5.6A. The black line in

Fig 5.6B passes through the cells corresponding to lines at angle α. Figs. 5.7A,B show this

slice of the Hough space as well as the convolution of this discrete signal with a derivative

of Gaussian basis at multiple scales. The values for ρa and ρb are detected as the maximum

and minimum of the convolved signal. The resulting blocks at different scales are shown in

fig.s 5.8A,B.

The variance of the terms Pρaρa and Pρbρb
from the block covariance matrix defined in

Eq. (5.2) are estimated as follows:

Pρaρa = Pρbρb
= (σρ)

2 + PLρρ. (5.30)

The term PLρρ represents uncertainty due to sensor noise. It is equivalent to the uncertainty

in the ρ dimension of the optimally fit line as calculated in Eq. (4.70), which is repeated

here for clarity:

PLρρ =
1

∑n
k=1

(
1

Pδρk

) ,

where Pδρk
is the projection of the modeled range sensor measurement noise for point uk

onto the ρ axis and n is the total number of points in the block. Therefore the uncertainty
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Figure 5.6: Multi-scale extraction of ρa,ρb: A) Raw scan points B) Hough transform.
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Figure 5.7: Fine-scale extraction of ρa,ρb: A) Block ρ boundary detection at fine scale. B)
Detected infinite block.

in the ρ position of a block feature is a combination of the scale extraction uncertainty

(σρ)
2 and the sensor measurement uncertainty P L

ρρ. At coarser scales the contribution from
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Figure 5.8: Coarse-scale extraction of ρa,ρb: A) Block ρ boundary detection at coarse scale.
B) Detected infinite block

the scale extraction uncertainty dominates with (σρ)
2 >> PLρρ while at very fine scales the

uncertainty from sensor noise can be significant.

The uncertainty in the α measurement is defined as a similar combination of my dis-

cretization level Dα and process noise:

Pαα = (Dα)2 + PLαα, (5.31)

where PLαα can be computed as shown in Eq. (4.69).

5.3.2 Endpoint Detection

Endpoint detection is an analogous process but performed on the raw data points instead

of in Hough space. Project all points contributing to the line [α, ρa, ρb] onto the underlying

line. Then convolve this signal with the derivative of a Gaussian at a given scale σψ and

detect the maximum and minimum peaks. These peaks determine the endpoints of the

feature ψa and ψb. Fig. 5.9 shows the endpoint extraction process for the fine scale infinite

block shown in Fig. 5.7.

Like the ρ covariance terms, the variance terms Pψaψa and Pψaψb
in PB are set to be
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equal to the sum of the variance of the given Gaussian basis and the process noise:

Pψaψa = (σψ)2 + Pψa

noise, (5.32)

Pψbψb
= (σψ)2 + Pψb

noise, (5.33)

where the P ψnoise terms are calculated by projecting the measurement noise uncertainty of

the distal points into the ψ axis. The cross terms involving the variable α in the covariance

matrix PB are computed assuming the center of rotational uncertainty of the block is

anchored at the center of the block. The remaining cross-coupling terms in the covariance

matrix PB are set to zero at the time when the feature is extracted, as I assume that the

noise contributions from the range sensor independently effects the variables ρa, ρb, ψa, and

ψb.

ψa ψb

Convolution Basis

Extracted bounds uncertainty
Extracted ends (ψa ψb)
Convolved data
Point data projected into ψ axis
Point data inside infinite block

ψ (mm)
−2000 −1000 0 1000 2000 3000

Endpoint Extraction (ψa, ψb) 
Fine Scale

Extracted Block
Fine Scale

1000 mm

Extracted bounds uncertainty
Extracted block bounds

Figure 5.9: End extraction at the fine scale

5.3.3 Multiple Feature Detection

As each feature is detected, the points contributing to that feature that lie inside the

bounds of the block are removed from the candidate point set and the algorithm is repeated,

detecting features from the set of unselected points until no points remain. The result is



125

a set of m blocks and covariances {Bk, P kB}σρ , k = 1, ...,m extracted at scale σρ with a

corresponding set of point groups {uk}, k = 1, ...,m. Each point group uk is the set of range

data points associated with the kth block feature. By design, the point groups are disjoint,

so that different features at the same scale cannot share underlying points. Fig. 5.10 shows

the Hough space and extracted block for the subsequent feature extracted from the data in

Figs. 5.6 and 5.9.
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Figure 5.10: Subsequent block extraction.

5.3.4 Extraction Cost Benefits

The following three methods achieve additional computational savings for the multi-scale

Hough transform based extraction method introduced above.

Subsampling: The computational cost can be reduced at coarser scales by decreasing

the resolution of the Hough space discretization (increasing the bin size) in the ρ dimension

(by increasing Dρ up to the scale of the derivative of Gaussian convolution). With a coarser

scale in ρ one also gains the benefits of a similarly coarser scale in the α dimension due to

Eq. (5.28). A similar method of improving efficiency of coarse feature extraction is utilized

in the “adaptive Hough transform” [IK87].
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Hough Space Reduction: The size of the Hough space can be decreased by computing

the transform with respect to the average center of the candidate points. This has the effect

of reducing the apparent value of lmax, which is defined as the maximum range value of the

point data set and determines the Hough space bounds in the ρ dimension. The extracted

block is then transformed back into global coordinates. This approach is especially useful

when extracting features from a subset of the range scan point data, which is common in

the top-down scale tree construction methods of Section 5.5.2.

Prior Estimation: A prior estimate for the bounds of the block can be used to improve

efficiency. This estimate can come from a feed-forward approach from prior detected data,

or from an extracted feature from the current data at a coarser scale. In these cases, the

Hough space can be centered on the coordinates of the input feature, and bound the size

of the Hough space by the input feature bounds in ρ and α. The extracted block feature is

then transformed back into the global frame.

5.4 Block Feature Matching

This section extends the line segment data association approach introduced in Section 4.4

the case of block features. Practically speaking, it is important to know if two blocks are

likely to arise from similar underlying range data. This basic matching problem is used in

many mapping and localization procedures. A block is a feature that defines a bounded

area, and they are used to represent a one-dimensional contour in the environment defined

by the boundary of the sensed obstacles. While this gives us the benefits of flexibility and

abstraction of the underlying contour, it also can mean that even equivalent contours may

be represented by a different but equally accurate set of block representations. Therefore

consider the following two sources of possible differences when comparing blocks across

scans:

1) Error in the precision of the extraction process and in the relative pose estimate between

the frames at which each feature was detected.

2) Difference in the geometrical representation of the underlying contour due to feature

scale. An example of two blocks with identical underlying data that exhibit this difference

can be seen in Figure 5.11.
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Figure 5.11: Example of scale-based difference in the block feature representation of identical
point data.

Note that the scale-based difference does not represent an estimate error, and I do not

model this difference in my block extraction methods in Section 5.3. I instead develop a

two-stage method of comparing blocks across scans, which compensates for possible scale-

based differences while still maintaining a narrow threshold of comparison in the case where

there is no scale-based difference.

The first stage of testing attempts to validate the “scale overlap hypothesis.” This

test matches pairs of blocks that may describe the same underlying contour within the

flexibility afforded by block scale and length as well as process noise. If two features pass

this test they are considered a valid match, but there could exist a scale-based discrepancy

in block coordinates between them such that the pair is not a good candidate to merge and

contribute to robot localization. Therefore I develop a second stage of tests that validate

the “parameter match hypotheses.” These tests check the correspondence of the parameters

of the block and determine what aspects of the geometry of the block representations are

equivalent within process noise uncertainty. It is the equivalences found in the second stage

of tests that define the matchable aspects of two blocks in localization and mapping schemes.

The first part of this section introduced definitions and assumptions used throughout

the section. Next a set of hypotheses are developed to test if a pair of block features might

describe the same underlying data. This set of tests allows for differences between the blocks

due to feature scale. After methods are presented to test the block subfeatures for partial

matches. Finally a test that can be used to establish confidence in a potential match is

introduced.
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5.4.1 Matching Definitions and Assumptions

The following tests of these hypotheses assume there is a candidate match of two block

features Bi and Bj with representation defined in Section 5.2.1 and reproduced here as

follows:

Bi =




αi

ρia

ρib

ψia

ψib




Bj =




αj

ρja

ρjb

ψja

ψjb




. (5.34)

The covariance matrices PBi
and PBj

for these blocks are calculated according to Eq.

(5.2). Section 5.3 outlined a method of extracting these features and covariances. A further

assumption is that all parameters are represented with respect to a common reference frame.

It can be beneficial due to nonlinearities associated with the polar block representation to

perform the comparisons and subsequent merging steps in a common reference frame with

respect to the center of rotational uncertainty for the combined covariance of the blocks.

This entails calculating the Cartesian point ~uP associated with the covariance PBi
+ PBj

according to the equations in Section 5.2.4 and setting the common reference frame origin

to be at ~VP . Section 5.2.3 outlined methods of transforming the blocks and covariances

across frames.

5.4.2 Block Scale Overlap Hypothesis

The first set of hypotheses addresses whether it is possible that two block features describe

the same underlying physical contour. This is the broader of the two sets of tests, as it

compares block coordinates up to the resolution allowed by the inherent sensing process

noise as well as the scale of the blocks. Just like the notion of “overlap” in the ψ dimension

for a line segment found in Section 4.4.2, I now extend that idea into the orientation α

dimension and the normal position ρ dimension. The following hypotheses are developed

to test the parameter overlap of two block features:

Overlap Hypothesis 1: Block Bi from pose i and block Bj from pose j overlap in the

range of plausible orientations of the underlying contour.

Overlap Hypothesis 2: The blocks Bi and Bj define ranges in normal position ρ that
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have some overlap. Hypothesis 1 must be true.

Overlap Hypothesis 3: The blocks Bi and Bj describe ranges in the parallel position ψ

that have some overlap. Hypothesis 2 must be true.

The hypotheses are tested via methods based on the chi-square distribution.

Overlap Hypotheses 1: Block Orientation

When describing an underlying one-dimensional contour using a feature with some non-zero

width, there can be a range of alignments of the contour that still fall within the bounds of

the feature. The block feature representation does not hold an explicit range of orientation

due to the feature scale, but an estimate can be derived by computing a margin for the

range of orientations that the block can take to describe a contour that is an infinite line.

The angles of the block diagonals of blocks Bi and Bj can be calculated as follows:

∆i
α = tan−1

(
ρib − ρia
ψib − ψia

)
, (5.35)

∆j
α = tan−1

(
ρjb − ρja

ψjb − ψja

)
. (5.36)

These values of ∆i
α and ∆j

α correspond to the maximum relative orientation that an infinite

line could have and still pass through both end segments of the block and not intersect

the upper and lower normal block boundaries. So for block Bi there is a range of possible

orientations of the underlying contour defined by [−∆i
α,∆

i
α] and for block Bj the range is

[−∆j
α,∆

j
α]. The hypothesis is considered to be valid if there is some overlap in these angle

ranges.

A threshold for the scale-based flexibility in orientation of the block pair can be defined

as ∆ij
α , where

∆ij
α = ∆i

α + ∆j
α (5.37)

and then develop the following piecewise Mahalanobis distance metric for the block angle:

If |αi − αj | ≤ ∆ij
α then

D2 = 0, (5.38)
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and if |αi − αj | > ∆ij
α then

D2 =
(|αi − αj | − ∆ij

α )2

P iαα + P jαα
. (5.39)

That is, if |αi − αj | ≤ ∆ij
α , the block orientations match to the level of resolution, or

else, D measures the difference in orientation. For very narrow blocks extracted at a very

fine scale, the calculation approaches the standard Mahalanobis distance metric in α. D2 is

then compared with a threshold χ2 set from a chi-square distribution with a single degree of

freedom. If D2 > χ2 the hypothesis is invalidated, and one can conclude that the features

do not overlap. If the test fails, the subsequent hypotheses for this feature pair are not

tested.

Overlap Hypotheses 2: Block Width

An overlap in the ρ dimension is tested for those block features with a non-zero width.

Similarly a piecewise Mahalanobis distance metric in the ρ dimension is used as the basis

for a chi-square test. The test requires computing the values of ρic and ρjc, which are the

distances to the center of the block:

ρic =
ρia + ρib

2
, (5.40)

ρjc =
ρja + ρjb

2
, (5.41)

(5.42)

as well as the widths of the two line segments:

wi = ρib − ρia, (5.43)

wj = ρja − ρjb. (5.44)

Let ∆ij
ρ be the maximum distance between the center values that would result in any overlap:

∆ij
ρ =

wi + wj

2
. (5.45)

The analogous piecewise Mahalanobis distance metric looks like this:
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If |ρic − ρjc| ≤ ∆ij
ρ then

D2 = 0, (5.46)

and if ρic − ρjc > ∆ij
ρ then

D2 =
(ρic − ρjc − ∆ij

ρ )2

P iρaρa
+ P jρbρb

, (5.47)

and if ρic − ρjc < −∆ij
ρ then

D2 =
(ρic − ρjc + ∆ij

ρ )2

P iρbρb
+ P jρaρa

. (5.48)

This piecewise smooth function approaches a standard Mahalanobis distance compu-

tation as the width of the line segments wi and wj approach zero. The quantity D2 is

compared with a threshold, χ2, determined from a chi-square distribution with a single

degree of freedom. If D2 > χ2, one can safely invalidate the hypothesis and conclude that

the features do not overlap. If the test fails, the subsequent hypotheses for this feature pair

are not tested.

Overlap Hypotheses 3: Block Length

The test for the block length overlap in the φ dimension is identical to the test outlined for

a line segment in Section 4.4.2. For reference, the piecewise Mahalanobis distance metric

in the ψ dimension is repeated here. First, the center values of ψ ic and ψjc along the line

segments are computed as

ψic =
ψia + ψib

2
, (5.49)

ψjc =
ψja + ψjb

2
, (5.50)

as well as the lengths of the two line segments:

`i = ψib − ψia, (5.51)

`j = ψja − ψjb . (5.52)
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Define ∆ij
ψ as the maximum distance between the center values that would result in any

overlap:

∆ij
ψ =

`i + `j

2
. (5.53)

So my piecewise Mahalanobis distance metric looks like this:

If |ψic − ψjc | ≤ ∆ij
ψ then

D2 = 0, (5.54)

and if ψic − ψjc > ∆ij
ψ then

D2 =
(ψic − ψjc − ∆ij

ψ )2

P iψaψa
+ P jψbψb

, (5.55)

and if ψic − ψjc < −∆ij
ψ then

D2 =
(ψic − ψjc + ∆ij

ψ )2

P iψbψb
+ P jψaψa

. (5.56)

If D2 > χ2, one can safely invalidate the hypothesis and conclude that the features do

not overlap.

Scale Overlap Hypotheses Test Result

By validating all three overlap hypotheses, two blocks may describe the same underlying

structure, up to the flexibility allowed given this scale and length of the feature. If a pair

of blocks passes these three hypothesis tests, it is assigned as a match. These test are quite

flexible, especially when comparing features at a coarse scale. The tests developed below

check for the possible correspondences of the individual parameters that define the block

boundaries, which are more tightly defined.

5.4.3 Block Parameter Match Hypotheses

The following hypotheses compare the two candidate blocks on a parameter-by-parameter

basis. This set of tests is only considered if the pair of block features passes the scale overlap

test outlined above. These hypothesis tests are more narrow than the ones considered above
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in that they test for the exact correspondence of each block’s orientation and boundaries

up to possible errors from the relative parameter uncertainty. For all of the tests below,

the threshold χ2 value is defined from a chi-square distribution table for a one degree of

freedom system at a desired probability level.

Matching Hypothesis 1: Block orientations αi, and αj correspond between the blocks.

The hypothesis is false if the following holds:

χ2 <
(αi − αj)

2

P jαα + P iαα
. (5.57)

Matching Hypothesis 2: The inner block normal bounds ρia and ρja correspond between

the blocks. Matching hypothesis 1 must also hold. The hypothesis is false if the following

holds:

χ2 <


αi − αj

ρia − ρja



T 


P

i
αα P iαρa

P iρaα
P iρaρa


+


P

j
αα P jαρa

P jρaα P jρaρa






−1 
αi − αj

ρia − ρja


 . (5.58)

Matching Hypothesis 3: The outer block normal bounds ρib and ρjb correspond between

the blocks. Matching hypothesis 1 must also hold. The hypothesis is false if the following

holds:

χ2 <


αi − αj

ρib − ρjb



T 


P

i
αα P iαρb

P iρbα
P iρbρb


+


P

j
αα P jαρb

P jρbα P jρbρb






−1 
αi − αj

ρib − ρjb


 . (5.59)

Matching Hypothesis 4: The lower block end bounds ψia and ψja correspond between

the blocks. Matching hypothesis 1 must also hold. The hypothesis is false if the following

holds:

χ2 <


αi − αj

ψia − ψja



T 


 P

i
αα P iαψa

P iψaα
P iψaψa


+


 P

j
αα P jαψa

P jψaα
P jψaψa






−1 
αi − αj

ψia − ψja


 . (5.60)

Matching Hypothesis 5: The upper block end bounds ψib and ψjb correspond between

the blocks. Matching hypothesis 1 must also hold. The hypothesis is false if the following
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holds:

χ2 <


αi − αj

ψib − ψjb



T 


P

i
αα P iαψb

P iψbα
P iψbψb


+


P

j
αα P jαψb

P jψbα
P jψbψb






−1 
αi − αj

ψib − ψjb


 . (5.61)

For a perfect block correspondence, all five parameters of the blocks would be determined

to match. In practice, often a smaller subset of the parameters match either due to the

differences in scaled feature fitting discussed above, or due to actual differences in the

underlying data from occlusion effects or a changing environment. In my merging and

mapping methods, I use these parameter matching tests to guide which elements of the

block pair will be merged to help localize the robot.

It is important to note that in the case where multiple parameters pass the above tests,

for simplicity I do not take into account the possible cross coupling between the ρ and ψ

parameters in the block feature covariance matrices. The result is a more lenient test with

the possibility of accepting a set of hypotheses that would be rejected if the full covariance

of each of these terms were applied in a combined chi-square test. In general, the effect of

ignoring this coupling when establishing correspondences is small. If needed, it is possible to

introduce a second level of chi-square testing that assembles all terms which pass the above

tests and compares them using the corresponding covariance matrices. For example, in the

case where all of the above tests pass, the testing could be further refined by computing

χ2 < (Bi −Bj)
T
(
PBi

+ PBj

)−1
(Bi −Bj), (5.62)

where χ2 is the chi-square threshold defined for a five degree of freedom system. Similar tests

can be constructed for other combinations of matches. In the case where the combined test

fails, the parameter with the highest Mahalanobis distance calculated above can be thrown

out and the combined comparison repeated with the remaining parameters.

5.4.4 Match Confidence Test

This section develops a test that complements the chi-square based tests above, by devel-

oping metrics that assess the confidence in a match or set of matches. As mentioned in

Section 2.1, the chi-square test is effective at filtering out possible bad matches, but it does

not alone give a measure of confidence in the truth of the given hypothesis. For example, a
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block feature measurement with a huge level of uncertainty in all dimensions would match

a large range of differing blocks with a very low set of Mahalanobis distance D calculations,

but these low distance metric calculations give us no hint that a false positive match is very

likely for that feature. This effect is especially strong when considering my scale overlap

comparison test outlined above, which increasingly opens up the matching method to the

possibility of false positives, especially at a coarse scale.

At the core of the match confidence test is an estimation of the probability of a false

positive between two features given their scale and noise properties. First I define the full

configuration space of a block feature S as a three-dimensional space bounded by [−π, π]

in the α dimension and by [−dmax, dmax] in the ρ and φ dimensions where dmax is the

maximum spatial dimension of the area that is being compared.

First consider the probability that block orientations will match by chance. Consider

the maximum angle difference that will pass the first hypothesis of angle overlap outlined

in Section 5.4.2. To calculate this the value of D2 in Eq (5.39) is set to be equal to the

chosen threshold value χ2 as follows:

χ2 =
(|αi − αj | − ∆ij

α )2

P iαα + P jαα
. (5.63)

The maximum allowable change in alpha is then solved for as follows:

|αi − αj | = ∆̄ij
α = ∆ij

α +

√
χ2(P iαα + P jαα). (5.64)

Recall that ∆ij
α is defined in Eq. (5.37) as a function of the scales of the two blocks. No terms

in the above calculation depend on the actual block position, only on inherent properties of

each block. The probability that two blocks will match in angle given a uniform distribution

in possible difference in angles can be denoted as the ratio ∆̄ij
α /(2π). Similarly in the ρ and

ψ dimensions from Eqs. (5.48) and (5.56) one can calculate

∆̄ij
ρ = ∆ij

ρ +
1

2

(√
χ2(P iρaρa

+ P jρaρa) +
√
χ2(P iρbρb

+ P jρbρb
)

)
, (5.65)

∆̄ij
ψ = ∆ij

ψ +
1

2

(√
χ2(P iψaψa

+ P jψaψa
) +

√
χ2(P iψbψb

+ P jψbψb
)

)
. (5.66)

The overall probability of a match Mij between blocks Bi and Bj can therefore be estimated
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as

P(Mij) =
∆̄ij
α

2π

(
∆̄ij
ρ

2dmax

)
∆̄ij
ψ

2dmax
. (5.67)

This value of P(Mij) gives us a notion of what the significance of a given match between two

block features would be, with a lower probability suggesting a rarer occurrence by chance

and therefore a more meaningful match. This notion of match significance is useful when

considering groups of matches, and is used in developing a threshold to determine whether a

set of matches at a certain scale is good enough to have confidence in the position estimate

from the current scale or whether it is necessary to proceed to a finer scale.

5.5 Construction of Scale Trees

A scale tree is a tree of block features extracted from a common data set across multiple

scales. Parent-child connections on the tree are established for features at different scales

wherein the child feature at a finer scale has been extracted from a subset of the data

encompassed by the parent. Before construction, the set of discrete scales that corresponds

to each level of the tree is determined. As is common in multi-scale methods [Lin94, Low99],

a set of scales is generated that increases at each step from fine to coarse by factors of 2.

There are two methods of building a scale tree. The first is bottom-up construction

started by extracting features at the finest scales and combining them into coarser scale

features while climbing the tree. The second is top-down construction, started by extracting

the coarsest features and then extracting finer and finer scale subfeatures from the coarser

features.

5.5.1 Bottom-Up Tree Construction

If the finest scale of features needed is known a priori, a scale tree can be efficiently con-

structed from the bottom-up. First a full set of features is extracted at the finest scale as per

the methods in Section 5.3. The features can be extracted at subsequent scales either from

the raw data or by combining the features themselves. In the raw data approach the blocks

are extracted at each scale just as before but some computational efficiency can be gained

at each subsequent scale by reusing and sub-sampling the Hough transform calculations

computed for the previous finer scale (much like building a Gaussian scale tree). Alterna-
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tively the finer scaled features can be merged together into coarser features by expanding

each feature by the scale difference and then matching and merging the coarser features.

5.5.2 Top-Down Tree Construction

A scale tree can also efficiently be built using top-down construction where the coarsest

scales are extracted first. This method is especially effective in applications where it isn’t

initially known how fine a scale will be needed to go to achieve success. In this construction

method a set of features is first extracted from the raw data at the coarsest scale. The raw

data points are then separated into subgroups corresponding to the coarse features that

encompass the data. Subsequent feature extraction at finer scales is performed on these

subgroups of points independently. This allows for improved computational efficiency at

the finer scales as the smaller range of these subgroups of points can result in a narrower

parameter search as discussed in Section 5.3.4. Each feature at the coarser scale has a

parent-child relationship in the scale tree with the finer scale features extracted from its

point subgroup.

Another significant computational benefit can arise if the application can be effective

when using a subset of data at a finer scale. In this case, the top-down scale tree can be

constructed such that the child features of only some of the features at the coarser scale are

computed.

This work focuses on the top-down construction method, the results of which can be

seen in Fig. 5.1A–E.

5.6 Block Feature Matching Using Scale Trees

When establishing correspondence using scale trees, knowledge of the tree’s structure can

help to maximize matching efficiency and enable increased robustness to unmodeled errors.

The most straightforward method of establishing correspondence is to build scale trees of

two data sets and establish correspondences between features across the sets. This method

traverses from the coarse to fine scales on both trees, establishing correspondences at each

scale down to the finest scale features. In this case each search for a correspondence pair

can be abbreviated to only compare the children of two features that have corresponded at

a coarser scale.
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While the relative computational improvement of a tree based method over the direct

calculation of correspondence of the features at the finest scale will depend upon the data

set, the improved efficiency is inherent in this method, as shown in the following simplified

analysis. Assume that the goal is to determine the correspondence between N features in

two different range scans. For the sake of simplicity, assume thatN = 2m for some integerm.

The process of finding correspondences between the N features in two scans has complexity

βN2, where β is a scaling coefficient that depends upon the details of the correspondence

method. Now consider the computation involved in finding correspondences with the scale

trees. Assume for the sake of a simplistic argument that the scale tree is dyadic — each node

has two children nodes. At the coarsest scale, only search for correspondences between two

pairs of features, which results in a computational cost of β22. At the next finer scale, there

are four features to check for possible matches. However, it is only necessary to check for

correspondences among the features of the children that descend from the parent nodes that

were found to be in correspondence at the coarser scale. This results in a computational cost

of 2β22. Continuing in this fashion for log(m − 1) levels in the tree, it can be determined

that the multi-scale version of correspondence requires computational effort of β(N − 1)22.

Thus, for the specific case of a dyadic tree, my method should scale linearly with the number

of features, as opposed to quadratically for a fine scale analysis. While not all scale trees will

be dyadic, clearly there are substantial computational savings to be had with this approach.

5.6.1 A Correspondence Example

Fig. 5.12 presents an example using data collected from a Sick LMS-200 range scanner

in an indoor office environment. All computations and timing estimates are done using

the Matlab programming environment running on a 2.0 Ghz Athlon PC with 1 GB RAM.

The first set of data, termed “scan 1,” is actually the same data found in Fig. 5.1B. The

second set of data, termed “scan 2,” was taken at a nearby robot pose. Figs. 5.12A,B show

the scale tree and the finest features extracted from scan 1 and Figs. 5.12C,D show the

scale tree and finest features extracted from scan 2. For this example I assume a known

and somewhat accurate estimate of the displacement between the two poses (such as might

be provided by odometry). The goal is to determine the correspondences between the

features at the finest scale of each pose. There are 52 fine features detected in scan 1 and

53 fine features detected in scan 2. The total number of feature-to-feature comparisons
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Figure 5.12: Multi-scale range scan representation: A) Scale tree for pose 1. B) Finest
scale features pose 1. B) Scale tree for pose 2. D) Finest scale features for pose 2. E)
Corresponding features from pose 1, pose 2.

carried out at the finest scale by an exhaustive search is 2756, which takes 0.55 seconds

of processing time. The multi-scale version proceeds by using the chi-square test at every

scale to check for matches between features. When feature matches are found (i.e., the
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feature pairs pass the chi-square test), then the child nodes of the matching features are

compared with the chi-square test. This approach significantly reduces the search space.

When comparing the same data set and taking advantage of the scale tree structure, the

same set of correspondences is extracted using only 470 comparisons in 0.18 seconds. I

repeated this example for 100 pairs of unique scans in similar environments. The results

showed an average time for the exhaustive search of 0.329 seconds for 1708 comparisons,

and an average computational time for the multi-scale matching of 0.086 seconds for 274

comparisons. These results show a nearly fourfold decrease in computation time and more

than a sixfold decrease in computational complexity using my multi-scale approach.

5.7 Localization Using Scale Trees

Here I consider multi-scale matching for relative robot displacement estimation. I show

that the multi-scale approach leads to improved robustness with respect to perturbed initial

conditions.

5.7.1 A Localization Example

This example focuses on the most basic process of registering two scans, which can be used

in a scan-matching odometry process (as in Chapter 3), or as part of the solution to the

kidnapped robot problem. I consider two scans taken at different poses (the same scans as in

the last example), and seek to estimate the relative displacement between these poses. My

method starts at the coarsest scale and extracts block features from each scan and computes

feature correspondences given an initial (but not necessarily accurate) displacement estimate

(e.g., from odometry). These initial correspondences are used to correct the displacement

estimate, which is then applied when extracting features and computing correspondences at

the next finer scale. This method is repeated at each scale down the scale tree to finest scale

features, where the most accurate displacement estimate is computed. While the same pair

of range scans is used as seen in Figure 5.1, I have purposely introduced a significant error

in the initial estimate of displacement between the poses. The error introduced is consists

of 2 meters in displacement and 10 degrees of relative rotation. In this way, the robustness

of the matching process to a poor initial displacement guess can be tested.

Figure 5.13A shows the two scans overlaid with this initial displacement error and the
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Figure 5.13: Multi-scale localization example where the blue circle is pose 1, the red circle
is the estimated pose 2, and the black circle is the actual pose 2. A) Initial pose esti-
mates and raw scans. B) Coarse feature fit. C–G) Intermediate pose estimates and feature
correspondences at each scale.
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initial corresponding coarse scale features. The green ellipses in these plots represents

the 3σ bounds of uncertainty of the poses. Figure 5.13B shows the poses after initial

correction from the correspondences at the coarsest scale. The subsequent Figs. 5.13C–G

show the corresponding feature sets at increasingly fine scales as the displacement estimate

improves. Figure 5.13H shows the final point overlay with the corrected displacement

estimate. Note that conventional single-scale correspondence and displacement estimation

algorithms [LM97b, PKRB02], were unable to establish correspondences between the fine

scale features. Thus, this example shows that the multi-scale approach can significantly

improve robustness to initial displacement errors while maintaining accurate displacement

estimates.

5.8 Block-Based Kalman Filter

This section introduces my extended Kalman filter based SLAM (simultaneous localization

and mapping) algorithm, which uses scaled block features as the primary representation

of the environment. Some general background information on the extended Kalman filter

(EKF) is introduced in Section 2.3 and the derivation of my line segment–based EKF is

introduced in Section 4.6. This section will extend the line segment EKF to account for

block features.

5.8.1 Preliminary Definitions

The state vector X at time step k of the EKF takes the following form:

Xk =




x

y

φ

B1

...

Bn




k

, (5.68)

where [x, y, φ] represents the robot’s pose and B1...Bn the block features added to the filter.

All variables are represented with respect to a common global reference frame and the

representation of the block feature is shown in Eq. (5.1). Note that the length of the state
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vector is m = 5n+ 3. The covariance for the EKF is defined as PXk
and is represented as

an m×m matrix that maintains all cross-correlations of each feature and the robot’s pose.

5.8.2 Propagation Equations

The propagation equations for the block based EKF are identical to those derived for the

line segment–based EKF in Section 4.6.2.

5.8.3 Update Equations

Here I consider a sensed block feature in the environment B̄ measured in the local coordinate

frame. If this feature is confirmed to correspond with the cth existing feature denoted as

Bc(k), then the following process is used to incorporate that information to update the

robot state X and covariance PX . I present multiple variations of the update equations

that depend on the results of the parameter hypothesis tests introduced in Section 5.4.3.

Similar to my line based EKF update approach in Section 4.6.3, my method allows for

partial correspondences of features, and only updates the filter with the information given

by the parameters verified to match.

The following nonlinear function hk() represents the coordinates of measurement B̄ in

terms of the current stateX and a set of measurement perturbations vk = [εα, ερa , ερb , εψa , εψb ]:

B̄ = hk(Xk, vk)


αl

ρal

ρbl

ψal

ψbl




=




αc(k) + εα − φk

ρa
c(k) + ερa − xk cos(−αc(k)) + yk sin(−αc(k))
ρb
c(k) + ερb − xk cos(−αc(k)) + yk sin(−αc(k))

ψa
c(k) + εψa − xk sin(−αc(k)) − yk cos(−αc(k)) + εαρl

ψb
c(k) + εψb − xk sin(−αc(k)) − yk cos(−αc(k)) + εαρl




. (5.69)

The general update equations for the extended Kalman filter are as follows.

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + VkPB̄V

T
k

)−1
, (5.70)

X̂k = X̂k|k−1 +Kk(B̄ − h(X̂k|k−1, 0)), (5.71)

Pk = (I −KkHk)Pk|k−1, (5.72)
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where Hk and Vk are the Jacobian matrices of partial derivatives of hk() with respect to Xk

and vk calculated at each step k. It is these matrices, Hk and Vk that change depending on

which parameters of the block that have been determined to correspond.

Full Feature Update

I first develop the case where the feature pair has passed all tests for parameter correspon-

dence in Section 5.4.3 and therefore all parameters of the block correspond between the

sensed feature B̄ and the stored feature Bc. For simplicity I drop the subscript k from each

term that denotes the kth time step of the filter. The Jacobian matrix of partial derivatives

of h() with respect to X can be computed in two parts as follows:

Hg =




0 0 1

− cos(αc) − sin(αc) 0

− cos(αc) − sin(αc) 0

sin(αc) − cos(αc) 0

sin(αc) − cos(αc) 0




, (5.73)

HBc =




1 0 0 0 0

x sin(αc) − y cos(αc) 1 0 0 0

x sin(αc) − y cos(αc) 0 1 0 0

x cos(αc) + y sin(αc) 0 0 1 0

x cos(αc) + y sin(αc) 0 0 0 1




, (5.74)

with Hg relating to the derivatives of h() with respect to the pose portion of the state, and

HBc relating to the derivatives with respect to the cth feature of the state. The complete

H matrix can therefore be assembled as

H =
[
Hg 0 ... HBc ... 0

]
, (5.75)

where the position of HBc in the matrix corresponds to the position of Bc in X. The matrix

V can similarly be calculated
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V =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

ρl 0 0 1 0

ρl 0 0 0 1




, (5.76)

where

ρl = ρc(k) − xk cos(−αc(k)) + yk sin(−αc(k)). (5.77)

For a full feature match, these values of H and V are applied to Eqs. (5.71) and (5.72) to

calculate the updated state and covariance.

Partial Feature Update

In the case where a subset of the feature coordinates has been determined to correspond in

a feature pair, the H and V matrices are adjusted by setting the row corresponding to the

unmatched coordinate to be all zeros. See Section 4.6.3 for a more detailed discussion on a

partial feature update for the EKF. In a partial feature update where some block boundaries

do not correspond, it may still be useful to extend the stored block feature given the new

measurement. After merging the portions of the block that were found to correspond, the

block boundary parameters can be extended in the state vector by applying the measured

block boundary values. When replacing these parameters, the covariance matrix can be

adjusted to reflect the uncertainly of this new measurement as well.

New Feature Update

If a sensed feature B̄ has no correspondences, it may be a candidate to be added to the filter.

In this case the state vector X is simply appended with the additional feature parameters.

The state covariance matrix PX is also appended with the sensed feature covariance PB̄ but

in order to maintain proper cross-correlation terms the state covariance matrix is inverted

to get the state information matrix. The state information matrix P −1
X is then appended

with the sensed information matrix P−1
B̄

. The new appended state information matrix is

finally inverted to arrive at the updated value for PX .
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5.8.4 Block-Based SLAM

My approach to block based SLAM utilizes the methods developed above. Given an initial

state X and PX consisting only of the robot pose and pose covariance, the mapping process

can be described in the following set of steps:

Step 1) At the current pose a range scan is taken and a set of features is extracted using

methods from Section 5.3.

Step 2) Each extracted feature is compared with the stored features in the Kalman filter

state X using the methods in Section 5.4.

Step 3) Features that are shown to correspond are updated according to the process out-

lined in Section 5.8.3.

Step 4) The set of sensed features that are isolated are added to the state as shown in

Section 5.8.3.

Step 5) Propagate the state given a robot displacement g according to the methods in

Section 5.8.2. Go to Step 1.

Using this process maps can be built that accurately and efficiently describe the envi-

ronment while localizing the robot during map construction. Note that this method only

builds the KF with features at a single chosen scale. A multi-scale map can be built by

maintaining a map representation at every scale. This can be done by running multiple

KFs, but the errors would be larger at the coarser scale and so a scale tree would be dif-

ficult to construct for these data. Alternatively, one can apply this SLAM method only at

the finest scale, and with every new data set, solve for the current position. This position

can then be used as a fixed measurement at which to merge the coarser scale data to the

corresponding coarse map representations.

5.9 The Kidnapped Robot Problem

This section formulates the kidnapped robot problem, and presents a multi-scale solution

that offers significant performance benefits over single-scale methods. The kidnapped robot

problem describes the rare but challenging situation when the robot loses complete knowl-

edge of position while navigating. Once a new set of range data is taken, the algorithm must
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determine if the robot is somewhere on the map, and if so then it must determine where the

robot is. A solution to the kidnapped robot solution can be thought of as a search algorithm

where, at the worst case, all possible combinations of position and orientation are checked

to see if the new collected data would match with the map data at that hypothetical pose.

I apply a multi-scale approach to feature representation and comparison to greatly reduce

the computational complexity of this search.

To implement a test of the multi-scale kidnapped robot problem, I start with the rep-

resentation of the prior map built using a Kalman filter described above at the finest scale.

At each step in the filter successively coarse scale from the data is merged as well using the

position solution computed at the coarse scale. The result is a multi-scale representation of

the full map as shown in Figures 5.14 and 5.15 on the left side. The data on the right side

of these figures represent the new kidnapped robot data at each scale.

The multi-scale search starts at the coarsest scale. Candidate poses are selected that

consist of aligning one end of a chosen pair of features. These hypotheses are then tested

using a simple test of block overlap. If the new data overlap more than some threshold

across the old data then the hypothesis passes, and the search continues at that pose. If

the test at the coarsest scale fails, then a new hypothesis is generated using a different

coarse feature pair. Figure 5.16 shows only a few of the hypotheses that are rejected at the

coarsest scales. For hypotheses that pass the initial test, the data sets are both compared

at the next finer scale using the same pose hypothesis. These tests continue until there is

a failure or the finest scale is positively validated. Figure 5.17 shows two of the hypotheses

that pass the first two hypothesis tests at the coarsest scales, but fail the third, while Figure

5.18 shows the alignment for the successful solution. This same solution can also be found

using an exhaustive search of candidate poses directly at the finest scale, but experimental

results show this to be computationally impractical.

5.9.1 Computational Cost

This algorithm is implemented and profiled in Matlab on a 2.0 Ghz Athlon PC with 1 GB

RAM. I ran the kidnapped robot algorithm for 50 separate data sets and all successfully

converged to the proper solution. The full search over possible locations took an average

time of 9.65 seconds per run to complete. The average time until the first solution was found

is 2.74 seconds. The average number of hypotheses tested at each scale is 126.4 at 200 mm,
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1000 mm

Range Data Points
Block Features

Map Scale = 100mm

1000 mm

Kidnapped Robot Data,  Scale = 100mm

1000 mm

Map Scale = 50mm

1000 mm

Kidnapped Robot Data,  Scale = 50mm

1000 mm

Figure 5.14: Kidnapped robot problem data: Multi-scale map and candidate scan repre-
sentation at scales of 200 mm, 100 mm, and 50 mm.



149

Map Scale = 25mm

1000 mm

Kidnapped Robot Data,  Scale = 25mm

1000 mm

Map Scale = 12.5mm

1000 mm

Kidnapped Robot Data,  Scale = 12.5mm

1000 mm

Figure 5.15: Kidnapped robot problem data: Multi-scale map representation and candidate
scan representation at scales of 25 mm and 12.5 mm.
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1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.44797 − INVALID HYPOTHESIS

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.26055 − INVALID HYPOTHESIS

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.38526 − INVALID HYPOTHESIS

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.2519 − INVALID HYPOTHESIS

Figure 5.16: A selection of four hypotheses invalidated at the coarsest scale.
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1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.993 − CANDIDATE MATCH

1000 mm

Comparison Scale = 200mm
Overlap Ratio = 0.72829 − CANDIDATE MATCH

Comparison Scale = 100mm
Overlap Ratio = 0.8594 − CANDIDATE MATCH

1000 mm

Comparison Scale = 100mm
Overlap Ratio = 0.72997 − CANDIDATE MATCH

1000 mm

Comparison Scale = 50mm
Overlap Ratio = 0.40885 − INVALID HYPOTHESIS

1000 mm

Comparison Scale = 50mm
Overlap Ratio = 0.3887 − INVALID HYPOTHESIS

1000 mm

Figure 5.17: A selection of two hypotheses with partial validation at the coarsest scales but
invalidated at the 50 mm scale.
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1000 mm

Comparison Scale = 200mm
Overlap Ratio = 1 − CANDIDATE MATCH

Comparison Scale = 100mm
Overlap Ratio = 0.94655 − CANDIDATE MATCH

1000 mm

Comparison Scale = 50mm
Overlap Ratio = 1 − CANDIDATE MATCH

1000 mm

Comparison Scale = 25mm
Overlap Ratio = 0.98494 − CANDIDATE MATCH

1000 mm

Comparison Scale = 12.5mm
Overlap Ratio = 0.99137 − CONFIRMED MATCH

1000 mm

Figure 5.18: A solution to the kidnapped robot problem with validated hypotheses at all
scales.
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27.26 at 100 mm, 6.9 at 50 mm, 1.68 at 25 mm, and 1.0 at 12.5 mm. That means that all

of the final hypotheses passed the final check and no false hypotheses made it through the

25 mm scale test.

A single-scale exhaustive search at the fine scale is not computationally feasible. There

are 411 features in the full map at the finest scale and an average of 45 features in the

candidate data at the finest scale. Given that there are two hypotheses possible for each

pair of lines the total number of hypotheses to check is 36,990, which would require over

a half an hour of computation time.. This compares to an average total of 163.24 scan

comparisons for the multi scale approach. It is possible to formulate this exhaustive, single

scale search in a computationally feasible way for a more useful comparison. If the initial

candidate poses are selected from the longest lines first, and the algorithm quits as soon

as a match is found, then the single-scale kidnapped robot problem completes in a much

more reasonable average of 25.3 seconds for these same 50 runs. This result is still nearly

a factor of 10 slower than the 2.74 seconds average it takes for the multi-scale approach to

determine the first solution.

A second set of tests were run with 30 scans that were taken in different rooms, not on

the map. In these tests there were no false positives and the average processing time per

run was down to 8.3 seconds due to the early rejection of the majority of hypotheses. The

single-scale kidnapped robot approach is not a useful test in this case where the scan may

not lie in the map at all.
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5.10 Multi-Scale Mapping and Localization Conclusions

This chapter presented novel methods to extract, compare, and merge a new multi-scale

feature. The multi-scale feature representation extends the line segment feature represen-

tation used in the previous chapter and inherits many of the similar traits of that feature.

The addition of the notion of scale allows for more flexibility in representing range scan

data. This chapter also introduces a notion of a scale tree structure containing multiple

representations of the same data at different scales. For applications such as feature cor-

respondence and the kidnapped robot problem where the number of comparisons can be

height, the use of a scale tree structure can result in significant computational benefits.
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Chapter 6

Conclusions and Future Work

I have developed and presented three approaches to localization and mapping: the point

based weighted scan matching method of Chapter 3; the line segment feature method of

Chapter 4; and the multi-scale feature based method of Chapter 5. Each of these methods

was implemented in software, and the benefits over comparable prior work were demon-

strated with real data.

A common theme in my approach has been the rigorous treatment of noise modeling.

The point based weighted scan matching method uses detailed sensor noise models directly

in the localization method to improve accuracy and robustness. Both the single- and multi-

scale feature-based approaches use these detailed sensor models in the feature extraction

process. This rigorous treatment of noise modeling results in an accurate model of feature

uncertainty, which in turn benefits the entire localization and mapping process. Though

accurate sensor modeling can degrade computational performance at times, my work shows

that for accuracy and overall robustness of the localization and mapping method, it desirable

to develop accurate models. A fast localization method is of no use if it is inaccurate.

Another common theme has been the careful consideration of the methods used to

establish correlation across data sets taken at different robot positions. The weighted scan

matching method compensates for correspondence errors through the explicit modeling of

that error. The feature based methods outline a set of correspondence tests that allow for

partial correspondence of features. This ability to establish partial correspondence enables

a finer grained data association process, which results in more and better matches. The

accurate modeling of the data uncertainty is also critical for the data association problem,

as the chi-square based hypothesis tests are only as good as the modeled uncertainty values.

Likewise the localization and mapping methods are only as good as the underlying data
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association approach.

My contribution to line segment feature localization and mapping methods offers the ca-

pability of fully and efficiently representing arbitrary data sets. Through the representation

and compensation of nonlinear effects, I have developed a flexible feature that can be used

to represent very long line segments or short point-like segments. This approach also allows

for the representation of intermittently spaced line segments. The benefits of this approach

were demonstrated in Section 4.7.1 by an example that compares my method with prior

methods. In future work and testing, this flexible representation will naturally lend itself to

outdoor applications, where it will not suffer as much as other line based methods for the

lack of structure in the environment. Also, it will be more robust to occlusions found in an

environment where many mobile objects move in and out of the field of view. Further tests

and developments can be done to test the limits of this robustness.

The multi-scale localization and mapping approach offers a more significant departure

from prior work in the field. A novel approach to the feature extraction process was intro-

duced, along with the methods to compare and merge features at any scale. The result is

a detailed framework of block feature based methods that are flexible and can be applied

to existing localization and mapping techniques. The multi-scale feature showed significant

computational benefits when applied to feature correspondence determination and the kid-

napped robot problem. In future work, the multi-scale approach can be used to further

improve the efficiency of overall localization and mapping methods by enabling only a par-

tial construction of the scale tree. In such a case, only the necessary subset of features

would be extracted at finer scales for localization. Also, the multi-scale methods could be

further tested in a less structured, outdoor environment. The coarse scale features would

allow for more efficient representation of difficult to model obstacles, e.g., foliage or other

textured obstacles.

Though each of the three methods presented here stand on their own with significant

contributions to the field, the multi-scale approach is the culmination of the lessons learned

from the point-based and line segment–based approaches. The results of the multi-scale

approach suggest significant potential for its continued use in localization and mapping

methods.
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Appendix A

Weighted Scan Matching
Calculations

A.1 Weighted Translation Solution

Recall the log-likelihood formula of Eq. (3.14). Since D ij is independent of xij and yij,

the necessary condition for an extremal in the log-likelihood function with respect to the

variable pij = [ xij yij ]T is

∇pij
(M ij) = 0 ⇔

nij∑

k=1

∇pij

(
(εijk )T (P ijk )−1εijk

)
= 0 ⇔

2

nij∑

k=1

[(
∇pij

(εijk )T
)

(P ijk )−1εijk

]
= 0 ⇔

−2

nij∑

k=1

[
I (P ijk )−1εijk

]
= 0 ⇔

nij∑

k=1

[
(P ijk )−1(uik −Riju

j
k − pij)

]
= 0.

Rearranging this formula results in Eq. (3.15).

A.2 Weighted Rotation Solution

Given an initial estimate of the translational displacement p̂ij, the rotational displacement

can be derived by maximizing the likelihood function in Eq. (3.11), or equivalently, the



166

log-likelihood function in Eq. (3.14) with respect to φij = φ, i.e.,

∂M ij(φ)

∂φ
= 0. (A.1)

M ij is defined in Eq. (3.12) and repeated here for reference:

M ij =
1

2

nij∑

k=1

(εijk )T (P ijk )−1εijk .

Instead of directly computing the gradient of M ij with respect to φ, we calculate it as

follows:
∂M ij(φ)

∂φ
=
∂M ij(φ̂+ δφ)

∂(δφ)

∂(δφ)

∂φ
=
∂M ij(δφ)

∂(δφ)
, (A.2)

where we used the relation:

φ = φ̂+ δφ⇒ ∂φ

∂(δφ)
= 1 . (A.3)

Here we derive an exact expression for the quantity M ij as a function of δφ. From the

Taylor series expansion for the functions sin and cos we have

cosφ = cos φ̂− 1

1!
sin φ̂ δφ− 1

2!
cos φ̂ δφ2 + ...

sinφ = sin φ̂+
1

1!
cos φ̂ δφ− 1

2!
sin φ̂ δφ2 − ....

Substituting in Eq. (3.2), the rotational matrix Rij can be written as

Rij(φ) =

(
I +

1

1!
Jδφ − 1

2!
Iδφ2 − 1

3!
Jδφ3 + ...

)
R̂ij(φ̂),

where J is defined in Eq. (3.18). The error εijk between two corresponding laser points,

defined in Eq. (3.4), can be described as a function of the orientation error δφ:

εijk = uik − pij −Riju
j
k (A.4)

= uik − pij − R̂iju
j
k −

1

1!
JR̂iju

j
kδφ

+
1

2!
R̂iju

j
kδφ

2 + ....

The covariance matrix for the matching error at the kth point correspondence of poses i
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and j in Eq. (3.9) can also be described as a function of δφ:

P ijk (δφ) = Qij
k + S̃ijk + (JS̃ijk − S̃ijk J)δφ

− (S̃ijk + JS̃ijk J)δφ2 − 2

3
(JS̃ijk − S̃ijk J)δφ3

+
1

3
(S̃ijk + JS̃ijk J)δφ4 + ..., (A.5)

where

S̃ijk = R̂ij(φ̂)Sijk R̂
T
ij(φ̂).

The inverse I ijk (δφ) = (P ijk (δφ))−1 of the covariance matrix can be computed using Taylor

series expansion as

Iijk (δφ) = I
ij(0)
k (0) + I

ij(1)
k (0)δφ +

1

2!
I
ij(2)
k (0)δφ2 + ..., (A.6)

with

I
ij(n)
k (0) =

∂n(Iij(δφ))

∂(δφ)n

∣∣∣∣∣∣
δφ=0

,

where

I
ij(0)
k (0) = (P ijk (0))−1 = (P ijk )−1 = (Qij

k + S̃ijk )−1

I
ij(1)
k (0) = −(Qij

k + S̃ijk )−1(JS̃ijk − S̃ijk J)(Qij
k + S̃ijk )−1

I
ij(2)
k (0) = 2I

ij(1)
k (0)P ijk (0)I

ij(1)
k (0) + 2(S̃ijk + JS̃ijk J).
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By substituting from Eq.s (A.4), (A.6) to Eq. (3.12) we have

M ij =
1

2

nij∑

k=1

{pTk Iijk (0)pk

+
[
−2pTk I

ij
k (0)Jqk + pTk I

ij(1)
k (0)pk

]
δφ

+
[
pTk I

ij
k (0)qk − qTk JI

ij
k (0)Jqk

− 2pTk I
ij(1)
k (0)Jqk +

1

2
pTk I

ij(2)
k (0)pk

]
δφ2

+ ... }, (A.7)

where

pk = uik − pij − R̂iju
j
k (A.8)

qk = R̂iju
j
k (A.9)

‖pk‖ << ‖qk‖. (A.10)

Note that there has been no approximation made up to this point. Eq. (A.7) is a complete

expression of the cost function Mij, expressed as an infinite series of terms polynomial in

the orientation estimation error δφ. In order to minimize this function, we approximate

it after considering a limited number of terms. For small errors in the initial orientation

estimate (δφ < π/6), a second-order approximation is sufficient when a large number of

point correspondences are available. Higher-order approximations are necessary as the

number of point correspondences decreases.

By substituting Eq. (A.7) in Eq. (A.2) and employing Eq. (A.10)1 we derive the

expression for the orientation displacement error of Eq. (3.17).

A.3 Covariance Estimation

Here we consider the estimation problem where nij measurements Z = [ZT1 ... ZTnij
]T with

Zk = [(uik)
T (ujk)

T ]T are processed to derive an estimate of a vector λ of the motion param-

1Eq. (A.10) expresses the fact that the point correspondence errors are very small compared to the
distances to these points.
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eters

λ̂ =


 p̂ij

φ̂ij


 =


 hp(Z)

hφ(Z)


 = h(Z), (A.11)

with the expressions for functions hp and hφ given by Eqs. (3.15) and (3.17). A first-order

approximation of the error in the estimate of the parameter vector λ̂ is given by

εbλ = ∇T
Zh(Z) εZ =

nij∑

k=1

∇T
Zk
h(Zk) εZk

, (A.12)

with

∇T
Zh(Z) =

[
∇T
Z1
h(Z) ... ∇T

Znij
h(Z)

]
(A.13)

and

∇T
Zk
h(Z) =


 ∇T

Zk
hp(Z)

∇T
Zk
hφ(Z)


 . (A.14)

Note that

E{ε
λ̂
} = E{∇T

Zh(Z) εZ} = ∇T
Zh(Z) E{εZ} = ~03×1.

The covariance of the estimate λ̂ is

P ij = Pbλ = E{εbλε
T
bλ } = ∇T

Zh(Z) PZ ∇Zh
T (Z), (A.15)

where

PZ = E{εZεTZ} =




PZ1
. 0

. .

0 . PZnij


 (A.16)
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and

PZk
= E{εZk

εTZk
} = E{


 δuik

δujk



[

(δuik)
T (δujk)

T

]
}

=


 Qijk 0

0 Sijk


 . (A.17)

Substituting from Eqs. (A.13), (A.16) in Eq. (A.15) yields

Pbλ =

nij∑

k=1

∇T
Zk
h(Z) PZk

∇Zk
hT (Z)

=

nij∑

k=1


 ∇T

Zk
hp(Z)

∇T
Zk
hφ(Z)


PZk

[
∇Zk

hTp (Z) ∇Zk
hTφ (Z)

]

=


 Ppp Ppφ

Pφp Pφφ


 . (A.18)

For ξ, ζ ∈ {p, φ} each of the previous submatrices can be written as

Pξζ =

nij∑

k=1

∇T
Zk
hξ(Z)PZk

∇Zk
hTζ (Z) (A.19)

=

nij∑

k=1

(
(∇T

ui
k
hξ) Q

ij
k (∇ui

k
hTζ )

+ (∇T

u
j
k

hξ) S
ij
k (∇

u
j
k

hTζ )
)
,

where we substituted from Eq. (A.17) and the relation

∇T
Zk
hξ(Z) =

[
∇T
ui

k

hξ(Z) ∇T

u
j
k

hξ(Z)

]
.
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In order to derive the expressions for the covariance submatrices we compute the following

quantities from Eqs. (3.15) and (3.17):

∇T
ui

k
hp =

(
nij∑

m=1

(P ijm )−1

)−1

(P ijk )−1, (A.20)

∇
u

j
k

hp = −
( nij∑

m=1

(P ijm )−1

)−1

(P ijk )−1 R̂ij, (A.21)

∇T
ui

k
hφ ' − 1

rT
qkJ(P ijk )−1, (A.22)

∇T
ui

k
hφ ' − 1

rT
qkJ(P ijk )−1 R̂ij , (A.23)

with

P ijk = Qijk + R̂ijS
ij
k R̂

T
ij ,

qk = R̂iju
j
k,

rT = −
nij∑

k=1

qTk J(P ijk )−1Jqk .

In Eqs. (A.22), (A.23) we employed the approximation made in Eq. (A.10). The interested

reader is referred to [Rou01] for the details of these derivations.

By substituting Eqs. (A.20) to (A.23) in Eq. (A.19) the submatrices of the covariance

matrix for the estimated motion vector λ̂T = [ p̂Tij φ̂ij ] in Eq. (A.18) can now be computed.

The final expressions are given by Eqs. (3.16)–(3.21).
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Appendix B

Optimal Line Fit Derivation

Given a set of measured points in polar form {(d̂k, φ̂k)}, k = 1...n we wish to estimate the

optimal infinite line L = (α, ρ) in polar form where α is the orientation of the line and ρ is the

normal position of the line. We define a virtual measurement δ̂k to be the distance between

the kth point and the line L, and we minimize the total χ2 cost of the virtual measurements

to calculate estimates for α and ρ. As discussed in Section 2.2, the minimization of the χ2

cost is an equivalent calculation to the maximum likelihood approach.

Note that these derivations are carried out using the raw polar form of the range scan

point, and assume the general noise model outlined in Section 2.5.2. See [Pfi02] for a similar

derivation with Cartesian points and a generalized point uncertainty.

B.1 Covariance of the Virtual Measurements

Let

εdk
= d̂k − dk, (B.1)

where εdk
is the error of the measurement d̂k with respect to the “true” point distance dk.

Similarly

εφk
= φ̂k − φk. (B.2)

The virtual measurement representing the distance from the k th point to the line L = (α, ρ)

with no error is defined as

δk = dk cos(α− φk) − ρ

= 0. (B.3)
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For small εφk
, εdk

we use the approximations

sin εφk
' εφk

, (B.4)

cos εφk
' 1, (B.5)

εφk
εdk

' 0. (B.6)

We can then represent the virtual measurement δ̂k as

δ̂k = d̂k cos(α− φ̂k) − ρ

= (dk + εdk
) cos(α− φk − εφk

) − ρ

= (dk + εdk
)(cos(α− φk) cos(εφk

) + sin(α− φk) sin(εφk
)) − ρ

' dk cos(α− φk) − ρ+ εdk
cos(α− φk) + dkεφk

sin(α− φk) + εdk
εφk

sin(α− φk)

' 0 + εdk
cos(α− φk) + dkεφk

sin(α− φk) + 0

' εdk
cos(α− φk) + dkεφk

sin(α− φk). (B.7)

The virtual measurement δk is assumed to be a zero-mean Gaussian process with

E{εδk} = E{δ̂k − δk} = E{δ̂k}

= E{εdk
} cos(α− φk) + dkE{εφk

} sin(α− φk) = 0

Pδk = E{εδkεTδk} = E{δ̂k δ̂Tk }

= E{εdk
εdk

} cos2(α− φk) +E{εφk
εφk

}d2
k sin2(α− φk)

= σ2
dk

cos2(α− φk) + σ2
φk
d2
k sin2(α− φk). (B.8)

In practice, when calculating Pδk , we can use the estimated values of φ̂k and d̂k in place of

the “true” values of φk and dk, which we would not know exactly. We can therefore rewrite

the covariance for the virtual measurement Pδk as

Pδk = σ2
dk

cos2(α− φ̂k) + σ2
φk
d̂2
k sin2(α− φ̂k). (B.9)
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B.2 Center of Rotational Uncertainty Estimation

This section derives the calculation of ψP defined as the position along a candidate line

estimate L about which the combined rotational contributions of the virtual measurements

is zero.

ψP =

∑n
k=1

ψ̂k

Pδρk∑n
k=1

1
Pδρk

, (B.10)

δψk = ψ̂k − ψP . (B.11)

B.3 Determination of the Chi-Square Cost Function

In order to estimate the parameters ρ, α we have to minimize the quantity

χ2(L) =

n∑

k=1

(δ̂k)
2

Pδk

=

n∑

k=1

(d̂k cos(α− φ̂k) − ρ)2

σ2
dk

cos2(α− φ̂k) + σ2
φk
d̂2
k sin2(α− φ̂k)

, (B.12)

where

L =


 ρ

α


 (B.13)

is the unknown parameter vector.

B.4 Distance to Line Estimation

Given an estimate of the heading to the line α̂ , Eq. (B.12) can be written in terms of the

unknown ρ:

χ2(ρ) =

n∑

k=1

(d̂k cos(α̂− φ̂k) − ρ)2

σ2
dk

cos2(α̂− φ̂k) + σ2
φk
d̂2
k sin2(α̂− φ̂k)

=

n∑

k=1

(δk)
2

Pδk
(B.14)
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In order to minimize Eq. (B.14) we have to set

∂χ2(ρ)

∂(ρ)
= 0 ⇔

n∑

k=1

(−2)(d̂k cos(α̂− φ̂k) − ρ)

Pδk
= 0 ⇔

n∑

k=1

d̂k cos(α̂− φ̂k)

Pδk
−

n∑

k=1

ρ

Pδk
= 0 ⇔

n∑

k=1

d̂k cos(α̂− φ̂k)

Pδk
= ρ

(
n∑

k=1

1

Pδk

)

or

ρ =

∑n
k=1

d̂k cos(α̂−φ̂k)
Pδk∑n

k=1
1
Pδk

, (B.15)

where, from Eq. (B.9),

Pδk = σ2
dk

cos2(α̂− φ̂k) + σ2
φk
d̂2
k sin2(α̂− φ̂k). (B.16)

B.5 Heading to Line Estimation

Given an estimate of the distance to the line ρ̂ , Eq. (B.12) can be written in terms of the

unknown heading to line parameter α:

χ2(α) =

n∑

k=1

(d̂k cos(α− φ̂k) − ρ̂)2

σ2
dk

cos2(α− φ̂k) + σ2
φk
d̂2
k sin2(α− φ̂k)

=

n∑

k=1

(δk)
2

Pδk
. (B.17)

In order to minimize Eq. (B.17) we have to set

∂χ2(α)

∂α
= 0. (B.18)

Instead of directly computing the gradient of χ2(α) with respect to α, we will calculate it

as follows:

∂(χ2(α))

∂α
=
∂(χ2(α̂ + δα))

∂(δα)

∂(δα)

∂α
=
∂(χ2(δα))

∂(δα)

1
∂α
∂(δα)

=
∂(χ2(δα))

∂(δα)
, (B.19)
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where we used the relation

α = α̂+ δα⇒ ∂α

∂(δα)
= 1, (B.20)

so

χ2(α) = χ2(α̂+ δα) =

n∑

k=0

Gk(δα), (B.21)

with

Gk(δα) =
(d̂k cos(α̂+ δα− φ̂k) − ρ̂)2

σ2
dk

cos2(α̂+ δα− φ̂k) + σ2
φk
d̂2
k sin2(α̂+ δα− φ̂k)

. (B.22)

Applying Taylor series approximation to Gk(δα) we have

Gk(δα) = Gk(0) +
1

1!
G

′

k(0)δα +
1

2!
G

′′

k(0)δα
2 +

1

3!
G

′′′

k (0)δα3 + ... (B.23)

and let

ck = cos(α̂+ δα− φ̂k),

sk = sin(α̂+ δα− φ̂k) ,

ak(δα) = (d̂kck − ρ̂)2,

a
′

k(δα) =
∂ak(δα)

∂δα
= −2d̂ksk(d̂kck − ρ̂),

a
′′

k(δα) =
∂2ak(δα)

(∂δα)2
= 2d̂2

ks
2
k − 2d̂kck(d̂kck − ρ̂),

bk(δα) = σ2
dk
c2k + σ2

φk
d̂2
ks

2
k,

b
′

k(δα) =
∂bk(δα)

∂δα
= 2(d̂2

kσ
2
φk

− σ2
dk

)cksk,

b
′′

k(δα) =
∂2bk(δα)

(∂δα)2
= 2(d̂2

kσ
2
φk

− σ2
dk

)(c2k − s2k), (B.24)

so

Gk(0) =
ak(0)

bk(0)
(B.25)

and

G
′

k(0) =
bk(0)a

′

k(0) − ak(0)b
′

k(0)

(bk(0))2
(B.26)
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and

G
′′

k(0) =
−2a

′

k(0)b
′

k(0)(bk(0))
2 + a

′′

k(0)(bk(0))
3 + 2ak(0)bk(0)(b

′

k(0))
2 − ak(0)(bk(0))

2b
′′

k(0)

(bk(0))4

=

(
a
′′

k(0)bk(0) − ak(0)b
′′

k(0)
)
bk(0) − 2

(
a
′

k(0)bk(0) − ak(0)b
′

k(0)
)
b
′

k(0)

(bk(0))3
, (B.27)

so

χ2(δα) =

n∑

k=1

{Gk(0) +
1

1!
G

′

k(0)δα +
1

2!
G

′′

k(0)δα
2 +

1

3!
G

′′′

k (0)δα3 + ...} (B.28)

Note: There is no approximation made up to this point. The previous equation is the

complete analytical expression of the cost function. It is expressed as an infinite series of

polynomial terms of the orientation estimation error δα. In order to minimize this function

we have to approximate it after considering a limited number of terms.

B.5.1 Second-Order Approximation

∂(χ2(δα))

∂(δα)
'

n∑

k=1

{
[
G

′

k(0)
]

+
2

2!

[
G

′′

k(0)
]
δα} (B.29)

Finally, by substituting the previous expression with Eq. (B.26) and Eq. (B.27) in Eq.

(B.18) and solving for δα we have

δα = −
∑n

k=1G
′

k(0)∑n
k=1G

′′

k(0)
. (B.30)

Given the initial orientation estimate α̂, the approximation of the optimally fit line angle α

is

α = α̂+ δα. (B.31)
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Appendix C

Optimal Line Fit Covariance
Estimation

Let the covariance for line L be defined as

PL =


 Pαα Pαρ

Pρα Pρρ


 , (C.1)

with distance to line covariance Pρρ, heading to line covariance Pαα and cross-correlation

covariance terms Pρα = Pαρ derived in the following sections.

Note that these derivations are carried out using the raw polar form of the range scan

point, and assume the general noise model outlined in Section 2.5.2. See [Pfi02] for a similar

derivation with Cartesian points and a generalized point uncertainty.

C.1 Distance to Line Estimate Covariance

To estimate ρ define the following:

ρ = gρ(Y ),

where

Y =




Y1

.

.

Yn



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and

Pρρ = E{ερεTρ }

= E{
n∑

k=1

((
∇T
Yk
gρ εYk

) (
∇T
Yk
gρ εYk

)T)}

=

n∑

k=1

((
∇T
Yk
gρ
)
E{εYk

εTYk
}
(
∇T
Yk
gρ
)T)

=

n∑

k=1

((
∇T
Yk
gρ
)
PYkYk

(∇Yk
gρ)
)
, (C.2)

Yk =


 d̂k

φ̂k


 , (C.3)

with

PYkYk
= E{εYk

εTYk
} = E{


 ε

d̂k

ε
φ̂k



[
ε
d̂k

ε
φ̂k

]
} =


 σ2

dk
0

0 σ2
φk


 . (C.4)

From Eq. (B.15):

gρ = ρ =

∑n
k=1

d̂k cos(α̂−φ̂k)
Pδk∑n

k=1
1
Pδk

(C.5)

and therefore

∇
d̂k
gρ =

cos(α̂−φ̂k)
Pδk∑n
j=1

1
Pδj

, (C.6)

∇
φ̂k
gρ =

d̂k sin(α̂−φ̂k)
Pδk∑n
k=j

1
Pδj

, (C.7)
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so

Pρρ =
n∑

k=1

(
∇T
Yk
gρ
)
PYkYk

(∇Yk
gρ)

=

n∑

k=1

[
∇
d̂k
gρ | ∇

φ̂k
gρ

]

 σ2

d 0

0 σ2
φ







∇
d̂k
gρ

−
∇
φ̂k
gρ




=
n∑

k=1

(∇
d̂k
gρ)

2σ2
d +

n∑

k=1

(∇
φ̂k
gρ)

2σ2
φ

=
n∑

k=1




cos(α̂−φ̂k)
Pδk∑n
k=1

1
Pδk




2

σ2
d +

n∑

k=1




d̂k sin(α̂−φ̂k)
Pδk∑n
k=1

1
Pδk




2

σ2
φ

=
n∑

k=1




cos2(α̂−φ̂k)
(Pδk

)2

(∑n
k=1

1
Pδk

)2σ
2
d +

d̂2k sin2(α̂−φ̂k)

(Pδk
)2

(∑n
k=1

1
Pδk

)2σ
2
φ




=

∑n
k=1

σ2
dk

cos2(α̂−φ̂k)+σ2
φk
d̂2k sin2(α̂−φ̂k)

(Pδk
)2

(∑n
k=1

1
Pδk

)2

=

∑n
k=1

1
Pδk(∑n

k=1
1
Pδk

)2

=
1(∑n

k=1
1
Pδk

) (C.8)

with Pδk defined in Eqn. (B.9).

C.2 Heading to Line Estimate Covariance

Yk =


 d̂k

φ̂k


 , (C.9)

Pαα = E{εαεTα}

= E{
(
∇T
Y gα εY

) (
∇T
Y gα εY

)T }

=
(
∇T
Y gα

)
E{εY εTY }

(
∇T
Y gα

)T

=
(
∇T
Y gα

)
PY Y (∇Y gα) . (C.10)
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From Eqs. (B.26), (B.27), (B.30),

gα = α = α̂+ δα

= α̂−
∑n

k=1G
′

k(0)∑n
k=1G

′′

k(0)

= α̂−

∑n
k=1

bka
′

k−akb
′

k

(b
′

k
)2

∑n
k=1

(a′′k bk−akb
′′

k )bk−2(a′kbk−akb
′

k)b
′

k

(bk)3

, (C.11)

where

ak = ak(0) = (d̂k cos(α̂− φ̂k) − ρ̂)2, (C.12)

bk = bk(0) = σ2
dk

cos2(α̂− φ̂k) + σ2
φk
d̂2
k sin2(α̂− φ̂k) (C.13)

and α̂ is a constant (the current estimate of orientation computed in the last step of the

ML algorithm) so

∇
d̂k
gα = −




(
∇
d̂k

(∑n
j=1G

′

j(0)
))(∑n

j=1G
′′

j (0)
)
−
(∑n

j=1G
′

j(0)
) (

∇
d̂k

(∑n
j=1G

′′

j (0)
))

(∑n
j=1G

′′

j (0)
)2




=
−∇

d̂k
(G

′

k(0))
(∑n

j=1G
′′

j (0)
)

+
(∑n

j=1G
′

j(0)
)
∇
d̂k

(G
′′

k(0))
(∑n

j=1G
′′

j (0)
)2

= − 1

G
′′

T

∇
d̂k

(G
′

k(0)) +
G

′

T

(G
′′

T )2
∇
d̂k

(G
′′

k(0)), (C.14)

where

G
′

T =

n∑

j=1

G
′

j(0) , G
′′

T =

n∑

j=1

G
′′

j (0).

Similarly,

∇
φ̂k
gα = − 1

G
′′

T

∇
φ̂k

(G
′

k(0)) +
G

′

T

(G
′′

T )2
∇
φ̂k

(G
′′

k(0)) (C.15)
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and From Eq. (C.10), substituting from Eqs. (C.4), (C.14), (C.15):

Pαα =
n∑

k=1

(
∇T
Yk
gα
)
PYkYk

(∇Yk
gα)

=

n∑

k=1

[
∇
d̂k
gα | ∇

φ̂k
gα

]

 σ2

d 0

0 σ2
φ







∇
d̂k
gα

−
∇
φ̂k
gα




=
n∑

k=1

(∇
d̂k
gα)2σ2

d +
n∑

k=1

(∇
φ̂k
gα)2σ2

φ

=

n∑

k=1

(
− 1

G
′′

T

∇
d̂k

(G
′

k(0)) +
G

′

T

(G
′′

T )2
∇
d̂k

(G
′′

k(0))

)2

σ2
d

+

n∑

k=1

(
− 1

G
′′

T

∇
φ̂k

(G
′

k(0)) +
G

′

T

(G
′′

T )2
∇
φ̂k

(G
′′

k(0))

)2

σ2
φ (C.16)

C.2.1 Complete G
′

k(0) G
′′

k(0)

Omitting the index k we start from Eqs. (B.26), (B.27),

G
′

k(0) =
ba

′ − ab
′

b2

and

G
′′

k(0) =

(
a
′′

b− ab
′′

)
b− 2

(
a
′

b− ab
′

)
b
′

b3
,

with

c = cos(α̂− φ),

s = sin(α̂− φ),

a = (dc− ρ̂)2,

a
′

=
∂a(δα)

∂δα
,= −2ds(dc − ρ̂)

a
′′

=
∂2a(δα)

(∂δα)2
= 2d2s2 − 2dc(dc − ρ̂),

b = σ2
dk
c2 + σ2

φk
d2s2,

b
′

=
∂b(δα)

∂δα
= 2(d2σ2

φk
− σ2

dk
)cs,

b
′′

=
∂2b(δα)

(∂δα)2
= 2(d2σ2

φk
− σ2

dk
)(c2 − s2), (C.17)
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we can calculate

∇d(G
′

(0)) =
∂(G

′

(0))

∂d

=
∂
(
ba

′

−ab
′

b2

)

∂d

=
(a

′

bd + a
′

db− b
′

ad − b
′

da)b− (a
′

b− b
′

a)2bd
b3

, (C.18)

∇φ(G
′

(0)) =
∂(G

′

(0))

∂φ

=
∂
(
ba

′

−ab
′

b2

)

∂φ

=
(a

′

bφ + a
′

φb− b
′

aφ − b
′

φa)b− (a
′

b− b
′

a)2bφ

b3
, (C.19)

∇d(G
′′

(0)) =
∂(G

′′

(0))

∂d

=

∂

(“
a
′′

b−ab
′′

”
b−2

“
a
′

b−akb
′

k

”
b
′

b3

)

∂d
, (C.20)

∇d(G
′′

(0)) =
∂(G

′′

(0))

∂φ

=

∂

(“
a
′′

b−ab
′′

”
b−2

“
a
′

b−akb
′

k

”
b
′

b3

)

∂φ
, (C.21)

C.2.2 Approximate G
′

k(0) G
′′

k(0)

Assume small errors such that |δ| << |r|, i.e., the distance from a point to the line is small

compared to the distance from that point to the origin, where

|δ| = |r cos(α− φ) − ρ|
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|r| = ‖~V ‖ = ‖


 d̂k cos φ̂k

d̂k sin φ̂k


 ‖

given

a = (dc− ρ̂)2 = δ2 ∼ O(δ2), (C.22)

a
′

= −2ds(dc− ρ̂) = −2ds(δ) ∼ O(dδ), (C.23)

ad = 2c(dc − ρ̂) = 2cδ ∼ O(δ), (C.24)

a
′

d = −2s(dc− ρ̂) − 2dsc = −2s(δ) − 2dsc ∼ O(d), (C.25)

b = σ2
dk
c2 + σ2

φk
d2s2 ∼ O(d2), (C.26)

b
′

= 2(d2σ2
φk

− σ2
dk

)cs ∼ O(d2), (C.27)

bd = 2σφk
ds2 ∼ O(d), (C.28)

b
′

d = 4dσ2
φk
cs ∼ O(d), (C.29)

it can be approximated that

a
′

d >> a,

a
′

d >> a
′

,

a
′

d >> ad,

so

∇d(G
′

(0)) =
(a

′

bd + a
′

db− b
′

ad − b
′

da)b− (a
′

b− b
′

a)2bd
b3

' a
′

db
2

b3

' a
′

d

b
(C.30)
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with

a
′

d =
∂ (−2d sin(α− φ)(d cos(α− φ) − ρ))

∂d

= −2d cos(α− φ) sin(α− φ) − 2(d cos(α− φ) − ρ) sin(α− φ)

= −2d cos(α− φ) sin(α− φ) − 2δ sin(α− φ).

' −2d cos(α− φ) sin(α− φ) (C.31)

Similarly,

a
′

φ >> a,

a
′

φ >> a
′

,

a
′

φ >> aφ

so

∇φ(G
′

(0)) '
a
′

φ

b
(C.32)

with

a
′

φ =
∂ (−2d sin(α− φ)(d cos(α− φ) − ρ))

∂φ

= −2d2 sin2(α− φ) + 2(d cos(α− φ) − ρ)d cos(α− φ)

= −2d2 sin2(α− φ) + 2δd sin(α− φ)

' −2d2 sin2(α− φ) (C.33)

From Eqs. (B.26), (B.27):

G
′

k(0) =
ba

′ − ab
′

b2

and

G
′′

k(0) =

(
a
′′

b− ab
′′

)
b− 2

(
a
′

b− ab
′

)
b
′

b3
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Consider Eqs. (C.22)–(C.29) and

a
′′

= −2dc(dc − ρ̂) + 2d2s2 = −2dcδ + 2d2s2 ∼ O(d2), (C.34)

b
′′

= 2(d2σ2
φk

− σ2
dk

)(c2 − s2) ∼ O(d2), (C.35)

we can then show that

G
′

k(0) ∼ O(d3δ) −O(d2δ2)

O(d4)
∼ O(δ/d), (C.36)

G
′′

k(0) ∼
(
O(d4) −O(d2δ2)

)
O(d2) − 2

(
O(d3δ) −O(d2δ2)

)
O(d2)

O(d6)
(C.37)

∼ O(d/d) (C.38)

so

G
′′

k(0) >> G
′

k(0) ⇒ G
′′

T >> G
′

T

⇒ G
′

T

(G
′′

T )2
' 0, (C.39)

so from Eqs. (C.30), (C.32), (C.33), and (C.39) we can approximate Eq. (C.16) as

Pαα '
n∑

k=1

(
− 1

G
′′

T

∇
d̂k

(G
′

k(0))

)2

σ2
d

+

n∑

k=1

(
− 1

G
′′

T

∇
φ̂k

(G
′

k(0))

)2

σ2
φ

=
1

(G
′′

T )2

n∑

k=1

(
−a

′

di

bk

)2

σ2
d +

1

(G
′′

T )2

n∑

k=1

(
−
a
′

φi

bk

)2

σ2
φ

=
1

(G
′′

T )2

n∑

k=1

(
2d̂k cos(α− φ̂k) sin(α− φ̂k)

bk

)2

σ2
d

+
1

(G
′′

T )2

n∑

k=1

(
−−2d̂2

k sin2(α− φ̂k)

bk

)2

σ2
φ

=
1

(G
′′

T )2

n∑

k=1

(
4d̂2

k sin2(α − φ̂k)

b2k
(σ2
d cos2(α− φ̂k) + σ2

φd̂
2
k sin2(α− φ̂k))

)
.



187

Use definition of bk (Eq. (C.13)) to get

Pαα ' 1

(G
′′

T )2

n∑

k=1

(
4d̂2

k sin2(α− φ̂k)

b2k
(bk)

)

=
1

(G
′′

T )2

n∑

k=1

(
4d̂2

k sin2(α− φ̂k)

bk

)

=
1

(G
′′

T )2

n∑

k=1

(
4d̂2

k sin2(α− φ̂k)

(σ2
d cos2(α− φ̂k) + σ2

φd̂
2
k sin2(α− φ̂k))

)
.

C.3 Cross-Correlation Covariance

Pρα =

n∑

k=1

(
∇T
Yk
gα
)
PYkYk

(∇Yk
gρ)

=
n∑

k=1

[
∇
d̂k
gα | ∇

φ̂k
gα

]

 σ2

d 0

0 σ2
φ







∇
d̂k
gρ

−
∇
φ̂k
gρ




=

n∑

k=1

(∇
d̂k
gα)σ2

d(∇d̂k
gρ) +

n∑

k=1

(∇
φ̂k
gα)σ

2
φ(∇φ̂k

gρ)

=
n∑

k=1


−(

a
′

d

bk
)

G
′′

T


σ2

d




cos(α−φ̂k)
bk∑n
j=1

1
bj


+

n∑

k=1



−(

a
′

φ

bk
)

G
′′

T


σ2

φ




d̂k sin(α−φ̂k)
bk∑n
k=j

1
bj




=
1

G
′′

T

(∑n
k=j

1
bj

)
n∑

k=1

[

(
2d̂k cos(α− φ̂k) sin(α− φ̂k)

bk

)
σ2
d

(
cos(α− φ̂k)

bk

)

+

(
2d̂2

k sin2(α− φ̂k)

bk

)
σ2
φ

(
d̂k sin(α− φ̂k)

bk

)
]

=
1

G
′′

T

(∑n
k=j

1
bj

)
n∑

k=1

[(
2d̂k sin(α− φ̂k)

b2k

)(
σ2
d cos2(α− φ̂k) + σ2

φd̂
2
k sin2(α− φ̂k)

)]

=
1

G
′′

T

(∑n
k=j

1
bj

)
n∑

k=1

[
2d̂k sin(α− φ̂k)bk

b2k

]

=
1

G
′′

T

(∑n
k=j

1
bj

)
n∑

k=1

[
2d̂k sin(α− φ̂k)

bk

]


