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Abstract

This dissertation is concerned with the development of a general computational frame-
work for mesh adaption such as is required in the three-dimensional lagrangian finite
element simulation of strongly nonlinear, possibly dynamic, problems. It is shown
that, for a very general constitutive framework, the solutions of the incremental
boundarby'value problem obey a minimum principle, provided that the constitutive
updates are formulated appropriately. This minimum principle is taken as a basis for
asymptotic error estimation. In particular, we chose to monitor the error of a lower-
order projection of the finite element solution. The optimal mesh size distribution
then follows from a posteriori error indicators which are purely local, i. e., can be
computed element-by-element.

A sine qua non condition for the successful accomplishment of the kind of analysis
envisioned in this work is the possibility to mesh the deforming domains of analysis.
In the first section of this thesis a method is presented for mesh generation in complex
geometries and general—possibly non-manifold—topologies.

The robustness and versatility of the computational framework is demonstrated
with the aid of convergence studies and selected examples of application and the

results contrasted with previous approaches.
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Chapter 1 Introduction

The} respori'sé of solids and strlxctllfes often exhibits structure on multiple length
scales. This may be due to a variety of causes including: i) material heterogeneity,
e. g., polycrystals, composites; ii) the simultaneous operation of interacting mech-
anisms possessing vastly disparate characteristic lengths, e. g., macroscopic single-
crystal plasticity and dislocation mechanics; iii) instabilities stemming from a lack
of convexity of the problem and leading to the development of microstructure, e. g.,
localization, martensitic transformations, dislocation-cell formation; iv) strong dis-
continuities in the solution made possible by the hyperbolicity of the problem, e. g.,
shocks, slip lines. Of course, these categories are not strictly disjoint. For instance,
dislocations may be regarded as microstructures resulting from the lack of convexity
of the strain-energy density of the crystal lattice; the onset of localization may be
understood as a change of type of the problem. Often, the response at the small-
or microscopic-length scale determines the behavior of the system at the large-or
macroscopic-length scale. The simultaneous resolution of both scales then stems
from a desire to root theories of macroscopic behavior directly on first principles of
micromechanics, a long-standing aspiration of solid mechanics.

A number of basic strategies have been developed for bridging length scales in
solids. One of these strategies revolves around the concept of effective macroscopic
behavior. In this approach, the local values of the macroscopic fields are taken to
constrain the microscopic fields on average. The macroscopic response may then be
obtained by recourse to the tools and principles of homogenization and nonlinear
analysis (e. g., [32, 112]). For instance, in the case of martensite and single crystal
plasticity, the effective macroscopic behavior of the material may be approximated
analytically by sequential lamination and energy minimization [66, 106]. The effec-
tive macroscopic behavior thus obtained may then be built into conventional finite

elements and the subsequent analysis takes place entirely at the macroscopic level



[2‘1', 22]. Alferngtively, the inacroscopic effective behavior of one element, and by
extension of the material, may be approximated by introducing incompatible modes
[102, 12, 40, 99, 71, 72, 73; 41], local base functions [59, 56], or other enhancements
[128, 101, 2] into the finite elements. These local fields are constrained dn average by
the conventional elemeht shape functions, and the corresponding degrees of freedom
may ’be eliminated locally by static condensation or a similar device.

An example of this approach is the enhanced elements developed by Ortiz et al.
[102, 99, 71, 72, 73] for cépturing localized shear bands. These elements contain
an additional incompatible mode consisting of two variants, namely, the shear band
material and the surrounding unloaded matrix, separated by a plane of strain dié~
continuity. In Ortiz et al [102] implementation of the method, the orientation of the
plane of discontinuity, follows from a local Hill-Hadamard analysis of the acoustic
tensor, which in essence amounts to linearized energy minimization. The amplitudes
of the modes are eliminated at the element level, resulting in a much softer-and mesh-
orientation independent-response of the element. Because the local modes contain
two variants, they may be regarded as instances of lamination.

As is well-known from the mathematical theory of martensitic transformations
8, 32], in a local solid the number of layers in the laminate is immaterial as regards
the overall effective behavior: only the volume fractions of the variants matter. T hus,
in the case of localization, the critical variable is the ratio of the areas covered by the
unstable shear band material and the stable unloaded matrix. From this perspective,
variations of the approach based on the introduction of one or more discrete bands
into an element {102, 12, 101, 2] may be regarded as fundamentally equivalent. It
bears emphasis that the introduction of local element enhancements simply amounts
‘to an explicit numerical construct for the approximation of the effective macroscopic
behavior of the material. Indeed, as pointed out by Leroy et al. [74], it is possible
to dbtain an effect identical to the element enhancement by using conventional shape
functions and a suitable set of effective constitutive relations which only depend on the
volume fractions of shear band and matrix material. It should also be carefully noted

that, in any approach based on an effective macroscopic behavior, the finite element
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mesh resolves t/he macroscdpic fields only and does not resolve the microstructure
explicitly.

An alternative approach is the use of mesh adaption to explicitly resolve multi-
ple length scales. While methods of error estimation and mesh adaption for linear
problems are presently well understood (e. g., [134]), our focus here is on strongly
nonlinear, possibly dynamic, problems for which the theory is comparatively less de-
veloped [105’ 31, 70, 13]. Applications involving unconstrained flows of material are
- amenable to a fully lagrangian finite element simulation provided that the inevitable
deformation-induced distortion is eliminated by recourse to continuous remeshing.
The versatility of this computational paradigm has been amply demonstrated in a
ifariety of areas of application, including machining [91] and ballistic penetration
[19, 20]. As remarked earlier, many of these solutioné develop fine structure due to
shock formation, microstructural development, material instabilities and other phe-
nomena.

In the second part of this thesis and also in [113] a lagrangian finite element
formulation of Newtonian fluid flows is presented with the aim of extending this
computational paradigm to fluids problems. The principal advantage of the presented
approach lies in the treatment of boundary conditions at material surfaces such as free
boundaries, fluid/fluid or fluid/solid interfaces. In contrast to eulerian approéches,
boundary conditions are enforced at material surfaces ab initio and therefore require
no special attention. Consistent tangents are obtained for lagrangian implicit analysis
of a Newtonian fluid flow which may exhibit compressibility effects. The accuracy of
the approach is assessed by comparison of the solution for a sloshing problem with
existing numerical results and its versatility demonstrated through a simulation of
wave breaking. The finite element mesh is maintained undistorted throughout the
computation by recourse to fréquent and adaptive remeshing. An h-adaption strategy
baséd on empirical refinement indicators is adopted to estimate the optimal mesh
density. Whereas the adopted mesh adaption strategy effectively results in refinement
(coarsening) in rapidly (slowly) varying regions of the flow, a theoretical rationale

is lacking nor does the method provide any guarantee of resulting in convergent



aﬁpréximations to the continuum equations.

The aim of t}lliS thesis is to develop a a general framework for mesh adaption under
the challenging conditions just described. We begin by showing that the solutions
of the incremental boundary value problem for a wide class of materials, including
nonlinear elastic materials, compressible Newtonian fluids, and viscoplastic solids,
obey a minimum principle, provided that the constitutive updates are formulated
appropri‘ately. This minimum principle can be taken as a basis for asymptotic error
estimation. In particular, we chose to monitor the error of a lower-order projection
of the finite element solution. The optimal mesh size distribution then follows from
a posteriori error indicators Which are purely local, i. e., can be computed element-
by-element. We demonstrate the robustness and versatility of the computational
framework with the aid of convergence studies and selected examples of application.

A sine qua non condition for the successful accomplishment of the kind of analysis
envisioned in this work is the possibility to mesh the deforming domains of analysis.
In the first chapter of this thesis a method is presented for mesh generation in complex
geometries and general—possibly non-manifold—topologies. Domains are described
by their Boundary representation (B-Rep). Surfaces are meshed by recourse to an
advancing front algorithm based on a sphere-packing construction. The generation
of tetrahedral volume meshes starts with the insertion of nodes arranged as cfystal
lattice structures. The local lattice parameter is dictated by a prespecified nodal
density function, and is attained by spatial decomposition. The insertion of the
interior nodes is followed by local transformations and subdivision of the surface
mesh such as are required to ensure the compatibility of the surface and interior
triangulations. The final triangulation is obtained by a combination of an advancing-
front Delaunay algorithm and local transformations. The overall time complexity of
the mesher is O(N log N), where N is the number of elements in the final mesh. The
mesh generator is robust, requires minimal user interaction and gives good quality
meshes. The versatility of the approach, as well as the quality of the resulting meshes,

is demonstrated with the aid of selected examples.



Chaptér 2 Unstructured tetrahedral

mesh generation

2.1 Introduction

The generation of unstructured meshes is playing an increasingly important role in
computational mechanics. Whereas it has been asserted that the subject has attained
a maturity in which the problem can be regarded as solved [93], theoretical guarantees
of mesh existence and algorithm termination are in general lacking and analysis of
existing heuristics remain to be done [26].

A method which has gained considerable success in tetrahedral mesh generation is
the advancing front method [109, 83, 78, 61, 96]. In this technique, elements and nodes
are generated simultaneously starting from the boundary proceeding to the interior.
The boundary discretization is taken as the initial front and a set of heuristics is
employed to decide where the new element will be created, to place a new node in the
interior and to reconnect the front. The mesh generation process terminates when
the front is empty. In order to ensure the validity of the resulting mesh, intersection
tests between new and existing mesh entities must be performed. Farestam et al.
[39] present conditions which ensure that in the two-dimensional case the algorithm
terminates and results in a valid mesh. No such theoretical guarantees exist in three
dimensions. Therefore, a problem which is often encountered [61, 96]—and our own
‘experience confirms—in the application of the method in three dimensions is the
formation of non-tetrahedrizable pockets. In the references cited above attempts to
prevent or resolve (cf. [81]) these situations are described.

Another widely used approach to tetrahedral mesh generation is based on the
concept of the Delaunay triangulation. This consists in enforcing the condition that

the spheres circumscribing the tetrahedra in the mesh be empty of vertices other than



those defining the sphere [34]. Algorithms for the efficient construction of this type of
triangulation for the convex hull of a set of points are well established [16, 136, 15]. Of
utmost concern when meshing three-dimensional volumes by the Delaunay method is
the appearance of tetrahedra with vanishingly small volume, also referred to as slivers
[24]. The sliver prob]ein attests to the lack of optimality properties of the angles of
the fetra_hedra belonging to a three-dimensional Delaunay triangulation. Optimality
properties of the Delaunay triangulation in three and higher dimensions have recently
been presented by Rajan [116]. In contrast to the two-dimensional case, these proper-
ties do not guarantee the good quality of the triangulations. The constrained problem
of constructing a triangulation a subset of which, e. g., the boundary mesh, is pre-
specified and which otherwise respects the Delaunay condition, has been succeésfully
solved in two dimensions [27]. An additional obstacle inherent to the construction of
tetrahedral meshes is that the related problem in three dimensions does not have a
solution, i. e., it is not always possible to obtain a tetrahedral mesh of a set of points
in which prespecified triangles are enforced to be present in the triangulation [6, 52].
Considerable effort has been devoted to the development of techniques which recover
the boundary [125, 46, 137, 140, 138]). These techniques can be computationally in-
tensive and lack theoretical analysis. For smooth boundaries, Amenta et al. [1] have
recently presented conditions on the node sampling density which guarantee that the
surface triangulation be a subcomplex of the volume Delaunay mesh. Fleischmann et
al. [42] provide a set of heuristics to ensure similar conditions.

Techniques of unstructured meshing based on node insertion by spatial decompo-
sition, also known as octree methods, have been amply established and successfully
used to mesh general three-dimensional domains [17, 111, 126, 127]. The most criti-
cal issﬁes in these approaches concern the compatibility between the boundary of the
domain and the octree and the compatibility between octants. The former compati-
bility requirement may restrict the complexity of the domains that can be successfully
meshed or may lead to meshes with poor quality at the boundary.

In this work, a new method for the generation of tetrahedral meshes for complex

geometries and general topologies is presented. A thorough topological model based



ofl the Boundary representation of solids is devéloped to describe deforming domains
the topology of which may -evolve as a result of physical phenomena such as frag-
mentation, wetting and erosion. The geometry of surfaces is represented by implicit
functions for the initial definition and by piecewise polynomial interpolation subor-
dinate to a ﬁniﬁe element discretization of the domain in the case of remeshing. A
‘hierarchical approach to mesh generation is adopted in which edges are meshed first,
then faces and finally sub-bodies. An underlying element-size distribuvtion function is
- assumed to be defined throughout the domain to be meshed. In the case of remesh-
ing this distribution derives from suitably defined error estimates (see Chapter 4 and
[114]). The meshing of surfaées is based on the advancing front method with nodal
insertion by hard-sphere packing in physical space. The hard-sphere packing con-
struction provides a natural means of inserting nodes on a surface in accordance with
a prescribed mesh density. Nodes interior to the volumes are inserted in FCC crystal
lattice arrangements by recourse to octree spatial subdivision. This node insertion
strategy is aimed at producing Delaunay meshes without degeneracies and of the
greatest possible regularity. Prior to triangulation of the volumes, the surface mesh is
preprocessed through local transformations and subdivision in order to guarantee that
the surface mesh be a subset of the volume Delaunay mesh and therefore its existence.
For smooth boundaries, theoretical guarantees of the closure of the surface modiﬁca—
tion algorithm follow from the recent work of Amenta [1]. A Delaunay triangulation
of the interior and boundary nodes which respects the—a priori modified—surface
mesh is obtained via an advancing front algorithm. The final triangulation is obtained
by mesh improvements based on local transformations. The overall time complexity
of the mesher is O(N log N), where N is the number of elements in the final mesh.
The mesh generator is robust, requires minimal user interaction and gives good qual-
ity meshes. The versatility of the approach, as well as the quality of the resulting

meéhes, is demonstrated with the aid of selected examples.



2‘.2_ Model description—Boundary representation
of solids

Whereas a complete topological representation of solids is often not -necessary for
the application of particular meshing algorithms, here we envision a computational
framework in which topology plays an active role, e. g., as a consequence of such
physical phenomena as fragmentation, necking, erosion, wetting, seizure, and others.
Under these circumstances,»meshing and mechanics are tightly coupled. The main
function of mesh generation is to provide the mechanics module with a good-quality
computational mesh. Conversely, the ensuing mechanical analysis determines the
mesh density, e. g., by recourse to error estimation. Additionally, physical phenomena
such as fragmentation and wetting may cause the topology of the model to evolve.
The ability to remesh continuously then requires the adoption of suitable topological
structures and the implementation of operations enabling the tracking of evolving
topologies [104].

We assume that the domains of interest are topological polyhedra homeomorphic
to simplicial complexes which define triangulations of the domains [55]. The outcome
of the meshing operation is a particular instance of triangulation. This assumption
allows bodies to be described by their boundary. This representational paradigm,
known as Boundary representation of solids (B-Rep) in the solid modeling literature
[55, 88, 120], is specially convenient as a basis for mesh generation procedures of
the advancing front variety. It also facilitates other finite element operations in which
boundaries need to be explicitly accounted for, e. g., contact, wetting, erosion, surface

tension, fragmentation, and others. A B-Rep representation consists of the following:

A topological description of the connectivity, incidence and adjacency of the ver-
' 'tz'ces, edges, and faces which constitute the boundary of the bodies, together
with a consistent orientation leading to an unambiguous determination of the

interior and exterior of the domain of analysis.

A geometrical description of the surface of the domain. This geometrical descrip-
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Figure 2.1: Boundary representation of rolids
tion may be interpreted as an embedding of the model in euclidean space.

The topological hierarchy implicit in a B-Rep may be regarded as a graph [88],
Fig. 2.1. We adopt a linked representation of this graph using C pointers [130]). The
root of the graph points to the bodies, which are defined as the connected components
of the domain of analysis. Each body may consist of several sub-bodies, e. g., containing
different materials. The boundaries of the sub-bodies represent features which must
be respected by the mesher. Each sub-body therefore constitutes a fundamental unit
of volumetric meshing, i.e., is meshed separately.

The boundaries of the sub-bodies are 2-manifolds without boundary. The con-
nected components of the boundary of a sub-body are termed shells. It follows, there-

fore, that each shell defines a connected 2-manifold without boundary. A complete



classification of §uch objectsbis known from differential topology [48]. The equivalence
classes are represented by spheres with a finite number of handles. The number of
handles appended to the sphere is known as the genus of the surface. The shells can
be oriented consistently so as to unambiguously define an interior and an exterior for
cach sub-body.

The shélls may be partitioned into faces defining smooth regions whose boundary
must be preserved by the mesher. The boundaries of the faces may represent salient
geometric features of the shell such as ridges or sharp edges. The trivial case of a shell
which consists of one single face is also possible. The faces represent the fundamental
unit of surface meshing, i.e., they are meshed separately. The faces are also regarded
as oriented surfaces, but this orientation is assigned arbitrarily. One face rhay be
shared by two shells, e. g., at a material boundary, in which case it appears in each
shell with opposite orientations. The fact that a face may be shared by more that
one shell renders the B-Rep graph a general directed acyclic graph.

Each face may be regarded as a 2-manifold with boundary. The boundary of a face
is itself a 1-manifold without boundary. The connected components of the boundary
of a face are known as loops. It is known from differential topology [48] that a loop
is topological equivalent to the unit circle.

The loops may be partitioned into edges whose end vertices must be preservéd by
the mesher. The trivial case of a loop which consists of one single edge is also possible.
The edges constitute the fundamental unit of line meshing. The edges are regarded
as oriented segments, but this orientation is assigned arbitrarily. One edge may be
shared by two loops, in which case it appears in each loop with opposite orientations.
This completes the topological definition of the B-Rep.

The geometry of curves and surfaces can be described either analytically or by
interpolation. Most engineering geometrical models are presently generated with the
aid of CAD/CAM packages. Often these packages produce analytical representa-
tions of surfaces in terms of tensor-product polynomials or rational functions such as
splines, B-splines, nonuniform rational B-splines (NURBS surfaces), Bezier functions,

Coon’s patches, and a variety of other means. Our primary focus, however, concerns
b) ? 3
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t-_hé adaptive lagrangian simulation of solids undergoing large deformations, possibly
resulting in unc;)nstrained flows. During a remeshing step, the old mesh provides a
natural geometrical description of the domain of analysis. In the context of finite el-
ement analysis, this description takes the form of piecewise polynomial‘interpolation
of the geometry of the solid.

We have therefore found it convenient to adopt two complementary representations
of the gebmetry of faces. In the first approach, the surfaces are represented by an
implicit function f (x) = 0. The surface gradient V f(x) defining the surface normal
and orientation is assumed to be continuous in the domain of the face. It is important
to note that this approach is‘free of the restriction encountered when representing
surfaces with tensor product functions, namely, that the surface be bounded by loops
consisting of four edges. Wé adopt this representation for the initial definition of faces
whose geometry may be defined simply in analytical form.

An alternative approach consists of representing the faces by piecewise polyno-
mial interpolation subordinate to a finite element discretization of the domain. This
representation is used by default during remeshing, in which case the discretization
of the domain is furnished by the old mesh. In all cases, the geometry of the edges is
always described by piecewise quadratic interpolation.

From the standpoint of mechanics, the local mesh size derives from suitably déﬁned
error estimates (see Chapter 4 and [114]) or other remeshing indicators. However,
the local mesh size required to resolve the solution may be too coarse to adequately
represent the geometry of the domain of analysis. An example is provided by a solid
undergoing a rigid body motion, in which case the size of the mesh is not restricted by
accuracy requirements. Under these conditions, one appealing possibility concerns the

use of subdivision surfaces [145, 38] to enhance the surface mesh prior to remeshing.

2.3 Meshing of topological entities

Our approach to meshing general domains consists of a traversal of the B-Rep tree

in a bottom-up fashion, with the edges being meshed first, then the faces and finally
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the sub-bodies. This hiéra;chical approach aims at ensuring the validity of the final
mesh [127, 10].f An underlying element-size distribution function h(x) is assumed
to be defined throughout the domain 2 to be meshed. For convenience, we define
the size h of a tetrahedron as \/m the radius of its circumscribed sphere. By this
convention, for a regular tetrahedron h equals one-half of its side. In calculations, the

element-size distribution function h(x) is available in either of the following forms:

e Analytically.

e By a weighted average of an element-size function defined over the boundary,

e g

f 0 h?}')df |(y)

1] x—y|@

- @)
o0 |x y|e

h(x) =

where 0f) is the boundary of 2, and x € (). Evidently, the averaging rule should
be such that h(x) — h(y) as x — y € 99 from the interior of the domain. In
eq. (2.1) this is ensured by setting o = 2d, where d is the dimension of the
boundary. The function h(y) over 92 may be defined face by face and should
result in an appropriate resolution of the geometry of the face, e. g., along

regions of high curvature.

e By interpolation on a previous mesh. This is the default representation of h(x)

in the case of remeshing.

Algorithms for the consistent meshing of edges, faces and sub-bodies are described
in subsequent sections. Specialized data structures help to reduce the time complex-
'ity of the requisite insertion, deletion, and search operations. In particular, we choose
to keep unordered lists as linked lists, ordered lists as priority queues [130] and spa-
tially dependent entity lists as point-region octrees [124]. These data structures have

previously been proven very efficient in finite element mesh generation applications

[80).
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(a) full view A (b) zoom view

Figure 2.2: Example of the meshing of edges

2.3.1 Meshing of edges

Triangulations of one-dimensional objects such as edges may conveniently be under-

stood as discrete solutions of the eikonal equation:

dw 1
o 2.2
ds h (22)
where s € [0, L] is the arc length and we set w(0) = 0. The mesh nodes s;,72=0,..., N
then follow from the difference equation:
w(L
w(s) - w(sy) = LD (23)

Thus, the nodes coincide with the level points of w at regular intervals of 1/N. A
simple implementation of the method consists of sequentially packing spheres centered
on the edge of a radius equal to the target element size h. This operation is akin to
adding a bead to a necklace. Evidently, the last sphere in the sequence may not
fit exactly at the end of the edge. This lack of closure may be corrected by scaling
back the distribution of nodes. An example of edge meshing, corresponding to a

three-dimensional model of ballistic penetration, is shown Fig. 2.2.
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2.3.2 Meshing of surfaces

Once all the edges in the model have been meshed, we may turn to the triangulation
of the objects at the next level iﬁ the B-Rep, namely, the faces. Issues pertaining
to the generation of unstructured meshes on surfaces defined analytically have been
addressed by Lo [76], Lohner et al. [83], Moller et al. [96], Lo [79], Lau et al. [68] and
Rypl et al. [123]. Our general approach to surface meshing is based on the advancing
front method with nodal insertion by hard-sphere packing. In contrast to common
‘practice, we do not carry out the meshing in parametric space but in physical space
directly. The hard-sphere packing construction provides a natural means of inserting
nodes on a surface ’in accordance with a prescribed mesh density.

The surface meshing algorithm proceeds as follows:

0. Initialization of the front. The topological attributes of the face under consid-
eration are retrieved from the B-Rep, including a list of oriented edges defining
the face loops. The initial front is the list of consecutive segments gathered
from the discretization of the edges (cf Section 2.3.1). The segments are con-
Sistently oriented counterclockwise relative to the orientation of the face, see
Fig. 2.3. The common strategy of sorting the front list in ascending order of
the segment sizes to preclude large elements crossing regions of small mesh size
[110, 83] has recently been questioned [96]. To this end, we have found that
this technique, which may be computationally expensive, is not necessary as
long as the gradient of the mesh density distribution is limited. The front is
therefore configured as a linked list, which is specially well-suited for the op-
erations of random insertion and deletion of front segments. For each node 1
of position x; on the front, the corresponding local mesh size h; is obtained
frofn the background mesh-density function. In the case of remeshing, the local

" mesh size is interpolated from the old mesh. Additionally, in preparation for
nodal insertion we consider the spheres S; of radii h; and centers x;. It should
be noted that these spheres may not be tightly packed in general, and small

gaps and interpenetrations may be present. The first element in the front is
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arbitfarily declared as the active segment. All the nodes in the initial front, as
well as the new nodes added subsequently, are inserted in a point-region octree.

This octree is used to search for nodes in the vicinity of the active segment.

. Definition of a tentative new node. The beginning and final nodes of the active
- segment are labeled 1 and 2, respectively. The corresponding spheres S; and .Sy
have centers and radii {x;; hy} and {x9; ho}, respectively. A tentative new node
is inserted on the face at the center x of a trial sphere S of radius h(x) packed
against S; and Sy. Thus, the trial sphere S is determined by the following three

conditions:

e f(x) =0, i.e., the center of the sphere lies on the surface.

e h = h(x), where h(x) is the mesh-size function, i.e., the radius of the

sphere matches the local mesh size.

e |x —x1| = h+ hy and |x — x| = h + hy, i.e., the new sphere is packed

against—or in contact with-the end spheres of the active segment.

This system of four nonlinear equations may be reduced to an equivalent system
of two equations as follows. Begin by introducing the local orthonormal frame
{g1, 82,83} centered at x;, where g; is the unit vector in the direction of the
active segment and g3 is the unit normal to the face at the midpoint of the

active segment, Fig. 2.3. The point x must lie on the circle:
x(h,0) = x; + ay1(h)g1 + B(h) (cos fgs +sinf gg) (2.4)

where

o (h) _ d? —+ (hl — hg%ffh + h1 + h,g) (25)
1

Bh) = ooVId — (b = h)?][(2h + hy + ho)? — d?)] (2.6)

and d - |x2 — x1|. The unknown parameters h and § then follow from the
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Figure 2.3: Hard-sphere packing on a surface

system of equations:

F(x(h,0)) = 0 (2.7)
h(x(h,0)) = h (2.8)

Equations (2.7) and (2.8) are readily solved for h and 6 by recourse to a Newton-
Raphson iteration provided that the functions f(x) and h(x) are sufficiently
smooth. Alternatively, an approximate packing may be obtained by estimating
h as (2h1h2)/(hy + hs), thus reducing the problem to the solution of the single

equation
F(x(h,0)) =0 (2.9)

in the single unknown 6.

. Collision detection. The face octree is searched for possible collisions of the trial

sphere S with existing spheres in the front. In order to speed-up this operation,
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New element

New mesh

New node

Surface defined
discretely -—

Final host face

Figure 2.4: Node insertion on a discretized surface

the octree search is further restricted to the nodes lying in the half-space deter-
mined by the active segment and the vector gs. If a collision does indeed occur,
the octree query retrieves the sphere resulting in the most interpenetration,

which is redesignated as the new trial sphere S.

3. Enforcement of the empty circumsphere condition. The aim of this step is to
make the final selection of the trial point x; involved in the formation of the
new triangle. In making this selection we seek to enforce the empty circum-
sphere condition, namely the condition that the minimal sphere containing the
points {xi,X2,x3} does not contain any other points on the face. The satis-
faction of the empty circumsphere criterion is required in order to ensure that
the surface mesh is the restriction of a tetrahedral Delaunay triangulation of
the volume (cf Section 2.3.3). A list of candidate nodes is compiled by search-
ing in the face octree for all the nodes lying inside the circumsphere of the

triangle defined by the front segment and the center x of the trial sphere S
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determined in Step 2. If the resulting list is empty, the trial node x3 is set
to x. Otherwise, the node(s) satisfying the erripty circumsphere criterion is
(are) found among the list of candidates by the following divide-and-conquer

- procedure:

1: for all nodes in the list of candidates do

2:  consider the sphere circumscribing the triangle formed by the front seg-
ment and the node under consideration and discard from the list all the
nodes which lie outside.

3. end for

. Check for intersections. Before accepting the trial node x3, a check is made to
verify that the newly formed triangle does not intersect any existing edges or
triangles. We choose to test for edge-triangle intersections of new edges with
existing triangles adjacent to the front segments; and for intersections of the new
triangle with existing edge segments in the front. As pointed out by Lohner [82]
and Rypl et al. [123], the intersection detection algorithm may fail in surfaces
of high curvature. A more robust algorithm is obtained if the intersection test
is done in a plane approximately tangent to the face where the new triangle
is to be inserted. If the trial triangle fails the intersection test, it is discarded

along with x3, and Step 3 is repeated.

. Front update. The new triangle {x;X2x3} is inserted in the list of face elements
and the front linked list is updated as follows. The base segment is always
deleted from the front linked list. If x5 is initially connected to the base segmént
node x; (X2), then a new segmént joining x3 (x1) and x, (x3) is created and
iﬁserted in the linked list of front segments. In this case the segment connecting
nodes x3 (x2) and x; (x3) is deleted from the front linked list, decreasing the
number of segments in the front by one. Also in this case, node x; (x2) ceases
to be in the front. If x5 is otherwise on the front or is a new node, then two
new segments are created joining nodes x;-X3 and X3-Xg, increasing the number

of segments in the front by one.
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- 6. Check for completion. If the list of front segments is empty the algérithm exits.
Otherwise the next segment in the front is processed by repeating the steps

starting at Step 1.

The case of surface remeshing merits special consideration. Issues of algorithm
robustness and efficiency pertaining to the application of the advancing front tech-
nique to the meshing of a discretized surface have been addressed by Lohner [82].
Specifically, the nodal insertion operation differs from the continuous case in that the
geometry of the face is defined by interpolation based on the previous mesh, which
provideé a piecewise polynomial description of the surface geometry, Fig. 2.4. In cal-
culations, we preferentially use ten-node quadratic tetrahedra in order to avoid volu-
metric locking and to facilitate the simulation of fracture and fragmentation [103, 104].
The restriction of these volume elements to the surface defines a six-node quadratic
element. In order to simplify the insertion of a new node, we begin by faceting the
surface elements in the old mesh into assemblies of four piecewise linear elements.
New nodes lying on the faceted surface are subsequently projected onto the quadratic
mesh.

The implemeﬁta’cion of the sphere-packing operation also differs from the construc-
tion used in the analytical case, which tends to break down on discretized surfaces
owing to the discontinuous variation of the normal. The following approximate pack-

ing construction is adopted instead. The new node is assumed to lie on the plane II

defined by (cf Fig. 2.4)

(x—x.) g1 =0, (2.10)
where
. h1x1 + h2X2
. (2.11)

The intersection of this plane with the old faceted mesh defines a piecewise linear

curve on which the sought node x is forced to lie. The precise sequence of opera-
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tions leading to the determination of the triangle containing x and the corresponding

natural coordinates is listed in Algorithm 1, (see also Fig. 2.4).

Algorithm 1 Node insertion in surface remeshing

Require: Define an approximate surface normal gz as the normal to the triangle
in the new mesh behind the active segment, if available, or as the normal to
the triangle in the old mesh hosting point x.. Compute the advancing direction
go = g3 X g1. Determine the initial host triangle from a proximity search from
the point

V3hihs g
"= - 2.12
X Xe + I+ Tia }gQIA ( )

using the octree of triangles of the old mesh.
1: while final host triangle not found do
Visit the current host triangle.
3:  Determine the segment intersections x, and x, of the current host triangle
boundary and the plane II.
4:  Let & be such that

x(€) — % = V3h (2.13)
where

x(§) = (1 —§)xa +&xp (2.14)

5. if 0 <€¢<1then

6: Final host found: set new node to: x = x(§)

7. elseif £ <0 (£>1) then

8 set the new host triangle equal to the triangle incident to the current host
on the side containing x, (x).

9: end if

10: end while

Some of the operations involved in the node-insertion algorithm may be facilitated

| by the use of special data structures. These structures include a point-region octree of

element centroids in the old mesh; and a triangle adjacency list, such as a winged-edge
table, which enables a quick access to adjacent elements.

The performance of the algorithm just described is illustrated in Fig. 2.5, which

shows an intermediate stage in the meshing of a half sphere. In this case, the model

consists of a single face bounded by a single loop. The geometry of the sphere is
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Figure 2.5: Surface remeshing. Snapshot of the advancing front algorithm in progress

described by means of a coarse initial mesh. The new target mesh size is set to one
half the initial mesh size. Meshing begins with the remeshing of the edge, which is
subsequently taken as the initial front. In the particular snapshot depicted in Fig. 2.5,
the active segment is shown in red, and the intersection of the Il-plane with the first
host triangle is shown in blue. The first trial node is shown as a red dot on the blue
line. In this case, the corresponding sphere collides with an existing one centered on
the node marked by a large blue dot, which is therefore used to form a new triangle.
The complete initial and final meshes are shown in Fig. 2.6.

An example of the coupling between remeshing and mechanical analysis is shown
in Fig. 2.7, which concerns a snapshot of a simulation of flag waving in a constant
wind. The new mesh has a target size equal to one half the initial mesh size. The

ability of the mesher to treat arbitrary discretized surfaces is noteworthy.
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3. 82.5
(a) Discretized face (b) remeshed face

3.852.5

Figure 2.6: Remeshing of faces: example corresponding to a sphere sector

2.3.3 Meshing of volumes

The last step in our hierarchical construction of the analysis problem mesh consists
in filling the volume of sub-bodies with tetrahedra respecting the mesh density dis-
tribution. We adopt a hybrid method which consists in node insertion followed by

triangulation.

Node insertion by spatial decomposition in crystal lattice arrangements

Techniques based on node insertion by spatial decomposition, also known as octree
methods have been amply established and successfully used to mesh general three-
dimensional domains [17, 111, 126, 127]. In this approach the geometric model is
spatially decomposed according to mesh control parameters resulting in an octree
whose terminal or leaf octants contain a subset of the domain to be meshed. The
octant geometry is much simpler and thus easier to mesh than the original geometry.
The octant corners and points defined by the intersection of the boundary of the
object with the octant boundaries define the mesh nodes.

The octree approach is not in itself an element generation technique. Elements

are generated in the terminal octants by a variety of methods including: the use
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(a) face defined discretely (b) remeshed face

Figure 2.7: Remeshing of faces: snapshot of a simulation of flag waving in a constant
wind

of templates and template matching between octants followed by element removal
schemes [142]; and Delaunay triangulation on an octant-by-octant basis followed by
a procedure to ensure octant compatibility [126]. The most critical issues in these
approaches concern the compatibility between the boundary of the domain and the
octree and the compatibility between octants. The former compatibility requirement
may restrict the complexity of the domains that can be successfully meshed or may
lead to meshes with poor quality at the boundary.

In contrast to standard octree methods, we do not place the nodes at leaf octant
corners in the spatial-decomposition octree. Instead, we seek to devise a node inser-
tion strategy which, in the case of a uniform target mesh size, results in a periodic
lattice supporting tetrahedra of the greatest possible regularity. To this end, we have
found it useful to resort to basic concepts of crystallography, e. g., [60, 49]. Thus,
the requirement of periodicity implies that the nodes must necessarily be arranged as
one of the 14 Bravais lattices. For instance, in two dimensions the hexagonal Bravais
lattice leads to a uniform Delaunay mesh consisting of equilateral triangles. In three

dimensions, we have analyzed the Delaunay meshes which derive from face-centered
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cubic (FCC) and body-centered cubic (BCC) lattices.
In order to compare the qualities of various lattice structures, we define the aspect

ratio of a tetrahedron as
o= — (2.15)

where R and p are the radii of the circumscribed and inscribed spheres, respectively.
The quality of a tetrahedron is in inverse proportion to its aspect ratio. Other al-
ternative tetrahedron quality measures are discussed elsewhere [107, 75]. A plausible
measure of the quality of a triangulation 7 may be derived from the consideration of

the standard interpolation error estimate (e. g., [29]):

lun = ullm < > CoRehi|uli (2.16)

KeT
where u is a function in the Sobolev space H*(Q), k > 1 is the order of polynomial
interpolation, & = k + 1 — m > 0 is the order of convergence, u,, is the interpolant
corresponding to the triangulation 7, K denotes a tetrahedron in the triangulation,
|||l is the norm in H™(Q) and || is the semi-norm of order & in H*(Q2). If we now
consider a mesh much finer than the characteristic length of variation of u, then |uly

may be treated as constant in the right-hand side of (2.16), which reduces to
I=Y" oRh% (2.17)

where we have omitted inconsequential constants. This indicator may therefore be
taken as a measure of the quality of the triangulation. The mathematical problem of
optimal node insertion can now be stated as that of finding the periodic arrangement
of nodes which minimizes (2.17).

In the FCC structure, Fig. 2.8, the nodes are located at the corners of the unit cell
and at the centers of the cell faces. The nodes in the {111} planes define the densest
possible arrangement of spheres. The size of the unit cell is a. Fig. 2.9 shows the

Delaunay triangulation of the FCC unit cell, which consists of a total of 24 elements,
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Figure 2.8: FCC structure

8 of which are equilateral, with an aspect ratio ¢ = 1 and a size h = 0.356a, and the
remaining 16 have a low aspect ratio o = (2 + v/3)/3 ~ 1.24 and a size h = 0.408a.
All the elements in the Delaunay mesh of the FCC unit cell have the same volume
V = a®/24. Fig. 2.9 also highlights the two types of elements encountered in the
Delaunay triangulation of the FCC unit cell. Representative elements of each type

are defined by the nodal sets:

11 11 1
equilateral tetrahedron (o =1): {{0,0,0}, {5, 5,0}, {0, 5 5}, {%, > 0}}a

1 1 1 1
irregular tetrahedron (o = 1.24) : {{0,0,0}, {1,0,0}, {5, 2 0}, {5,0, 5}}(1

An a posteriori application of the empty circumsphere test to the Delaunay mesh
of the FCC unit cell just described readily uncovers degeneracies, Fig. 2.10 (cf Sec-
tion 2.3.3 for a discussion of Delaunay degeneracies). These degeneracies stem from
the fact that the six face-center nodes in the FCC unit cell lie on a common sphere of
radius a/2. This coincidence gives rise to an indeterminacy in the Delaunay mesh: the
octahedron defined by the six face-center nodes can variously be meshed by inserting

an edge between either of the three pairs of opposite nodes and four tetrahedra. Evi-
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_ Equilateral tetrahedron

Otherwise high quality tetrahedron

Figure 2.9: Delaunay mesh of an FCC unit cell. Representative tetrahedra of each
type (0 =1 and 0 = 2%\/3 ~ 1.24) are highlighted.

dently, the circumsphere corresponding to any of these tetrahedra coincides with the
common sphere containing the six face-center nodes. Therefore, the circumspheres
are not empty but contain two extra nodes on their boundaries. Even more worrisome
is the fact that a naive Delaunay triangulation may result in slivers defined by groups
of four nodes lying on the three {100} planes. However, as shown in Section 2.3.3,
the introduction of slivers during triangulation in cases of this nature can be readily
avoided.

By periodicity, the preceding observations carry over ipso facto to uniform meshes.
An example of an FCC lattice covering a cube is shown in Fig. 2.11. A careful
Delaunay triangulation of this lattice exhibits no slivers and contains two classes of
tetrahedra, such as already identified in the triangulation of one FCC cell, of aspect
ratios 0 =1 and o = (2+ v/3)/3 ~ 1.24.

A competing Bravais lattice as regards nodal insertion is the body-centered (BCC)

lattice. In this case, the Delaunay mesh of the unit cell consists of 12 identical
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Figure 2.10: Degeneracies present in a Delaunay triangulation of the FCC unit cell:
The six face centered nodes lie in the same circumsphere leading to mesh non-
uniqueness and potential slivers
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Figure 2.11: Delaunay mesh of an FCC grain

27



tét'rahedra of aspect ratio o = 1.56 and size h = 0.614a. The volume of the tetrahedra
is V = a®/12. As in the FCC structure, the Delaunay' triangulation of the unit cell
is not unique and care must be exercised to avoid the introduction of slivers. For
instance, the four vertices of a face and the body-center node are cospherical, giving
rise to a situation of ndn-uniqueness. | |

A comparisoh of the quality of triangulations of FCC and BCC lattices may now be
based on the measure (2.17). For definiteness, we choose m = 1, Wheréupon the ||||m
becomes equivalent to the energy norm of linear elasticity, and k = 2, corresponding
to quadratic interpolation. With this choice of parameters, Ircc/Ipcc = 0.615. We
conclude, therefore, that the FCC lattice is superior to the BCC lattice as regards
optimal node insertion. It seems plausible that the FCC lattice is also superior to the
remaining 12 Bravais lattice, although we have not verified this conjecture explicitly.

In order to extend the preceding nodal insertion method to the case of a nonuni-
form mesh, such as described by a general mesh-size distribution function h(x), and
arbitrary domains €2, we combine the concepts of Bravais lattice and spatial subdi-
vision. The resulting node insertion algorithm is summarized in Algorithm 2. The
objective is to insert nodes in a locally-FCC arrangement with a lattice size a(x) com-
mensurate with h(x). This is accomplished by recursive spatial decomposition of the
domain into an octree whose leaves are of size h(x), in the spirit of octree methods
[17, 111, 126, 127]. However, in our approach the leaves of the octree are not re-
garded as units of meshing but are solely used for the purpose of node insertion. This
is accomplished by designating each octree leave as an FCC cell and inserting nodes
accordingly. Conflicts with neighboring cells are avoided by placing all new nodes
into a nodal octree, which automatically precludes the duplication of nodes. Once
‘all the nodes have been inserted, the mesh is obtained by the global advancing-front
Delaunay triangulation algorithm presented in Section 2.3.3.

The ‘binary character of octree domain decomposition necessarily forces a dis-
cretization of h(x) in powers of two. As is common practice [127] we restrict the
geheranional difference between octree leaves to one. A direct consequence of these

restrictions is that the number of types of tetrahedra which may arise in the transition
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regions between two mesh sizes, which necessarily differ by a factor of two, is finite,
and is therefore amenable to a complete cla}ssiﬁcation.y In particular, just as in the
triangulation of the FCC cells, the transition regions can be triangulated without the
introduction of slivers. These attributes of the method ensure the good quality of the

volume mesh.

Algorithm 2 Node insertion

Require: A triangulation of all the faces in the B-Rep; a mesh-size distribution
function h(x). :

1: for all sub-bodies in the domain do

2:  Retrieve the topological information for the sub-body under consideration from
the B-Rep. Form a triangulation of the shells by merging the triangulations of
the corresponding faces taken with consistent orientations.

3:  Define the octree root as the bounding box of the sub-body boundary oriented
along its principal axes of inertia.

4:  Recursively subdivide the octree until the size of the leaf octants is commen-
surate with h(x).

5. Identify the leaf octants as FCC cells.
6: for all the 14 nodes in each FCC cell do
7 insert the node in the nodal octree.
8: end for
9: end for
Remark

e The insertion of the nodes in the nodal octree automatically precludes the dupli-
cation of nodes with the same spatial location such as may arise from insertion
into adjacent FCC cells.

Modification of the surface triangulation

Next we turn to the problem of constructing a tetrahedral mesh of a given sub-
body. The objective is to construct a joint Delaunay triangulation, i. e., one in
which all tetrahedra have empty circumspheres, of the interior and surface nodes
and whose restriction to the surface is the given surface triangulation. An inherent
difficulty in carrying out this program is that, for arbitrary surface triangulations

and interior nodal sets, a triangulation does not exist in general [6, 52, 33]. A well-
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Figure 2.12: Example of a Schénhardt (impossible to mesh) polyhedron

known example of a polyhedron whose Delaunay triangulation is incompatible with
the surface triangulation is shown in Fig. 2.12.

Considerable effort has been devoted to the development of techniques which re-
cover the boundary as an a posteriori step to the Delaunay triangulation [125, 46,
137, 140, 138]). These techniques can be computationally intensive and lack theo-
retical analysis. For smooth boundaries, Amenta et al. [1] have recently presented
conditions on the node sampling density which guarantee that the surface triangula-
tion be a subcomplex of the volume Delaunay mesh. Fleischmann et al. [42] provide
aiset of heuristics to ensure similar conditions.

A sufficient condition for a surface triangulation to be the restriction of a volume
Delaunay mesh containing a given interior point set is that all triangles in the surface
triangulation have empty minimal circumspheres. The sufficiency of this condition is

- established by the following simple argument. Consider the empty minimal circum-
sphere of a surface triangle. Expand the sphere by displacing its center towards the
interior of the domain in the direction normal to the surface triangle. Eventually, the
expanding sphere comes in contact with a fourth node which, in conjunction with
the surface triangle, defines a Delaunay tetrahedron. This operation may be repeated

until all surface triangles are covered by Delaunay tetrahedra, which shows that the
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surface triangulation is a subcomplex of the volume Delaunay mesh.

In view of this reéult, and as a preliminary step to the meshing of the interior,
we modify the surface triangulation by a combination of diagonal swaps and subdi-
vision in an attempt to satisfy the empty minimal circumsphere condition. When
the minimal'circumsphére of a surface triangle contains a surface node, an attempt is
first made to correct the situation by swapping diagonals with adjacent triangles. If
this fails, then the offending triangle is bisected along its longest side if the adjacent
triangle on this side does nét have a longer edge. These operations are repeated until
the minimal circumspheres of all surface triangles are empty, or until a minimum
mesh size is reached, in which case the algorithm fails. If the algorithm does close,
then all interior nodes contained in the minimal circumsphere of a surface triangles
are eliminated. This operation has the beneficial effect of removing interior nodes
which are too close to the boundary and which, if kept, might result in tetrahedra of
poor quality.

For smooth boundaries, theoretical guarantees of the closure of the surface mod-
ification algorithm just described follow from the recent work of Amenta [1]. The
local feature size of a point of the surface is defined as the radius of the largest sphere
tangent to the surface at a point which is contained in the body. A surface triangu-
lation is guaranteed to satisfy the empty minimal circumsphere condition proxlfided
that the local mesh size is everywhere a small fraction of the local feature size. No

similar sufficient condition for nonsmooth surfaces is known to us.

Triangulation by advancing front Delaunay

A Delaunay triangulation of a set of points in three-dimensional space is a tetrahedral
| decomposition of the convez hull of the point set, where the vertices of the tetrahedra
belong to the point set, such that the interior of the circumspheres of the tetrahedra
does not contain points from the set [34]. The triangulation is unique if situations
in which more than four points lie on the surface of the circumsphere of any tetra-
hedra do not occur. Of utmost concern when meshing three-dimensional volumes by

the Delaunay method is the appearance of tetrahedra with vanishingly small volume,
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Figure 2.13: Degenerate Delaunay situation including the possible formation of a
sliver

also referred to as slivers [24]. This situation arises when a cospherical set of points,
causing a breakdown of uniqueness in the Delaunay triangulation, contains four or
more points which are coplanar, Fig. 2.13. The sliver problem attests to the lack of
optimality properties of the angles of the tetrahedra belonging to a three-dimensional
Delaunay triangulation. Optimality properties of the Delaunay triangulation in three
and higher dimensions have recently been presented by Rajan [116]. In contrast to
the two-dimensional case, these properties do not guarantee the good quality of the
{;riangulations. Indeed, it has been shown by Joe [63] that in many cases tetrahe-
dral Delaunay meshes can be improved by local transformations, which violate the
Delaunay empty circumsphere criterion.

Here we describe an advancing front algorithm for the construction of Delaunay
tetrahedral meshes from their restriction to the surface, which is presumed known a
priori (cf Section 2.3.3). The approach is related to work by Mavriplis [92] in two
dimensions and motivated by algorithms proposed by Tanemura [131] and Merriam
[94]. A 3D implementation of the Merriam-Tanemura algorithm has been presented
recently by Fleischmann et al. [42]. The algorithm constructs the Delaunay trian-
gulation incrementally, i.e., one tetrahedron at a time, starting from the boundary
triangulation in a bottom-up fashion. Thus the surface triangulation exists in the
final triangulation ab initio and the problem of surface recovery is thereby obviated.

The method searches for nodes which form Delaunay tetrahedra with the active tri-
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Figure 2.14: Advancing front Delaunay: Initial search region

angle. Among these tetrahedra, a selection is made based on quality criteria and on
the avoidance of subsequent slivers, leading to the introduction of a new tetrahedron
in the mesh. The algorithmic steps followed to advance the front are otherwise very
similar to those in the conventional advancing front method [83, 109, 77, 61, 96, 25|.
However, the heuristics attendant to the introduction of nodes and elements are con-
siderably reduced.

The volume meshing algorithm may be summarized as follows:

0. Initialization of the front. The initial front is identified with the surface trian-
gulation. The triangles in the initial front are configured as a linked list. Owing
to the uniqueness of the volume triangulation the order in which the front tri-
angles are processed is inconsequential, which is in contrast to the conventional
advancing front algorithms. The surface triangulation is assumed to conform
to the prescribed mesh-size distribution, and to satisfy the empty minimal cir-
cumsphere condition discussed in Section 2.3.3. The first triangle in the front
is designated as the active triangle. The nodes in the initial front, as well as
the interior point set, are inserted in a point-region octree. This octree is used

to search for nodes in the vicinity of the active triangle.

1. Search region. The purpose of this step is to construct a bounding box which

33



Delaunay node

Delaunay node

Front advancing direction

i "=~ Advancing triangle

] ’

(a) Three edges and three triangles added (b) One edge and two triangles added

.- Delaunay node

. Front advancing direction

A
!

~— Advancing triangle

(c) One triangle added (d) Front closes

Figure 2.15: Front reconnection in 3D

34



is sure to contain the node or nodes which form Delaunay tetrahedra with the
active triangle. We begin by recalling the fact that the projection of the cen-
ter of the circumsphere of a tetrahedron on the planes of its faces coincides
with the centers of the circumspheres of the faces [116]. Consider the sphere
which cbntains the circumcircle of the active triangle and whose center is at
distance d = 2r from the active triangle, where r is the radius of the circum-
circle, Fig. 2.14. The radius of this sphere is R = v/5r. The cube parallel to
the cartesian axes which strictly contains this sphere defines the initial search
region. When the interior point set is generated by the node insertion algorithm
described in Section 2.3.3, the bounding box just defined is sure to contain at

least one Delaunay node.

. Tetrahedron insertion. In this step, the node which defines the new Delaunay
tetrahedron is determined. A list of candidate nodes is formed by searching
in the sub-body octree for all the nodes lying inside the search box defined in
Step 1. Nodes which are already part of the mesh and are not on the front, and
nodes in the half-space behind the active triangle are not included in the list.
The nodes satisfying the empty circumsphere criterion are readily found among

the list of candidate nodes by the following divide-and-conquer strategy: -

1: for all nodes in the list of candidate nodes do
2:  Discard all candidate nodes not contained in the circumsphere defined by
the active triangle and the current candidate node.

3. end for

If several cospherical candidate nodes are detected, all the corresponding tetra-
hedra are evaluated and the one of best quality which does not lead to subse-

quent slivers is selected.

. Front update. The new tetrahedron is inserted in the list of tetrahedra for the
sub-body. The front is then updated as follows, Fig. 2.15. The active triangle is
always deleted from the front linked list. If the Delaunay node found in Step 2

is:



‘e not a verter of the triangles adjacent to the active triangle, three triangles

are added to the front, Fig. 2.15(a).

e a vertex of one triangle adjacent to the active triangle, two triangles are
added to the front and the adjacent triangle is deleted from the front,
Fig. 2.15(Db).

e a verter of two triangles adjacent to the active triangle, i.e., the two ad-
jacent triangles share an edge, one triangle is added to the front and the

adjacent triangles are deleted, Fig. 2.15(c).

e a vertex of the three triangles adjacent to the active triangle, the three

adjacent triangles are deleted and the front closes locally. Fig. 2.15(d).

4. Termination. The algorithm terminates when the front is empty. Otherwise

the next triangle in the front is retrieved and control returns to Step 1.

Remark

e By virtue of the empty minimal circumsphere satisfied by the surface trian-
gulation and the properties of the Delaunay triangulation, the need for costly
intersection tests of new and existing mesh entities, such as required in tradi-

tional advancing front methods, is eliminated.

Mesh improvement

In two dimensions, Delaunay meshes poséess the min-max property for angles and
are therefore optimal in this regard. In three dimensions, however, no such property
is known to be possessed by Delaunay or other triangulations, and the quality of the
tetrahedral meshes may sometimes be improved by the application of operations such
as edge—face or octahedral swapping [63, 64, 43] and smoothing [127]. These common
mesh improvement operations have been implemented in the mesh generator and their

versatility confirmed in the examples of application.
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Figure 2.16: Mesh of sphere with uniform mesh size (358024 elements)
2.4 Examples of application

In this section a suite of examples is collected to assess the performance of the mesh
generator developed in the foregoing. The emphasis is in establishing the robustness
of the method and the quality of the resulting meshes.

The first example corresponds to meshes of a sphere with different uniform sizes.
The finest mesh, which contains 358024 elements, is shown in Fig. 2.16. In order to
assess the quality of the resulting meshes, statistical measures of the quality of the
tetrahedra have been compufed. The following tetrahedron quality measure has been

adopted:

53
= TIRG 2.18
VT 548528V &18)

where

(2.19)

is the root mean square of the lengths of the tetrahedron edges S;, V is the vol-
ume of the tetrahedron and the factor 8.48528 normalizes the quality of a regular

tetrahedron. This tetrahedron quality measure exhibits good sensitivity to all the
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Figure 2.17: Mesh quality statistics - 5200 elements
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Figure 2.19: Mesh quality statistics - 358024 elements

different kinds of element distortion [107]. Figs. 2.17, 2.18 and 2.19 show frequency
histograms, mean quality, standard deviation and worse element quality for three dif-
ferent meshes consisting of 5200, 44784 and 358024 elements respectively before and
after the application of the mesh improvement techniques presented in Section 2.3.3.
It can be observed from these figures that this operation effectively results in meshes
of better quality.

The example in Fig. 2.20 corresponds to the mesh of a sphere with a strong
gradient in the mesh density distribution. A cross section of the mesh is shown
in this figure exhibiting six levels of refinement present in the mesh. The different
regions of uniform mesh size (FCC grains) as well as the grain boundaries can be easily
observed. Fig. 2.20 also depicts the performance of the surface mesher algorithm. It
is evident from this figure that the resulting surface meshes are very smooth and that
the surface nodes exhibit the optimal value of 6 for the coordination number despite
the presence of strong gradients in the mesh density distribution.

Finally, Figs. 2.21, 2.22 and 2.23 illustrate the ability of the proposed method to
produce meshes of shapes with practical interest. In the case of the oblique penetrator,
Figs. 2.21, the input B-Rep is given analytically, whereas in the case of Figs. 2.22

and 2.23 the input B-Rep consists of a surface triangulation of the boundary. It can

39



7
ST

(i WA A
e

T A
.,Ewﬂvh‘.«.nﬁﬂﬁmﬂ

7 \

Figure 2.20: Mesh of a sphere (180704 elements)

40



(a) general view of the mesh

(b) cross section of the mesh
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Figure 2.21: Model of an ogive-nose rod impacting a plate at an oblique angle (63768

elements)
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be observed from Fig. 2.21 that in this case the application of the techniques presented
in Section 2.3.3 also causes a considerable improvement in the mesh quality. The case
corresponding to Fig. 2.22(c) illustrates the effect of the surface modification process
near shafp corners. It can be observed from this figure that the algorithm attempts to
satisfy the conditions stated in Section 2.3.3 by subdividing the facets in a self-similar

manner near the sharp corner.

2.5 Summary and conclusions

We have developed a new automatic method for generation of unstructured tetra-
hedral meshes in complex geometries and general topologies. We mesh the surfaces
by recourse to an advancing front algorithm based on a sphere-packing construction.
The first step in the volume meshing consists in inserting nodes in the interior in
FCC crystal lattice arrangements with the aid of an octree spatial subdivision. The
surface mesh is modified prior to triangulation of the interior and boundary points
in order to ensure compatibility of the surface and interior triangulations. The final
triangulation is obtained by a combination of an advancing-front Delaunay algorithm
and local transformations. The existence of the final mesh is guaranteed for smooth
boundaries. We demonstrate the versatility of the approach, as well as the quality of

the resulting meshes, with the aid of selected examples.
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Chapter 3 Lagrangian finite element

analysis of Newtonian fluid flows

3.1 Introduction

The equations of motion of Newtonian fluids are most commonly formulated in eu-
lerian form, leading to the Navier-Stokes equations. In many situations of interest,
eulerian formulations permit the simulation of fluid flows using a fixed domain or
control volume, which is an attractive feature. There are cases, however, in which the
conventional eulerian approach is unduly cumbersome. Such is the case, for instance,
of free-surface flows, flows involving interfaces between different species of fluids, and
problems in which fluids are coupled to solids undergoing large deformations. The
difficulty inherent to the eulerian treatment of these problems has spawned a vast
literature. Some attempts to overcome these difficulties have been the mark and cell
(MAC) technique originally developed by Harlow and Welch [50] and ALE methods
(e.g., [117], [37], [57). |

By contrast, the possibility of describing fluid flows within a fully lagrangian
framework, which renders the treatment of free surfaces and interfaces—as well as
the compatibility between solids and fluids- trivial, has not correspondingly been
explored, barring a few notable exceptions. The earliest fully lagrangian treatment
of viscous flows was seemingly advanced by Hirt et al. [54]. In their pioneering
work [14], Belytschko et al. noted the advantages of the lagrangian formulation
for problems of fluid-structure interaction involving large structural deformations.
ther noteworthy early works are those of Bach et al [4] and Ramaswamy et al.
[119] [118]. These approaches are based on a reformulation of the Navier-Stokes
equations in material coordinates, which subsequently are updated via an ad hoc

iterative procedure. However, because these methods were implemented on a fixed
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me‘sh,- they Werellimited. in the extent of the geometrical effects they could account
for. As a notable exception, Kawahara et al. ([65]) introduced a simple mesh rezoning
“technique and applied it to the simulation of solitary wave propagation.

In the past, the main technological obstacle standing in the way of fully lagrangian
finite element methods for fluids has been the lack of automated and adaptive mesh-
ing. Indeed, lagrangian analyses based on a fixed mesh, such as carried out in the
references listed above, inevitably lead to severe element distorsion soon after the
inception of the flow and, consequently, are of limited scope. However, recent ad-
vances in meshing [80], [108] enable the continuous remeshing of the fluid mass as
the flow proceeds, which effectively opens the way to the application of lagrangian
rhethods. The feasibility of the lagrangian paradigm as it bears on unconstrained
solid flows, such as occur in terminal ballistics and high-speed machining, has been
amply established, [91], [18], [19].

In the present thesis and in [113], we develop a fully lagrangian finite element
method for the analysis of Newtonian flows based on continuous and adaptive remesh-
ing. Our approach furnishes, in effect, a fully lagrangian implementation of the com-
pressible Navier-Stokes equations. The principal advantage of the present approach
lies in the treatment of boundary conditions at material surfaces such as free bound-
aries, fluid /fluid or fluid/solid interfaces, specially where highly deformable solids are
concerned. In contrast to eulerian approaches, boundary conditions are enforced at
material surfaces ab initio and therefore require no special attention. Expressions for
the consistent tangents are provided as part of the outcome of the formulation, en-
abling fully implicit analysis with optimal equilibrium convergence. These consistent
tangents are obtained by direct linearization of the incremental equations.

For simplicity, we restrict attention to two-dimensional flows. The accuracy of
our approach is assessed by comparison of the solution for the sloshing problem with
exiéting'numerical results and its versatility demonstrated through a simulation of
wave breaking. The ability of the method to follow simply the evolution of the

surface profile as the wave breaks is noteworthy.
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3.2 Lagrangian description of Newtonian flows

Consider a body initially occupying a reference configuration By, and a motion

over By. Here, X € By are the material or lagrangian coordinates of a material parti-
cle, and x the corresponding spatial or eulerian coordinates at time ¢, as determined
by the deformation mapping ¢. We consider a general initial value problem in the

lagrangian form:

Fiy = ¢y in By (3.2)
¢i = ¢; on OBy (3.3)
P,y + poBi = po¢s in By (3.4)
PyN; =T, on 8By (3.5)
P,y =Py (F,F) in B, (3.6)
$:(X,0) = ¢{”(X) in By (3.7)
$:(X,0) = V9X) in By (3.8)

where F}; are the deformation gradients, ¢; are the displacement boundary conditions
on the reference displacement boundary 8Bg;, P;; is the Piola-Kirchhoff stress tensor,
Po is the mass deﬁsity in the refefence configuration, B; are the applied body forces
per unit mass in the reference configuration, Ny is the outward unit normal to the
reference boundary 0By, T; are the traction boundary conditions on the reference
traction boundary 0By, and ¢EO) (X) and V;(O) (X) are the initial displacement and
velocity conditions. The Piola-Kirchhoff stress tensor P;; and the Cauchy stress

tensor o;; are related as

P, = (JO',JFJ_Jl) CX0) » (39)
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where o denotes compoéitioﬁ of functions and
J=detF (3.10)

is the Jacobian of the deformation.

For a Newtonian fluid the constitutive equations are

oij = 2pdis” + pdy (3.11)

where o;; are the components of the Cauchy stress tensor, u is the fluid’s viscosity,

dfje" is the deviatoric part of the rate of deformation tensor

[N

dij = 5(vig + vj4), (3.12)
with
vi=iog! (3.13)

representing the components of the spatial velocity vector, and p is the pressure,
which derives from an equation of state. For a compressible fluid we assume the

pressure p to depend only on the volumetric part of the deformation, i.e.,
p=p(J), (3.14)
whereas for an incompressible Newtonian fluid p follows from the constraint
J=1 (3.15)

To render these equations in finite element form, we begin by recasting (3.4) in the

weak form

' / [Piymnig — po(Bi — bi)mildVo — / TimidSy =0 (3.16)
Bo

0Bo2
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where the test functions n; satisfy the homogeneous essential boundary conditions
n:i =0 on 0Bn (3.17)

Pushing (3.16) forward to the spatial configuration leads to

/ [oijmi; — p(bi — ai)mldV — / tmidS =0 (3.18)
B 8B,

where B = ¢(By) and 8By = ¢(0Byz) are the deformed domain and traction bound-

ary, respectively. Finally, an application of (3.11) results in

/B 8" + piion = p(b, — anlav = [ Eds =0 (3.19)
2

which is the point of departure for the finite element implementation described in the

sequel.

3.3 Finite element implementation

3.3.1 Spatial discretization

Next we seek to determine finite element interpolants of the form

nodes

$i(X,1) = D mia(t)Na(X) (3.20)

a

which approximate the exact motion ¢;(X,%). In (3.20), z;(t) = ¢ni(X.,t) are the
spatial nodal coordinates, X, are the material nodal coordinates, and N, are the
undeformed or material shape functions. Inserting this representation into (3.18), a

standard derivation leads to the semi-discrete equations

Z Migiprs + Fi2(x, %) = f2(2) (3.21)
b
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Where
Miags = Y / podix NENEAQy (3.22)
e V8

=3 [ P, (3.23)
e Y95 '

denote the consistent mass matrix and the internal force array, respectively, % is the
acceleration array and f*** is the external force array resulting from the applied body
forces and surface tractions.

We é,dopt the six noded composite finite element devised by Camacho and Ortiz
[18] and mass lumping. It should be carefully noted that the element body forces,
i.e., gravity forces, must be lumped accordingly in order for constant accelerations to

result from the application of a constant force field, as required.

3.3.2 Temporal discretization

For the mass-dominated problems of interest here, such as the propagation of gravity
waves, an implicit treatment of time is particularly attractive, if not mandatory.
Consequently, we integrate the system of nonlinear ordinary equations (3.21) in time

by recourse to Newmark’s algorithm (e.g., [58], [11])

1
Xn+1 = Xn + Atvn + AtQ [(5 - /8) a, + IBa'n-i—l:I

Vpt1 = Vi + At[(1 = 7)a, + yap41] (3.24)
May, + £ (x5, Vo) = £ |

int __ pext
Man+1 + f (Xn+1: Vn-l—l) — fn+1

where x, = x(t,), v = X(tn), a, = X(t,), £ = £*44,), t, = nAt and 0 <

B S 0.5,0 < v < 1 are the algorithm’s parameters. It is interesting to note that
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Newmark’s algorithm can be rephrased in the multistep form

Mxn+1 - 2Xn + Xn-1

A _1(fint __ fext)n_1 + ao(fint _ fext)n + o (fint _ fext)n_H =0

(3.25)

where the parameters (a1, ag, o) are related to Newmark’s parameters (3,7) as

1 1
C¥_1=‘2‘+)3_% 04025—2,64-’}’, ar =0 (3.26)

The nonlinear system of equations (3.24) may be solved by a Newton-Raphson itera-
tion, leading to successive iterates (xn fR vﬁfﬂ, ) k =0,.... The starting iterate

coincides with the Newmark predictor

1
xslo}rl =X, + Atv, + At2(§ - Ba,

Vg)ll = v, + At(l —v)a, (3.27)
0
a®, — 0

By this means, the system of nonlinear equations is reduced to

Vol = V,‘,(Qo_i)_l -+ *yAtan_,_l (328)

Man+1 + fim (Xn+1a Vn+1) - fzﬂl

In order to compute the (k + 1)th iterate, (3.28) is consistently linearized about the

kth iterate leading to the equivalent linear static problem

Y Ak
(K( T _CT(H)—I +

A7 M) u= 2 — (% — Mal), (3.29)

BAL?
where u is the incremental displacement array and

afint afmt

K=50v),  C=4%

(x,v) (3.30)
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are the taﬁgen‘c stiffness and tangent damping matrices, respectively. A trite but

straightforward calculation gives the consistent element tangents in the form

e _ 9
zakb - anb
= / [Cim (T kTam — MomTak) + (Vi kT0,Ta,5 — VjkMb,iMaj (3.31)
944
2 dp
+ gvl,knb,ma,i) -+ Ejjnb’kna’i]dﬂt
and
. Ofs 2
kb — —o = 1(8; kMo Mam + MbiMak — 5 MbkMa,i)AVy (3.32)
0Xw Jag 3

where n, are the deformed or spatial shape functions.
The precise form of these consistent tangents does not seem to have been de-
rived before. Following the computation of u, the nodal coordinates, velocities and

accelerations are updated through an application of the Newmark correctors

k+1 k
K =)
k+1) _ _(k a
V’El+l )= anl + BAt (3.33)
k+1 k u '
agl-:_l) = agH)-l + ,BAtQ

The iteration terminates when a certain tolerance is met, e.g., when

=D x|
e < TOL (3.34)

n+l = “n+l B
| x Xpt1 |l

Provided that the starting point of the iteration is within the radius of convergence
of the solution, the use of the exact tangents (3.31) and (3.32) results in quadratic

convergence.
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3.4 Adaptive meshing

A difficulty which is encountered when Lagrangian methods are applied to problems
invoAlving unconstraiﬁed flow is the severe deformation—induced mesh distortion which
is inevitably ‘incurred.. This difficulty can be effectively sidestepped by recourse to
continuous and adaptive remeshing [91], [19],[20]. Mesh adaption also furnishes an
efficient means of resolving multiple scales in the solution with a minimum of degrees
~of freedom. An effective adaptive meshing capability must address two types of
issues: representational, i. e., issues pertaining to the representation of domains;
and analytical, including automatic meshing, adaption indicators and mesh-to-mesh
transfer operators. A few salient issues among these are subsequently addressed in
turn.

In calculations we represent domains as hierarchical systems ([18], [5], [110], [62]).
At the top level, the topological graph points to a set of bodies. A body may in
turn comprise several subbodies, e.g., composed of different materials. The boundary
of each subbody is decomposed into a collection of closed loops. The loops can
be oriented consistently so as to unambiguously define the interior and the exterior
of the subbody. Each loop is partitioned into edges. An edge may appear, albeit
with different orientations, in the boundaries of two different subbodies. Finally, the
geometry of all edges is defined by piecewise quadratic interpolation from a collection
of boundary nodes. The use of a sufficiently accurate interpolation of the boundary

is essential in order to preserve the mass of the body.

3.4.1 The advancing front algorithm

The boundary representation of the model may be taken as a basis for the triangula-
tion of the interior of the solids. The boundary representation serves the additional
pufpose of specifying the current contact surfaces in the solid. Advancing front meth-
ods [110] constitute specially attractive automatic meshing techniques as they require
a minimal set of input data—chiefly, the boundary information—from which both el-

ements and interior nodes are generated simultaneously. Triangular elements are
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introduced one by one from the smallest segment on the front, which is taken as the
base of the triangle. In the construction of the initial mesh, the size of the elements
is determined by recourse to Jin and Wiberg’s [62] control line technique. In this ap-
proach, the element size is computed as a weighted average of the boundary element
sizes. In su’bséquent rheshes, the size of the new elements inserted at the front is
selecfed in accordance with a prespecified mesh density determined a posteriori from
the solution. The advancing front algorithm terminates when no segments are left in
the front. Carefully designed data structures and search algorithms need to be put
in place to ensure an O(N log N) operation count [80].

In our calculations we employ an h-adaption strategy based on empirical refine-
ment indicators to estimate the optimal mésh density, leading to simultaneous coars-
ening and refinement [105],[18]. The target mesh density is determined so as to
equidistribute certain indicators over all elements in the mesh. As refinement indica-
tor we adopt the bounded deformation norm of the velocity field [105] which results
in refinement (coarsening) in rapidly (slowly) varying regions of the flow. In our
implementation, the element size information is interpolated on the old mesh, which

serves as a background mesh for the advancing front algorithm.

3.4.2 Mesh-to-mesh transfer operator

The consistent formulation of transfer operators has been addressed by Ortiz and
Quigley [105]. The fundamental question to be ascertained concerns the formulation
of consistent finite element equations Whén all fields at time %, are supported on a
mesh M,, while the fields at time %,,, = t, + At are supported on a different mesh
" M41. Ortiz and Quigley [105] show that, when all finite element representations
are introduced into the weak form of the equations of motion, the equilibrium and
compatibility equations at ¢, follow directly from the interpolation on M, ;. Ortiz
and Quigley [105] further show that the weak form unambiguously determines the
transfer operator.

In the context of a total displacement approach, where the reference configuration

is fixed at the initial configuration, the deformation and velocity gradients and the
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Jacobian of the deformation can be computed directly from the nodal data. Since
Newtonian fluids are history independent, i.e., the stresses depend solely on the cur-
rent spatial velocity gradient and the Jacobian of the deformation (3.11), there is
no need to transfer any state variables to the quadrature points of the new mesh.
However, in problems of unconstrained flow, such as water waves propagation and
breaking, an incremental formulation where the reference configuration is updated
frequently is advantageous, as the total deformation mapping nearly loses invertibil-
ity with the passage of time. In this case the accumulated Jacobian of the deformation

must be transferred from mesh to mesh.

3.5 Validation and applications

3.5.1 Sloshing problems

Initial surface profile y Still liquid level

)

Ty, Container

Figure 3.1: Schematic of the sloshing problem

By way of validation of the formulation just described we consider the simple
problem of the free oscillation of an incompressible liquid in a container. Numerical
results for this problem can be found elsewhere ([119], [117]). Fig. 3.1 depicts a

schematic of the problem. Following Ramaswamy et al. ([119], [117]) we consider a
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(b) Results for the present method

Figure 3.2: Time histories of surface elevation amplitude for the sloshing problem

square liquid column of width b with an initial surface profile corresponding to the

first antisymmetric mode of vibration, i. e.,

n(z,0) = asin %x

where a is the amplitude of oscillation. For the sake of comparison with previously
published numerical results, we adopt a very small value for the amplitude (¢ = 0.01).
In view of this small amplitude, the calculations can be carried out on a fixed mesh.
The container walls are assumed to be impermeable and allow for free slip. A viscosity

v = 0.01 is adopted in the calculations. Fig. 3.2 shows the computed time histories of
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i (ig, t_) together with the same time histories reported by Ramaswamy et al. ([119],
[117]). As is evident from the figure, the two sets of results are in close agreement. It
should be noted, however, that the geometric effects in this example are insignificant

and that, in consequence, the full potential of the present method is not realized.

3.5.2 Wave breaking

Figure 3.3: Schematic of the analysis problem

In this section we present a simulation of the propagation of a water wave and its
breaking due to shoaling over a plane slope. The geometry of the problem is shown in
Fig. 3.3. The inviscid problem has been analyzed using boundary elements [47] and
the viscous case using ALE methods [117]. The initial conditions are taken from the
potential theory solution of a solitary wave of finite amplitude propagating without

change of shape [67]. In Laitone’s solution, which is frequently used for comparison,
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the velocity, pressure and free surface elevation are:

4d3

3/2 ‘
v :‘\/&qfd (%) %sech2 [\/g(x - ct)} tanh [\/ Z%(x - ct)} (3.36)
n = d + Hsech? {\/ETH: (z — ct)] (3.37)

p=p9(n—y) (3.38)

c.= Jgd (1 + %) . (3.39)

As noted by Ramaswamy [117], Laitone’s solution holds for an infinitely long channel.

U= \/_QTi—g-sechQ [ gir—(fc - ct)} (3.35)

However, for purposes of simulation it suffices to truncate the domain of analysis at
a distance L/2 from the wave crest where the fluid is essentially still, e.g., where the

surface elevation n = 0.01H. The result is

In simulations, we take the constant depth region to be of length L. The still water
depth d is set to 10 m and the wave height H to 5 m. The slope of the shoaling bottom
is set to 1/14. The acceleration of gravity is set to 9.8 m/s. The density of water
is p = 1000 Kg/m?, the viscosity is 4 = 1.01 x 107 Ns/m?, and the compressibility
modulus is K = 2.04 x 10° N/m?.

Fig. 3.4 shows the initial adapted mesh and the velocity and pressure initial con-
ditions. The initial mesh is adapted applying the refinement criterion presented in
section 3.4 to the initial velocity field. Figs. 3.5 - 3.9 chronicle the evolution of the
solution at times 4.0, 8.0, 9.0, 9.5 and 9.8, respectively. Four stages can be identified

in the solution:

Propagation: The wave travels over the constant depth bottom towards the slope

with no ostensible change of shape other than a small dispersion effect, Fig. 3.5.
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Sfeepehing As the wave hits the slope, a strongly nonlinear behavior becomes ap-
parent. In particular, the crest of the wave accelerates while the trough lags
behind. Eventually, the wave profile develops a vertical tangent and ceases to

be a graph, Fig. 3.6.

Breaking Subsequently, the water jet formed at the crest plunges until it comes
into contact with the nearly still surface of the water ahead, at which point the

simulation is stopped, Figs. 3.7 - 3.9.

The ability of the model to faithfully simulate the various stages of wave break-
ing is noteworthy. Good aspect ratios are maintained throughout the simulation. In
addition, the mesh adaptively resolves the regions of rapid variation of the velocity
field while remaining comparatively coarse in the quiescent regions, which tends to
keep the number of degrees of freedom within reasonable bounds. The analysis re-
quires 9800 implicit time steps of size At = 1073 s. A strong quadratic convergence
is maintained throughout the simulation, with a maximum of three Newton-Raphson
iterations per time step required to attain a relative tolerance TOL of 107'3. The
number of equilibrium iterations to convergence typically increases to as many as four
immediately following a mesh adaption. This slow-down in convergence is caused by
the interpolation errors introduced by the mesh-to-mesh transfer operator. |

Wave profiles at various time steps, shifted to the nominal (unperturbed) wave

front center according to the nominal celerity (Eq. 3.39), are presented in Fig. 3.10.

3.6 Summary and conclusions

A fully lagrangian finite element method for the analysis of Newtonian flows based
on continuous and adaptive remeshing has been developed. The method is specially
adi/antageous for problems involving free fluid surfaces and interfaces; or the coupling
of fluid flows and highly deformable solids. As the flow proceeds, the finite element
mésh is main_tained undistorted by recourse to continuous and adaptive remeshing. In

addition, mesh adaption enables the simultaneous resolution of multiple scales in the

59



solution. The vepéatﬂity of the approach has been demonstrated through a simulation
of wave breaking: The ability of the model to faithfully simulate the various stages

of wave breaking is noteworthy.
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Initial Mesh

Initial Vx contours

Initial Vy contours

initial pressure contours

Figure 3.4: Initial conditions and computational mesh
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Time =4.0

Mesh

R

L
w0

Vx contours

Vy contours

Pressure contours

Figure 3.5: Solution fields and wave profile at time=4 sec
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Time =8.0

Mesh

Vx contours

Vy contours

Pressure contours

Figure 3.6: Solution fields and wave profile at time=8.0 sec
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Mesh

Vx contours

Vy contours

Pressure contours

Figure 3.7: Solution fields and wave profile at time=9.0 sec
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Vx contours
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Figure 3.8: Solution fields and wave profile at time=9.5 sec
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Time =9.8

Mesh

L
T

Vx contours

Vy contours

Pressure contours

Figure 3.9: Solution fields and wave profile at time=9.8 sec
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(a) t = Osec (b) t = 4.Tsec

(c) t = 6.4sec (d) t = 7.2sec
(e) t = 8.2sec (f) t = 8.9sec

(g) t =9.Tsec (h) t = 9.9sec

Figure 3.10: Details of wave profile at various times
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Chapter 4 Mesh adaption in nonlinear

dynamic problems

4.1 Introduction

The adaptive remeshing strategy adopted in Chapter 3 is based in estimating the
optimal mesh size distribution in accordance with empirical refinement indicators.
Whereas the adopted mesh adaption strategy effectively results in refinement (coars-
ening) in rapidly (slowly) varying regions of the flow, a theoretical rationale is lacking
nor does the method provide any guarantee of resulting in convergent approximations
to the continuum equations.

The ultimate goal of this thesis is to develop a general framework for mesh adap-
tion in strongly nonlinear dynamic problems. Following [45], the dynamic problem
is reduced to an equivalent static problem by recourse to time discretization. The
solutions of the incremental boundary value problem for a wide class of materials,
including nonlinear elastic materials, compressible Newtonian fluids, and Viscopléstic
solids, are then shown to obey a minimum principle, provided that the constitutive
updates are formulated appropriately. This minimum principle can be taken as a ba-
sis for error estimation. In particular, we chose to monitor the error of a lower-order
projection of the finite element solution. The optimal mesh size distribution then
follows from error indicators which are: purely local, i. e., can be computed element-
by-element; and a posteriori, i. e., follow directly from the finite element solution.
This is in contrast to the presently available error indicators, even for linear prob-
lems, whdse evaluation requires cumbersome—and often ad hoc—smoothing steps
involving patches of elements (e. g., [143, 144, 30]). As noted by Ortiz and Quigley
[105], the requisite mesh-to-mesh transfer operators, whereby the nodal and state

variables are remapped to the new mesh, also follow consistently from the variational
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pfinciple.

We demonstrate the accuracy, robustness and versatility of the computational
framework with the aid of convergence studies and selected examples of application,
including nonlinear elastic fracture mechanics and isothermal and adiabatic shocks in

highly compressible media.

| 4.2 General framework

We begin by formulating the general initial-boundary value problem of bodies under-
going large dynamic deformations. We place particular emphasis in the development
of a constitutive framework encompassing a wide range of material behavior, including
finite elasticity, viscosity, and viscoplasticity. In subsequent sections, this framework
is taken as the basis for formulating constitutive updates possessing a potential struc-
ture, which in turn will enable a variational characterization of the initial-boundary

value problem.

4.2.1 Field equations

We shall be concerned with the motions of continuous bodies. We select the configu-
ration By ¢ RY of the body at time ¢, as the reference configuration. The coordinates
X of points in By are used to identify material particles throughout the motion. The

motion of the body is described by the deformation mapping
X = QO(X, t), Xe B[) (41)

| Thus,bx is the location of material particle X at time ¢t. We shall denote by B; the
deformed configuration of the body at time ¢. The material velocity and acceleration
fields follow from (4.1) as ¢(X,t) and $(X,t), X € By, respectively, where a super-
posed dot denotes partial differentiation with respect to time at fixed X. The local

deformation of infinitesimal material neighborhoods is described by the deformation
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gi‘édients
F = VOQO(X,t), X e B() (42)

where the components of the material gradient Vf of a function f(X) are the partial

derivatives of f with respect to X. The scalar function
J = det (F(X, t)) (4.3)

is the Jacobian of the deformation.
The motion of the body is subject to conservation of linear momentum. The local

form of linear momentum balance is (¢f. [89])
pggb - Vo -P= pr, n BO (44)

where pg(X) is the mass density over By, B(X,t) are the body forces per unit mass,
and P(X, t) is the first Piola-Kirchhoff stress tensor. The Cauchy stress tensor follows

from P in the form
o= J'PF (4.5)

Conservation of angular momentum requires o to be symmetric.
For the purpose of formulating boundary conditions, we partition the boundary
A B, of By into a Dirichlet or displacement boundary 0By, and a Neumann or traction

boundary 0Bgs. The displacement boundary conditions then take the form:
p =@, on 0By (4.6)

where @(X, ) is the prescribed deformation mapping on dBp;. The traction boundary
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conditions then take the form: -
P-N= T, on aBog (47)

where N is the unit outward normal to By, and T(X, t) are the prescribed tractions
applied to 0Bg,. Finally, dynamic problems require initial conditions ¢,(X) and

po(X) to be specified over By.

4.2.2 Constitutive relations

In addition to the preceding field equations, we require a constitutive framework
within which to describe general classes of materials. To this end, we adopt an
internal variable formalism ([84, 85]) to describe inelastic processes and postulate the
existence of a Helmholtz free energy density A(F, Q) per unit undeformed volume,
where Q € R is some suitable collection of internal variables. For simplicity, we
restrict attention to isothermal processes and omit the dependence of A and all other

state functions on temperature. We assume an additive decomposition

P=P°+P" (4.8)

of the first Piola-Kirchhoff stress tensor P into an equilibrium part P® and a viscous

part PV. The equilibrium stress follows from Coleman’s relations as
P = Ar(F,Q) (4.9)
If, in addition, the material possesses viscosity, the stresses follow in the form

P = Ay (F,Q)+P°(F;F,Q) (4.10)
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where P? is the viscous part of the stresses. We shall assume the usual regularity

condition of P¥, namely, that -
P'(F;F,Q) - F = o(|F|) (4.11)

where, here and subsequently, the dot product between two second-order tensors A
and B is understood to be A-B = A;;B;;. The regularity condition (4.11) ensures that
~ quasistatic processes do not result in any viscous dissipation. In order to determine
the evolution of the internal variables, suitable kinetic equations must be supplied.
Assuming that the rate of the internal processes is determined solely by the local

thermodynamic state, the general form of the kinetic equations is

Q=£(F,Q) (4.12)
Additionally,
Y=-44(F,Q) (4.13)

are the thermodynamic ‘forces’ conjugate to Q. The kinetic relations are said to
derive from an inelastic potential if there exists a differentiable function (Y, Q)

such that

Q=1vv(Y,Q) (4.14)

For single crystals, the concept of inelastic potential was introduced by Rice [122].
 Likewise, the viscosity law P?(F; F, Q) is said to derive from a potential if there exists

a function ¢(F;F, Q) such that
P’ = ¢ (F;F,Q) (4.15)

All the preceding constitutive relations are subject to material frame indifference,

i. e., must remain invariant under superimposed rigid body motions.
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" As an illustration of how particular classes of materials fit into the general consti-
tutive framework just outlined, and for subsequent reference, we conclude this section

with a brief discussion of hyperelastic solids, Newtonian fluids and plastic solids.

Hyperelastic solids

The simplest example of material is furnished by hyperelastic solids, for which
A =W(F), P"=0 (4.16)

An essential difficulty in dealing with hyperelastic solids is that W (F) is not convex
in general [7], and it fails to be quasiconvex for any material which exhibits phase
transitions (see, e. g., [32]). This lack of quasiconvexity often gives rise to arbitrarily
fine oscillations in the solution (see, e. g., [8, 28]), which compounds matters of
mesh adaption. However, Friesecke and Dolzmann have shown that certain forms of
linear viscosity regularize the problem and render the effective time-discretized energy
density (cf. Section 4.3.2) quasiconvex for sufficiently small time step.

In the calculations reported in subsequent sections, we employ a simple model of
a Neo-Hookean solid extended to the compressible range characterized by a strain

energy density of the form
. /\0 2 Ho
W(C) = —é-(logJ) — polog J + ?tT(C) (4.17)

where J = det(F') is the Jacobian of the deformation and Aq and po are material
constants. We have used the Neo Hookean model in the numerical tests and examples

- reported in subsequent sections. The corresponding stress-strain relations are

ow

o
St 50

= X log JCI_JI + ﬂ0(51J - CI—JI) (4.18)

while the material tangent moduli are

o*wW

Dryxr = dsm—re— = MO Ot + (o — Mo log J)(CrgC7t + CrACrk)  (4.19)
| 8C1,0Ck1
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These are pbsitivg definite provided that
v | ,
() = pro — Aglog J >0,  k(J) =X+ () >0 (4.20)

These conditions ensure the convexity of W(C').

Compressible Newtonian fluids

Compressible Newtonian fluids provide the foremost example of a material with vis-
cosity. In this case, the free energy density A(J) is a function of the Jacobian of the

deformation J, and the viscous stresses follow as
P’ = Jo"F 7 (4.21)
where
o’ = 2nd®® (4.22)
is the viscous part of the Cauchy stress tensor. In this latter relation,
d = sym(FF!) ‘ (4.23)

is the rate of deformation tensor, d%" is its deviatoric component, and 7 is the
viscosity of the fluid. A simple calculation reveals that the Newtonian viscosity law

possess the potential structure (4.15), and that the viscous potential is given by
¢ =nJa* . d* (4.24)
For a compressible Newtonian fluid, eq. (4.10) reduces to

o = p())I + 2pd® (4.25)
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where

p(J) = A'(J) (4.26)

is the equilibrium pressure. A fully lagrangian treatment of Newtonian fluids has

been deyeloped in Chapter 3.

Viscoplastic solids

Our final example of material concerns plastic solids. These solids are characterized by
the existence of a certain class of deformations F?, or ‘plastic’ deformations, which
leave the crystal lattice undistorted and unrotated, and, consequently, induce no
long-range stresses. In addition to the plastic deformation F?, some degree of lattice

distortion F¢ may also be expected in general. One therefore has, locally,
F = F°F? : (4.27)

This multiplicative elastic-plastic kinematics was first suggested by Lee [69] and fur-
ther developed by others ([132, 3, 51, 53, 87, 121]) within the context of ductile single

crystals. The free energy density follows in the form
A= A(F®,~) = A(FF*' v) (4.28)

where v € R" denotes some suitable collection of hardening variables. Thus, the
complete set of internal variables is, in this case, Q = (F?, ). Correspondingly, the

complete set of thermodynamic forces is now Y = (T, —7), where
T=—-Apr T=A4, (4.29)
The symmetric stress measure

S = FTA p = TFT ’ (4.30)
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is also noted for subsequent reference. In the special case of metals, in which the
elastic response is ostensibly independent of the plastic processes, the free energy

(4.28) decomposes additively in the form
A= WEFFP) + WP(FP, Q) (4.31)

The function W¢ determines the elastic response of the metal, e. g., upon unloading,
whereas the function W? describes the hardening of the material. In the presence of

an inelastic potential ¢, the flow rule and rate equations follow jointly in the form
F? = ¢,0 (T, F,9), 4= (T,7F,7) (432)

However, plastic deformations are often isochoric, i. e., volume preserving. A class of
isochoric flow rules is obtained by letting the inelastic potential ¢ be a function of

(S, ), whereupon (4.32) becomes
FF =¢5(S,7), ¥=-¢.(87) (4.33)

The isochoricity condition is now
tr(FPFP~1) = 0 (4.34)

the satisfaction of which may be ensured simply by restricting the dependence of %
on S to its deviatoric component S¢€v.

As a specific example, let
s=maxS - (s ® m) (4.35)

(s,m)

be the maximum shear stress acting on the material. In (4.35), the maximization is
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subject to the constraints

Il
o

Is| ={lm[[=1, s m (4.36)

The unit vectors s and m may be regarded as the instantaneous slip direction and
slip-plane normal. Next assume that the material hardens isotropically, and let v be
the sole hardening parameter of the model. With (4.31) in force, let W?(+) depend
solely on . Then, the second of (4.29) reduces to

T =WP(y) (4.37)

In addition, assume that the inelastic potential is a function of the overstress s — 7,

1. e.,
W =1(s—7) (4.38)
Then, (4.33) gives
FPFP! = 4s®m, y='(s —7) (4.39)

which is Tresca’s flow rule. Evidently, the second of (4.36) ensures plastic isochoricity,

eq. (4.34). In the special case of power-law viscosity and hardening one has

_ ‘ (n+1)/n
wr =100 (g T (4.40)
n—+1 Yo
o (g-_fy’“*{ 5>
w — m+1 T0O ’ - (4.41)
0 otherwise

where 4, is a reference shear strain rate, -, is a reference shear strain, 7, is the shear

yield stress, m is the rate-sensitivity exponent and n is the hardening exponent. An
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insertion of (4.40) into (4.37) and (4.39) gives

. v 1/n
=1 (1 + %) (4.42)
Yo (ST—T> ) 8 > 75
A= 0 (4.43)
0 otherwise

Clearly, in this model 7 plays the role of a critical resolved shear stress.

4.3 Temporal discretization

In the remainder of this chapter we turn to the problem of approximating the so-
lutions of the class of initial-boundary value problems just formulated. In the finite
element method it is costumary to effect a spatial discretization first, leading to a
semidiscrete system of governing equations, i. e., a system of ordinary differential
equations in the time variable. Then, the semidiscrete system is discretized in fime
by recourse to a suitable time-stepping algorithm. Here, we reverse the order of the
discretization, and begin by discretizing the initial-boundary value problem in time,
leading to the definition of an equivalent static problem. A key observation is that
the solutions of this equivalent static problem obey avminimum principle, provided
that the constitutive update possesses a potential structure. The variational struc-
ture of the equivalent static problem is subsequently exploited for purposes of error

estimation.

4.3.1 Field equations

Here and subsequently, we envision an incremental solution procedure aimed at sam-
pling the solution at discrete times tg,...,t,, thy1 = t, + At,.... The linear-
momentum balance equation (4.4) can be discretized in time by recourse to a standard

multistep algorithm. For definiteness, we consider a general three-point algorithm of
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the form:
+ P = 200
Fet Zﬁl P _ (@1 Vo Ppoi + Vo -Pp+a1Vo - Pryr) =

p()(Ot‘__an_.l -+ Olan + oy - Bn+1) ' (444:)

where a_1, o and «; are algorithmic parameters. The consistency of the algorithm

requires
» 0_1+ oy + o= 1 (445)

The multistep scheme (4.44) may equivalently be restated as Newmark’s algorithm:

‘Pn—i—l = Pn + At ‘pn + A152[(1/2 - ﬂ)‘Pn + ﬂ‘Pn—ﬂ (446)
P0Pni1 — Vo P = poBry (4.48)

where 8 and v are Newmark’s parameters. The parameters (o1, g, ;) are related

to (8,7) as

1
e +8 -7
1
Qy = § — 2ﬂ + 7y (449)
o = f

It is evident from (4.45) that Newmark’s algorithm is consistent for all values of (3,7).
The performance of Newmark’s algorithm, including its range of stability, has been
extensively documented in the literature (e. g., [11, 58]). A standard implementation
of Newmark’s algorithm is to eliminate ¢, ,; from (4.46) to obtain the equivalent
static problem:

Po

BAEPr T Vo Pry1 = poBat1 (4.50)
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where
_ 1 )
Byut1 = Boy + ﬂ—A?[‘Pn + Dt g, + (1/2 = B) Aty (4.51)

is an effective body force field entirely defined in terms of the initial data for the time
step and which accounts for the inertia of the body. It should be carefully noted that
the equivalent static problem (4.50) reflects both the inertia as well as the constitution

of the body.

4.3.2 Constitutive update

Finally, we address the time-integration of the constitutive equations (4.10) and
(4.12). As will become apparent in subsequent discussions, it is essential for the
purpose of error estimation that the resulting stress update algorithm derive from
an incremental potential, or energy density, so that the incremental displacements
be governed by a minimum principle. A stress update having the requisite potential
structure may be obtained by integration of the constitutive relations along ‘mini-
mizing paths’, i. e., along such deformation histories which minimize the incremental
work of deformation. The work of deformation itself then supplies the sought strain
energy potential. This approach has been used in the past to derive deformation,
or pseudoelastic, theories of plasticity ([90, 86, 129, 23]). A recent application of
minimizing paths to the study of dislocation structures in ductile single crystals may
be found in [106]. However, the task of ‘determining minimizing paths for specific
models is often daunting, specially for rate-sensitive materials, which detracts from
the practicality of the approach. Here, we give an alternative and more direct method
for fofmulating updates possessing the requisite potential structure.

“As in the foregoing, we envision an incremental solution procedure and concern
ourselves with a generic time interval [t,, t,+1]. Since the constitutive equations (4.10)
and (4.12) are local, the material coordinates X play the role of parameters as regards
the constitutive update and, for clarity, will be omitted throughout in the discussion

that follows. Let the initial state (F,, Q,) and the updated deformations Fy; be
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given. Suppose that the kinetic equations and the viscosity law possess a potential
structure such as expressed in'egs. (4.14) and (4.15). Furthermore, introduce the dual

potential w*(Q, Q) by recourse to the Legendre transformation
¥(QQ) =Y Q-y(Y,Q) (4.52)
Then one has
Y =94"4(QQ) (4.53)

which constitutes a restatement of the kinetic equations (4.14). Finally, define the

incremental energy density as

F,.—-F,
W(Fy Fn; Q) = Atg (__'i'_l__~_, Fn) +

At
. * Qn-{-l - Qn
min A(Fn—{—l: Qn—H) - A(Fny Qn) + AW‘ N Qn (454)
Qn+1 At
Minimization with respect to Q1 gives the condition
_ * Qn+1 - Qn
Yn—l—l - 1[) Q ( At aQn (455)

in accordance with (4.53). Imagine now perturbing ¥, ,; — F,.; + 6F,.;. The

corresponding variation of W is

Fn - Fn
6I/V = {A:F (Fn-t—l) Qn—H) + pP* (—_%t_‘_; Fn) } ’ 6Fn+1

- {Yn—i-l - U*,Q (9—@&#1 Qn) } ) 6Qn+1 (456)

But the last term in this identity vanishes by virtue of the stationarity condition

(4.55), with the result

F,nn—F,
6W = {A,F (Fn+1, Qn+1) + | 2 (—%t——, Fn) } . 6Fn+1 (457)
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Us'ingv (4.10) to write

k F,., - F,
Poy1 = Ar (Foy1, Quir) + P° (_LlA_t_7 Fn) (4.58)

eq. (4.57) reduces to |
W =Ppi1 - 0F,11 (4.59)
But, since 6F, 1 is arbitréry, this identity implies that
Pn+1 = VV,FM@ ‘(Fn+1; F,, Qn) (4-60)

Egs. (4.58), or, equivalently, (4.60), furnishes the sought stress update. In particular,
we verify that W indeed acts as a potential for P, ;, as desired. The consistency of
the stress-update algorithm with the constitutive relations follows simply by taking

the limit At — 0 in (4.55) and (4.58), with the result
Yo =19"g(QnQn);  Pn=Ar(Fn,Qu) + P'(Fn; Fr) (4.61)

in accordance with (4.53) and (4.10), respectively.

A distinct advantage of stress updates possessing a potential structure, such as
just formulated, is that the tangent moduli 0P, ;/0F,; are symmetric, which in
turn results in symmetric tangent stiffness matrices upon finite element discretization.
The existence of a symmetric and‘ coercive Dirichlet form, leading to error estimates in
the energy norm, is, as we shall see, directly related to the convexity properties of the
~ incremental strain energy density W (F,,11; F,, Q,). An example of a nonconvex W in
the theory of ductile single crystals, leading to the formation of dislocation structures,
has been' given by Ortiz and Repetto [106]. A somewhat more general formulation
than developed in the foregoing has been given by Ortiz and Stainier [106], where
additional examples of application and numerical tests may also be found.

By way of illustration, we close this section by applying the constitutive updates
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just formulated to the examples of materials discussed in Section 4.2.2.

Hyperelastic solids

In the case of a hyperelastic solid, the incremental energy density (4.54) reduces to
W = A(Fn11) — A(Fy) (4.62)

Thus, W and A coincide modulo an inconsequential constant. Likewise, the stress

update reduces to
Pn+1 = A7F (Fn+1) (463)
which amounts simply to the evaluation of the stress-strain relations at time #,,.

Newtonian fluids

For a Newtonian fluid, the incremental energy density (4.54) specializes to

W = AQnss) — A(J,) + At (—F—A;—F— F) (4.64)

where ¢ is given by (4.24). A revealing form of (4.64) may be obtained as follows.
Let

U=Qu — Pn (4.65)
be the incremental displacements,
Vou=F, F ' -1 (4.66)
the displacement gradients on configuration By, and

Viu = sym(V,u) (4.67)
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the corresponding symmetric gradient operator. Then (4.64) may be rewritten in the

form

W = A(Jns1) — A(J,) + Aii.fn(vgu)dev  (VSu)de (4.68)

We further note that the updated Jacobian of the deformation may be expressed in

terms of the incremental displacements as
Jnr1 = det(I+ Vyu)d, (4.69)

It therefore follows that, within the present framework, the incremental problem is
identical to that of an elastic material treated within the linearized kinematics ap-
proximation. Furthermore, the deviatoric response of this equivalent elastic material
is linear with shear modulus p = n/At. In the limit of an incompressible fluid, the
hydrostatic pressure becomes a Lagrange multiplier, and the incremental displace-
ments u follow from a linear problem. By contrast, the pressure follows from the

nonlinear constraint
Jpr1=1 (4.7())

As noted by Ball, [7], the energy density is necessarily nonconvex under conditions of
near-incompressibility. However, the incremental energy density can be regularized
locally by decreasing the time step At sufficiently, or, equivalently, by increasing the

viscosity. Consider, by way of example, the free energy density

A(J) = —1—10g2 J.

Evidently, the incompressible limit is attained by letting e — 0%. Then, in the two-

dimensional case (4.68) reduces to

W = E 10g2()\1)\2) + g& (1 - )\1 - )\2 + /\? - )\1)\2 + )\%)
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where A, Ao are the priﬁcipél stretches. Fig. 4.1 shows contour and surface plots of
W for two different sets of parameters {¢,n, At}. For the first set of parameters, cor-
- responding to a low viscosity ora large time step, W is nonconvex, as is evident from
the ‘banana’-shape level contours [7]. By contrast, for the second set of parameters,
corresponding to a high viscosity or a small time step, the incremental energy density
may be made to be locally convex. Indeed, a straightforward calculation reveals that
the hessian of W is positive definite at (A1, A2) provided that

<€ A2)3
= 3 (M + )2 — (A + A3) log(MAz)

JAN
= 4,71
0 ( ‘)

Viscoplastic solids

For a viscoplastic solid, the incremental energy density (4.54) reduces to

W(Fn—i—l; Fn: Qn) =
min {A(FHHFf;i, oet) = AFLFE ) + Oty (%-1—‘—92, Qn(}.}m

Fl 1Yyt At

For the specific example of a power-law isotropic hardening, power-law rate-sensitive
Tresca material developed in Section 4.2.2, the incremental strain energy density takes

the form

W(Fn+1§ Fm Qn) =
A
min {A(FHHFﬁ;ﬁ, Yng1) — AFF2L ) + At (—1) } (4.73)
$,M, Y541 AN
where the minimization with respect to s and m is subject to constraints (4.36).

Additionally, we have written Ay = Yn41 — ¥n, and

Fr. =1+ Ays®@m)F}, (4.74)
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(b) 7 =1, e = 107% and At = 107°, regularization by choice of suitably small At

Figure 4.1: Contour levels and surface plots of incremental energy density for a near-
incompressible viscous fluid
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It should be noted that this update preserves the isochoricity of F? exactly since,
by the second of (4.36), the tensor (I + Avs ® m) is unimodular. Finally, the dual

inelastic potential for this example is

N (ma1)/m
g o ( ) -
Yo ‘

m-+1

which completes the definition of W.

4.4 Variational sti'ucture

In the sequel we assume that‘ the constitutive update possesses a potential structure
and derives from an incremental energy density W (F,.1; F,, Q). The existence-and
practicality—of such algorithms has been established in the preceding section for a
wide class of materials. Next we show that, under these conditions, the solutions of
the equivalent static problem (4.50) obey a minimum principle. To see this, introduce

the potential energy:

1
q’[‘PnH] :/ [2 ﬂitﬂ n+1’2 + W(VO‘Pn+1 F., Qn)] dVo (4.76)

~ [ Bunerado= [ Tusiepdsy (4.7
Bg 8Bg2

Then ¢, follows from the variational problem:

B[py 1] = inf Dn] (4.78)

nev

where V' is th_e space of deformation mappings in W1 (By; RY) satisfying the essential
boundary conditions (4.6) (in the sense of trace). It is readily verified that (4.50)
are indeed the Euler-Lagrange equations of (4.77). In writing (4.78) as a minimum
principle, we are tacitly identifying the stable solutions of the problem with the weak
relative minima of ®. We recall that ¢, is a weak relative minima of @ if there

exists & > 0 such that ®[n] exists and ®[n] > P[p, ;] for all n € V such that
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I = nsallv < 6.

Consider now a pair of incremental displacements u and v applied to the deformed
configuration B, satisfying homogeneous essential boundary conditions over dB.
We then define the Dirichlet form of the problem as the second variation of the

potential energy ® at ¢, ., 1. €.,

al@n4a)(u,v) = 6°2fp, ] (w, v)

= [ [ v Wasapecs (T P Q) (Vom @ Vo) | a(a.7)
Bo

which, evidently, is symmetri@ Thus, the variational structure of the problem ensures
the existence of a symmetric Dirichlet form. We further recall from the classical
calculus of variations that if W is C? and @ni1 € CH(Bo;R?) is a solution of the
Euler-Lagrange equations (4.50) for ®, then a sufficient condition for ¢, to be a

weak relative minimum of @ is that
al@n1)(w,u) > Cllulf; (4.80)

for some constant C and all u € W'?(By;R?) satisfying homogeneous essential
boundary conditions over 8By [133, 9]. In the sequel, we shall confine our atten-
tion to solutions o1 for which (4.80) holds. It is clear from the form of (4.79)
that the inertia term has a stabilizing effect for small time steps, in as much as it
tends to shift the eigenspectrum towards the positive axis. The stabilizing effect of
viscosity has been discussed in Section 4.3'.2. Friesecke and Dolzmann have shown
that certain forms of linear viscosity regularize the problem and render the effective
time-discretized energy density quasiconvex for sufficiently small time steps. All these
observations suggest that, as a practical matter, the combination of inertia, viscos-
ity and small time steps may in many cases suffice to ensure the satisfaction of the
coercivity condition (4.80). The stabilizing effect of viscosity and inertia in solids

undergoing localization has been studied numerically by Needleman [100].
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4.5 Spatial discretization

Next, we take the minimum principle (4.78) for the equivalent static problem as a
basis for a finite element spatial discretization. We suppose that, as a consequence of
remeshing, the reference configuration By is discretized into different meshes 7, and
’7;“ ‘at times ¢, and %, + 1, respectlvely As a specific remeshing strategy, the new
mesh 7,.,-on which the as yet unknown solution at time t,,, is to be computed-
can be constructed based on error indicators corresponding to the solution at time
tn. In this approach, the sequence of operations is therefore: i) given 7, compute the
solution at ¢,; ii) based on the solution at t,, construct Ty1; iii) reset n — n+1 and go
to (i). This and similar approaches lead to an incremental problem in which the initial
conditions at time ¢, are interpolated on one mesh 7,, whereas the updated solution
at time t,41 is interpolated on a different mesh 7,,;. This distinction is significant
in dynamic problems and in problems involving history-dependent materials, which
result in a dependence of the updated solution on the initial conditions at time ¢,. As
we shall see, the variational principle (4.78) furnishes a precise recipe for computing
on two meshes in the manner just described. In particular, it results in specific forms
of mesh-to-mesh transfer operators for nodal and state data.

For definiteness, we envision a finite element interpolation of the form:

Qah,n(X) = ixa,nNa,n(X) (4.81)
Qi Z Z Qc,.M, (4.82)

~where ¢, , is the displacement interpolant at t,; Qp, is the state variable interpolant
at tn; Non and M, are the displacement and state-variable shape functions corre-
sponding to mesh 7,,, respectively; the sum on a ranges over the N, nodes of T,; the
sum on e ranges over the E, elements of 7; and the sum over ¢ ranges over the @
quadrature points in element e. The shape functions N, , must be conforming so that

Ppn € V. By contrast, the state-variable interpolation need only ensure that Qpn
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be in L>®(By; Rd) and, consequently, the shape functions M, can be chosen to be
piecewise polynomials. Again for definiteness, assume that the shape functions Mg,

satisfy the normalization condition

M;,n(Eg,n) = (SPQ (483)
where =f | are the quadrature points in element e of 7,. A more general approach

in which the deformation gradients and stresses are interpolated as in (4.82), and the
constitutive and compatibility conditions are enforced weakly a la Hu-Washizu, has
been proposed by Ortiz and Quigley [105].

Inserting the interpolation (4.81) and (4.82) into (4.78) and rendering the resulting
discrete potential energy stationary leads, after some straightforward manipulations,

to the system of nonlinear algebraic equations:

Xpi1 = TX, + At Tx, + A2[(1/2 = B) Tk, + BXntd] (4.84)
M 1%n 41 + £ (Xat1) = 2 (4.86)

where x, X and X are the array of nodal values of ¢, ¢, and ¢, and

R (4.87)
Bo
fine = / W (Frnst; TFum TQun) - VoNpirdVy  (4.88)
By
£ (x, 1) = / poBoi1 - Nos1dVi (4.89)
By

are the mass matrix, internal and external force arrays over 7,41, respectively. In
these expressions, we have collected all the nodal shape functions in an array of the
form N = {IN,,a = 1,..., N}, where I signifies the identity matrix, and the integrals
are to be carried out by numerical quadrature.

Of particular interest in egs. (4.84 - 4.86) are the transfer operators T applied to

the initial data. Within the present interpolation scheme, the precise form of these
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transfer operators is

Tx, = [M;}d/ poNp11 - NndVO] Xn (4.90)
Bo
Bo
Bo
Enq—l Q
TFh,n - Z Z Fh n q n+1 q n+1 (493)
e=1 ¢g=1
_ Eny1 Q
TQh,n = Z Z Qh,n q n+1 ;,n+l (494)
e=1 g¢g=1

It follows from these identities and (4.83) that all transfer operators reduce to the
identity if 75,41 = Tp, as required. The transfer operator for displacements, velocities
and accelerations is a mass-weighted L?-projection from 7, to 7,.;. The transfer
operator for the state variables is a simple extrapolation from the quadrature points
n 7, to the quadrature points in 7.

It is interesting to note that, by recourse of mass lumping, the mesh-to-mesh trans-
fer operator for nodal fields, eqgs. (4.90-4.92), reduces simply to a direct evaluation of
the fields, as interpolated on the old mesh 7, at the nodes in the new mesh 7,,;.
Likewise, the transfer of the state variables, egs. (4.93-4.94), amounts simply to an
extrapolation from the quadrature points in 7, to the quadrature points in 7.

In the numerical tests discussed subsequently, the state variables are assumed to
be piecewise constant over the Voronoi cells attendant to the quadrature points. Thus,
Mg, is the characteristic function of the Voronoi cell containing the gth quadrature
point in element e of 7,. Under these conditions, the state variable transfer simply
assigns to each new quadrature point on 7, the complete collection of state variables
at the nearest old quadrature point on 7,. Fast search algorithms and specialized
data structures based on nodal octrees and mesh adjacency graphs may be utilized
to minimize the complexity of the transfer algorithm (cf. Chapter 2 and also [115]).

The overriding advantage of piecewise constant representation for the state vari-
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abiés, and the resulting transfer operator, is that whole collections of state variables
attendant are transferred from quadrature point to quadrature point as blocks, thus
preserving all internal constraints and the compatibility between the various state
variables. These requirements may be violated by transfer operators which involve
extrapolation from several quadraturé points. Thus, fori instance, in the context of
isochoric plasticity, eq. (4.34), the plastic part of the deformation gradient FP must
have a determinant of 1. This nonlinear constraint is preserved by the piecewise con-
stant transfer operator, but is violated upon extrapolation in general. Likewise, in
the context of ideal plasticity, stresses transferred in accordance with the piecewise
constant transfer operator, unlike extrapolated stresses, are guaranteed to satisfy the
yield conditions. |

It bears emphasis that these transfer operators are not formulated arbitrarily but,
as noted by Ortiz and Quigley [105], follow uniquely and unambiguously from the
variational principle once the displacement and state-variable interpolation has been
specified. Thus, the variational principle (4.78), or any other variational principle to
suit different applications as the case may be, consistently governs all aspects of the

computations, including the appropriate form of the mesh-to-mesh transfer operators.

4.6 .Error estimation

The preceding developments provide a suitable framework for error estimation and
mesh adaption. We adopt a ‘fine-mesh’ viewpoint and confine our efforts to optimizing
fine meshes leading to high-quality finite element approximations. Mathematically,
this focus gives us license to investigate the behavior of the finite element solutions
‘asymptotically as the mesh size h — 0. Throughout this section, we concern ourselves
with the finite element solution at a fixed time, e. g., time t,,, and we shall omit the
corfesponding label n for clarity.

The Euler-Lagrange equations corresponding to the variational problem (4.78)
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take the form

(D®[),v) = {%[go + ev]} =0 (4.95)

de e=0t

for all v € V satisfying homogeneous boundary conditions on 0Bp;. Similarly the

finite element solution satisfies the stationarity condition
(D®[pn], Vi) =0 (4.96)

for all v, € V, satisfying homogeneous boundary conditions on 0By;. Choosing

v = v, in (4.95) and subtracting gives
(D2[pn] — D[], va) =0 (4.97)

But, in the asymptotic regime of interest, ¢ may be expected to be close to ¢, and,

to leading order as h — 0, (4.97) becomes

alel(pn — ¢, va) =0 (4.98)

where @ is the Dirichlet form (4.79). Identity (4.98) expresses the orthogonality of
the error function ¢p — ¢ and V}, in the Dirichlet form at ¢ asymptotically as h — 0.
Tt also shows that the finite element solution ¢ possesses the ‘best-approximation’

property, namely,

l¢n — ¢llz = min |, — ¢lie (4.99)
NhEVL
where
lullz = Vale](u,u) (4.100)

is the energy norm at ¢.

At this point, we have reached a standard situation. Indeed, as it is well-known
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(cf. [29)), the best-approximation property (4.99) and the coercivity assumption (4.80)

give the error bound:

E :
len — el < CZ(he)kl‘PelkH (4.101)

e=1

where k is the order of polynomial interpolation, ||z 11 is the Sobolev H**!-seminorm,

€

7

element e and we assume regular refinement and a lower bound for the aspect ratio

is the restriction of ¢ to the domain f of finite element e, h® is the size of

of all elements. Evidently, in (4.101) the terms (h¢)* account for the dependence of
the error to the element size, and |¢°|;;; furnishes a measure of the variation of the
exact solution over element e.

The problem of mesh adaption may now be identified with that of minimizing the
bound (4.101), e. g., for a fixed number of elements E. To make analytical progress,

we begin by noting th‘e equivalent bound
E
len — @llf <CD ()02 (4.102)
e=1

Explicating the seminorms gives

E
lew -t < | 3 [ ipopav, (4.103)
e=1 lo)=k+1" %

In order to obtain a continuous-rather than a discrete—optimization problem, we
introduce an element-size distribution function h(X) giving the target element size

at all points X in By, and approximate (4.103) as

|al=k+1

E
lev-elt < €3 [ a3 1D | avi
e=1 0

Q

c| w¥| > D% | dV (4.104)

Bo |a|=k+1
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On the other hand, the number of elements in the mesh is of the order of
E ~ / h™4dVy (4.105)
Bo

Consequently, the optimal mesh-size distribution for a fixed number of elements fol-

lows from the problem:

minimize f WY D%l | + AR b dVy (4.106)
Bo la|=k+1

where ) is a Lagrange multiplier. The solution of this problem is

~1/(2k+d)
hX)=A| Y ID%X)] (4.107)
|a|=k+1

where the constant A follows from the constraint (4.105) as

d/(2k+d) 1/d
a=|1 / > ID%e(X) dVy (4.108)
E /g,

|a|=k+1

which, in conjunction with (4.107), give the sought optimal mesh-size distribution
over By.

There are at least two practical problems with (4.107): i) h(X) is given in terms
of the unknown exact solution ¢; and ii) it is not possible to simply replace ¢° by ¢
as this latter function is a polynomial of degree k£ and, consequently, D%pj = 0 when
|| = k + 1. A number of schemes have been devised to estimate derivatives of order
k+1of ¢, (e. g, [36, 35, 144]). Inevitably, these schemes entail awkward smoothing
and extrapolation steps connecting the finite element solution over several adjacent
elements. These procedures often lack a theoretical basis and are ad hoc at best.

Next we propose a simpler-and more rigorous—approach which leads to purely local
a posteriori error estimates. Assume that & > 2 and @, be the (k — 1)-interpolant

of ¢, Fig. 4.2. The method consists of estimating-and optimizing the mesh so as to
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Figure 4.2: (k — 1)-interpolant of ¢,

minimize-the error in @,, as opposed to the error in the finite element solution ¢,

itself. Begin by noting that, by the triangular inequality,

@n — @l = 1(@5 — 1) + (@n — @)1 < |@n — @nlls + llen — el (4.109)

But, asymptotically as b — 0, the first term in the right-hand side is of order O(h* 1),
whereas the second term is of order O(h*). Consequently, the first term dominates

asymptotically with the result that

@n — @l < Clien — #ulls (4.110)

for some constant C, asymptotically as A — 0. An application of the error bound

(4.101) to the right-hand side of (4.110) then gives

E
1@ — @l < C D _(h)* | #hlk (4.111)

e=1

asymptotically as h — 0.
A careful examination of (4.111) reveals that two key improvements have been
obtained over conventional error estimates: i) we have rigorously replaced ¢ by ¢, in

the error bound, rendering the method truly ‘a posteriori’; and ii) we have obtained
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an error estimate involving derivatives of order & of ¢f, which are well defined. In
particular, an optimization of the bound in (4.111)-by éxactly the same means leading

to (4.107)-now gives

—1/(2(k—1)+d)

hX)=A| D D% (X)) (4.112)
|e|=k
and
d/(2(k—1)+d) 1/d
1
A= 5 [ | Ziprenr v (4.113)
E Jp, lo|=k

Again we emphasize that the target mesh size distribution (4.112) is now defined
in terms of purely local elementwise indicators requiring only the evaluation of the
kth-order derivatives of the local finite element solution, which greatly facilitates the
application of the method.

In lagrangian simulations of unconstrained flows, the deformation mapping ¢ may
become extremely convoluted and mesh adaption over the undeformed configuration,
such as just described, may lead to unacceptable mesh distortion over the deformed
configuration. In order to sidestep this difficulty, the roles of the undeformed and
deformed configurations may be exchanged, and error estimation may be performed

on the inverse deformation mapping ¢~!. This leads to the error estimate:

167" =@M < C () () s (4.114)

e=1

where all mesh attributes refer to the mesh over the deformed configuration B;. Pro-
ceeding as before, minimization of the error bound in (4.114) for a fixed number of

elements F yields the optimal mesh size distribution over B; as

~1/(2(k—1)+d)

h) =4 | 31D (115)

|| =k
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and
a/(2(k—1)+d) 1/d

A= ]—;—/BO Z]J)*’upgl(;c)\2 dVo (4.116)

|a|=F

Tt should be carefully noted that h(x) differs from the push-forward to B, of the mesh
size distribution (4.107) in general.

4.7 Numerical tests

In this section we collect a suite of tests designed to assess the performance of the
approach developed in the foregoing under conditions of strong nonlinearity, his-
tory dependency and dynamics. The emphasis is in establishing the accuracy and
convergence characteristics of the overall procedure, including spatial discretization,

temporal discretization and mesh-to-mesh transfer errors.

4.7.1 Static convergence tests

We begin by testing the performance of the method of mesh adaption in the presence
of static singularities. Numerically determined convergence curves for an L—shaped
and a cracked solid are shown in Figs. 4.3 and 4.4. The material is variously as-
sumed to be linear or nonlinear elastic. In this latter case, the material obeys the
compressible Neo-Hookean constitutive laws (4.17), (4.18) and (4.19). In all cases
we assume a Poisson’s ratio v = 0.25. These problems contain elastic singularities
of varying strengths. The singularity in the L-shaped body owes to the presence of
the re-entrant corner, whereas the cracked body exhibits a stronger near-tip singular-

ity. In this latter case, the optimal mesh density (4.112) near the crack tip may be
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Figure 4.3: L-shaped elastic 2D solid. a) Schematic; b) convergence rates for linear
elastic behavior; ¢) convergence rates for nonlinear elastic behavior
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estimated from the asymptotic linear elastic displacement field:

K o[ 0

ulzgi,/z—;cos-z- [3—4Vf1+28in2§l | (4.117)
K o 0

Uy = 2_;,/2—:;51115 [3—4u+1—2cos2 5] (4.118)

with the result:

27 p?
Ki

1/4
h(r,0) = A ( > r3/4[ (33 — 561 + 3202 + 3(—7 + 8v) cos(26) — 4cos(36))

+ (21 — 40w + 320 4 3(5 — 8v) cos(20) + 4 cos(30))2} '

o=

(4.119)

where A follows from (4.113). It is interesting to note that the mesh size reduces to
zero as r/* as the crack tip is approached.

This mesh-size distribution is closely matched by the numerical solution, Fig. 4.4.
It bears emphasis, however, that the mesh layout is determined automatically from
the numerical solution itself. The details of the mesh generation are given in Chapter 2
and also in [115]. The meshes consist of quadratic six-node triangular elements. The
analysis starts with a uniform coarse mesh. The target mesh-size distribution h(X) is
then computed and stored on a background octree mesh. The mesh-size distribution
thus stored is subsequently used to generate a new mesh comprising the target number
of elements E. This process is iterated until the mesh-size distribution A(X) remains
ostensibly unchanged. |

The convergence curves for the error ||@, — ¢, eq. (4.110), predicted by the
method are also shown in Figs. 4.3 and 4.4. The convergence curves clearly exhibit
t.hé optimal convergence rate O(N —(k=1)/d) corresponding to the piecewise-linear pro-
jection in RY, despite the presence of singularities. The optimal convergence rate
appears to be maintained in the nonlinear case. By contrast, the convergence rate
is sub-optimal in the case of uniform refinement, as expected from the presence of

singularities in the solution.
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Figure 4.4: Cracked elastic 2D solid. a) Schematic; b) convergence rates for linear
elastic behavior; ¢) convergence rates for nonlinear elastic behavior
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h=1

Figure 4.5: Schematic of an idealized fiber pull-out problem

4.7.2 Fiber pull-out

The performance of the method of adaption in three dimensions is illustrated next.
To this end, we apply the method to the analysis of load transmission into a nonlinear
elastic matrix by a periodic array of partially embedded and perfectly bonded rigid
fibers of vanishingly small diameter, Fig. 4.5. This problem is one of importance in
the study of fiber-reinforced composites and in soil mechanics.

The analytical treatment of problems in this category dates back to the landmark
paper of Mindlin [95], who obtained the solution to the problem of a point load inside
an elastic halfspace. Muki and Steinberg [97, 98] studied the problem of transmis-
sion of axial loads through a cylindrical bar embedded in—and bonded to—an elastic
halfspace. They reduced the problem to the solution of a Fredholm integral equation
and presented extensive numerical results illustrating the load decay as well as the
asymptotic behavior of the solution. More recently, Freund [44] has investigated the
mechanics of a fiber sliding through a hole in an elastic matrix. Freund has obtained
exact asymptotic solutions for the limiting cases of a very stiff and a very compliant

fiber and has provided numerical results for intermediate cases.
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Figure 4.7: Adapted, deformed meshes and o33 contours for the idealized fiber pull-out
problem - Detailed view around the fiber
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| Owing fo the pres_enbe of singularities alongithe fiber and at the end points of the
fiber, the fiber pull-out problem just defined furnishes a demanding three-dimensional
test of the method of adaption. In view of the periodicity of the fiber layout, the
analysis may be restricted to one unit cell. The remaining symmetries of the problem
enable the calculations to be further restricted to one quarter of the unit cell. The
material is assumed to be nonlinear elastic and to obey the Neo-Hookean constitutive
law (4.17). The bottom surface of the matrix is fully constrained and an outward
displacement is prescribed- quasistatically on the fiber. The initial mesh is coarse
and uniform. Based on the error estimator, the mesh-size distribution function is
determined and the mesh reconstructed accordingly. The meshes are generated by the
application of an octree nodal insertion method followed by Delaunay triangﬁlation
(see Chapter 2 and [115]). The meshes consist of quadratic ten-node tetrahedra.
Figs. 4.6 and 4.7 show the adapted deformed mesh after five levels of refinement. The
figures also depict the corresponding contours of axial stress gs3. As is evident from
the figures, the sharp gradients in the solution in regions adjacent to the fiber are

finely resolved by the adapted mesh.

4.7.3 Dynamic tests

The next two tests are intended to assess the performance of the method under dy-
namic conditions. The tests concern compressive waves traveling down a shock tube
for which exact analytical solutions can be obtained in closed form. These analyt-
ical solutions provide a suitable basis for a detailed accuracy assessment. The first
problem is concerned with isothermal conditions and does not involve any history
variables. The second problem concerns an adiabatic compressive wave and tempera-
ture is treated as an internal variable. This aspect of the calculation effectively tests

the accuracy of the mesh-to-mesh transfer algorithm.
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Isothermal case

A simple test of the mesh adaption capability for nonlinear dynamics is provided by
the probIem of a plane shock traveling down a highly compressible material. Since
our primary focus is on applications to solids, we carry out the analysis in lagrangian
“setting. The equations to be satisfied comprise the equation of conservation of linear
momentum (4.4); compatibility (4.2); and the constitutive relations formulated in
Section 4.2.2.

A class of analytically tractable problems is obtained when the free energy is
assumed to depend on deformation only through the Jacobian of the deformation,

1. e.,
A=A(JT) (4.120)
whereupon the equilibrium part of the first Piola-Kirchhoff stress tensor becomes
Py = A,y (J,T)JFz (4.121)
In particular, the pressure field follows as
p=Ay(LT) | (4.122)

It should be carefully noted that we have tacitly adopted the solids sign convention
for the pressure, i. e., the pressure is positive in tension and negative in compression.
In addition, the viscous part of the first Piola-Kirchhoff stress tensor follows from
(4.21) and (4.22). In the reminder of this section, attention is restricted to isothermal
deformations and, consequently, the temperature 7' will be omitted throughout.
Next we specialize the above relations to a plane-shock geometry. Let X; measure
the distance in the direction of propagation of the shock. Assume that the defor-

mation is uniaxial and, therefore, fully described by the component ¢(X7,t) of the
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deformation mapping. The corresponding deformation gradient is of the form:

w11 00

F=|0 10 (4.123)
0 0 1
The Jacobian of the deformation is:
J =1, (4.124)
The rate of deformation evaluates to:
¢11/p11 0 0
d = sym(FF!) = 0 0 0 (4.125)
0 0 0
and its deviatoric part to:
d% = sym(FF™!)
(2/3)¢1,1/ 1,0 0 0
= 0 —(1/3)¢1,1/ 11 0 (4.126)
0 0 "(1/3)851,1/@1,1

Furthermore, the equation of conservation of linear momentum (4.4) reduces to:
pOle - Pll,l (4127)
where Py; follows from (4.8), (4.121), (4.21) and (4.22) in the form:
An 1,1

P11 = p(<,01,1) + —g—-g;l-"l- (4128)
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Inserting this expression into (4.127) leads to the governing equation:

- 4n ¢
o1 = [p(sol,l) + —3—77—(@-] 1 (4.129)
Y11

to be solved for ¢, (X1,t). We shall seek steady state solutions of (4.129) of the form:

p1=1(X1 = V) (4.130)

for some propagation velocity V to be determined. Insertion of (4.130) into (4.129)

gives the autonomous equation:

. anV '
poV2o111 = [plpr) — —Z (',Ol’ll 1 (4.131)
P11
to which we append the boundary conditions:
lim (X)) = J* (4.132)

X1—>:l:00
where J* are given. Evidently, eq. (4.131) admits the first integral:

4nV ©1,11
3 Y11

P0V2§91,1 =p(p11) — +C (4.133)

for some constant C. Specializing this expression for X; — +oo and noting that, in

these limits, ¢; 11 — 0 in view of (4.132), gives:
C = pV2I~ —p(J7) = poVEJT — p(JT) (4.134)

whence the propagation velocity V follows as:

p(J*) —p(J7)
Jr—J-

poV? = (4.135)

which is the familiar formula for the velocity of propagation of a shock [139]. Eq. (4.133)
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can be recast in terms of the Jacobian J, with the result:

gV,
3 J

poV2J = p(J) +C (4.136)

Evidently, this equation is separable and yields the implicit solution:

gV [ dé

X
! 3 (J—+J+)/2 [O + p(&) - P0V2§]§

(4.137)

where we have arbitrarily chose the Jacobian at X; = 0 to be (J~ + J*)/2,
The integral in (4.137) can be carried out analytically in closed form for certain

simple equations of state p(J). Assume, for instance, the relation

K

p() =5 (I =J7) (4.138)

where K is the bulk modulus of the undeformed material. This relation, in conjunc-
tion with Newtonian viscosity, provides a reasonable description of the compressibility
of polymeric foams such as employed in automotive industry applications [135, 141].

Then, (4.135) gives

K 1 '
pV? = 5 (1 + J_J+> ~ (4.139)
and (4.137) reduces to:
8V 7 de
Xi=——7%J J"'/ ‘ 4.140
' 3K (J—+J+)/2 E—-J)E-T) ( )

This integral is elementary and evaluates to:

J—J
X1 = Llog T+ _J (4141)
where
_ 8V JJT
L= K T I (4.142)
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is'a measure of the width of the shock. Finally; (4.141) can be inverted to give:

J.

gt gt X,
= h— .
5 + 5 tan 5T (4.143)

which is the sought explicit solution. The density field, deformation mapping and

velocity field follow directly from (4.143) in the form

p=po/J (4.144)

J 4+ JT
(plzXl—I— [—;——1] (Xl'—Vt)+
X, -Vt :
o1 = %{2—(J”‘+J”)—(J+—J_)tanh (%)} (4.146)

These fields are taken as initial conditions and entrance and exit boundary conditions
in calculations. The evolution of the analytical density field, deformation mapping

and velocity field is shown in Fig. 4.8 for the parameters listed in Table 4.1.

Po 1
K 1
n | 0.025
Jt 1
J™| 0.1

Table 4.1: Parameters used in simulations of isothermal compression wave

Adiabatic case

The preceding example effectively tests the adaptive procedure in the context of

nonlinear dynamics. However, it lacks state variables in the constitutive description
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Figure 4.8: Analytical solution for an isothermal compressive wave in a shock tube
configuration
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and, therefore, does not fully exercise the state-variable transfer operator. A simple
extension of the preceding example that overcomes this shortcoming is to account for
thermal effects within an adiabatic framework.

Under the conditions just stated, the governing equation (4.129) becomes

. 4dn ¢
por = |plers, T) + 2122 | (4.147)
v Y11

An additional equation is, therefore, required to determine the temperature field T'.

This equation is furnished by conservation of energy and is assumed to take the form
poCyT = PV g+ Hp g (4.148)

where C, is the heat capacity at constant volume and H is the material heat flux.

The energy balance equation (4.148) may be written in conservation form as:
(pOC'vT + poIVl2/2),t —(RJV; + HJ),_] =0 (4149)

For a plane-shock geometry, this equation reduces to:

: 4 ¢ . :
(pOCUT + @30%) t [(27(991,1,T) - ‘77@> 1+ H1] =0 (4.150)
2 3 1
Next we make the steady-state assumption:
o1 = @i(X =V (4.151)
T = T(X;-Vt) (4.152)

for some propagation velocity V' to be determined. Inserting this representation into

(4.147) and (4.150) gives:

poV30111 = [P(%,l,T) - 4—%1[@] )1 (4.153)

®1,1

[0C T + 2p0V20% 1] 1 = [p(p11, T — 30Veprn + Hil 1 =0 (4.154)
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which we Supplement with the boundary conditions

p , ‘ _ + -

cim e = J | (4.155)
lim T = T% (4.156)
Xl—)OO

where T is the temperature ahead of the shock, which is assumed known. Egs. (4.153)

and (4.154) admit the first integral:

49V @1,
poV23p11 = p(p1,1, T) — "%—%f +C (4.157)
poCuT + LpoV2 | = plo11, T)pr + smrn + Hi = B (4.158)

for some constants B and C. Proceeding as in the preceding section, these constants

follow from the identities:

C = poV2I~ = p(J=,T=) = poV2I* — p(J*, T (4.159)
B = poC,T* + LpoV2J* — p(J+, T+)J*
= poCyT~ + 3pV2J~ —p(J =, T7)J~ (4.160)

where T~ = T'(—oc) and we have assumed that H; — 0 as X; — +oc. From (4.159)

it follows that

p(J+,T+) —p(J_aT_)
Tt —J-

pV? = (4.161)

whereas (4.160) determines 7. Proceeding again as in the isothermal case leads to
the implicit solution:

v ie
3 Ju-4s02 [C+p(ET) — pVEIE

X (4.162)

Furthermore, assume that the deformation is adiabatic and H; can be neglected.
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Then, eq. (4.158) becomes algebraic in T, namely,

1 4
poCT + §POV2(P§,1 — plp11, T)p11+ 577801,11 =B (4.163)

Solving this equation for 7' gives a relation of the form:

T =T(¢1,) (4.164)

whereupon (4.162) becomes:

' 4nV J dé
Xy = — .
1= /(J-+J+>/2 C TP T©O) — pVEEE (4.165)

which is the sought solution.
The adiabatic solution (4.164) and (4.165) can be obtained analytically in closed
form for certain simple equations of state. Perhaps the simplest form which is

amenable to such treatment is:

pOCv
p=-T5(J), S'(J) = T T+l + ) (4.166)

where ag, a; and ay are dimensionless material constants. The equation of state
(4.166) may be thought of as describing the behavior of a van der Waals-like gas.
The boundary conditions (4.153) and (4.155) furnish the relations

1

JT+J”
ay = —TJ—_—— (4168)

Furthermore, in order to simplify subsequent expressions, we parametrize the material

constant a as

pOCvT+ lﬂ
K 2J-

a =1+ (4.169)
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in terms of the parameter K. Then, (4.161) gives

K
.
PV = T

(4.170)

Inserting the equation of state (4.166) into (4.163), solving for T' and applying the

boundary condition (4.156), we find:

T= (a0J2+a1J+a2)

pOCv

The constant C' in (4.159) is obtained as:

K(Jt+J7)

C=—77

Inserting (4.172) and (4.166) into (4.165) we find:

an [’ dé
O
' 3POV/

This integral is elementary and evaluates to:

J—=J
— Llog 22
X1 log g
where
L= 4n
3ng(J+ - J_)

Finally, inverting (4.173) gives the explicit solution:

J

2 * 2

-4z E=INE—TT)

I+ Jt It =T tanhg{_l
B 2r

(4.171)

(4.172)

(4.173)

(4.174)

(4.175)

(4.176)

which is of the same form as (4.143). The deformation mapping and the velocity field

also retain the same form as before, respectively egs. (4.145) and (4.146), whereas
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Figure 4.9: Analytical solution for an adiabatic compression wave in a shock tube
configuration

the temperature field follows from (4.171) as

1

= BT T | 3J72K + JPPK + 20 JH(K + 4poC,T) +
0Y“v

T(Xl':t)

(J~2 — J™YK tanh Xi— Vi

2L

X, —Vt

The viscous stresses follow from (4.21) and (4.22) as

X1 -Vt

4.178
5T (4.178)

v v 1 =
% = 9P = 0Py — Z(J+ — J7)?poV 2sech?

The evolution of the analytical temperature and viscous stress fields is shown in
Fig. 4.9 for the parameters listed in Table 4.2. These fields are used as initial condi-

tions for the numerical solution of the energy equation.

Numerical implementation

Some issues of implementation of the dynamic tests just described merit further com-
ment. While the compression waves are one-dimensional in nature, the problems

are solved as if they were two or three-dimensional. The domain of analysis is dis-
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Table 4.2: Parameters used in simulations of adiabatic compression wave

cretized using six-node triangular elements in two dimensions, and ten-node tetrahe-
dral elements in three dimensions. In both cases the interpolation is quadratic, 1. e.,
k = 2. The stress update is effected in accordance with the procedure outlined in
Section 4.3.2 for a compressible fluid with Newtonian viscosity. The equivalent static
problem which results from the use of implicit time-stepping algorithms is solved
by a Newton-Raphson solution procedure based on exact or consistent tangents. It
bears emphasis that, due to the potential structure of the stress update, the resulting
stiffness matrices are symmetric.

Both implicit and explicit time integration are considered. In the implicit case
we set Newmark’s parameters to v = 0.5 and # = 0.25. In the explicit case we set
B =0 and v = 0.5, which corresponds to the second order accurate central difference

scheme [11, 58]. In this case, we estimate the stable time step as

P h2
At < min{ min QO—H} (4.179)
Voo
where Ay, is the minimum element inradius.
In the adiabatic compression wave case, the temperatures are calculated at the
quadrature points from the energy equation by recourse to the explicit forward-Euler

scheme:

AN
Tos = Tot = (P VoVa 4+ Vo Qu) (4.180)
(1]
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(a) Analytical displacement field (b) Mesh details

Figure 4.10: Mesh adapted on the deformed configuration (top) vs. mesh adapted
on the undeformed configuration and subsequently pushed forward to the deformed
configuration (bottom)

The corresponding stable time step is estimated as

+
At < PGTTL

<SRV =T (4.181)

It bears emphasis that the temperature is treated as a parameter as regards the
formulation of state updates. In all the tests reported here, however, the stable time
step is always dictated by the explicit dynamics.

From the analytical solution (4.145) and the expressions for the optimal mesh size
distribution in the reference (4.112) and the deformed configurations (4.115), it is

possible to obtain expressions for the optimal mesh-size distribution, with the result

. [HLtamh(2L) . X
h(X;) = 2\/ 5 cosh o—, (4.182)
and
4 = s 4
h(zy) = A L[J*+J + (J* — J-) tanh(z,/2L)] cosh ZL (4.183)

2T —J) 2L
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(a) Spatial volumetric deformation field J(z).
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(b) Mesh adapted according to (4.115)

Figure 4.11: Spatial shock profile showing symmetry breaking of the adapted mesh
density
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where

o /(H/E)(J* = J2smh(//L)

A= [(J= + J*) cosh(i/2L) + (J= — J*)sinh(I/2L)][J~ + J* + (J* — J~) tanh(l/2L)]

where [ is the length of the computational domain, H the width, and £ is the pre-
.scrib'ed number of elements.

Fig. 4.10 shows the analytical displacement, field (4.145) on deformed meshes
adapted in the deformed configuration, according to the mesh size distributions
(4.183) and (4.182). Tt is evident from the figure that, owing to the very large defor-
mations, the mesh adapted on the reference configuration, eq. (4.182), fails to resolve
the shock structure adequatel»y7 by exhibiting refinement in regions of slow variation in
the solution. By contrast, the mesh adapted directly on the deformed configuration,
eq. (4.183), exhibits the strongest refinement across the shock and rapidly coarsens
elsewhere, as expected. These observations illustrate the need to adapt the mesh
directly on the deformed configuration, as remarked in Section 4.6. It is interesting
to note that the optimal mesh-size distribution (4.183) lacks symmetry with respect
to the centerline of the shock, Fig. 4.11.

All two and three-dimensional meshes shown here and subsequently are gener-
ated by the combination of an octree nodal insertion method and anv advancing-
front/Delaunay triangulation procedure as presented in Chapter 2 and in [115]. The
ability of the mesher to conform to very steep gradients in the mesh-size distribution
function, such as required to resolve a very narrow shock, is particularly remarkable,

Fig. 4.12.

Dynamic convergence tests

The accuracy and convergence attributes of the method of adaption, and particularly
the attendant rates of convergence, may be exhibited with the aid of conventional
convergence plots. The calculations start from the analytical solution for a shock
centered within the domain of analysis. A numerical time integration step is sub-

sequently carried out. The initial mesh is adapted to the analytical solution, thus
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Figure 4.12: Exploded views of the adapted mesh illustrating the ability of the mesh
generator to deal with steep mesh-size gradients

minimizing the initial interpolation error. Following the time integration step, the
mesh is adapted again to the updated numerical solution, and all fields are transferred
to the new mesh using the mesh-to-mesh transfer operator defined in egs. (4.90-4.94).
At this point, the norms of the error functions ¢ — ¢}, and ¢, — @, are computed. Here
as previously, ¢ is the exact deformation mapping, ¢, is the quadratic finite element
deformation mapping, k = 2, and ¢@,, is its linear interpolant, k = 1. These errors are
then plotted against the number of degrees of freedom on log-log axes. The slopes
of the resulting curves are the corresponding rates of convergence. It bears emphasis
that the errors induced by the mesh-to-mesh transfer operator, eqs. (4.90-4.94), are
taken into account in the convergence analysis. However, it should be carefully noted
that the state transfer operator (4.94) is exercised in the adiabatic case only.

The parameters listed in Tables 4.1 and 4.2 are used in calculations. The length
of the domain of the analysis is [ = 20L, where L is the width of the shock.

Figs. 4.13 and 4.14 show the convergence curves obtained in the isothermal and
adiabatic cases, for both explicit and implicit time integration. It should be noted

that in all cases the time step is chosen within the range of stability and, consequently,
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Figure 4.13: Convergence plots for isothermal compressive wave problem
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Figure 4.14: Convergence plots for adiabatic compressive wave problem
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(a) Surface mesh
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(b) Detail of the mesh in the interior

Figure 4.15: 3D mesh adaption, mesh detail. The mesh contains 205, 384 elements.
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décréases as the( mesh ié réﬁned. Each plot collects four curves, corresponding to uni-
form and adaptive refinement, and two different measures of the error: ||¢ —¢,||; and
llen —@ulli- As is evident from the convergent plots, the rate of convergence obtained
in the dynamic tests is faster than in the static cases discussed in the foregoing. A
plausible explanation is that, as the time step is decreased, the inertia—or Lo—term in
the Dirichlet form (4.79) becomesdominant. From a purely heuristic viewpoint, this
may be interpreted as a decrease in the order of the Dirichlet form from m =1 to
~m = 0. Under thése conditions, the theoretical rate of convergence may be expected
to be closer to O(N~*/9) than to the static value O(N~*=1/) as born out by the
computed convergence plots.
| The errors in the adaptive case are considerably smaller than their uniform refine-
ment counterparts at an equal number of degrees of freedom. Conversely, the number
of degrees of freedom required to attain the same level of accuracy is vastly larger
in the case of uniform refinement than in the case of mesh adaption. In addition,
the ratio between the two increases monotonically as a power of N. The benefits of
mesh adaption are therefore more considerable for large meshes. These differences
notwithstanding, it is observed that the uniform refinement solutions attain the same
convergence rate as the adaptive solutions, as expected from the absence of singular-
ities in the solution. |
Finally, Fig. 4.15 shows a detail of the mesh of a 3D shock adapted according to the
procedure described earlier. The mesh contains 205, 384 elements, which are densely
concentrated within the shock front. The errors computed after the application of the
mesh-to-mesh transfer operator are ||@, — @;|l1 = 4.081195 x 107 and || — @4l =
8.714430 x 1074, which demonstrates the ability of the mesh adaption procedure to

accurately resolve fine features of three-dimensional solutions.

Simulation of shock propagation

Finally, we present full simulations of the propagation of a planar compression wave
in a highly compressible material under isothermal and adiabatic conditions. As in

the preceding convergence study, the problem is modeled after the analytical solutions
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Figure 4.16: Propagation of a planar compression wave. Adapted meshes at several
times (isothermal case)

derived in Sections 4.7.3 (isothermal case) and 4.7.3 (adiabatic case). The analyti-
cal solutions provide the initial and boundary conditions, eqgs. (4.144), (4.145) and
(4.146). In the adiabatic case, we use eqgs. (4.177) and (4.178) as initial conditions
for the energy equation. |

We simulate the entrance, propagation and exit of the shock in a tube of length
[ = 20L in the direction of propagation. The parameters in Tables 4.1 and 4.2 are
used in the simulations. The center of the shock is initially located at the tube’s left
end and the shock propagates from left to right. The mesh is adapted every time the
shock front has traveled its characteristic width, i. e., at % time intervals. After each
reineshing, the nodal fields and state variables are transferred from the old mesh to

the new mesh using the mesh-to-mesh transfer operator (4.90-4.94). The stable time
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Figure 4.17: Propagation of a planar compression wave. Adapted meshes at several
times (adiabatic case)
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Figure 4.18: Propagation of a planar compression wave. Time evolution of the com-
puted density and velocity fields (isothermal case)

step is then recomputed according to (4.179) and (4.181).

Figs. 4.16 and 4.17 show a sequence of snapshots of the evolution of the adapted
mesh during the simulation. It can be observed from these figures that the mesh
adaption procedure accurately resolves the shock front and coarsens the mesh behind
and ahead of it. The ability of the refined mesh to track the shock as it travels down
the tube is quite remarkable.

Figs. 4.18 and 4.19 show the time evolution of the relevant fields, namely, density
and velocity in the isothermal éase, Fig. 4.19; and pressure, and the temperature
in the adiabatic case, Fig. 4.19. The fields are sampled at time intervals of é The
- numerical solutions are ostensibly free of oscillations and exhibit very little dispersion.
As a quéntitative measure of the accuracy of the solutions, we have computed the
timé evolution of the energy norm of the error functions ¢ — ¢, and ¢, —@;. In both
the isothermal or the adiabatic case, all error measures remain at levels below 10~°

throughout the analysis. We have also computed the retardation in the propagation

V-V .
v

‘ spéed‘ where Vj, is the numerical propagation velocity. The pdsition of the
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Figure 4.19: Propagation of a planar compression wave. Time evolution of the com-
puted density, pressure and temperature fields (adiabatic case)
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shbck front used in the computation of V} is cohventionally identified with the point
at which J = (J*+ J7)/2. After the shock has traveled a distance equal to ten times
the characteristic shock width L, the computed value for the retardation is 0.6% in
the isothermal case and 0.8% in the adiabatic case. The ability of the mesh adaption

procedure to accurately track the shock structure is noteworthy.

4.8 Summary and conclusions

We have developed a framework for mesh adaption in strongly nonlinear, possibly
dynamic, problems. As in the recent work of Friesecke and Dolzmann [45], we reduce
the dynamic problem to an equivalent static problem by recourse to time discretiza-
tion. We then show that the solutions of the incremental boundary value problem for
a wide class of materials obey a minimum principle, provided that the constitutive
updates are formulated appropriately. We have taken this minimum principle as a
basis for error estimation. In particular, we chose to monitor the error of a lower-
order projection of the finite element solution. The optimal mesh size distribution
then follows from error indicators which are rigorously local and a posteriori. The
requisite mesh-to-mesh transfer operators, whereby the nodal and state variables are
remapped to the new mesh, also follow consistently from the variational princfple.

The advantages attendant to monitoring the error of a lower-order projection of the
| finite element solution, and adapting the mesh based on this error, seem to have gone
unnoticed heretofore. While the emphasis in this thesis has been on nonlinear dynamic
problems, the approach is equally attractive within the framework of linear problems.
Thus, the method requires only a local comparison between the finite element solution
and its lower-order interpolant. It also requires only the calculation of derivatives of
the finite element solution Which are well-defined locally, thus bypassing the need for
smoothing the solution over adjacent elements in an effort to extract derivatives of
unnaturally high order.

We have demonstrated the accuracy, robustness and versatility of the compu-

tational framework with the aid of demanding convergence tests and examples of
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application. - To_’this end, wé have found analytically tractable problems involving
isothermal and adiabatic shocks particularly useful as stringent tests of the overall
accuracy of the method, inéluding"spatial and time-stepping discretization errors, and
the error incurred as a result of the mesh-to-mesh transfer operator. The ability of
method to adaptively resolve the shock structure and yield convergent approximations

is particularly satisfying.
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