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ABSTRACT 

Sedimentary rocks on Mars provide insight into past aqueous and atmospheric 

processes, climate regimes, and potential habitability.  The stratigraphic architecture of 

sedimentary rocks on Mars is similar to that of Earth, indicating that the processes that 

govern deposition and erosion on Mars can be reasonably inferred through reference to 

analogous terrestrial systems.  This dissertation aims to understand Martian surface 

processes through the use of (1) ground-based observations from the Mars Exploration 

Rovers, (2) orbital data from the High Resolution Imaging Science Experiment onboard the 

Mars Reconnaissance Orbiter, and (3) the use of terrestrial field analogs to understand 

bedforms and sediment transport on Mars.  Chapters 1 and 2 trace the history of aqueous 

activity at Meridiani Planum, through the reconstruction of eolian bedforms at Victoria 

crater, and the identification of a potential mudstone facies at Santa Maria crater.  Chapter 3 

uses Terrestrial Laser Scanning to study cross-bedding in pyroclastic surge deposits on 

Earth in order to understand sediment transport in these events and to establish criteria for 

their identification on Mars.  The final chapter analyzes stratal geometries in the Martian 

North Polar Layered Deposits using tools for sequence stratigraphic analysis, to better 

constrain past surface processes and past climate conditions on Mars. 
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C h a p t e r  1  

INTRODUCTION 

1.1 The Exploration of Sedimentary Rocks on Mars 

The key question driving Mars exploration is to determine whether life ever arose 

elsewhere in the solar system.  Since sedimentary rocks form on the surface of a planet, 

they contain a record of past environments, surface processes, climate regimes and, hence, 

potential habitability.   

Mars is the only planet in our Solar System other than Earth known to have an 

extensive sedimentary record, and it has been the target of numerous rover, orbiter and 

landed missions.  The study of stratified material on Mars began with Mariner 9 and Viking 

images (Sharp 1973; Soderblom et al. 1973; Blasius et al. 1977), and has greatly advanced 

with increasingly higher resolution data returned by the Mars Global Surveyor, Mars 

Odyssey, Mars Express, Mars Exploration Rovers, and Mars Reconnaissance Orbiter 

(Malin and Edgett 2000, 2003; Christensen et al. 2000; Glotch and Christensen 2005; 

Jaumann et al. 2007; Squyres et al. 2004a; Grotzinger et al. 2005; McEwen et al. 2010). 

Data returned from these missions reveal that Mars has a diverse geologic history 

and that the stratigraphic architecture of sedimentary rocks on Mars is similar to that of 

Earth.  The processes that govern sediment deposition and erosion on Mars can be 

reasonably inferred through reference to analogous terrestrial systems, although there are 

several key differences between the Martian and terrestrial sedimentary records (McLennan 

and Grotzinger 2008; Grotzinger and Milliken in press).  Using the Earth as a guide, but 



 

 

2 
keeping an open mind to new sedimentary rock types, facies, and processes, we can begin 

a new era of extraterrestrial sedimentology (Grotzinger and Milliken in press). 

An essential technique for interpreting sedimentary deposits on Earth and Mars is 

the analysis of stratal geometries and stratification.  Stratification provides information 

regarding the depositional environment, and may reveal clues regarding paleoflow 

velocities and paleocurrent directions (Rubin 1987).  Large-scale stratal geometries also 

provide insight as to the depositional environment, as well as a framework for 

understanding genetically related strata and changes in the stratigraphic record.  These 

methods are useful for recognizing past surface processes involving water, wind, ice and 

volcanic activity, and may be used to identify potentially habitable environments. 

The following chapters describe several studies of sedimentary rocks, based on 

distinctive characteristics of stratification and stratal geometries.  Chapters 2 and 3 trace the 

history of aqueous activity at Meridiani Planum, using geometric relationships to 

reconstruct eolian bedforms at Victoria crater, and the lack of stratification in fine-grained 

rocks at Santa Maria crater as an indication of a new potential mudstone facies.  Chapter 4 

shows the use of Terrestrial Laser Scanning to study cross-bedding in pyroclastic surge 

deposits on Earth in order to understand sediment transport in these events and to establish 

criteria for their identification on Mars.  The final chapter introduces a new technique for 

analyzing stratified rocks on Mars, using chronostratigraphic analysis to constrain past 

surface processes in the North Polar Layered Deposits. 

 



 

 

3 
1.2 Datasets  

The work described in the following chapters was made possible by data from 

several spacecraft.  Brief descriptions of the most heavily used datasets are provided below. 

 

1.2.1 Mars Global Surveyor 

The Mars Global Surveyor (MGS) was a global mapping mission operating from 

1997 to 2006.  Through its five scientific instruments, MGS advanced our understanding of 

the topography, gravity, magnetic fields, surface composition, thermal properties, and 

atmosphere of Mars.  This thesis uses data from the Mars Orbiter Laser Altimeter (MOLA), 

which provided a precise global map of the surface height of Mars.  MOLA transmitted 

laser pulses at a rate of 10 Hz, and measured the flight time to determine distance to the 

surface.  MOLA has a vertical resolution of 1 m, a surface spot size of 168 m, and along-

track shot spacing of 300 m (Smith et al. 2001).  Global topographic maps were produced 

at resolutions up to 128 pixels per degree, and 512 pixels per degree in the polar regions. 

 

1.2.2 Mars Exploration Rovers 

The twin Mars Exploration Rovers (MER), Spirit and Opportunity, arrived at Mars 

in 2004.  Spirit investigated Gusev crater until 2010, and Opportunity is continuing its 

exploration of Meridiani Planum.  This thesis uses data primarily from Opportunity.  Each 

rover contains a suite of scientific instruments including Panoramic Cameras (Pancam), 

Microscopic Imager (MI), Rock Abrasion Tool (RAT), Alpha Particle X-ray Spectrometer 

(APXS), Mossbauer Spectrometer (MB), and miniature Thermal Emission Spectrometer 

(mini-TES).  Data from Pancam, MI, RAT and APXS are described in chapters 2 and 3. 
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Pancam is a multispectral imaging system, consisting of two cameras located on 

the rover’s mast, 1.5 m above the ground.  Each camera contains an eight-position filter 

wheel, allowing multispectral observations in the 400 to 1100 nm wavelength range (Bell 

et al. 2003).  Stereoscopic measurements can be made using parallax between the two 

camera eyes, spaced 30 cm apart.  Pancam has a focal length of 43 mm and a field of view 

of 1024 × 1024 pixels (16o × 16o).  Pancam is also capable of panoramic measurements, 

with the ability to image 360o in azimuth and +/− 90o in elevation (Bell et al. 2003).  

Pancam data are used in this thesis to study the lithology, structure, distribution and 

spectral qualities of rocks and outcrops. 

The MI is a high-resolution imaging system mounted on the rover’s arm, also 

known as the Instrument Deployment Device (IDD).  The MI has a field of view of 1024 x 

1024 pixels, which corresponds to a field of view of 31 mm x 31 mm at a working distance 

of 63 mm (Herkenhoff et al. 2003).  To compensate for the variable topography of rock 

targets and limited depth of field, MI images are usually taken as a stack of images.  The 

IDD moves along a path normal to the surface, and acquires images every few millimeters.  

In this way, the MI acts as both a microscope and a camera, producing images with a 

resolution of 30 µm/pixel (Herkenhoff et al. 2003). 

The RAT provides a way to expose fresh rock surfaces for chemical and textural 

analyses.  The RAT is located on the IDD, and uses a diamond-tipped grinding wheel to 

remove a cylindrical area 4.5 cm in diameter and 0.5 cm deep (Gorevan et al. 2003).  The 

RAT is often used in combination with the MI and APXS, to enhance petrologic textures 

and provide fresh surfaces for chemical analysis. 
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The APXS is also located on the IDD, and determines the chemical composition 

of rocks and soils by x-ray spectroscopy.  The APXS exposes materials to energetic alpha 

particles and x-rays from radioactive curium-244 sources, and then measures the spectra of 

backscattered alpha particles and emitted x-rays (Gellert et al. 2006).  APXS data are used 

in chapter 3 to understand the composition of a new facies at Meridiani Planum. 

 

1.2.3 Mars Reconnaissance Orbiter  

The Mars Reconnaissance Orbiter (MRO) entered Mars orbit in 2006, and consists 

of several high-resolution instruments.  The work described in the following chapters relies 

on data from the High Resolution Imaging Science Experiment (HiRISE) and Context 

Imager (CTX) onboard MRO. 

HiRISE was designed to image the Mars surface at higher resolutions than 

previously possible.  HiRISE is capable of acquiring images at a resolution of up to ~25 

cm/pixel (McEwen et al. 2007), resolving features down to ~1 m in thickness.  HiRISE 

images are approximately 6 km wide, and at least 10 km long.  HiRISE is capable of 

making stereo topographic measurements, with vertical precision of ~25 cm over ~1 m2 

areas (McEwen et al. 2007).  Context for HiRISE images is provided by CTX.  CTX 

images have a resolution of 6 m/pixel and a swath width of 30 km (Malin et al. 2007).  

HiRISE and CTX images are used in chapters 2 and 3 to provide base maps and context for 

rover traverses, and in chapter 5 for identifying layered deposits with stratal geometries. 
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C h a p t e r  2  

STRATIGRAPHIC ARCHITECTURE OF BEDROCK REFERENCE SECTION, 
VICTORIA CRATER, MERIDIANI PLANUM, MARS 

Originally published in: 

Edgar, L. A., J. P. Grotzinger, A. G. Hayes, D. M. Rubin, S. W. Squyres, J. F. Bell III, and 
K. E. Herkenhoff (2012), Stratigraphic Architecture of Bedrock Reference Section, 
Victoria Crater, Meridiani Planum, Mars, Sedimentary Geology of Mars, SEPM Special 
Publication, 102, 195-209. 
 

Abstract 

The Mars Exploration Rover Opportunity has investigated bedrock outcrops 

exposed in several craters at Meridiani Planum, Mars, in an effort to better understand the 

role of surface processes in its geologic history.  Opportunity has recently completed its 

observations of Victoria crater, which is 750 m in diameter and exposes cliffs up to ~15 m 

high.  The plains surrounding Victoria crater are ~10 m higher in elevation than those 

surrounding previously-explored Endurance crater, suggesting that Victoria crater exposes 

a stratigraphically higher section than Endurance crater; however Victoria strata overlap in 

elevation with the rocks exposed at Erebus crater.  Victoria crater has a well-developed 

geomorphic pattern of promontories and embayments that define the crater wall, and reveal 

thick bedsets (3 to 7 m) of large-scale cross-bedding, interpreted as fossil eolian dunes.  

Opportunity was able to drive into the crater at Duck Bay, located on the western margin of 

Victoria crater.  Data from the Microscopic Imager and Panoramic Camera reveal details 

about the structures, textures, and depositional and diagenetic events that influenced the 

Victoria bedrock.  A lithostratigraphic subdivision of bedrock units was enabled by the 
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presence of a light-toned band that lines much of the upper rim of the crater.  In ascending 

order three stratigraphic units are named Lyell, Smith and Steno; Smith is the light-toned 

band.  In the Reference Section exposed along the ingress path at Duck Bay, Smith is 

interpreted to represent a zone of diagenetic recrystallization, however, its upper contact 

also coincides with a primary erosional surface.  Elsewhere in the crater the diagenetic 

band cross-cuts the physical stratigraphy.  Correlation with strata present at nearby 

promontory Cape Verde suggests that there is an erosional surface at the base of the cliff 

face that corresponds to the erosional contact below Steno.  The erosional contact at the 

base of Cape Verde lies at a lower elevation, but within the same plane as the contact below 

Steno, which suggests that the material above the erosional contact was built on significant 

depositional paleotopography.  The eolian dune forms exposed in Duck Bay and Cape 

Verde, combined with the geometry of the erosional surface, suggests that these outcrops 

may be part of a larger-scale draa architecture.  This insight is possible only due to the 

larger-scale exposures at Victoria crater, which significantly exceed the more limited 

exposures at Erebus, Endurance, and Eagle craters. 

 
2.1 Introduction 

  

 Sedimentary rocks on Mars provide insight into past aqueous and atmospheric 

processes, climate regimes and potential habitability.  The Mars Exploration Rover 

Opportunity has investigated several impact craters in Meridiani Planum, Mars, (Figure 

2.1) studying the exposed sedimentary rocks of the Burns formation1 in an effort to better 

understand the role of aqueous activity in its geologic history.  In doing so, Opportunity 

                                                
1 Note that the location and formation names used in this study are informal, and have not been approved by the 

International Astronomical Union. 
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discovered in situ evidence for an aqueous depositional environment at Eagle, Endurance 

and Erebus craters (Squyres et al. 2004b; Grotzinger et al. 2005; Squyres et al. 2006a; 

Grotzinger et al. 2006; Metz et al. 2009).  Furthermore, these results also suggest that the 

stratigraphic architecture of sedimentary rocks on Mars is similar (though not identical) to 

Earth, suggesting that the processes that govern facies deposition and alteration on Mars 

can be reasonably inferred through reference to analogous terrestrial depositional systems 

(Grotzinger et al. 2005). 

 

Figure 2.1. Opportunity traverse map as of sol 952 plotted on HiRISE image.  Victoria 
crater is approximately 6 km southeast of the original Opportunity landing site in Eagle 
crater.  Sunlight illuminates scene from upper left. Image credit: NASA/JPL/University 
of Arizona. 

As the mission progressed Opportunity explored increasingly larger outcrops over a 

greater spatial scope, and it became clear that both depositional and diagenetic processes 

acted regionally in extent (Squyres et al. 2009).  Here, diagenesis refers to any low-

temperature, low-pressure alteration after deposition, which may include weathering.  One 

important interpretation is that most primary sedimentary bedforms – a key element in the 
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sedimentology of the Burns formation – are not only regional in extent (found in many 

bedrock outcrops explored by the rover), they are also of very large magnitude.  This is 

important because it facilitates a greater understanding of the processes controlling 

deposition as well as the scale of the depositional environment. The outcrop exposed at 

Opportunity’s landing site in Eagle crater was only 35 cm thick (Squyres et al. 2004a).  At 

Erebus crater, exposed outcrops were up to 5 m thick (Grotzinger et al. 2006; Metz et al. 

2009) and, at Endurance crater, the rover analyzed more than 7 m of stratigraphy 

(Grotzinger et al. 2005).  These latter localities provided evidence for meter-scale cross-

stratification.  In contrast, outcrops at Victoria crater provide exposures of on the order of 

15 meters of true stratigraphic thickness, which permits analysis of larger scales of cross-

stratification, and thus larger-scale primary bedforms can now be reconstructed. 

Victoria crater lies 6 km southeast from the original Opportunity landing site in 

Eagle crater.  At ~750 m in diameter (Grant et al. 2008), it is the largest crater yet explored 

by Opportunity.  Victoria crater offers the opportunity to test the existing models for 

bedrock formation and provides new insight into larger-scale sedimentary bedforms.  This 

study [examines the stratigraphy and eolian architecture along the ingress path at Duck 

Bay], using data from the Microscopic Imager and Panoramic Camera to elucidate the 

structures, textures, and depositional and diagenetic events that formed and modified the 

Victoria bedrock.  Several depositional and diagenetic hypotheses are explored, and a 

Reference Section exposed along the ingress path at Duck Bay is interpreted in the context 

of the regional geologic history. 

 

2.2 Geologic Setting 

Rocks exposed in the region of the Opportunity landing site reveal a complex 

sedimentary history, involving eolian sediment transport and deposition, followed by 

episodic inundation by shallow surface water, evaporation, exposure and desiccation 

(Squyres et al. 2004b; Grotzinger et al. 2005; Grotzinger et al. 2006; Metz et al. 2009).   

The bedrock exposed at Eagle crater, combined with that in Endurance crater, reveals a 

stratigraphic thickness of approximately 7 m, known as the Burns formation.  The Burns 

formation refers to a sequence of well-sorted, moderately indurated sandstones, interpreted 
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to be deposited by eolian and locally subaqueous processes (Grotzinger et al. 2005; 

McLennan and Grotzinger, 2008).  Represented by dune, sand sheet, and interdune facies, 

this formation records a progressive increase in the influence of groundwater and surface 

water during deposition (Grotzinger et al. 2005).  This wetting-upward trend contrasts with 

the overall drying-upward trend as seen in Erebus crater, at a slightly higher stratigraphic 

level (Metz et al. 2009).  The series of outcrops explored by Opportunity at Meridiani 

Planum may comprise a full climatic cycle, from dry to wet to dry conditions, as one 

moves stratigraphically upward from the strata at Eagle crater through the strata at Erebus 

crater (Metz et al. 2009).  After completing its exploration of the outcrops at Erebus crater, 

Opportunity set out to explore Victoria crater. 

Victoria crater is a degraded simple crater at Meridiani Planum (1.9483oS, 

354.4742oE).  Orbital images show that stratified rocks beneath the Meridiani plains lie 

disconformably on Middle to Late Noachian cratered terrains, indicating that the Meridiani 

plains might be as much as several billion years old (Arvidson et al. 2003).  Topographic 

measurements made by the Mars Orbiter Laser Altimeter (MOLA) indicate that the plains 

surrounding Victoria crater are ~10 m higher in elevation than those surrounding 

previously explored Endurance crater, suggesting that Victoria crater exposes a 

stratigraphically higher section (assuming flat dip of strata).   The outcrop exposed at 

Victoria crater may lie at the same elevation as the uppermost unit in Erebus crater, 

allowing for possible stratigraphic correlation between these two locations.  Victoria crater 

has a scalloped rim produced by erosion and downhill movement of crater wall material.  

Most of the erosion is attributed to eolian processes, which are actively widening and 

filling the crater, and elongating the crater across a WNW-ESE axis (Grant et al. 2008).  

The scalloped rim consists of a series of alcoves and promontories around the crater, 

exposing more than 10 m of well-bedded sedimentary rocks. 

Prior to ingress at Duck Bay, Opportunity spent several months traversing the rim 

of the crater.  Observations of outcrops at several promontories revealed thickly-bedded 

units containing large-scale cross-stratification with bedsets of at least several meters in 

thickness (Squyres et al. 2009).  Analysis of cross-bedding geometry suggests a paleo-wind 

direction oriented in a north-south direction (Hayes et al. 2011).  A distinct light-toned 
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band lines much of the upper rim of the crater.  This band served as the basis for defining 

stratigraphic units (Squyres et al. 2009), named after prominent geologists and 

stratigraphers: Lyell, Smith, and Steno, in ascending order.  Smith is the light-toned band, 

overlain by the Steno unit, and underlain by the Lyell unit.  Steno’s upper contact is the 

base of the breccia deposit generated during Victoria crater formation; Lyell’s lower 

contact is not exposed, buried beneath the modern sands that fill the floor of the crater. 

Duck Bay is located on the western margin of Victoria crater (between 

promontories Cape Verde and Cabo Frio) with a slope shallow enough (~15 to 25o) for 

Opportunity to ingress (Figure 2.2).  Detailed measurements of the three stratigraphic units 

were taken as Opportunity descended into the crater. 

 

 

Figure 2.2. Duck Bay and nearby promontories Cape Verde and Cape St. Mary, seen in 
HiRISE image (TRA_000873_1780).  Inset shows the crater’s scalloped rim and the 
location of Duck Bay on the western margin of Victoria crater.  Red box shows the 
approximate location of larger image.  Image credit: NASA/JPL/University of Arizona. 



 

 

12 
2.3 Methodology 

2.3.1 Instruments 

The stratigraphy and bedrock sedimentary structures at Duck Bay were observed by 

the Panoramic Camera (Pancam) and Microscopic Imager (MI).  Pancam is a multispectral 

imaging system, which consists of two digital cameras mounted on the rover’s mast (1.5 m 

above the ground).  Pancam is capable of both stereoscopic measurements (using parallax 

between the two camera “eyes”, spaced 30 cm apart) and panoramic measurements (with 

the ability to image 360o in azimuth and +/- 90o in elevation).  Pancam has a focal length of 

43 mm and a field of view of 1024 x 1024 pixels (16o x 16o).  Each of the two camera 

“eyes” includes a small eight-position filter wheel, allowing for multispectral mineralogical 

studies in the 400 to 1100 nm wavelength range (Bell et al. 2003). 

The Microscopic Imager (MI) is a high-resolution imaging system mounted on the 

rover’s “arm”, or Instrument Deployment Device (IDD).  The MI acts as both a microscope 

and a camera.  With a camera body identical to those of Pancam, it also has a field of view 

of 1024 x 1024 pixels (Herkenhoff et al. 2003).  The MI has a focal length of 20 mm, a +/− 

3 mm depth of field, and a field of view of 31 mm x 31 mm at a working distance of 63 

mm (measured from the front of the lens to the object).  MI produces images with a 

resolution of 30 µm/pixel (Herkenhoff et al. 2003).  Due to highly variable topography, MI 

images are usually taken as a stack of images, with the IDD moving along a path normal to 

the surface, pausing every few millimeters to acquire an image (Herkenhoff et al. 2003). 

The rover also has the capability to grind away dust and surface alteration to expose 

fresh rock surfaces for chemical and textural analyses.  This is accomplished by the Rock 

Abrasion Tool (RAT). The RAT is positioned against a rock by the rover’s arm, and uses a 

diamond-tipped grinding wheel to remove a cylindrical area 4.5 cm in diameter and 0.5 cm 

deep (Gorevan et al. 2003).  The RAT was designed to enhance petrologic textures of the 

fresh rock surfaces, so that they could be viewed effectively using the MI (Gorevan et al. 

2003).  However, overuse issues2 (which resulted in approximately 60% of the RAT holes 

                                                
2 Encoders are attached to each of the three RAT motors, and provide precise position information to monitor 

the penetration process.  Another wheel holds a set of spinning brushes to wipe away dust and grit, so that the 
abraded material is moved outward to form a dust skirt around the RAT hole.  However, as the mission 
progressed many times beyond its planned 90-sol lifetime, problems associated with overuse have developed.  



 

 

13 
covered in RAT grindings) significantly degraded the quality of the MI images taken 

along the ingress path Reference Section. The presence of RAT grindings in the holes 

obscures some features, so caution must be used when evaluating MI images of RAT-ed 

targets. 

 

2.3.2 Data Collection 

Opportunity began its ingress into Victoria crater on Sol 1293.  After driving 11 m 

downslope into the crater at Duck Bay, making detailed stratigraphic measurements of the 

exposed outcrop, the rover drove laterally ~20 m to investigate several scientific targets at 

nearby promontory Cape Verde.  At its closest approach to Cape Verde, Opportunity 

maintained a ~10 m stand-off distance.  While detailed chemical and textural analyses 

could not be acquired at this distance, super-resolution imaging allowed substantial 

observations of the stratification geometry and textures exposed at the cliff face.  On Sol 

1607, Opportunity began its egress, following nearly the same route as ingress, and 

eventually exiting the crater on Sol 1634. 

Opportunity acquired many Pancam and MI observations over the course of nearly 

150 sols on its 11 m traverse downslope.  Three stratigraphic units were distinguished 

based on sedimentary structures, diagenetic textures and color as revealed in Pancam 

images. Pancam observations were made almost every sol.  The Microscopic Imager 

provided additional information on small-scale textures and diagenetic features.  The RAT 

was used to expose fresh surfaces in some of the IDD targets by grinding away the 

outermost several millimeters of rock.  However, after Sol 1348, the motor encoder failure 

resulted in partial covering of RAT holes, which obscured some of the features of interest, 

so our quantitative survey of diagenetic textures used only un-RATed images.  Tables 1 

                                                                                                                                            
On Sol 1045, the RAT grind motor encoder failed.  The MER science and engineering team developed a way to 
run the RAT without this encoder feedback, but on Sol 1334, the RAT revolve motor encoder failed.  This 
meant that the RAT tool would run without precise monitoring (without knowing its exact position).  On Sol 
1348, the team first noticed an issue with the brush spot.  Rather than clearing the grindings out of the RAT 
hole, only a small portion of the hole was cleared, and much of the hole contained RAT grindings.  This was 
attributed to running the brush in the opposite direction, which resulted in a reconfiguration of the brush 
bristles – rather than being in line with the grinding bit, the bristles were twisted and some aligned with the z-
axis, serving to erode material more than clear material out of the hole.  
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and 2 summarize the key MI and Pancam observations of the rock units and the sols on 

which they were acquired.  

 

Table 2.1. Summary of MI observations. 
 

Unit Target name Sols acquired Stack RATed 
Steno Steno 1311 2×2×5 none 
 Steno 1313 1×1×5 brushed 
 Steno 1316 2×2×5 RATed 
 Steno 1320 1×1×10 RATed 
Smith Smith_Hall_1 1322 1×1×18 none 
 Smith 1332 2×2×5 none 
 Smith 1348 2×2×5 brushed 
 Smith2* 1359 2×2×5 none 
 Smith2 take2 1366 3×1×5 none 
 Smith2 1373 2×2×3 RATed 
 Smith_Lyell_Smith_side 1409 4×1×5 none 
 Smith_Lyell_Smith_side 1414 1×1×5 none 
Lyell Lyell_1 1384 2×2×14 none 
 Lyell_1 1395 2×2×14 RATed 
 Smith_Lyell_Lyell_side 1411 4×1×5 none 
 Lyell_B 1421 2×2×5 none 
 Lyell_Buckland 1430 2×2×5 RATed 
 Lyell_Buckland 1435 1×1×1 RATed 
 Lyell_Buckland 1436 1×1×4 RATed 
 Lyell_Exeter 1443 2×2×14 none 

• Joint 1 stall, observation was not completed 
 
 
 

Table 2.2. Summary of Pancam observations. 

 
Unit Location Sols on which most useful images 

were acquired 
Sols on which additional images 

were acquired 

Steno Duck Bay 1319, 1335, 1338, 1353, 1363, 
1385 

1302, 1305, 1315, 1316, 1318, 1320, 
1321, 1333, 1334, 1339, 1377 

Smith 
 

Duck Bay 
1332, 1335, 1337, 1349, 1350, 
1351, 1353, 1366, 1374, 1385, 

1426 

1327, 1333, 1338, 1344, 1348, 1371, 
1377, 1390  

Lyell 
 Duck Bay 1385, 1423, 1426, 1432, 1433, 

1438, 1465 
1398, 1419, 1425, 1428, 1511, 1512 

N/A 
 

Cape Verde 
 

952, 970-991, 1006, 1329, 1342, 
1356, 1487, 1574-1576, 1579-

1580, 1581 

1329, 1342, 1346, 1349, 1358, 1457, 
1472, 1473, 1487, 1570, 1572, 1599, 

1611 
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2.3.3 Data Processing 

Structural attitudes were obtained by using Pancam stereo data.  Range and 

topographic data can be derived from Pancam stereo image pairs, producing range maps 

out to 100 m or more from the rover (Squyres et al. 2003; Lewis et al. 2008).  Occasionally, 

stereo images from the Navigation Camera (Navcam) also were used to produce range 

maps.  Following the methods described by Lewis et al. (2008), linear segments along 

bedding planes were traced manually, and the corresponding topographic data was 

extracted. The natural curvature of the crater in the horizontal direction provided 

constraints on the three-dimensional geometry.  A best-fit plane was calculated for each 

segment, and mathematical criteria ensured that the layers were well fit by a plane.  

Following Lewis et al. (2008), we determined principle component eigenvalues to describe 

the variance in three orthogonal directions (the first and second components describe the 

plane, and the third component lies out of the plane).  The variance in the first principal 

component was limited to less than 99%, which excludes measurements for which the 

topography is too linear to determine the second dimension.  Additionally, we excluded 

data for which the ratio of the variance described by the second principal component to that 

of the third was greater than 15, to ensure that the planar fit was significantly larger than 

the out-of-plane error.  Strike and dip values were then calculated from the best-fit plane.  

The stratigraphic thicknesses reported below are true thickness, corrected for a few degrees 

of westward dip, obtained using the methods described above. 

Super-resolution images exposed fine details in targets that the rover was unable to 

reach.  Super-resolution is a method of combining information from a series of slightly 

offset images to produce a single image of the scene at higher resolution (Bell et al. 2006).  

The camera acquires 15 to 20 images in rapid succession at slightly offset pointings, and 

coregistration is performed.  The images are first forward-mapped into high-resolution 

scratch space, and then a back propagation algorithm is repeatedly applied to the scratch 

space, which iteratively improves the high resolution image.  Additional details are 

described in Bell et al. (2006). 
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2.3.4 Simulations 

  Several bedform simulations were run and cross-bedding geometries were 

compared to those observed in outcrop to test potential bedform morphologies and 

behaviors.  We used a code that mathematically simulates bedforms and cross-bedding, 

developed by Rubin and Carter (2005).  The code approximates bedform surfaces as sine 

curves.   Bedform migration is created by displacement of the sine curves, height is 

produced by changing the amplitude, and superimposed bedforms can be modeled as 

combined sets of sine curves.  The resulting block diagrams can be compared to cross-

bedding observed in rock outcrops in a variety of geometries. 

 

2.4 Duck Bay Sedimentology and Stratigraphy 

Opportunity’s ingress path in Duck Bay intersects three stratigraphic units, named 

Lyell, Smith and Steno, in ascending stratigraphic order (Figure 2.3).  These units, as 

observed along the rover ingress path, define the “Reference Section” for Victoria crater.  

The definitions and descriptions presented here form a set of observations that can be used 

for the purpose of comparison to other locations in the crater, and for inter-regional 

correlations between craters.  Changes in stratigraphic attributes relative to a defined 

Reference Section form the traditional basis for understanding lateral and temporal 

variations in depositional environment. 

 

2.4.1 Lyell Unit 

The lowermost unit, designated as “Lyell,” consists of ~1.8 m of sulfate-rich 

sandstone (Squyres et al. 2009).  Lyell is characterized by its darker tone, with well-defined 

pinstripe laminations.  The average bed thickness is ~2 mm.  It is a well-sorted, fine-

grained sandstone, with meter-scale cross-bedding (Figure 2.4e).  Strike and dip 

measurements, calculated from Pancam stereo data, indicate that Lyell dips approximately 

2o to the west – away from the center of the crater.  Measurements of cross-strata indicate 

dip directions to the SW (Figure 2.5). 
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Figure 2.3. Ingress path as viewed from Cape Verde promontory (Cape Verde panorama, 
L257 false color mosaic, acquired during Sols 970-991). Three distinct units are visible in 
Duck Bay, named Lyell, Smith and Steno, in ascending order.  The Gilbert area 
corresponds with brecciated bedrock below the intact unit Lyell.  Stratigraphic 
thicknesses (reported in parentheses) were derived from Pancam stereo images.  Colored 
circles correspond to locations of detailed analyses by the Microscopic Imager (MI) as 
well as other tools on the Instrument Deployment Device (IDD). 

The MI provided additional information on small-scale textures and diagenetic 

features, including abundant hematite-rich spherules and vugs suggestive of crystal molds 

(Figure 2.4f). Volumetric densities of spherules were estimated following McLennan et al. 

(2005), using the relation V = (πml2/6A) where m is the number of spherules on a planar 

rock surface with area A, and l is the mean spherule diameter.  Spherules in Lyell range 

from 0.5 mm in diameter up to 1.5 mm, with an average diameter of 0.90 mm (SD = 0.27, 

378 spherules).  Lyell has more embedded spherules than Smith or Steno, with a 

volumetric density of 1.04% (SD = 0.46, n = 16 frames) (Table 3).  Lyell also contains 

abundant vugs, with tabular-prismatic shape, and random orientations.  The vugs in Lyell 

have a typical width of ~0.25 mm and length of 1 to 2 mm.  While the vugs show similar 

geometry and similar proportions to those seen in Eagle crater (Squyres et al. 2004b) they 

IDD analysis sites

Steno/Hall

Smith

Lyell_Newell

Smith-Lyell contact

Lyell_Buckland

Lyell_Exeter

Gilbert A

Steno (~0.7 m)

Smith (~0.8 m)

Lyell (~1.8 m)

Gilbert area
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are an order of magnitude smaller.  The vugs may contribute to the darker tone of this 

unit, helping to trap dark, probably basaltic sand grains (Squyres et al. 2009).    

 

Figure 2.4. Pancam (left) and MI (right) images of Lyell, Smith and Steno, documenting 
the large and small-scale characteristics of the three different units in the ingress path.  
For scale, MI images are 31 mm on a side.  MI images were taken with target fully 
shadowed.  Note that the dark upper right corner of each MI image is the result of dust 
contamination of the MI optics. A) In the ingress path Steno appears as a more resistant 
step in topography. B) Steno consists of fine-to-medium grained sandstone with abundant 
hematite spherules. C) and D) Smith is characterized by its lighter tone and smoother 
texture at both scales. E) Lyell is characterized by its darker tone (Smith is visible in the 
upper right portion of the image for comparison) and well-defined pinstripe laminations.  
F) MI images of Lyell reveal numerous hematite spherules and vugs.  Spherules in Lyell 
are larger and more abundant than those in Steno or Smith. 
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2.4.2 Smith Unit 

The light-toned Smith unit directly overlies the Lyell unit. The contact between 

Smith and Lyell is gradational, and the darker tone and well-defined stratification of Lyell 

gradually fade upward.  Smith is characterized by its smoother texture and lighter-tone, 

which contrasts with its bounding units (Figure 2.4c).  The Smith unit at first appears 

massive, but images taken at low solar incidence angles reveal fine lamination, with lamina 

thicknesses similar to those in Lyell, on the order of ~1 to 2 mm.  Smith dips approximately 

2o to the west, and has a thickness of ~0.8 m (consistent with other exposures around the 

crater (Hayes et al. 2011)). 

Smith has fewer spherules than Lyell (Figure 2.4d), with a volumetric density of 

0.35% (SD = 0.15%, n = 14 frames).  Spherules in Smith have an average diameter of 0.73 

mm (SD = 0.50 mm; 162 spherules).  The lighter tone and poor expression of lamination of 

Smith suggests that Smith is recrystallized.   

 

2.4.3 Steno Unit 

Along the ingress path, a clear erosional contact distinguishes Smith from the 

overlying Steno unit. Inclined stratification in Smith is truncated by the lower bounding 

surface of Steno.  Strike and dip measurements suggest that this truncation surface between 

Steno and Smith has a dip of ~10o to the southeast.  The beds above the erosional contact 

conform to the surface and dip predominantly to the southeast (Figure 2.5). Measured as a 

true stratigraphic thickness, Steno consists of ~0.7 m of sandstone.  This measurement 

represents a minimum thickness due to erosion at the top of the unit, which coincides with 

the Amazonian weathering surface of Meridiani; the unit is overlain by impact breccia. 

The Steno unit is composed of fine-to-medium-grained sandstone, with well-

defined laminae, on the order of ~2 mm in thickness.  Centimeter-to-meter scale cross-

bedding is visible in places.  In the ingress path, Steno shows a varied appearance when 

weathered – appearing as a more resistant step in topography (Figure 2.4a).  Often it has a 

rougher surface texture and has a darker tone but sometimes it displays a smoother texture 

and lighter tone. 
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The spherules in Steno are relatively uniform in size and shape, with a mean 

diameter of 0.72 mm (SD = 0.19 mm; 80 spherules).  Steno has more spherules than Smith 

but fewer than Lyell, with a volumetric density of 0.46% (SD = 0.1%; n = 5 frames).  Steno 

also contains crystal-form vugs similar to those in Lyell, but less abundant.  

 

 

Figure 2.5. Rose diagram of bedding dips at Duck Bay, following methods of Hayes et 
al. (2011).  Colors correspond to dip magnitudes.  Dip directions to the southwest 
correspond to measurements of cross-bedding in Lyell, while dip directions to the 
southeast correspond to measurements of cross-bedding in Steno.  Bedding was not 
measured in Smith due to the poor expression of bedding.   

2.4.4 Chemostratigraphy 

In addition to observing the physical stratigraphy and diagenetic textures of the 

different rock units in Duck Bay, Opportunity made measurements of chemical and 

mineralogic compositions, which we will briefly summarize here.  Locations of the 

chemical measurements are represented by colored circles in Figure 2.3, corresponding to 

labeled points in the stratigraphic column (Figure 2.6).   Overall, the rock compositions 

measured in Duck Bay fall within the range of rocks observed at previous craters studied 

by Opportunity, and suggest that the rock units are composed of sulfates and silicates in 

slightly varying abundances (Mittlefehldt et al. 2008). Notable compositional differences 

include more S in Steno than previously observed at Meridiani (Squyres et al. 2009), and 

more Zn in Smith (24% higher) than any other rock yet observed (Mittlefehldt et al. 2008).  
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Smith and Lyell both show an increase in Cl content compared to Steno – Lyell reveals 

more than a factor of two increase in Cl compared to Steno (Mittlefehldt et al. 2008).  The 

chemostratigraphic trends in Duck Bay are similar to those measured at Endurance crater – 

both sections reveal a decrease in S, Fe, and Mg down-section, and corresponding Al and 

Si enrichment (Squyres et al. 2009).  The chemostratigraphic similarities between 

Endurance and Victoria may reflect the recurrence of depositional and diagenetic processes 

through time (Squyres et al. 2009), or it may reflect downward-penetrating diagenesis 

related to surface exposure (Amundson et al. 2008). 

 

 

Figure 2.6. Duck Bay stratigraphic column. Thicknesses are corrected for 2o dip to the 
west.  Left-hand-side shows locations of IDD targets (Gilbert A was sampled from a 
brecciated block below the intact unit Lyell).  Smith is interpreted as a diagenetic band 
superimposed on cross-bedded sandstone.  In the ingress path Smith is also bounded by 
an erosional contact with Steno. 

2.5 Correlation to Cape Verde 

  The three stratigraphic units are visible around much of Duck Bay, but they 

cannot be directly correlated with the nearest promontory, Cape Verde (Figure 2.7).  A 

large area of brecciated bedrock separates the ingress path stratigraphy from that at the 
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promontory, prohibiting the direct tracing of beds.  Although the rover was unable to 

reach the cliff face at Cape Verde, detailed observations of several science targets were 

made through super-resolution imaging at the rover’s closest approach (~10 m stand-off 

distance).  The strata exposed at Cape Verde contain a light-toned band similar in thickness 

to that of Smith.  Here it overprints well-laminated sandstone with low-angle cross-

bedding.  Strata near the base of the cliff face have planar lamination to low angle cross-

stratification, with dips that steepen upward in the upper half of the cliff face.  Super-

resolution imaging also reveals small climbing ripples super-imposed on the larger dune 

cross-stratification (Figure 2.7c). 

 

 

Figure 2.7. Cape Verde erosional surface. A) White dashed line shows location of 
erosional surface at the base of Cape Verde, dipping approximately 10o to the southeast 
(to the right in the above image) (Cape Verde super-resolution mosaic acquired during 
Sols 1342-1356).  White boxes show locations of B and C.  B) Super-resolution image of 
erosional surface.  Below the erosional surface, bedrock is exposed in the slope, with 
angled beds truncated by low-angle cross-stratification in the cliff face (Cape Verde 
super-resolution mosaic acquired during sols 1574-1576).  C) Cross-strata represent 
ripples climbing toward the upper right portion of the image (arrow)  (Cape Verde mosaic 
acquired during Sols 1579-1580). 

is further supported by the observation that the two exposures of the
truncation surface lie in the same plane.

PALEO-DEPOSITIONAL ENVIRONMENT

The primary sedimentary structures and diagenetic textures
preserved in the ingress Reference Section at Victoria Crater define
two facies. These include cross-bedded sandstone and planar-
laminated to low angle cross-stratified sandstone. These facies require
transport of sand under turbulent flows to generate bedforms ranging in
scale from centimeters to meters. The dunes that deposited the cross-
strata observed at Duck Bay and Cape Verde were probably an order of
magnitude greater than 1 m, likely on the order of tens of meters, as
suggested by Rubin and Hunter (1982), as calculated from the
preservation ratio [(mean thickness of preserved sets)/(mean topo-
graphical height)] for dunes (0.12) proposed by Paola and Borgman
(1991) or inferred from the ratio of preserved set thickness to complete
dune height that Mountney et al. (1999) observed for eolian dunes and

cross-strata buried by lava. The abundance of planar, low-angle cross-
stratification, meter-scale cross-stratification, and pinstripe laminae
(diagnostic of deposition by wind ripples (Hunter 1977) are most
consistent with an eolian depositional environment. These observa-
tions and their inferred depositional environment are similar to what
has been proposed previously for other locations studied by
Opportunity.

However, in the interpretation of cross-stratified facies in Meridiani
Planum, it is necessary to consider two alternative depositional models.
Knauth et al. (2005) propose that the Meridiani strata represent an
impact-induced base surge, and McCollom and Hynek (2005) propose
that the strata were deposited during a volcanic base surge. These
depositional models can be discounted on several grounds: (1) lack of
evidence for contemporaneous sources of volcanism or impacts of
sufficient size to produce base surge deposits (Squyres et al. 2006,
McLennan and Grotzinger 2008); (2) spherules are dispersed relative
to bedding (McLennan et al. 2005) rather than concentrated along
bedding planes, as would be expected if they were accretionary lapilli

FIG. 7.—Cape Verde erosional surface. (A) White dashed line shows location of erosional surface at the base of Cape Verde, dipping
approximately 108 to the southeast (to the right in the above image) (Cape Verde super-resolution mosaic acquired during Sols 1342–1356).
White boxes show locations of B and C. (B) Super-resolution image of erosional surface. Below the erosional surface, bedrock is exposed in
the slope, with angled beds truncated by low-angle cross-stratification in the cliff face (Cape Verde super-resolution mosaic acquired during
Sols 1574–1576). (C) Cross-strata represent ripples climbing toward the upper right portion of the image (arrow) (Cape Verde mosaic acquired
during Sols 1579–1580).
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The base of the cliff face contains a truncation surface (Figure 2.7).  Opportunity 

was unable to do a detailed analysis on the bedrock underlying this truncation surface, 

although a few exposures of bedrock suggest that the strata are inclined relative to those 

that overlie the surface (Figure 2.7b).  The truncation surface has a dip of ~10o to the 

southeast (Hayes et al. 2011); given that the erosional contact at the base of Steno also has 

a  ~10o dip, it seems likely that these surfaces are related, and likely represent scour by the 

same migrating bedform).  This is further supported by the observation that the two 

exposures of the truncation surface lie in the same plane. 

 

2.6 Paleo-Depositional Environment 

The primary sedimentary structures and diagenetic textures preserved in the ingress 

Reference Section at Victoria Crater define two facies.  These include cross-bedded 

sandstone and planar-laminated to low angle cross-stratified sandstone.  These facies 

require transport of sand under turbulent flows to generate bedforms ranging in scale from 

centimeters to meters.  The dunes that deposited the cross-strata observed at Duck Bay and 

Cape Verde were probably an order of magnitude greater than 1 m, likely on the order of 

10s of meters, as suggested by Rubin and Hunter (1982), as calculated from the 

preservation ratio [(mean thickness of preserved sets)/(mean topographical height)] for 

dunes (0.12) proposed by Paola and Borgman (1991), or inferred from the ratio of 

preserved set thickness to complete dune height Mountney et al. (1999) observed for eolian 

dunes and cross-strata buried by lava.  The abundance of planar, low-angle cross-

stratification, meter-scale cross-stratification, and pinstripe laminae (diagnostic of 

deposition by wind ripples (Hunter, 1977)), are most consistent with an eolian depositional 

environment.  These observations and their inferred depositional environment are similar to 

what has been proposed previously for other locations studied by Opportunity. 

However, in the interpretation of cross-stratified facies in Meridiani Planum, it is 

necessary to consider two alternative depositional models.  Knauth et al. (2005) propose 

that the Meridiani strata represent an impact-induced base surge, and McCollom and 

Hynek (2005) propose that the strata were deposited during a volcanic base surge.  These 

depositional models can be discounted on several grounds: 1) lack of evidence for 
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contemporaneous sources of volcanism or impacts of sufficient size to produce base 

surge deposits (Squyres et al. 2006a; McLennan and Grotzinger, 2008); 2) spherules are 

dispersed relative to bedding (McLennan et al. 2005) rather than concentrated along 

bedding planes as would be expected if they were accretionary lapilli or iron condensation 

spherules, and 3) the scale of the cross-bedding exposed in Victoria crater (reconstructing 

to bedforms on the order of meters to tens of meters) has not been observed in any known 

base surge deposits.  Therefore, the most probable explanation for the origin of cross-

stratified facies at Victoria crater is that they were produced in an eolian depositional 

environment. 

 

2.6.1 Deposition and Diagenesis at Duck Bay 

Lyell and Smith, as defined in the Reference Section at Duck Bay, were likely 

deposited as part of the same eolian dune package, as evidenced by the gradational contact 

between them.  Steno is a distinct stratigraphic unit marked by an erosional contact, which 

separates it from the light-toned unit Smith.  While Smith is bounded by the erosional 

contact below Steno, its presence above the erosional contact at Cape Verde suggests that 

Smith cross-cuts the primary bedding.  This relationship is consistent with observations 

made at other exposures around the crater (Hayes et al. 2011).  Small-scale diagenetic 

features suggest that Smith is recrystallized.  Lyell shows the highest density of vugs and 

spherules, followed by Steno, and Smith shows the lowest density.  The lighter tone, 

smooth appearance and lack of vugs are the result of recrystallization.  It is clear that Smith 

owes its unique identity to diagenesis, but the key question is when that diagenesis 

occurred.  

The observation that the diagenetic band has a low dip and is found near the rim of 

the crater raises hypotheses that it may be due to processes related to the Meridiani plains 

(intersection with the ground water table?), or it may be due to processes related to the 

crater impact (impact-induced melting of ice?).  The fact that the diagenetic band is 

brecciated, and in some outcrops reworked upward into the impact breccia (Figure 2.8) 

indicates that the diagenetic band was not formed during or after the crater impact.  The 

diagenetic band must postdate deposition of the eolian strata, but predate the crater impact. 
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We also observe a low density of spherules in the diagenetic band.  This may be 

explained by recrystallization prior to the precipitation of spherules.   Early recrystallization 

of Smith may have eliminated pore space so subsequent ground water infiltration would 

not precipitate as many spherules in Smith as there are in Steno and Lyell.   

 

Figure 2.8. Cabo Corrientes false color mosaic acquired on Sol 1108.  The false color 
stretch brings out subtle color differences in the outcrop, highlighting small blocks of the 
diagenetic band that are reworked into the impact breccia (white arrows point to several 
blocks).  The diagenetic band (“Smith” as described in the ingress section) is interpreted 
to have formed after deposition but before the crater impact. 

2.7 Interpretation of Eolian Stratigraphic Architecture 

The recognition of cross-bedding geometry and bounding surfaces in ancient eolian 

deposits can be used to reconstruct wind direction, the nature of dune migration, and 

ultimately the sequence of events that produced the deposit.  In turn, this may enable some 

understanding of changes in climate, sand supply, and possible subsidence.  However, we 

are working with much more limited data than most terrestrial studies of this nature, 

constrained by the few bedrock outcrops observed by the rover, and by limited stereo 

coverage.  Given the available data, we will consider a list of possibilities for the origin of 

the stratification exposed at Duck Bay and Cape Verde. 

or iron condensation spherules; and (3) the scale of the cross-bedding
exposed in Victoria crater (reconstructing to bedforms on the order of
meters to tens of meters) has not been observed in any known base
surge deposits. Therefore, the most probable explanation for the origin
of cross-stratified facies at Victoria crater is that they were produced in
an eolian depositional environment.

Deposition and Diagenesis at Duck Bay

Lyell and Smith, as defined in the Reference Section at Duck Bay,
were likely deposited as part of the same eolian dune package, as
evidenced by the gradational contact between them. Steno is a distinct
stratigraphic unit marked by an erosional contact, which separates it
from the light-toned Smith unit. While Smith is bounded by the
erosional contact below Steno, its presence above the erosional contact
at Cape Verde indicates that Smith crosscuts the primary bedding. This
relationship is consistent with observations made at other exposures
around the crater (Hayes et al. 2011). Small-scale diagenetic features
indicate that Smith is recrystallized. Lyell shows the highest density of
vugs and spherules, followed by Steno, and Smith shows the lowest
density. The lighter tone, smooth appearance, and lack of vugs are the
result of recrystallization. It is clear that Smith owes its unique identity
to diagenesis, but the key question involves when that diagenesis
occurred.

The observation that the diagenetic band has a low dip and is found
near the rim of the crater raises hypotheses that it may be due to

processes related to the Meridiani plains (intersection with the ground
water table?), or it may be due to processes related to the crater impact
(impact-induced melting of ice?). The fact that the diagenetic band is
brecciated and in some outcrops reworked upward into the impact
breccia (Fig. 8) indicates that the diagenetic band was not formed
during or after the crater impact. The diagenetic band must postdate
deposition of the eolian strata but predate the crater impact.

We also observe a low density of spherules in the diagenetic band.
This may be explained by recrystallization prior to the precipitation of
spherules. Early recrystallization of Smith may have eliminated pore
space, so subsequent groundwater infiltration would not precipitate as
many spherules in Smith as there are in Steno and Lyell.

INTERPRETATION OF EOLIAN STRATIGRAPHIC
ARCHITECTURE

The recognition of cross-bedding geometry and bounding surfaces
in ancient eolian deposits can be used to reconstruct wind direction, the
nature of dune migration, and, ultimately, the sequence of events that
produced the deposit. In turn, this may permit some understanding of
changes in climate, sand supply, and possible subsidence. However, we
are working with much more limited data than are available in most
terrestrial studies of this nature, constrained by the few bedrock
outcrops observed by the rover and by limited stereo coverage. Given
the available data, we will consider a list of possibilities for the origin
of the stratification exposed at Duck Bay and Cape Verde.

FIG. 8.—Cabo Corrientes false color mosaic acquired on Sol 1108. The false color stretch brings out subtle color differences in the outcrop,
highlighting small blocks of the diagenetic band that are reworked into the impact breccia (white arrows point to several blocks). The
diagenetic band (‘‘Smith’’ as described in the ingress section) is interpreted to have formed after deposition but before the crater impact.
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We begin by considering the truncation surface between Steno and Smith in the 

ingress path.  As discussed above, we infer that the erosional contact at the base of Steno 

correlates with the erosional surface at the base of the Cape Verde cliff face.  Although 

these surfaces lie at different elevations, they have a similar dip of approximately 10o into 

the crater, and projection of this dip shows the potential continuity of the surface between 

elevations.  The surface spans an area of least 300 m2 (limited by the few outcrops 

observed by the rover) and may represent an architectural element larger than the scale of 

the dune cross-bedding.  In this case the erosional surface may be interpreted as a bounding 

surface produced by migration of dunes on a larger bedform (cf., Fryberger 1993).  The 

compound bedform (smaller dunes migrating over a larger dune) may be termed a draa. 

Figure 2.9 provides a reconstruction of the stratigraphy between the reference section along 

the ingress path, and at Cape Verde.  Note the crosscutting relationship of the diagenetic 

unit Smith, and the position of the truncation surface. 

 

Figure 2.9. Schematic fence diagram depicting the three-dimensional geometry of the 
stratigraphy exposed at Duck Bay and Cape Verde.  The diagenetic band Smith (white) 
crosscuts the erosional surface (heavy black lines).  The erosional contact between Steno 
and Smith in the ingress path lies in the same plane as the erosional surface at the base of 
the Cape Verde cliff face.  Note: the region at the intersection of these planes is inferred 
due to a lack of intact bedrock connecting Duck Bay and Cape Verde. 
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Further consideration of cross-bedding geometry produces additional insight. 

Strata below the erosional surface, both at Duck Bay and at Cape Verde, dip to the 

southwest, while the strata above the surface dip to the southeast.  This leads to two 

possible interpretations. The different dip directions may be interpreted as remnants of 

three-dimensional sinuous crested dunes migrating southward.  In this scenario, the strata 

dipping to the southwest would represent deposition on the west-dipping surface of the east 

side of a southward-migrating topographic depression. The strata dipping to the southeast 

would represent deposition on the east-dipping surface of the west side of a southward-

migrating topographic depression (Figure 2.10).  Trough cross-bedding produced by three-

dimensional sinuous crested dunes is observed at nearby promontory Cape St. Mary, 

though the scale of the bedsets is much smaller (Hayes et al. 2011). 

 

Figure 2.10. 3D sinuous crested bedforms, modified from Rubin (1987). The red box 
highlights a section perpendicular to the flow direction, showing a bounding surface 
(bold line) with strata above and below the bounding surface dipping in opposite 
directions.  In the case of Cape Verde, the strata below the bounding surface may have 
been deposited on the east side of a southward migrating depression (strata below the 
bold line) whereas the strata above the erosional surface may have been deposited on the 
west side of a southward migrating depression (strata above the bold line). 

Alternatively, the different dip directions could be indicative of different dune-

migration directions, from which paleo-wind directions maybe inferred.  This interpretation 

is consistent with observations of terrestrial draas, which may contain reactivation surfaces 

representing the migration of dunes across a draa in different directions (McKee, 1966).  
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Work by Hayes et al. (2011) indicate that a pattern of reversing transport direction is 

observed at other locations around Victoria crater, and also with juxtaposition of cross-bed 

sets across larger-scale surfaces.   

Figure 2.11 illustrates this shift in wind directions, and the resulting cross-

stratification.  Using the model of Rubin and Carter (2005), we produce a large transverse 

bedform migrating from N to S, with superimposed bedforms that reverse migration 

direction.  To model a reversal in wind direction, we allow the superimposed bedforms to 

reverse migration direction and asymmetry. While the superimposed bedforms reverse 

migration direction, their heights are decreased and then increased.  The superimposed 

bedforms initially migrate from E to W, then reverse direction and migrate from W to E.  

The resulting stratification shows a subset of crossbeds at the base that dip to the SW, and 

an overlying subset of crossbeds that dip to the SE (this is illustrated most clearly at the 

front corner of the block).  The bounding surface that separates the two subsets dips to the 

S (note: in actuality, the bounding surface at Duck Bay and Cape Verde dips to more to the 

SE).  A snapshot of the preserved cross-stratification may reveal a bounding surface with 

cross-strata above and below the surface dipping in different directions, indicating a 

potential reversal in wind direction. This is analogous to the stratal geometry observed at 

the base of Cape Verde.  

Given the available data, we are unable to distinguish between these two 

hypotheses.  However, in both scenarios, the inferred net transport direction is roughly N to 

S, which is consistent with the inferred paleowind directions measured at other locations 

around the crater (Hayes et al. 2011).  In the case of a large bedform with superimposed 

bedforms that reverse migration direction, the orientation of the erosional surface (rather 

than the cross-strata above the surface) may serve as a better indicator of the local 

orientation of the bedform surface when it was formed. Rubin and Hunter (1983) have 

shown that in compound cross-stratification, the orientation of a bounding surface scoured 

by superimposed bedforms serves as a more accurate indicator of draa orientation than the 

dip orientation of cross-strata (note that this result holds for situations where the surface 

slope of the main bedform is relatively steep; 10o is likely steep enough for this to be a 

better approximation than the cross-beds deposited by the superimposed bedforms).  Cross-
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stratification – especially trough cross-stratification –can display a wide range of dip 

directions (up to 180o) even in a unidirectional wind; if only a small sample of these dip 

directions are measured – as is the case for Victoria crater – then the results might not be 

representative of the actual range of dips. In contrast, the dip direction of bounding surfaces 

scoured by superimposed bedforms is oriented roughly perpendicular to the draa brink, and 

therefore serves as a more accurate indicator of the primary dune migration direction. 

 

 

Figure 2.11. Depositional model for the stratal geometry at the base of Cape Verde, 
using code modified from Rubin and Carter (2005).  Model illustrates the stratification 
produced by a large transverse bedform migrating from N to S, with superimposed 
bedforms that initially migrate from E to W, then reverse direction and migrate from W 
to E.  The resulting stratification shows a subset of crossbeds at the base that dip to the 
SW, an overlying subset of crossbeds that dip to the SE, and a bounding surface 
separating the two subsets that dips to the S.  A snapshot of the preserved cross-
stratification may reveal a bounding surface with cross-strata above and below the 
surface dipping in different directions, indicating a potential change in wind direction, 
analogous to the stratal geometry observed at the base of Cape Verde. 
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The Algodones dune field in southern California provides an excellent terrestrial 

example of a draa oriented roughly perpendicular—but not perfectly perpendicular—to the 

long-term resultant transport direction, with superimposed features driven by the secondary 

airflow (Havholm and Kocurek, 1988).  Havholm and Kocurek (1988) found that on the lee 

slope of a draa, surface airflow and the migration of superimposed bedforms is typically 

oblique or parallel to the draa brinkline, highlighting the importance of these bounding 

surfaces in reconstructing paleowind directions in the rock record. At Victoria crater, the 

erosional surface dips 10o to the southeast.  If this surface is a bounding surface scoured by 

a superimposed bedform, then the bounding surface may reflect the true orientation of the 

draa brinkline, migrating from northwest to southeast. 

The erosional surface at Duck Bay and Cape Verde is also important in that it 

exposes a larger scale bedform than previously seen in Meridiani Planum.  If it represents 

the migration of dunes across a draa, then three orders of bedforms are observed at Duck 

Bay and Cape Verde: ripples, dunes, and draas.  Draa deposits appear to be a common 

feature in the terrestrial rock record.  Draas are typical of modern ergs (sand seas), often 

occurring in the centers of well-developed ergs where sand cover is thickest (Wilson, 1971; 

Havholm and Kocurek, 1988).  These conditions favor preservation, so draa deposits would 

be expected to be widespread in the rock record of eolian deposits on Earth (Havholm and 

Kocurek 1988) and in similarly arid environments on Mars.  The three orders of bedforms 

observed at Cape Verde suggest that ancient dune field glimpsed by Opportunity may have 

been a large sand sea (erg) (although the size of the reconstructed bedforms is somewhat 

smaller than terrestrial bedforms thought to have been deposited in eolian environments, 

such as the Navajo Sandstone (Rubin and Hunter, 1982)). 

The dunes in the center of Victoria crater provide a modern example of a dune field 

with multiple orders of bedforms, analogous to the ancient dune field preserved in outcrop. 

Pancam images reveal intersecting dunes in the center of the crater, with smaller 

superimposed dunes riding on the backs of the larger dunes (Figure 2.12).  The crater 

provides a confined basin for deposition, and complex wind patterns shape the sediment 

into star dunes.  Modified secondary airflow builds smaller dunes on the backs of the larger 

dunes.  Using a Digital Elevation Model (DEM) produced from stereo images from the 



 

 

31 
orbiting High Resolution Imaging Science Experiment (HiRISE), we obtained estimates 

of dune heights ranging from 2 to 5 m.  While these are somewhat smaller than the 

estimated height of the ancient dunes preserved in the Victoria bedrock, this modern 

example suggests that processes that governed ancient deposition are still acting on the 

modern Martian surface. 

One feature that is notably absent from the bedrock outcrops at Victoria crater is 

evidence for brief periods of aqueous deposition, as observed at Eagle, Endurance and 

Erebus craters (Grotzinger et al. 2005; Metz et al. 2009).  Metz et al. (2009) suggest that as 

the rover has moved stratigraphically higher through Eagle, Endurance and Erebus craters, 

that it has observed a full climatic cycle, from dry to wet to dry.   The bedrock outcrops at 

Victoria crater represent a stratigraphically higher section than that observed at Eagle and 

Endurance craters, and may represent even drier climatic conditions and  

 

Figure 2.12. Modern dunes in the center of Victoria crater (Pancam false color image 
acquired on Sol 1437).  Maximum dune heights range from 2 to 5 m, as determined from 
a HiRISE DEM.  Close-up image shows small superimposed dunes (black arrows) 
migrating across larger star dunes.  While these superimposed dunes may be analogous to 
the ancient bedforms inferred at Duck Bay and Cape Verde, they are an order of 
magnitude smaller. 

!
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increased sediment flux.  This allogenetic hypothesis suggests that the conditions at a 

given point changed through time as a result of a changing climate.  Alternatively, the lack 

of evidence for aqueous deposition may indicate lateral variations in time-equivalent facies.  

Victoria crater may expose strata from the center of a well-developed sand sea, whereas 

strata in Eagle and Endurance craters may represent a depression (or depressions) within 

the sand sea and be more prone to the emergence of ground water.  In this autogenetic 

scenario, the degree of wetness of the depositional environment would depend more on 

local elevation relative to the water table, with changes in wetness controlled by thickness 

of dry sand.  The outcrop exposed in the Reference Section at Duck Bay appears to lie at a 

similar elevation as the uppermost unit exposed in Erebus crater.  The upper unit of the 

Yavapai formation is interpreted to represent sandsheet/dune field facies (Metz et al. 2009).  

It is possible that the upper unit at Erebus represents the same period of deposition 

observed in the ingress path at Duck Bay, but the larger scale of the outcrops at Victoria 

crater exposes the stratal geometries consistent with construction of larger-scale eolian 

bedforms. 

 

2.8 Conclusions 

The strata exposed at Duck Bay and Cape Verde indicate deposition in an eolian 

dune environment, with further modifications though diagenesis.  Images from the 

Panoramic Camera and Microscopic Imager reveal three distinct stratigraphic units in the 

Reference Section traced by the rover ingress path: Lyell, Smith and Steno, in ascending 

order.  In the Reference Section, Smith is interpreted as a secondary, diagenetic unit, which 

also is bounded by a primary, erosional contact, but elsewhere in the crater the diagenetic 

band crosscuts the primary stratigraphic surfaces.  Evidence of the diagenetic unit reworked 

in the impact breccia indicates that Smith formed prior to the crater impact. Correlation 

with nearby promontory Cape Verde reveals that there is an erosional surface at the base of 

the cliff face that likely corresponds to the erosional contact below Steno.  This surface is 
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interpreted to represent the migration of dunes across a draa, and its orientation suggests 

that the draa was migrating from northwest to southeast at the time that the surface was 

formed.  The stratal geometry above and below the erosional surface suggests dune 

migration in opposing directions, or by southward migrating three-dimensional bedforms. 

Additionally, the presence of three orders of bedforms and a complex wind regime suggest 

that the strata may have been part of a large sand sea, with no evidence for aqueous 

deposition as observed at Eagle and Endurance craters. Victoria crater not only reveals the 

regional extent of processes seen elsewhere in Meridiani Planum, but the greater size of its 

outcrop exposures reveals the building of ever larger eolian bedforms.  
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Edgar, L. A., J. P. Grotzinger, J. F. Bell III, and J. A. Hurowitz (in review), Hypotheses for 
the origin of fine-grained sedimentary rocks at Santa Maria Crater, Meridiani Planum, 
Icarus. 
 

Abstract 

En route to Endeavour crater, the Mars Exploration Rover Opportunity embarked 

on a short but significant campaign at Santa Maria crater during Sols 2450 to 2551.  Santa 

Maria crater is a relatively young impact crater, approximately 100 m in diameter and 11 to 

17 m deep.  Opportunity performed detailed analyses on several ejecta blocks and 

completed an extensive imaging campaign around the crater.  Many of the ejecta blocks are 

composed of sandstone with abundant wind ripple laminations suggestive of eolian 

deposition.  However, other ejecta blocks are massive, fine-grained, and exhibit a nodular 

texture.  These rocks are interpreted to be the first rocks of a grain size smaller than the 

Microscopic Imager can resolve, and may represent the first mudstones observed by the 

rover.  Several depositional environments are considered for the origin of the fine-grained 

rocks, and the observations are best fit by a transient evaporitic lake.  If the inferred 

mudstones were deposited in a lacustrine setting, then surface water may have been present 

in a broader range of surface environments than previously documented at Meridiani 

Planum. 
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3.1 Introduction 

For the past eight and a half years, the Mars rover Opportunity has been exploring 

sedimentary rocks exposed in impact craters at Meridiani Planum (e.g., Squyres et al., 

2006b, 2009; Arvidson et al., 2011).  Key scientific investigations were carried out at 

Eagle, Endurance, Erebus, Victoria and Santa Maria craters (Figure 3.1).  Of particular 

interest is the examination of rocks formed in aqueous environments, because of their 

implications for the potential habitability of ancient Martian surface environments.  

Substantial evidence for aqueous activity was discovered at Eagle, Endurance, and Erebus 

craters (Squyres et al., 2004b; Clark et al., 2005; Grotzinger et al., 2005; McLennan et al., 

2005; Grotzinger et al., 2006; Metz et al., 2009).  The sedimentary rocks exposed at these 

craters —collectively named the Burns formation— are interpreted to record a dry to wet 

eolian depositional system (Grotzinger et al., 2005, 2006; Metz et al. 2009).   Bedrock 

outcrops at Victoria crater, however, reveal eolian environments with no evidence for 

water-lain sediments (Edgar et al., 2012).   At each of these craters, sediments are 

interpreted to have been derived from reworked playa mudstones, with pore-water fluids 

that were ultimately sourced from acid-sulfate weathering of basalt (McLennan et al., 2005; 

McLennan and Grotzinger, 2008).  At each of these sites, regardless of primary 

depositional facies, there is evidence for diagenesis involving the formation of hematite 

concretions, precipitation of crystals now represented by pseudomorphs, and 

recrystallization.  Each new outcrop exposure allows the testing and refinement of models 

for sediment production, transport, deposition and erosion.  Significantly, only fine-to-

medium-grained sandstones have been observed in the course of detailed examination of 

these outcrops.  To date, no more finely grained rocks have been reported; such rocks could 
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provide substantial additional support for the hypothesis of a lacustrine depositional 

environment, which is inferred to have been the source for at least some of the Burns 

formation. 

After leaving Victoria crater, Opportunity set out on a three-year trek to reach 

Endeavour crater, but the rover made several stops along the way.  One of those stops was 

at Santa Maria crater, which is located ~ 7 km southeast of Victoria crater and exposes a 

lower stratigraphic level than had been previously.  Observations of ejecta blocks at Santa 

Maria crater reveal primarily eolian stratification, in addition to a new facies that is 

characterized by massive, and sometimes nodular, fine-grained sedimentary rocks that we 

interpret here as potential mudstones or duststones. 

 

3.2 Geologic Setting and Methods 

Santa Maria is a relatively young impact crater located at 2.172o S, 5.445o W.  It is 

approximately 100 m in diameter and 11 to 17 m deep (Watters et al. 2011).  Topographic 

measurements made by the Mars Orbiter Laser Altimeter indicate that the plains 

surrounding Santa Maria crater are approximately 100 m lower in elevation than those 

surrounding Victoria crater.  If bedding is horizontal, as is reconstructed for Victoria crater 

(e.g., Hayes et al., 2011), bedrock at Santa Maria crater should represent a substantially 

lower stratigraphic section than anything examined to date.  Opportunity explored the 

crater during Sols 2450 to 2551, and performed an extensive imaging campaign as it drove 

around the crater from the western rim to the southeastern rim.  The stratigraphy exposed in 

crater walls is not intact and the rover did not drive down into the crater, but Opportunity 

was able to perform detailed analyses of several ejecta blocks.  
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Figure 3.1: A) Rover traverse map as of Sol 2670 plotted on Context Imager (CTX) image 
P01_001414_1780_XI_02S005W.  Santa Maria crater is located about 7 km southeast of 
Victoria crater. B) Santa Maria crater in HiRISE image ESP_020758_1780.  The rover 
approached the crater on the western rim, and drove around the rim to the south, where it 
observed target Ruiz Garcia.  C) Opportunity traverse elevation, extracted from HiRISE 
DTM. Significant campaigns at Eagle, Endurance, Erebus, Victoria and Santa Maria craters 
are plotted in color.  The plains surrounding Santa Maria crater are approximately 100 m 
lower in elevation than those surrounding Victoria crater.   
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The Opportunity rover’s Panoramic Camera (Pancam) and Microscopic Imager 

(MI) were used to distinguish sedimentary structures and textures.  Pancam is a 

multispectral imaging system mounted on the rover’s mast, 1.5 m above the ground.  It 

consists of two cameras, each containing an eight-position filter wheel, allowing 

multispectral observations in the 400 to 1100 nm wavelength range (Bell et al. 2003).  The 

MI acts as a “hand lens” camera and is mounted on the rover’s “arm”, known as the 

Instrument Deployment Device (IDD).  To compensate for the variable topography of rock 

targets and limited depth-of-field, MI images are usually taken as a stack of images.  The 

IDD moves along a path normal to the surface, and acquires images every few millimeters.  

MI images have a resolution of 30 µm/pixel (Herkenhoff et al. 2003).  The Alpha Particle 

X-Ray Spectrometer, also located on the rover’s arm, provides bulk elemental 

characterization (APXS; Gellert et al., 2006). 

 

3.3 Multispectral Observations 

Pancam multispectral images obtained during the Santa Maria campaign reveal 

several Santa Maria ejecta blocks with spectral behavior different from that observed in 

typical Meridiani outcrop, soils, or ejecta blocks at other craters.  Specifically, ejecta blocks 

named Juan de la Cosa (Sol 2451), Sancho Ruiz (Sol 2452), Maestre Alonso (Sol 2452), 

Terreros (Sol 2479), Ruiz Garcia (Sol 2479), Mabuya (Sol 2523), and several other 

unnamed blocks imaged along the rim of Santa Maria exhibit higher reflectivities —from a 

few percent up to 25%— in the shortest wavelength Pancam filters (432, 482, and 535 nm).  

Several examples are shown in Figure 3.2  These anomalously "blue" materials represent a 
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relatively unusual Pancam spectral end-member among Meridiani materials (e.g., 

Squyres et al., 2006b, 2009; Farrand et al., 2007; Arvidson et al., 2011).  Higher reflectivity 

in the blue compared to typical Meridiani materials is consistent with a lower ferric iron 

content and/or finer grain sizes within these materials (Gaffey et al., 1993; Bell et al., 

1993)). None of these surfaces exhibit evidence of hydration based on long-wavelength 

Pancam data (Rice et al., 2010). 

 

 

Figure 3.2: False color Pancam images of anomalously blue ejecta blocks at Santa Maria 
crater. A) Target Terreros, acquired on Sol 2479, using filters L257 (753, 535, 432 nm).  B) 
Target Sancho Ruiz, acquired on Sol 2452, using filters L257 (753, 535, 432 nm). C) 
Target Maestre Alonso, acquired on Sol 2452, using filters L256 (753, 535, 482 nm). 

 
 
 
3.4 Textural Observations 

High-resolution (several mm/pixel) Pancam images of ejecta blocks acquired 

during the Santa Maria campaign also reveal sandstones with abundant mm-scale, parallel-

sided lamination (Figure 3.3).  These fine laminae, known as pinstripe lamination, may 

represent wind ripple stratification, or amalgamated grain flows, indicative of eolian 

deposition (Hunter 1977, Rubin and Hunter 1982, Fryberger and Schenk 1988).  Blocks  

A) B) C) 
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Figure 3.3: A) Typical eolian stratification of the Burns formation, seen here at the Tipuna 
outcrop, Endurance crater (Grotzinger et al. 2005).  This image was acquired using 
Pancam’s 432 nm filter on Sol 307.  B) Sandstone ejecta block at Santa Maria Crater, with 
planar to low-angle cross-stratification and pinstripe lamination, indicative of eolian 
deposition.  Note the similarities in scale and style of stratification compared to the Tipuna 
block in (A). This image also reveals abundant spherules, found within the block and as a 
lag deposit covering the surrounding loose sediment.  This image was obtained using 
Pancam’s 432 nm filter on Sol 2539.  C) Pancam image of likely intact stratigraphy within 
Santa Maria crater.  The image reveals multiple sets of cross-beds, consistent with an eolian 
depositional environment, and similar to rocks of the Burns formation (Grotzinger et al. 
2005).  The image was obtained using Pancam’s 432 nm filter on Sol 2544. 
 
 
 
also contain abundant spherules that are similar to those seen elsewhere in Meridiani and 

interpreted to be diagenetic concretions (e.g., Squyres et al., 2004b).  In general, rocks near 

Santa Maria are similar to the strata of the Burns formation studied elsewhere at Meridiani 

(cf., Grotzinger et al. 2005).   

However, the anomalously "blue" ejecta blocks exhibit a very different textural 

component that consists of massive, fine-grained, mottled, and/or nodular morphologies.  

One of the rocks with an unusual texture, named Ruiz Garcia (Figure 3.4), was selected for 

a more extensive IDD campaign of MI imaging and APXS characterization.  MI images 

show that this rock appears more well-cemented, and lacks the pore spaces, vugs, and 

crystal molds that are typical of the Burns formation (cf., McLennan et al., 2005).  Ruiz 

Garcia contains abundant nodules that are well rounded and display morphologies that  

~ 5 cm 

A) B) C) 

~ 1 m 
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Figure 3.4: Target Ruiz Garcia. False color Pancam image using filters L257 (753, 535, 
432 nm) acquired on Sol 2521. Ruiz Garcia is massive and has a nodular appearance. 
White box shows approximate location of MI mosaic in Figure 3.5. 

 

generally range from ellipsoidal to more irregular shapes that show interlocking geometry 

(Figure 3.5).  Figure 3.5a shows several concretions (gray tone) scattered amongst the more 

uniform nodular texture (reddish tone).  Nodules in the fine-grained facies are typically 3 to 

7 mm as measured along their long axis.  Ruiz Garcia is pervasively overprinted by a 

nodular texture, and the nodules do not appear to have any preferred orientations. 

MI images of Ruiz Garcia (Figure 3.5) reveal that the rocks have grain sizes smaller 

than those that can be resolved by the MI.  The minimum grain size that can be resolved 

should be greater than the pixel dimensions (30 µm), and several pixels are required to 

resolve a grain, and so we accept the minimum resolution to be  ~100 µm (Herkenhoff et 

~ 5 cm 
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al., 2003).  Since, by definition, muds are less than 62.5 µm, including sediments of 

chemical origin (Blatt, Middleton and Murray, 1980) mud sized grains cannot be resolved 

in MI images.  Therefore, we infer that the rock is simply very fine-grained, and could 

potentially represent something fine enough to be considered a mudstone.  These rocks are 

interpreted as the first sedimentary rocks observed by the rover at Meridiani Planum with 

grain sizes smaller than that of fine-grained sand.  Opportunity did not make MI 

measurements on any other blocks of unusual spectral character, but Pancam images 

indicate that other anomalously blue Santa Maria ejecta block surfaces are also massive and 

likely very fine grained (Figure 3.2). 

 
 
 

 
 
Figure 3.5: A) MI mosaic acquired on Sol 2527, colored with Pancam from Sol 2521, 
using filters L277 (753, 432, 432 nm).  Individual grains cannot be resolved in MI images.  
Blue circular areas are hematite concretions, similar to those found elsewhere in Meridiani 
Planum. White box shows approximate location of MI frame shown in B). B) MI best 
focus frame acquired on Sol 2527.  Note the nodular texture, very fine grain size, and lack 
of stratification. 
 

B) A) 
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3.5 Composition 

APXS data provides additional insight and can be used to relate the Santa Maria 

facies to other outcrops at Meridiani Planum.  The Burns formation is interpreted to 

represent a two-component mixture of a sulfate- and hematite-rich brine and a siliciclastic 

component with a composition consistent with acid-leached basalt (McLennan et al., 2005; 

Squyres et al., 2006b).  At Endurance and Victoria Craters, these two components have 

been shown to have a depth dependent relationship, with stratigraphically lower samples 

enriched in the siliciclastic component, and stratigraphically higher samples enriched in 

materials precipitated from a sulfate- and hematite-rich brine (Squyres et al. 2006b; 2009).  

APXS compositional data indicate that the Santa Maria blocks are relatively enriched in the 

siliciciclastic component (Figure 3.6), consistent with the low stratigraphic level of Santa 

Maria crater relative to Victoria and Endurance Craters (Squyres et al., 2009). 

Some caution must be applied when relating the composition of the Ruiz Garcia 

analysis, which was collected on a rock that was not abraded by the Rock Abrasion Tool 

(RAT), to analyses collected on abraded rocks.  Because such “as is” analyses may be 

variably contaminated with the ubiquitous basaltic soil and dust observed at Meridiani 

Planum, it is important to evaluate the effect of such contamination on a given APXS 

analysis.  As shown on Figure 3.6, for “as-is” analyses there is a clear trend from the 

mixing array between siliciclastic and chemical components defined by the abraded rock 

analyses toward basaltic soils.  Some basaltic soils are further modified by enrichment in 

hematite from eroded Burns formation outcrop, as demonstrated by Yen et al. (2005). 

Based on bulk chemistry alone, Ruiz Garcia compositions appear relatively unaffected by 

basaltic soil contamination.  Interpretation of APXS data (Figure 3.6) is consistent with the 
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absence of observed soil or dust components on the outcrop (Figure 3.5).  Accordingly, 

we suggest that the Ruiz Garcia analysis faithfully records the composition of the rock, 

unaffected by soil or dust contamination. 

 

3.6 Diagenetic Considerations 

Despite the relative enrichment of siliciclastic-component in Santa Maria 

mudstones, the Ruiz Garcia analysis indicates that this lithology is still sulfate-rich (Ruiz 

Garcia SO3 = 17.5 wt%).  This is significant because sulfate sediments are chemically 

labile, easily recrystallized, and grain sizes are often significantly increased beyond their 

original primary grain size as a result of diagenesis (McLennan et al., 2005). This increase 

in grain size is the product of Ostwald ripening of crystals, where recrystallization results in 

grain-size enlargement to thermodynamically more stable geometries (Lifshitz and 

Slyozov, 1961).  Thus, the grain sizes (< ~100 µm) observed in the unique rock surfaces of 

Santa Maria ejecta blocks are likely larger than the original, pre-diagenetic grain sizes of 

their precursor materials.  In addition, the complete lack of physical stratification, so 

ubiquitous throughout the rest of the Burns formation and even in other facies at Santa 

Maria crater, argue that the grain size of these anomalous ejecta block materials is 

homogeneous and could indeed be significantly finer than ~100 µm.  Sulfate mobility is an 

issue for all Meridiani rocks, and recrystallization is observed at Endurance, Erebus and 

Victoria craters (Grotzinger et al., 2005; Metz et al., 2009; Edgar et al., 2012).  However, 

recrystallized rocks at these other locations still preserve primary stratification (Figure 3.7), 

and nodules are not observed. The massive, fine-grained, nodular blocks at Santa Maria 

crater are exceptional, and another hypothesis is warranted.  
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Figure 3.6: Molar Al2O3/(FeOT + MgO + CaO) versus SO3 (mole %) for Burns formation 
APXS analyses acquired between Sol 1 and 700 (Gellert and Rieder, 2006). Green circles 
are analyses acquired after abrasion of rock surfaces with the RAT, blue diamonds are 
analyses acquired on “as-is” outcrop (i.e., not abraded or brushed clean with the RAT). The 
red diamond is the as-is analysis on the target Ruiz Garcia acquired on Sol 2521. White 
squares are analyses of undisturbed soils and dust at the Opportunity landing site collected 
over Sols 1-700. The solid line is a mixing array reproduced from Squyres et al. (2006b) 
and tracks the varying proportions of siliciclastic and chemical components in abraded 
Burns formation samples. The dashed line is a mixing array between the chemical 
component of outcrop (Squyres et al., 2006b) and Martian dust, as represented by the 
analysis Hilltop_Wilson (Yen et al., 2005), collected on Sol 123. Lines with small 
arrowheads track increasing levels of “contamination” of as-is outcrop analyses with 
basaltic soil, and the enrichment of some of those soils with hematite derived from eroded 
Burns formation outcrop. The numbers 1 and 2 correspond to the inset MI images of the 
most SO3-poor and SO3-rich as is APXS analyses: “Pohutu” and “Russett”, respectively. 
These images were collected on Sol 311 and 381, respectively, and show that the apparent 
trend away from the mixing array is consistent with variations in soil cover content.  Each 
MI image is 3 cm wide. 
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We believe that these multiple lines of multispectral and textural evidence 

support the hypothesis that the unique, massive, fine-grained facies of Santa Maria ejecta 

blocks could have started out as a mudstone and has since been modified through 

diagenesis.  An important component of this hypothesis is that these sediments could not 

have started out as the sandstones of the Burns formation, typically with medium to coarse 

grain sizes (see, for example, Grotzinger et al., 2005; 2006; Edgar et al., 2012); rather, they 

appear to represent a different initial grain size that was significantly finer. 

 

 
Figure 3.7: Recrystallization in the Burns formation seen at Endurance crater and Victoria 
crater.  A) The Whatanga contact at Endurance crater is interpreted to have formed in the 
capillary fringe of the water table (Grotzinger et al. 2005).  The dark-toned zone is heavily 
recrystallized, but palimpsest fine lamination is still visible. Image acquired on Sol 312, 
using Pancam’s 753 nm filter.  B) The light-toned Smith unit at Victoria crater is heavily 
recrystallized, but images taken at low solar incidence angles reveal fine lamination (Edgar 
et al. 2012). Image acquired on Sol 1351, using Pancam’s 753 nm filter. 
 
 
3.7 Interpretation of Nodular Texture 

Ruiz Garcia and other fine-grained blocks have a nodular appearance, which we 

infer to result from differential cementation during diagenesis.  Their ellipsoidal to irregular 

shapes strongly contrasts with the concretions that are present in other outcrops of the 

~50 cm ~10 cm 
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Burns formation, which generally have strictly spherical shapes (McLennan et al., 2005; 

Edgar et al., 2012).  Ruiz Garcia and other fine-grained rocks lack any visible porosity, in 

contrast to other Burns facies, and appear very well cemented. 

Observations of coarser-grained, well-laminated sandstones in the Santa Maria 

region suggest that these also underwent differential cementation, as they uncommonly also 

have a nodular appearance (Figure 3.8).  However, the coarser-grained facies retain original 

textures such as lamination.  Formation of nodules is characteristic of chemical sediments 

and it is not uncommon to see fine-grained sediments with primary stratification undergo 

transformation to a more massive but mottled texture due to differential early cementation 

(Mohamad and Tucker 1976; Moller and Kvingan 1988; Lee and Kim 1992).  Ruiz Garcia 

displays mottled textures that are very similar to nodular mudstones on Earth (Jenkyns 

1974; Kennedy and Garrison 1975; Moller and Kvingan 1988).  For example, in the 

Neoproterozoic Buah Formation of Oman one can trace cm-scale stratification laterally and 

vertically into zones of mottling with massive texture (Figure 3.9).  The scale and fabric of 

this terrestrial analog (carbonate) is very similar to the fine-grained martian sediments 

(likely sulfate).  

The formation of nodules can be explained by differential cementation related to 

early diagenesis.  This requires interstitial pore fluids that are oversaturated with respect to 

the phases that precipitate the interstitial cements that form the nodules.  Differential 

cementation results from heterogeneous nucleation, and differential weathering of the more 

resistant nodules (better cemented, harder rock) produces the modern surface topography of  
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Figure 3.8:  The coarser-grained, well-laminated sandstone facies also exhibits a nodular 
appearance (arrow), due to differential cementation.  However, the coarser-grained facies 
retains its original laminated texture.  This image was acquired on Sol 2456, using 
Pancam’s 753 nm filter. 
 
 

 
 

Figure 3.9:  Diagenetic modification to a massive but mottled texture is common in fine-
grained chemical (carbonate) sediments on Earth.  This example from the Neoproterozoic 
Buah Formation of Oman shows a finely laminated texture (base of outcrop in image A) 
breaking up into nodules (image B).  Image B exhibits a massive, fine-grained texture 
similar to target Ruiz Garcia. 
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the rock featuring its characteristic roughness that reflects the presence of the nodules (cf. 

Noble and Howells 1974; Kennedy and Garrison 1975, Moller and Kvingan 1988). 

Unfortunately, the stratigraphic context of our hypothesized nodular mudstone 

facies at Santa Maria is poorly constrained.  Pancam images of the crater walls indicate that 

the nodular, mottled texture is present in only the lower portion of the crater, but impact 

brecciation inhibits direct inference of stratigraphic position.  The proposed mudstones are 

not observed in stratigraphic context, but we can still infer that they come from a lower 

stratigraphic level than the sandstones because preferential cementation to form nodules 

appears to have only affected the lower portion of the observed stratigraphy at Santa Maria 

crater (Figure 3.10). 

 

Figure 3.10: Stratigraphy exposed in the southern wall of Santa Maria crater.  The lower 
portion of the stratigraphic section appears to be recrystallized, while the upper portion of 
the stratigraphy is well-laminated.  Pancam false color image acquired on Sol 2454 using 
filters L257 (753, 535, 432 nm). 
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3.8 Identifying and Interpreting Mudstones on Mars 

On Earth, fine-grained sedimentary rocks (grain size <62.5 µm) are the most 

abundant sedimentary rock type (Potter, Maynard and Pryor, 1980).  Mudstones occur in a 

variety of environments including marine environments, transitional environments such as 

deltas, rivers and estuaries, and nonmarine environments including lakes, floodplains, 

loess, and other eolian deposits (Potter, Maynard and Pryor, 1980).  Fine-grained 

extrabasinal sediments – derived far from the site of deposition – are the record of extreme 

hydraulic segregation resulting from transport in currents of water or air.  They accumulate 

in both local and terminal sediment sinks, and are most abundant at the distal end of 

sediment transport pathways.  Fine-grained intrabasinal sediment of chemical origin, 

however, is produced at or near the site of deposition and their grain size reflects nucleation 

and growth kinetics rather than hydraulic processing (Bathurst, 1975). 

Observations of the fine-grained facies at Santa Maria crater are very limited, so it 

is difficult to determine the environment in which they were deposited.  Regional context 

provided by other outcrops of the Burns formation suggests it is unlikely that they were 

deposited in a marine environment.  This is due principally to the absence of facies 

indicative of marine processes and, rather, the preponderance of evidence supportive of 

eolian processes (see, for example, Grotzinger et al. 2005 for further discussion).   

Of the non-marine environments, we see no evidence for larger scale fluvial 

deposits in the Burns formation, such as channel deposits, coarse lags, or fining-upward 

sequences, which might support a hypothesis involving settling of fines on flood plains.  

Volcanic ash is a possible explanation for the fine-grained material, but we see no specific 

evidence of volcanism in the vicinity of Santa Maria crater besides the ubiquitous basaltic 
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sand that is found across all of Meridiani. Fine-grained material created during impact 

cratering is also a possible explanation.  Fallout of suspended fine sediments from either 

the atmosphere (which may include pyroclastic or impact-generated fines) or from the 

water column of a lake may be the two most likely environments that would account for the 

fine grained, nodular rocks at Santa Maria crater. 

Large accumulations of wind-blown dust and silt – sediments < 0.62 µm in grain 

size – are known as loess, and their cemented rock equivalents loessite (Smalley and Leach 

1978; Johnson 1989; Chan 1999; Soreghan et al. 2002).  On Earth, loess deposition is most 

commonly associated with Quaternary glaciation and wind reworking of glacial deposits 

(Edwards 1979).  Smalley and Krinsley (1979) suggest that there are likely loess deposits 

on Mars.  Loess deposition is proposed as a hypothesis for some of the young, widespread 

mantling deposits on Mars (Malin and Edgett 2000), including those within the Medusae 

Fossae Formation (Greeley and Guest, 1987; Scott and Tanaka 1986; Head and Kreslavsky 

2004), in Arabia Terra (Fassett and Head 2007; Mangold et al. 2009; Lewis et al., 2008), 

Tharsis Montes (Bridges et al. 2010), and within the uppermost strata of the Gale crater 

mound (Anderson and Bell, 2010; Thomson et al., 2011).  Recognition of the importance of 

these potential loess or dust deposits, which sometimes exhibit evidence for induration and 

form weakly cemented rock has led to the term “duststones” (Bridges and Muhs 2012).  

These duststones likely have global stratigraphic importance and may reflect the long-term 

decrease of impact-generated fines to be reworked by the wind and transported to sites of 

regional deposition (e.g., Bridges and Muhs, 2012; Grotzinger and Milliken, 2012).  

Impacts, explosive volcanism and mechanical breakdown of material through saltation 
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provide alternatives to glaciation as mechanisms to produce abundant fine-grained 

sediment. 

Large dust storms are common phenomena on Mars (Haberle 1986, Martin and 

Zurek 1993; McKim 1996).  We can only estimate their magnitude in the geologic past, 

and the potential for rare, large storms to carry large volumes of sediment.  It is possible 

that fine-grained facies at Santa Maria crater were formed during the fallout following dust 

storms that occurred at the time the Burns formation was being deposited. Although 

Opportunity did not observe what lies stratigraphically beneath the fines at Santa Maria 

crater, we can infer that it was likely eolian sandstone, because we see outcrops of eolian 

sandstones on the plains between Santa Maria crater and Endeavour crater at successively 

lower elevations.  Fines deposited during global dust storms would have draped and 

mantled pre-existing topography. When wind velocities later increased (the coarser cross-

bedded deposits of the Burns formation suggest persistent high wind velocities), much of 

the dust would have been removed, but perhaps some fraction remained in place to create 

the observed deposit.  This potential “duststone” deposit would have mostly been preserved 

in an interdune depression as a lens of massive fine-grained material interfingered with 

eolian sandstones. 

It is important to note that the APXS composition data for Ruiz Garcia are not 

consistent with the composition of modern martian dust (based on the analysis of 

Hilltop_Wilson (Yen et al., 2005), collected on Sol 123).  However, it is possible that the 

composition of ancient martian dust was different.  For example, the dust may have had a 

larger tephra component, or a larger component of fines generated from impact processes, 
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resulting in a composition that falls on the siliciclastic to chemical mixing array rather 

than the mixing array between dust and the chemical component (Figure 3.6). 

Alternatively, we consider a possible lacustrine origin for the fine-grained material.  

Lakes are sinks for both water and sediment (Leeder 1999).  They form when runoff or 

river flow is interrupted, usually in a depression, or when groundwater emerges within 

interdune depressions or other playa lake settings.  Lakes lack high current velocities, 

which provides a simple hydraulic setting in which fines can settle from suspension, 

making this an attractive interpretation for the Santa Maria fines.  Previous work shows that 

interdune depressions would have been common on the ancient Meridiani plains 

(Grotzinger, 2005; Edgar et al., 2012).  There are many types of lakes, ranging from large, 

deep, permanent freshwater lakes, to shallow, ephemeral, saline lakes, and they can be 

distinguished on the basis of facies associations and suites of sedimentary structures.  We 

see no evidence in Meridiani for large, deep, permanent lake facies such as turbidites and 

varves, or associated adjacent fluvial facies that would have supplied a lacustrine setting 

with sediment, such as channels, alluvial fans, or deltas. Given the eolian environment that 

characterizes the Burns formation, this type of lake would have been unlikely.  However, 

mudstones are found in terrestrial eolian environments in ephemeral saline lakes (Hanley 

and Steidtmann 1973; Mountney and Thompson 2002).  Ephemeral saline lakes leave 

deposits of interstratified evaporites and extrabasinal clastic sediments, produced by cycles 

of storm runoff followed by evaporite precipitation (Leeder 1999).  Chemically purer, more 

massive mudstones form when groundwater emerges, evaporates, and leaves its salts as 

mud-sized sediment particles.  Lacustrine mudstones in eolian environments may 

additionally contain structures such as desiccation cracks, or coarser evaporite crystal 
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growth structures.  Whereas possible desiccation cracks were observed in sandstones at 

Erebus crater (Grotzinger et al., 2006; Metz et al. 2009), we do not see these features in the 

proposed mudstones at Santa Maria crater.  Instead, the fine-grained facies appears 

homogenous, with very low porosity, consistent with a pervasively cemented interdune 

chemical sediment, produced by in situ evaporation of emergent groundwater.   

A key attribute of the Ruiz Garcia fine-grained facies is its nodular texture, and 

absence of visible pores, vugs, or crystal molds. On Earth, such a texture can indicate 

significant early diagenesis involving heterogenous lithification as discussed above.  In 

addition to early lithification, the development of nodular textures may also be enhanced by 

differential compaction of less well-cemented components of the rock around the nodules 

during shallow burial (Wolf and Chilingarian 1976; Potter 1980).  In the case of evaporites, 

nodules may reflect diagenetic phase changes from primary to secondary mineral 

assemblages, such as during the conversion of gypsum to anhydrite (Murray 1964).  Either 

scenario could have occurred during diagenesis of lacustrine sediments.  However, the 

absence of vugs, larger evaporite crystals, or crystal pseudomorphs suggests the sediment 

was precipitated as fine mud and experienced only enough diagenesis and recrystallization 

to form nodules, similar to the example of nodular carbonate mudstones (Figure 3.9).  This 

would suggest precipitation from the water column, very rapidly and with many nucleation 

points to form abundant small crystals.  The absence of bottom growth crystals, with an 

upward growth direction, would rule out persistence of the water body for a period of time 

long enough to form these crystals.  In summary, we believe that the evidence from 

observations of the anomalous ejecta blocks at Santa Maria crater fits a simple model for a 

transient evaporitic lake that precipitated fine-grained sediments that were shallowly buried 
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and recrystallized to form nodular mudstones.  Compared to Eagle and Endurance 

craters, this implies a body of standing water, as opposed to just flowing water; however, it 

need not have been long lived. 

 

3.9 Significance of Duststones and Mudstones on Mars 

Although we are unable to distinguish potential duststones from lacustrine 

mudstones at Santa Maria crater due to limited data, the occurrence of this fine-grained 

facies still has important implications.  Regardless of their origin, this is a new occurrence 

of such fine material at Meridiani Planum.  It has been proposed that dust may comprise a 

much greater portion of the global stratigraphic record on Mars compared to Earth (Bridges 

and Muhs 2012; Grotzinger and Milliken 2012). Thus, if their origin is dust-related, the 

fine-grained material at Santa Maria crater may shed light on preservation mechanisms and 

how dust is incorporated in the stratigraphic record, and would provide another expression 

of persistently dry conditions that may have existed for much of the geologic history of 

Meridiani Planum.  

Alternatively, if the fine-grained rocks represent lacustrine mudstones, this would 

support the inference that the Burns formation may record intermittently wet conditions 

(Squyres et al., 2004b), possibly involving interdune lacustrine environments (Grotzinger et 

al., 2005). This is especially important because it strengthens the conceptual model that 

invokes sulfate-rich, but “dirty” (i.e. silicate containing) playa lakes as a potential source of 

the Burns formation eolian sulfate sandstones.  The sulfate-rich eolian sandstones that 

overlie the fine-grained sediments would signal a return to dry conditions at ancient 

Meridiani.  Diagenetic alteration during shallow burial of the fine-grained sediments 



 

 

56 
created the nodular textures, and all sulfate sediments experienced the chemical 

interactions that resulted in ubiquitous precipitation of hematite concretions that overprint 

both nodular fine-grained sediments as well as coarser sandstones. 

Finally, it is worth noting the special significance of the lacustrine hypothesis.  

Given that lakes of any type have high potential to preserve organic compounds, the Ruiz 

Garcia fine-grained sediments could represent not only a former potentially habitable 

environment, but one that also could have trapped and preserved organic matter if it had 

been present (cf. Farmer and DesMarais, 1999; Summons et al., 2011).  The distinctive 

nodular texture represents a nice example of the different ways that diagenesis – so critical 

to preservation – may be expressed.  Recognition of diverse facies or diagenetic textures 

does not in its own right guarantee success in exploring for organics (assuming organic 

compounds were present), but rather defines a basis by which exploration can proceed 

systematically, with emphasis on those rocks which may have undergone early lithification 

before organic compounds could have been degraded.  Future missions, like the exploration 

of Gale crater by the Mars Science Laboratory rover Curiosity, might benefit from such an 

exploration approach. 
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C h a p t e r  4  

LOW REGIME BEDFORMS IN PYROCLASTIC SURGE DEPOSITS, HUNT’S 
HOLE, NEW MEXICO 

Abstract 

Pyroclastic surges are dilute flows of gas and rock fragments, typically generated 

by the interaction of magma and water in phreatomagmatic eruptions.  Due to the 

hazardous nature of these eruptions, very little is known about sediment transport during 

these events.  However, the cross-stratified deposits that they leave behind provide a 

potentially important history of the flow conditions because all sedimentary bedforms 

directly record interactions between the flow and transported sediment particles.  The goals 

of this study are to use geometric relationships within surge deposits to better understand 

bedform kinematics and gain insight into the flow dynamics of pyroclastic surges. 

Two prime examples of pyroclastic surge deposits are exposed in Hunt's Hole and 

Kilbourne Hole in southern New Mexico.  These Pleistocene volcanic craters expose up to 

13 m of pyroclastic surge deposits, dominated by decimeter-to-meter-scale bedforms. The 

corrugated pattern of erosion around the rim of Hunt’s Hole provides three-dimensional 

exposures at the scale of the bedforms, which enables observations of bedform geometries.  

We identify several distinct facies, and measure bedform characteristics in the cross-

stratified facies. Previous studies at other locations have identified “chute and pool 

structures” and potential antidunes in pyroclastic surge deposits, indicating high Froude 

number flow conditions.  However, all bedforms observed at Hunt’s Hole are consistent 

with downstream migration of bedforms, under lower flow regime conditions. 
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This study brings a relatively new approach to bedform reconstructions, through 

the use of Terrestrial Laser Scanning (TLS) to study cross-stratification at Hunt’s Hole.  

TLS technology is based on Light Detection and Ranging (LiDAR).  The large grain size 

variations present in pyroclastic surge deposits make them an ideal target for TLS, because 

the intensity of the returned laser varies with target properties such as grain size, packing, 

and composition, thereby making individual beds visible in LiDAR data.  LiDAR intensity 

values may serve as a proxy for grain size. Digital outcrop models are produced with 

millimeter-to-centimeter-scale resolution.  In addition to LiDAR, we apply consumer-level 

software to create nearly accurate three-dimensional models from digital photography.   

The combination of these methods allows for visualization and mapping of geological 

surfaces in three dimensions, which in turn can be used for bedform reconstruction.  We 

then make estimates of hydrodynamic conditions to approximate a range of flow depths 

and depositional velocities for the bedforms observed at Hunt’s Hole, and make predictions 

for pyroclastic surges on Mars. 

 

4.1 Introduction 

Pyroclastic surges are dilute flows of gas and rock fragments, in which clasts are 

supported by turbulence of the fluid phase rather than collisional momentum transfer 

(Branney and Kokelaar, 2002).    Pyroclastic surges are formed in phreatomagmatic 

eruptions, pyroclastic flows, and pyroclastic falls (Cas and Wright 1987).   Pyroclastic 

surges formed by phreatomagmatic eruptions are considered to be cold and wet compared 

to those formed in pyroclastic flows and falls, which are relatively hot and dry.  

Phreatomagmatic eruptions can occur in a variety of environments, with any type of 
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magma.  The diversity of phreatomagmatic environments and eruption styles testifies to 

the availability of near surface water on Earth (Brand 2008), which has application to Mars 

in the search for aqueous processes (Squyres et al. 2007).  Here we focus on 

phreatomagmatic eruptions in which magma mixes with groundwater in the shallow 

subsurface, resulting in pyroclastic surges that produce cross-stratified deposits.  These 

eruptions are very hazardous and nearly impossible to observe, but the deposits that they 

leave behind provide important records of flow conditions.  Cross-stratification records the 

migration of bedforms, which in turn provide evidence for flow properties such as depth 

and velocity. 

Bedforms in phreatomagmatic surge deposits were first described in detail in the 

1970s.  Schmincke et al. (1973) described possible chute and pool structures in the Laacher 

See area, and suggested that these sedimentary structures represent a hydraulic jump.  

Generally, they are regarded as antidunes (Fisher and Waters 1970; Waters and Fisher 

1971; Crowe and Fisher 1973; Hoffer 1976; Wohletz and Sheridan 1979; Gencalioglu-

Kuscu et al. 2007), evidenced by low dip angles of laminae, stoss side laminae that dip 

more steeply than lee side laminae, and crestlines that appear to move upstream, indicative 

of upper flow regime.  A handful of studies suggest that bedforms in surge deposits 

represent low-regime conditions (Stuart and Brenner 1979; Sohn and Chough 1989; Lajoie 

et al. 1992).  On rare occasions, bedforms that show evidence for both upstream and 

downstream migration directions have been noted (Cole 1991).  Additional studies have 

made quantitative measurements of dune wavelengths, amplitudes, stoss and lee side 

angles, and grain size distributions in pyroclastic deposits (Walker 1971; Waters and Fisher 

1971; Sheridan and Updike 1975; Walker 1984).  More recently, experimental and 
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modeling work has been used to better understand flow dynamics in a variety of 

pyroclastic density currents (Wohletz and Sheridan 1983; Giordano and Dobran 1994; 

Scheu et al. 2008; Dufek et al. 2009).  However, despite several decades of analysis, we 

still have a very limited understanding of bedform kinematics in this type of depositional 

environment, and how bedforms can be used to infer flow conditions.  Understanding 

bedform kinematics is limited by the inability to observe bedform formation and migration 

in base surge flows, so we must rely on the deposits they leave behind.  The properties of 

bedforms preserved in rock outcrops have been described, but bedforms have not been 

reproduced experimentally (in flume experiments using intermediate densities for 

example).  Furthermore, most outcrops reveal only two-dimensional exposures of the 

bedforms, providing only one viewing geometry from which to reconstruct bedform 

kinematics. 

The principal goal of this study is to use three-dimensional geometric relationships 

to better understand bedform kinematics and gain insight into the flow dynamics of 

pyroclastic surges.  We do this through field work and a relatively new technique of 

Terrestrial Laser Scanning.  In this chapter we present field observations of pyroclastic 

surge facies, focusing on the reconstruction and analysis of cross-bedded facies.  This is 

used to reconstruct flow dynamics and compare to other pyroclastic surge localities, and 

discuss criteria for recognizing these deposits on Mars. 

 

4.2 Geologic Context 

Two prime examples of pyroclastic surge deposits are exposed in Hunt’s Hole and 

Kilbourne Hole, located about 20 miles southwest of Las Cruces, in southern New Mexico, 
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USA (Figure 4.1).  An additional crater, known as Potrillo Maar, straddles the 

international border with Mexico to the south (Reeves and DeHon 1965).  Collectively 

these features are known as the Afton craters.  The Afton craters are Pleistocene volcanic 

craters formed during phreatomagmatic eruptions (this type of crater is also called a 

“maar”).   Maars range in size from 60 to 8,000 m (Tilling 1985) and typically fill with 

water to form relatively shallow crater lakes.  A small depression, named Phillip’s Hole, 

lies to the east of Hunt’s Hole, and may represent a buried maar (DeHon 1965).  

 

Figure 4.1: Field study area in southern New Mexico. Satellite image (available 
11/26/2011) of Kilbourne Hole and Hunt’s Hole.  Light-toned tuff rings are particularly 
visible on the eastern sides of the craters. 
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The Afton craters lie in the Mesilla Basin in the southern part of the Rio Grande 

rift, along the Fitzgerald-Robledo fault system (Hoffer 1976, Padovani and Reid 1989).  

Extension in this part of the Rio Grande rift began around 32 m.a. (Padovani and Reid 

1989; McMillan 2004).  As the Mesilla Basin subsided it filled with sediment eroded from 

the rift-flank highlands, and playa lake deposits.  These basin fill deposits are known as the 

Santa Fe Group, and are estimated to be 457 to 762 m thick (Hawley 1984; Hawley and 

Lozinsky 1992).  The youngest unit of the Santa Fe Group is the Camp Rice Formation, 

consisting of basin floor sediment and fluvial gravels, which are exposed in Hunt’s Hole 

and Kilbourne Hole.  Petrographic studies of the Santa Fe Group in the vicinity of 

Kilbourne Hole and Hunts Hole indicate that the underlying lithology is dominantly 

composed of monocrystalline quartz, plagioclase feldspar, and volcanic lithic fragments, 

with minor amounts of potassium feldspar and polycrystalline quartz (Hawley and 

Lozinsky 1992).  The maars erupted through the Santa Fe Group and through thin basalt 

flows known as the Afton Basalt (Seager 1987).  The Afton basalt has yielded K-Ar 

radiometric dates from 0.5 m.y. to about 0.1 m.y. (Seager et al. l984; Hoffer, 1976; Hawley 

and Kottlowski, 1969).  Estimates of soil development (Gile 1987) suggest that the basalt is 

approximately 0.1 m.y. old. Surge deposits lie directly on the basalt, or where the basalt is 

absent, they rest on sediments of the Santa Fe Group (Camp Rice Formation) (Hoffer 

1976). 

Kilbourne hole is a roughly elliptical crater, approximately 3.4 km long and 2.4 km 

wide.  Hunt’s Hole is more circular with a diameter of approximately 1.7 km (2.0 km at its 

maximum width).  The craters expose ~2 to 13 m of pyroclastic stratigraphy, dominated by 

decimeter-to-meter scale dunes (Figure 4.2).  At Hunt’s Hole, the geomorphic pattern 
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around the rim of the crater provides three-dimensional exposures at the scale of the 

bedforms, which allows for observations of bedform geometries.  The most easily 

accessible outcrops and best exposures lie on the southern rim of the crater.  Here, the 

contact between the pyroclastic surge deposits and the underlying Camp Rice Formation is 

effectively horizontal (very minor topographic variations are noted). 

At both Kilbourne Hole and Hunt’s Hole, the surge deposits show reworking into 

overlying eolian dune deposits.  Eolian deposits are thick on the eastern rims of the craters, 

and enhance the modern day rim topography. 

 

 

Figure 4.2: Outcrops at Hunt’s Hole are dominated by decimeter-to-meter scale climbing 
dunes.  Transport from left to right.  The geomorphic pattern around the rim of the crater 
enables observations of bedform geometries in 3D.  Note the large trough cross-bedding 
in flow perpendicular cuts, and high angles of climb in flow parallel cuts.  Arrow points 
to basal contact with a paleosol of the Santa Fe Group. 
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4.3 Methods 

To characterize the field site we measured stratigraphic sections, delineated facies, 

mapped the architecture of cross-stratified facies and reconstructed bedform geometries, 

mapped paleoflow directions, and collected samples for grain size analysis. We also 

employed a relatively new mapping technique using Terrestrial Laser Scanning (TLS), also 

known as LiDAR (Light Detection and Ranging), to study cross-stratification.  

4.3.1 Data Collection 

LiDAR data was collected with an Optech ILRIS-3D imaging system.  The ranging 

system uses a 1,500 nm wavelength laser, which bounces off the remote target and returns 

to the detector.   The two-way travel time is divided in half and multiplied by the speed of 

light to calculate the distance to the target, Z.  X and Y spatial positions are calculated from 

the position of the laser when it leaves the instrument.  The Optech ILRIS-3D imaging 

system used in this study is capable of collecting 2,500 points per second.  Each point 

records accurate X, Y, Z and intensity values.  The intensity of the returned beam depends 

on many factors, including target properties (which may include grain size, composition 

and target reflectance (Kaasalainen et al. 2011)).  While further calibration is required to 

understand these specific effects (Kaasalainen et al. 2009), individual beds, laminae, and 

likely even individual grains can be resolved at Hunt’s Hole using LiDAR. 

We collected LiDAR data from 8 locations around the southern rim of Hunt’s Hole.  

Locations were scanned from multiple positions to account for 3D exposures and 

obstructions.  These scans were then used to produce digital outcrop models with 

millimeter-to-centimeter-scale resolution (Bellian et al. 2005). 
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Grain size samples were processed using a Gilson sieve shaker.  Samples were 

passed through a series of sieves corresponding to the following grain sizes in millimeters: 

>4, 4-2, 2-1, 1-0.5, 0.5-0.25, 0.25-1/8, 1/8-1/16, <1/16, and the sieve shaker was run for 15 

minutes per sample. 

 

4.3.2 Data Processing 

LiDAR data were processed using LidarViewer version 2.5, a point cloud 

visualization tool developed by the Keck Center for Active Visualization in the Earth 

Sciences (KeckCAVES) and the Department of Geology at the University of California, 

Davis (Kreylos et al. 2008).  LidarViewer provides an opportunity to view point cloud data 

without subsampling or reducing the data.  The program also allows the user to extract 

individual points, fit planes to selected points, determine distances, and measure angles. 

These features were used for processing and analyzing LiDAR data from Hunt’s Hole. 

Additionally, commercial photogrammetry software was used to create 3D models 

from digital photography.  123D Catch (previously known as Project Photofly) is a cloud 

computing application developed by Autodesk Labs to create models of objects or space.  

Images taken from a series of locations surrounding a target (spaced approximately every 

10o) are stitched together using photogrammetry to produce a 3D model.  The quality of the 

model depends on the quality and spacing of the images.  3D models of rock outcrops at 

Hunt’s Hole were produced with accuracies of approximately 1 to 3 cm.  Resolution was 

verified by placing blocks of known dimensions and spacing within the target areas.  The 

combination of these methods enables visualization and mapping of geologic surfaces in 

3D. 
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4.4 Pyroclastic Facies 

Field observations of cross-stratified tuff reveal paleoflow directions radiating 

outward from the center of the crater, consistent with those measured by Hoffer and Hoffer 

(1998).  Hunt’s Hole exposes surge deposits that are ~2 to 13 m thick, with thicker 

exposures on the eastern rim (on the eastern rim, the basal contact dips ~10o into the crater, 

suggesting a greater topographic control on the deposition of pyroclastic material).  We 

identify several distinct facies and measure bedform characteristics in the cross-stratified 

facies.  Facies consist of a massive gray basal unit, cross-stratified tuff, planar-bedded tuff, 

lapilli-rich tuff, volcanic bombs, and capping unit, described below. 

Grain size samples were also collected predominantly in the cross-stratified facies, 

in a vertical section through several sets of cross-beds (Figure 4.3).  Due to the poorly 

lithified nature of the deposit, material could be acquired easily from selected regions using 

a spatula.  While it was difficult to sample a single lamina, we collected material along 

several laminae of consistent grain sizes.  The results indicate that the dominant grain size 

is fine to medium sand, though some samples show bimodal distributions.  The bimodality 

could reflect the mixing of populations derived from volcanic sources in addition to the 

underlying Camp Rice Formation (Figure 4.4).  

Massive Gray Basal Unit 

Description: This unit consists of planar-laminated silt- to fine sand-sized sediment, 

and has a uniform thickness of 5 to 6 cm (regardless of the thickness of the full deposit).  

The unit contains a 1 mm lamina of dark basaltic medium-sized sand in the middle of the 

unit.  The basal unit typically fractures along the dark sand laminae (Figure 4.5A).  This 
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Figure 4.3: Rock outcrop at Hunt’s Hole showing locations of grain size sampling.  
Several sets of dune cross-beds are visible, indicating a paleoflow direction from left to 
right.  Sample S7 was collected from an ash bed of approximately uniform thickness, 
mantling the underlying bedforms. 
 
 
 

 

Figure 4.4: Grain size distributions corresponding to locations in Figure 4.3.  The mean 
grain size is fine-to-medium grained sand, but several samples (S2, S5A, S7) show 
biomodal distributions. 
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facies lies stratigraphically on top of the paleosol at the top of the Camp Rice Formation, 

and is present in every observed outcrop at the contact between the surge deposit and the 

paleosol.   

Interpretation: At Hunt’s Hole, Hoffer (1976) describes this as “fine-grained even 

bedded air-fall layers underlying cross-bedded base surge deposits.”  However, at other 

locations, Sparks (1976) interprets similar facies as separating the flow unit from the 

ground surface, forming as a result of interaction of the flow with its boundary.  The 

presence of planar lamination suggests this was a tractional stratified basal layer, rather 

than an air-fall deposit (though Branney and Kokelaar (2002) suggest that both cases are 

plausible depending on the behavior of the leading edge of the density current). 

Cross-Stratified Tuff  

Description: This facies is composed of fine-to-medium-grained, poorly to 

moderately-well sorted sand.  Coarser beds composed of coarse-grained to pebble-sized 

grains also are present.  The finer-grained portions of this facies are well laminated, 

whereas the coarser sections are more crudely stratified.  Sometimes a fining upward trend 

is observed.  This facies is characterized by trough cross-bedding (Figure 4.5B), often with 

stoss-side and bedform crest preservation; in these latter cases bedforms are ~2 m in 

wavelength on average and ~50 cm in amplitude (measured as the full thickness from the 

base to the crest of the bedform).  Bedforms characteristically show evidence of climbing 

with gentle to moderate to steep angles of climb upsection in the outcrop; maximum 

climbing angles approach 50o.  The dunes show migration in the down-current direction, 

flowing approximately radially outward from the center of the crater.  
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Figure 4.5: Facies identified in several measured sections at Hunt’s Hole. See 
descriptions in text. A) Basal unit resting on red paleosol of the Camp Rice Formation.  
B) Large-scale trough cross-bedding.  Paleoflow direction was approximately away from 
viewer.  C) Planar bedding.  Note the discontinuous trains of coarse material.  D) 
Accretionary lapilli tuff. E)  Bomb of sedimentary origin. F) Capping unit.  Note the 
presence of small ripple-like bedforms, sometimes containing coarse sand.  Paleoflow 
direction from left to right. 
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Cross-stratification is clearly visible in LiDAR scans (Figure 4.6), and the 

intensity of the return is correlated with grain size.  Finer grain sizes produce higher 

intensities, while coarser material results in lower intensities (Figure 4.7).  Although there 

are many factors that influence the intensity of the return, grain size appears to play a large 

role for this particular target material.  The data suggest that LiDAR intensity distributions 

may serve as a proxy for grain size, which could be a very useful remote sensing tool. 

Interpretation: Climbing dunes are common in pyroclastic surge deposits (Fisher 

and Waters, 1970; Crowe and Fisher, 1973; Stuart and Brenner 1979; Walker, 1984, Sohn 

and Chough, 1989).  Trough cross-bedding indicates the migration of bedforms with 

sinuous crestlines.  Details of the cross-bedding geometry and bedform reconstructions are 

discussed below, but these observations of bedforms at Hunt’s Hole are consistent with low 

flow regime conditions. 

 

Figure 4.6: LiDAR scan corresponding to outcrop location in Figure 4.3 (taken at a further 
distance from the outcrop so a small shrub obscures part of the image).  Cross-bedding is 
clearly visible in LiDAR data.  Grain size sampling locations are plotted for comparison.  
Intensities reported in Figure 4.7. 
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Figure 4.7: LiDAR intensity values versus grain size for each sampling site (grain size 
reported as fiftieth percentile, D50).  Higher intensities generally correspond to finer grain 
sizes.  Intensity scale ranges from 0 (black) to 255 (white). 

Planar-Bedded Tuff 

Description: This facies consists of planar-bedded silt and very fine sand, 

supporting sparse coarse grains that range in size from very coarse sand to granules and 

pebbles.  Sorting is poor.  In general this facies is poorly bedded, though finer grained beds 

can be well stratified.  This facies can be 20 cm to >3 m thick (Figure 4.5C). 

Interpretation:  This facies occasionally shows thickening and thinning over 

undulations, and is suggestive of traction transport.  Grain size variations may result from 

segregation within the flow, or from some ballistic input.  Discontinuous trains of coarse 

grains may be explained by rapid fall-out from suspension with subsequent traction 

transport (Sohn and Chough 1989). 
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Lapilli-Rich Tuff 

Description: Massive deposits of densely packed accretionary lapilli characterize 

this facies. Facies thickness ranges from 3 to 15 cm (Figure 4.5D).  Lapillus diameters 

range in size from 2 to 6 mm, though most accretionary lapilli are around 5 to 6 mm.  Some 

occurrences of this facies show broken and squashed lapilli in a matrix of silt-sized grains.  

The uppermost lapilli-rich tuff often contains root structures and burrows. 

Interpretation: This facies likely represents air fall deposits of fine ash and 

accretionary lapilli.  Accretionary lapilli represent the cooling and condensing of steam and 

water droplets to form concentric layers of moist ash around a central nucleus.  Broken and 

squashed lapilli suggest that these grains were picked up and transported by the flow after 

falling. 

Volcanic Bombs 

Description: Isolated large clasts are occasionally found within the other facies 

(Figure 4.5E).  Most blocks occur within the cross-stratified tuff (probably because this is 

the most common lithology of the rock outcrops). They range in size from 2 to 10 cm and 

deform the underlying laminae.  Bomb sags are often filled with coarse sediment, overlain 

by planar to cross-stratified tuff.  Both basaltic and sedimentary bombs are present, often in 

the same locality.  No distinct trends in the size or composition of bombs were observed 

upsection. 

Interpretation: These clasts are interpreted as volcanic blocks that were ejected into 

the air during the eruption.  Sedimentary bombs are well-cemented conglomerates inferred 

to be channel deposits from the underlying Camp Rice Formation.  Basaltic bombs are 

inferred to come from the Afton Basalt. 
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Capping Unit 

Description: The top of the surge deposit is typically covered by a ~15 to 20 cm 

thick deposit of fine sand and silt, in depositional contact with the stratigraphically highest 

lapilli-rich tuff.  These strata can be very well-laminated. Sparse, crudely stratified beds 

composed of coarse sand also are present.  The upper 5 cm often contain sets of small-scale 

cross-bedding (~2 cm bedsets), with a low angle of climb, interpreted as ripples (but with 

grain sizes up to coarse sand) (Figure 4.5F). 

Interpretation:  This unit likely represents the final waning of the flow.   Ripples 

and lower plane bed stratification indicate low flow regime conditions. 

 

4.5 Analysis of Cross-Stratified Facies 

Facies similar to those described above have been identified and described by other 

authors in association with pyroclastic eruptions (cf. Branney and Kokelaar 2002).  Here 

we focus on the reconstruction of bedform kinematics in the cross-stratified tuff, with 

implications for flow dynamics. 

First, we recognize two scales of bedforms.  The majority of the outcrop is 

composed of decimeter-to-meter scale climbing dunes. Dune bedforms range in height 

(measured from base to crest in outcrop exposures) from 25 to 80 cm, and in wavelength 

(crest to crest) from 190 to 460 cm.  Following the methods of Crowe and Fisher (1973), 

dune heights are measured as the vertical distance between the crest and the base rather 

than the amplitude of individual laminae, because individual laminae usually cannot be 

traced from crest to trough.  We also note the presence of smaller scale superimposed 

bedforms with decimeter scale wavelengths and amplitudes of ~5 cm (Figure 4.8).  These 
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superimposed bedforms appear to migrate downcurrent or obliquely, relative to the 

larger dune stratification.  In both scales of bedforms, submillimeter to subcentimeter-scale 

stratification is defined by sharp changes in grain size and density. 

The grain size of the cross-stratified tuff is typically fine-to-medium-grained sand, 

but coarser beds (coarse-grained sand up to pebble-sized material) are present.  As a whole, 

the grain size sorting varies from moderately to poorly sorted.  Individual laminae have 

relatively uniform grain sizes, but grain size varies greatly from lamina to lamina.  For 

example, one or two fine-grained laminae might be overlain by a lamina of coarse sand or 

even granules, that in turn is overlain by a lamina composed of fine sand.  Notably, the 

character of the bedforms does not seem to correlate with grain size, and bedforms build  

 

 

Figure 4.8: Small dunes superimposed on larger trough cross-bedded dunes.  Small 
dunes indicate migration from right to left, while the larger dune stratification indicates 
transport into the page and to the left. 

20 cm 
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and evolve with whatever grain size is available.  Furthermore, despite the occurrence of 

some laminae that have good sorting, fines are invariably co-deposited with coarse 

material. 

Next we consider the geometry of cross-bedding.   Outcrops on the southern rim of 

Hunt’s Hole enable observations of bedforms in cross sections parallel to flow, transverse 

to flow, as well as in plan view.  In flow-transverse cross-sections the occurrence of trough 

cross-bedding demonstrates that these bedforms are “three dimensional” indicating that 

they have crestlines with sinuous traces.  Three-dimensional bedforms differ from two-

dimensional bedforms in that they do not have straight crestlines, constant crest and trough 

elevations, or identical across-crest profiles at all locations along the crestline.  Three-

dimensional bedforms may have sinuous crestlines, sinuous troughs or across-crest profiles 

that vary along the crestline (cf. Rubin 1987). These variations result in cross-bedding in 

which the strike of cross-beds varies within a set (Rubin 1987), as seen at Hunt’s Hole. 

In flow parallel cross-sections, bedforms tend to build up from fairly planar 

surfaces, and terminate in erosional bounding surfaces generated by the migration of 

subsequent bedforms, or by draping and leveling of topography by airfall deposits (like the 

lapilli-rich airfall tuff).  Measured in flow-parallel sections, stoss slope angles range from 

4o to16o, and lee slope angles from 2 o to 20o.  Other authors have made a case for antidunes 

based on stoss side laminae that dip more steeply than lee side laminae (cf. Fisher and 

Waters 1970).  At Hunt’s Hole, angles of lee-side laminae are generally higher than angles 

of stoss-side laminae (Figure 4.9), consistent with downstream migration.  
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Figure 4.9:  Angles of stoss and lee side laminae measured at Hunt’s Hole.  Lee-side 
laminae are generally steeper than stoss-side laminae.   

It is interesting to note that angles of lee slopes are typically below the angle of 

repose.  In modern eolian environments, dune foresets formed by avalanching dip at 30 o to 

35o in dry sand and up to 42o in moist cohesive sand (Bigarella et al. 1969; McKee and 

Bigarella, 1972), and in fluvial environments dune foresets are typically near the angle of 

repose (Kostaschuk, 2000; Carling et al 2000; Guy et al. 1966).  Yet foresets formed by 

grainfall and ripple migration are necessarily below the angle of repose (Kocurek and Dott 

1981).  At Hunt’s Hole, the abundance of lee slopes less than the angle of repose may 

suggest that grains were not deposited as much by avalanching as by other mechanisms, 

such as sediment falling out of suspension. 

One distinguishing feature is that the bedforms have very high angles of climb 

(approaching 50o).  Tracing the angles of climb through the development of a bedform 

reveals that angles are initially high, then remain fairly constant as the bedform migrates 



 

 

77 
downstream without increasing in height, and then climb steeply (Figure 4.10).  

Variations in climb angle (steepening, flattening, steepening) are seen in other bedforms, 

including those that are overlain by another set of bedforms.  This may reflect changes in 

rates of migration, or changes in sediment supply, which may be related to pulses in the 

flow. 

In some places erosion of the capping unit has produced plan view exposures of the 

bedforms.  Plan view exposures of large climbing dunes show “rib and furrow” 

stratification, again supporting the interpretation of the bedforms as having two directions 

of crestline sinuosity. 

Cross-bedding geometry can then be used to reconstruct the morphology and 

behavior of bedforms.  Large-scale trough cross-bedding at Hunt’s Hole was produced by 

the migration of three-dimensional transverse bedforms.  Trough cross-bedding is created 

by the migration of depressions in dune troughs – the leading edge of the depression scours 

a trough-shaped bounding surface and the trailing edge deposits cross-beds (Rubin 1987).  

Plan view observations are also consistent with sinuous transverse bedforms, resulting in 

concave stratification in the down current direction.  Near the top of the section, 

stratification becomes more planar, indicative of 2D and planar laminae.  This is confirmed 

by LiDAR data. Using the plane-fitting tool in LidarViewer, we selected points along 

bedding surfaces and tried to fit them to a plane.  The results indicate that bedforms that are 

lower in the stratigraphy are three-dimensional (evidenced by poor planar fits), but 

transition upwards into 2D and planar laminae (well fit by a plane). This is consistent with 

a decelerating flow, transitioning from 3D dunes to 2D and planar bedding (Southard and 

Boguchwal 1990). 
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Figure 4.10: Climbing dune with variable angles of climb, indicated by arrows. Image is 
taken looking down on a sloped outcrop; angles represent apparent dips.  Paleoflow 
direction approximately from left to right. 

Unlike other depositional environments in which sets of cross-stratification 

characteristically record only a fraction of the original dune height (e.g. fluvial, Paola and 

Borgman 1991; eolian, Mountney et al. 1999), here the scale of the bedforms may not have 

been much greater than the preserved height of the dune stratification, because in some 

places entire bedforms are preserved (as evidenced by stoss-side accretion and even crest 

preservation).  Stoss-side preservation (and draping of dune topography by lapilli tuff, for 

example) is indicative of high rates of aggradation relative to the rate of migration.  This is 

also evidenced by the high angles of climb.   

Bedforms also show evidence for merging – occasionally an up current bedform 

overtakes a down current bedform, resulting in a truncation surface (separating two dunes) 

that passes into a foreset (of one combined dune) in the down current direction.  Bedforms 

~ 20 cm 
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consistently migrate in the downstream direction (with the exception of a few 

superimposed bedforms that migrate obliquely). 

The picture that emerges is one of meter-scale climbing dunes with sinuous 

crestlines migrating in the down current direction.  Smaller, decimeter-scale bedforms were 

superimposed on the larger bedforms.  High rates of deposition, resulting in high angles of 

climb, may be attributed to large fluxes of sediment entering the flow (replenishing the 

flow), perhaps as pulses.  Considered as a whole, the deposit records decreasing flow 

velocities.  In vertical succession, this results in bedforms that pass upwards from 

truncation to draping (Figure 4.11), decreasing bulk grain size, more abundant lapilli, and 

the appearance of small ripple-like bedforms.  Figure 4.12 is a schematic diagram showing 

these trends in flow-parallel and flow-perpendicular cross-sections.  

 

Figure 4.11: Vertical succession through a flow-parallel outcrop face. Truncated sets of 
bedforms pass upwards into draping and planar laminae.  Paleoflow direction from left to 
right.  Thick lines indicate major bounding surfaces. 
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Figure 4.12: Schematic block diagram of a typical dune sequence on the southern rim of 
Hunt’s Hole.  Thicker stratigraphic sections are found on the eastern rim of the crater, but 
do not provide good 3D exposures for viewing bedforms.  In this schematic block diagram 
(arrow indicates flow direction into the page and to the right), the flow perpendicular cross-
section reveals trough cross-bedding.  The flow parallel cross-section shows evidence for 
large climbing dunes.  In vertical succession, grain size tends to decrease (lenses of coarse 
material become less common), bedforms pass from truncated sets to draping, accretionary 
lapilli become more abundant (represented by open circles), and small ripple-like bedforms 
appear at the top of the section. 
 

4.6 Flow Dynamic Reconstruction 

The formation of bedforms in pyroclastic surge deposits cannot be observed in 

nature, and bedforms in surge-like flows have not yet been reproduced in the laboratory, so 

there are many uncertainties regarding the properties of the flow.  However, from 

observations of grain size, bedform geometries and inferred bedform kinematics, we 
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believe that we can make reasonable estimates of the flow depths capable of producing 

the dunes, and the corresponding flow velocities.  These estimates are based on the flow 

strength (or intensity of sediment transport) and the Froude number. 

The flow strength can be represented by the dimensionless Shield’s number: 

τ∗ =
!!

(!!!!!)!"
  

where τ* is the dimensionless Shields parameter,  τb is the shear stress at the bed, ρs is the 

density of the sediment, ρf is the density of the fluid, g is the acceleration due to gravity, 

and D is the mean particle diameter.  For τ* greater than 1, sediment is deposited as 

planar-laminated beds in the upper flow regime.  Dunes are found when 0.03 < τ* < 1.  

Although we do not see evidence for upper flow regime conditions at Hunt’s Hole, other 

authors have described possible antidunes and upper plane bed in other pyroclastic surge 

localities.  All of our observations are consistent with low flow regime conditions, but for 

the following calculations we assume that the bedforms were likely near the transition 

from dunes to upper plane bed, and so we assume that τ* ~ 1.  τb can be written as: 

τ! = 𝜌!𝐶!𝑢!   

where Cf is the friction coefficient, which incorporates bed friction and friction entrained 

from the surrounding atmosphere, with typical values around 10-3 to 10-2 (Parker et al. 

1987), and u is the mean flow velocity.  Density flows can also be described by the 

densimetric Froude number (Frd) (the ratio of inertial to gravitational forces).  When Frd is 

greater than 1, the flow velocity exceeds the wave velocity and the flow is said to be 

supercritical, or upper flow regime. When Frd is less than 1, the flow is subcritical 

(1) 

(2) 
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(tranquil) and lower flow regime.  At Frd = 1, the flow is critical.  We assume that the 

front of a pyroclastic surge can be represented by Fr = 1 (the front of a dense surge moving 

through air can be thought of as a hydraulic jump from supercritical to subcritical 

conditions).  The densimetric Froude number (Frd) can be written as: 

Fr!! =
!!

!!!!!
!!

!!
 

Where u is the mean flow velocity, ρa is the density of ambient fluid (in this case air), and h 

is the flow depth.  Rearranging equations (1) and (2), and solving for the flow depth: 

ℎ =    !∗
!"!
!
!
!!

!!!!!
!!

!!!!!
!!

 

 

We assume τ* ~ 1 based on the presence of dunes, and Frd
  ~ 1 for a pyroclastic surge.  

Values for D come from grain size analysis, which reveals that the dominant grain size is 

fine to medium sand, so D ~ 1.25 to 2 × 10-4 m.  We estimate ρs as 2700 kg/m3 (a 

compromise between the density of quartz and feldspar of ~ 2.55 to 2.76 kg/m3 and the 

density of basalt 2800 kg/m3), and ρa = 1.2 kg/m3 (the density of air at 20oC).  By definition 

ρf is: 

𝜌! = 1− 𝐶 𝜌! + C𝜌! 

= 𝜌! + 𝐶(𝜌! − 𝜌!) 

          𝜌!   ≫ 𝜌! 

𝜌!   ≈ 𝜌! + 𝐶𝜌! 

where C is the concentration of sediment and ρg is the density of gas.  We estimate that the 

majority of the gas is water vapor, formed when magma came in contact with ground 

(3) 

(4) 
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water, creating a steam explosion.  At the boiling point of water (100oC), the gas (water 

vapor) would have a density of 0.946 kg/m3. The upper bound for the concentration of 

sediment in a turbulent fluid with traction transport is C ≈ 0.1 (but may be as low as 0.03) 

(cf. Valentine and Fisher 2000; Dade and Huppert).  With these values, we find that the 

density of the fluid is: 

𝜌!"#$   ≈ 270 kg/m3 

𝜌!"#$   ≈ 27  kg/m3 

These values of ρf can be used in equation (3) to solve for flow depth.   

ℎ!"# = 18.92 m 

ℎ!"# = 0.11 m 

 

The minimum value for h seems unlikely given the height of the dunes that we measured, 

but we will briefly consider it here.  Based on the range of values for h, we can solve for 

the depositional velocity: 

𝑢 = Fr! 𝑔ℎ !!
!!!!!

!
!

 

𝑢!"# = 14  m/s 

𝑢!"# = 1  m/s 

 

This range of velocities is on the very low end of the range predicted by other 

methods, which estimate velocities on the order of ~14 to 111 m/s (Sparks 1976); 20 to 110 

m/s (Brand 2008); 12.5 m/s (Belousov and Belousova, 2001). 

(5) 
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These depths and velocities likely correspond to just the basal portion of the flow.  

Pyroclastic surges are thought to be density stratified as a consequence of their multiphase, 

turbulent nature (Valentine and Fisher 2000; Branney and Kokelaar 2002).  The deposits 

left by pyroclastic surges record how the processes and conditions around a current’s basal 

flow boundary varied with time (but they do not record the vertical structure of the current) 

(Branney and Kokelaar 2002). 

 

4.7 Comparison with Other Phreatomagmatic Surge Deposits 

Other authors have reported wavelengths and wave heights of bedforms in 

pyroclastic surge deposits, and used them for a comparison of relative flow strength.  

Figure 4.13 shows a comparison of bedform characteristics for the deposits at Hunt’s Hole 

(this study), Ubehebe Crater (Crowe and Fisher 1973, tables 2 and 3), Taal volcano in the 

Philippines (Waters and Fisher 1971, table 1), Roccamonfina volcano, Italy (Cole 1991), 

Laacher See, Germany (Schmincke et al.1973, data approximated from figure 15), Cora 

Maar, Turkey (Gencalioglu-Kuscu et al. 2007, data approximated from figure 9), and 

Linosa volcano, Italy (Lajoie et al. 1992).  Bedforms show increasing wave heights with 

increasing wavelength.  Bedform measurements at Hunt’s Hole, Ubehebe crater, Cora 

Maar and the two longest wavelength data points from Taal were collected at 

approximately the same distance from the vent (0.7 to 1.0 km).  At approximately the same 

distance, Hunt’s Hole dunes show greater wavelengths and wave heights than those at 

Ubehebe crater.  Using wavelength and wave height as a measure of flow strength (cf. 

Crowe and Fisher 1973), this suggests that the dunes at Hunt’s Hole were formed in a flow 

of greater strength than those at Ubehebe crater.  The Hunt’s Hole dunes overlap in size  
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Figure 4.13: Wavelength and waveheight of bedforms measured in pyroclastic surge 
deposits.  Waveheight increases with increasing wavelength.  See text for discussion. 

with the more distal dunes at Taal volcano (collected at 1.5 and 2.0 km from the vent), 

suggesting that the eruption at Taal produced a flow of greater strength than the eruption at 

Hunt’s Hole (such that the distal deposits at Taal are comparable to the more proximal 

deposits at Hunt’s Hole). 

However, despite these inferred differences in flow strength, bedforms at Ubehebe 

crater, Taal volcano and Cora Maar have been interpreted as antidunes, suggesting upper 

flow regime conditions (Crowe and Fisher 1973; Schmincke et al. 1973), while we interpret 

the Hunt’s Hole bedforms as low-flow regime.  Cole (1991) also suggests that bedforms at 

Roccamonfina show evidence for both progressive (migrating downstream) and regressive 
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(migrating upstream) behavior, with some features identified as chute and pool 

structures, similar to those identified by Schmincke et al. (1973) in the Laacher See.  

Hunt’s Hole and Linosa Volcano (Lajoie et al 1992) are the only locations at which upper 

flow regime deposits have not been identified.  This suggests that either 1) Hunt’s Hole 

represents a class of unique pyroclastic surge deposits, or 2) bedform geometries at other 

localities may have been misinterpreted.  Without studying the other locations we cannot 

comment on their interpretation, but we raise a cautionary note.  Figure 4.14 shows two 

examples from Hunt’s Hole that could potentially be misinterpreted as a chute and pool and 

an antidune.   However, further inspection of cross-bedding geometry, using the 

surrounding context from 3D exposures, reveals that the potential chute and pool structure 

(Figure 4.14A) is simply an oblique cut through the trough of a large sinuous bedform, and 

the potential antidunes (Figure 4.14B) represent an oblique cut through sinuous crested 

bedforms with shifting crestlines (but the crestlines are not moving upstream). 

 

4.8 Identification on Mars 

It is important to consider the possibility that pyroclastic surge deposits may some 

day be encountered in outcrops on Mars. At the landing site for the Mars Exploration 

Rover (MER) Opportunity at Meridiani Planum, eolian deposits with some reworking by 

subaqueous processes was recognized as the dominant process of deposition (Squyres et al. 

2004b; Grotzinger et al. 2005; Grotzinger et al. 2006; McLennan and Grotzinger, 2008).  

However, this was challenged by the alternative possibility of formation by impact or 

volcanic-induced surges (Knauth et al. 2005; McCollom and Hynek 2005).  Further  
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Figure 4.14: Bedform geometries at Hunt’s Hole that could be misinterpreted as chute 
and pool structures or potential antidunes.  A) A feature showing resemblance to the 
chute and pool structure described by Schmincke et al. (1973) is actually an oblique cut 
through the trough of a bedform.  Paleoflow direction was into the page and to the right.  
B) Possible antidune geometry created by shifting crestlines in an outcrop face oblique to 
flow. 

exploration has shown compelling support for the dominantly eolian origin of these 

deposits (Metz et al. 2009; Hayes et al. 2011; Edgar et al. in press; Fralick et al. 2012).  At 

the other MER landing site at Gusev Crater, evidence points to pyroclastic 

deposition followed by possible eolian reworking (Squyres et al. 2007).  These cases 

illustrate that when geologic context is limited, or volcanic indicators such as bombs or 

lapilli are absent, it may be difficult to distinguish bedforms in pyroclastic surge deposits 

from those in eolian or fluvial deposits.  This suggests a need to establish better criteria for 

the identification of pyroclastic surge deposits in extraterrestrial strata where full geologic 

context may be incompletely understood due to the intrinsic limitations of planetary 

exploration.    

Even on Earth it is difficult to distinguish pyroclastic surges from fluvial deposits.   

Other authors have noted the difficulties (Burt et al. 2008), and described possible ways to 

A) B)
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distinguish these deposits (cf. Valentine and Fisher 2000; Smith and Katzman 1991).  

Even with limited geologic context (as would be the case on Mars), and in the absence of 

clear volcanic features such as bomb sags and lapilli, pyroclastic surge deposits can be 

distinguished from eolian and fluvial deposits based on unique properties of bedform 

geometries and styles of stratification.  Here, we summarize the criteria (Table 1) and add 

criteria specifically related to cross-bedded deposits.  Important differences include the 

preservation of stoss slopes and dune crests, the angle of climb, and the angles of stoss and 

lee slopes. 

- Preservation of crests and stoss sides – Rock outcrops of bedforms in eolian and 

fluvial deposits typically show sets of cross-bedding, consisting of only lee-side 

laminae (foresets).  In these environments, the rates of migration far exceed the 

rates of accumulation, and only a fraction of the bedforms are preserved.  However, 

in pyroclastic surge deposits, under decelerating flow conditions, the rate of 

accumulation is comparable to the rate of migration.  This results in stoss side 

preservation, and in some cases, entire bedforms are preserved.  Cohesion of wet 

ash may also lead to stoss side preservation. 

- Angles of stoss and lee slopes – While stoss slopes are comparable to those in 

modern eolian and fluvial environments, bedforms in pyroclastic surges typically 

have lee slopes that are less steep than those in eolian and fluvial dunes (Crowe and 

Fisher 1973; Sheridan and Updike 1975; Smith and Katzman 1991; this study). 

- Angles of climb – Another way to identify pyroclastic surge deposits is the 

presence of dunes with very high angles of climb.  In terrestrial deposits, ripples  
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Table 4.1. Characteristics of cross-bedded pyroclastic, eolian, and fluvial deposits. 

 Pyroclastic Surge Eolian Fluvial 
Grain Size and 
Sorting 

For cross-bedded 
deposits: 
moderately to 
poorly sorted, some 
fines codeposited 
with coarse 
material.   

Very well sorted, fine to 
medium sand.  Rare exceptions 
to generally fine grain size are 
granule ripples but these are 
also well sorted. 

Moderately to well sorted.  
Range of grain sizes 
depending on proximity to 
source region. 

Preservation of 
Dune Crests and 
Stoss Sides 

Common Very rare, typically only 
preserve very small fraction of 
bedform height as foresets. 

Rare, typically only 
preserve small fraction of 
bedform height as foresets. 

Angle of Climb Supercritical Subcritical Subcritical 
Angles of Stoss 
Slopes* 

4 o to 16o (this 
study) 
0 o to 18o (Crowe 
and Fisher 1973) 
10o (Sheridan and 
Updike 1975) 

5 o to 10o (Livingstone and 
Warren 1996) 
4 o to 11o (Hesp and Hastings, 
1998) 

A few degrees to 10o to 18°, 
rarely up to 26° (Carling et 
al 2000) 

Angles of Lee 
Slopes* 

2 o to 20o (this 
study) 
3 o to 19o (Crowe 
and Fisher 1973) 
10o (Sheridan and 
Updike 1975) 

Up to 30 to 35o in dry sand, up 
to 42o in moist cohesive sand 
for dune foresets formed by 
avalanching (Bigarella et al. 
1969; McKee and Bigarella, 
1972) 
 

Up to 32 to 37o (Kostaschuk 
2000) 
~30 o to 33° (Carling et al 
2000);  
Typically near the angle of 
repose for flume 
experiments (e.g. Guy et al. 
1966; Williams, 1967) 

Transport 
Direction 

Unidirectional, 
radially away from 
point source 

Unidirectional or bidirectional, 
may show seasonal reversals 

Unidirectional 

Geologic Context Volcanoes, rifts, 
craters 

Interdune playa and/or 
sandsheet deposits 

Channel deposits, coarse 
lags, flood plain deposits 

Environmentally 
Diagnostic 
Associated 
Structures 

Accretionary lapilli, 
volcanic bombs 

Pinstripe lamination associated 
migrating wind ripples. 
Reverse-graded laminae. 

Mud drapes, mudcracks.  
Cm-scale ripples, trough -
beds. Strong hydrodynamic 
sorting (decreasing grain 
size over long transport 
distance) 

*Angles of stoss and lee slopes are reported for modern dunes in eolian and fluvial environments.  However, it 
is not possible to measure modern dunes in pyroclastic surges, so dune slopes in pyroclastic surges are 
measured from cross-sections in surge deposits. 
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may exhibit very high angles of climb, but supercritical angles are almost never 

seen in dunes.  Subcritical angles of climb result in truncation and preservation of 

only a fraction of original bedform heights.  The rapidly decelerating nature of 

pyroclastic surges produces very high accumulation rates, and allows dunes to 

climb at critical to supercritical angles, which results in nearly complete bedform 

preservation. 

Yet there may be a few key differences between pyroclastic surges on Earth and 

Mars.  Other authors have discussed the identification of pyroclastic surges on Mars, 

particularly in the context of Meridiani Planum (Knauth et al. 2005; McCollom and Hynek 

2005; Squyres et al. 2006a; McLennan and Grotzinger 2008; Burt et al 2008; Fralick et al. 

in press).  The main differences result from the decreased gravity on Mars.  As shown in 

the hydrodynamic considerations above, the expression for flow depth (equation 4) does 

not depend on gravity, but the expression for depositional velocity (equation 5) does.  For 

the same flow depth and particle size on Mars, decreased gravity would result in 

depositional velocities that are roughly half the speed (ranging from 0.6 to 8.5 m/s).  

Decreased gravity also has an effect on bedform stability fields.  As Grotzinger et al. 

(2005) have shown, the transition between bedform stability fields (for example, from 

dunes to upper plane bed) occurs at a lower velocity on Mars compared to Earth, or for a 

constant velocity and flow depth, the transition occurs at a larger grain size.  This is 

important because it means that upper flow regime bedforms, like antidunes and upper 

plane bed, should occur at lower velocities on Mars.   

The ability to distinguish bedforms in pyroclastic surge deposits from those in 

eolian and fluvial environments is critical to understanding past habitability on Mars.  The 
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criteria discussed here will aid in their correct identification.  It is possible that we will 

one day explore pyroclastic surge deposits on Mars, and investigations will rely on detailed 

sedimentological work to understand the eruption history and flow conditions.  

Measurements of bedform geometries, flow directions, and grain size will enable 

calculations of flow depth and velocity.  As outlined above, there are several key 

differences due to reduced gravity on Mars.  While we make a case for low flow regime 

bedforms at Hunt’s Hole, the shift in bedform stability fields for Mars suggests that 

antidunes and upper plane bed may be easier to achieve in pyroclastic surges on Mars. 

 

4.9 Conclusions 

The corrugated pattern of erosion around the rim of Hunt’s Hole provides a unique 

opportunity to study bedforms in pyroclastic surge deposits.  Detailed sedimentological 

analysis, combined with a relatively new technique of TLS, enables the reconstruction of 

bedform morphologies and behavior, and provides insight into the flow dynamics of 

pyroclastic surges. 

Hunt’s Hole records the migration of three-dimensional transverse bedforms, with 

very high angles of climb. The deposit at Hunt’s Hole likely represents a single eruptive 

event, with possible pulses in the flow.  Observations in vertical succession are all 

consistent with a temporally decelerating flow, with very high rates of accumulation 

relative to rates of migration.  Contrary to other interpretations of bedforms in pyroclastic 

surge deposits, all observations at Hunt’s Hole indicate low flow regime conditions, with 

no evidence of upstream migration of bedforms.  
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Hydrodynamic considerations based on bedforms and grain sizes provide a range 

of flow depths and velocities for dunes in pyroclastic surge deposits.  These estimates are 

lower than previous estimates of flow velocities. Although the amplitude and wavelengths 

of bedforms at Hunt’s Hole suggest that they were formed in a flow of greater strength than 

those at Ubehebe crater, our estimates of flow velocities are on the lower end of the 

anticipated range of pyroclastic surge velocities.  Field work at additional locations may 

elucidate whether Hunt’s Hole is a unique lower-velocity, low flow regime location, or if 

estimates of flow depths and velocities should be refined.  Future work including flume 

experiments to generate bedforms in intermediate densities may shed light on the unique 

dynamics of these bedforms. 

We also provide a summary of criteria for identification of surge deposits, with 

particular emphasis on their identification on Mars.  Even with limited geologic context 

and an absence of clear volcanic indicators such as bomb sags and lapilli, pyroclastic surge 

deposits can be distinguished from eolian and fluvial deposits based on unique properties of 

bedform geometries.  However, surge deposits on Mars will differ from those on Earth in 

several ways due to the effects of decreased gravity. 

This work serves to better characterize bedforms in pyroclastic surge deposits at 

Hunt’s Hole, introduces a relatively new remote sensing technique, and provides criteria for 

the identification of these deposits on Mars.  
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C h a p t e r  5  

RECOGNITION AND SIGNIFICANCE OF STRATAL GEOMETRIES AND 
UNCONFORMITIES IN MARTIAN LAYERED DEPOSITS 

Abstract 

 The deposition and erosion of sedimentary rocks on Mars is controlled by similar 

water- and wind-moderated processes as those on Earth, and its stratigraphic record can be 

analyzed through analogous methods.  We demonstrate that chronostratigraphic tools, 

developed for interpreting terrestrial seismic data, can be applied to images of rock 

outcrops on Mars.  This study uses data from the High Resolution Imaging Science 

Experiment (HiRISE), in combination with Digital Elevation Models (DEMs) and software 

for chronostratigraphic analysis to quantify the spatial and temporal characteristics of 

Martian layered deposits.  Initial application of this method focuses on the North Polar 

Layered Deposits (NPLDs) due to their complex stratal geometries, relative lack of surface 

disturbances, and inferred tie to climate variations.  Chronstratigraphic analysis of the 

NPLD reveals multiple depositional sequences with modeled time increments that are 

distinct from previous studies.  This technique also provides insight regarding the 

depositional and erosional history of the NPLD margin, through the migration of spiral 

troughs.  Chronostratigraphic analysis indicates that migration occurs as fluctuating 

depositional events, which may be tied to longer-term climate variations.  Application of 

this method to other layered deposits reveals that one particular location – Galle crater – 

may represent an ancient polar layered deposit, and that ice may still be present beneath the 

surface. 
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5.1 Introduction 

Stratified rocks on Mars record environmental processes governing both their 

deposition (Grotzinger et al. 2005; Grotzinger and Milliken, 2012) and subsequent 

alteration (McLennan et al. 2005; Clark et al, 2005; McLennan and Grotzinger, 2008).  In 

certain cases, the stratigraphic record may be viewed as a “carrier signal” in which other 

proxies of environmental change are embedded.  On Mars, stratigraphic sections possibly 

record changes such as varying amounts of groundwater or surface precipitation, chemical 

and mineralogic differences, changes in the relative abundance of suspended dust and 

volcanic tephra, lake level rise and fall, and other proxies of environmental history of 

climate change.   The diverse sedimentary record on Mars reveals clues about the history of 

the planet. 

However, this record may have omissions, as represented by unconformities. 

Unconformities result because sedimentation, by its very nature, is discontinuous (Sadler, 

1981), and because a broad range of erosive processes may act to remove the record.  The 

geometric patterns of both strata and their associated unconformities can provide important 

criteria for recognizing certain depositional processes.  The acquisition of 

chronostratigraphic data, derived from geometric relationships, can be used to understand 

the relative spatial positions of deposition and non-deposition through time. These patterns 

can be used to predict sedimentary facies as well as internal stratigraphic architecture and 

continuities of deposits within sedimentary basins. 

On Earth, chronostratigraphic techniques are used for stratigraphic correlations, and 

to understand the location and timing of deposition as well as erosional and non-

depositional events.  This is particularly useful in the field of hydrocarbon exploration.  As 
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discussed below, chronostratigraphy is used in seismic reflection interpretations, and for 

basin analysis for source rock, hydrocarbon migration, and trap identification (De Bruin et 

al. 2007; Monsen et al. 2007; Qayyum et al. 2012).  Chronostratigraphy is used to make 

system tracts interpretations to infer the quality of source, seal and reservoir rocks (De 

Groot et al. 2006; Brouwer et al. 2008).  While the motivation stems from hydrocarbon 

exploration, the technique reveals information about past surface processes.  In addition, 

the technique will also help in the exploration for organic carbon in sedimentary rocks on 

Mars. 

This study investigates variations in stratal geometries, and their inferred associated 

unconformities, to better constrain past surface processes and past climate conditions on 

Mars. 

 

5.2 Unconformities, Stratal Geometries, and the Partitioning of Time in the 

Stratigraphic Record 

The analysis of unconformities and stratal geometries is in its infancy on Mars but it 

is a common technique used on Earth to identify past environments and processes, 

especially where data are lacking regarding absolute measurements of time (Vail et al. 

1977; Christie-Blick and Driscoll, 1995).  This branch of earth science, known as 

“sequence stratigraphy,” deals with relative temporal relations and ages of stratigraphic 

successions.  The concept was first developed by Blackwelder (1909), who recognized the 

“missing time” (chronologic hiatus) represented by unconformities in the rock record, and 

the difficulty in representing both time and space in two dimensions.  The idea was further 

developed by Wheeler (1958), who realized the need to include significant events like 
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erosion and non-deposition in cross-section, but that these are reduced to zero in cross-

sections where the y-axis is thickness.  Wheeler (1958) introduced the concept of time-

stratigraphic units, which incorporate not only the tangible preserved record, but also non-

material parts of the total space-time “volume” represented by non-deposition, and the 

negative parts of the stratigraphic record representing erosion.  These concepts are 

illustrated in Figure 5.1, known as a chronostratigraphic section or “Wheeler diagram.” 

 

Figure 5.1: Construction of a chronostratigraphic diagram.  A) Schematic cross-section, 
showing episodes of progradation, erosion, infilling of topography, and draping.  B) 
Stratigraphic relations in (A) are re-plotted in the time domain, known as a Wheeler 
diagram. Each layer is given equal geologic time.  Hiatuses are illustrated where strata 
are missing. 
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Sequence stratigraphy became a mature and valuable scientific discipline with 

the development of seismic-reflection profiling of buried strata in the 1960s and 1970s.  

This technology uses the acoustic properties derived from seismic reflections to interpret 

physical changes in the subsurface represented by bedding surfaces and unconformities 

with velocity-density contrasts (Vail et al. 1977).  It can be thought of as a remote sensing 

tool, similar to imaging strata from Mars orbit.  Seismic data, like orbital imagery, provide 

a glimpse of structural and stratigraphic relationships, from which inferences about the 

regional geology can be made.  Since all material above an unconformity is younger than 

the material below it, seismic sections record time-stratigraphic patterns.  These seismic 

reflection patterns indicate the geometry and relative magnitudes of unconformities, 

allowing for remote inferences of depositional processes. 

At the core of sequence stratigraphy is its basic unit of analysis - the depositional 

sequence: a relatively conformable succession of genetically related strata (Mitchum et al. 

1977).  Sequence boundaries are identified by the geometry of their bounding terminations, 

termed onlap, downlap, toplap, and truncation (Vail et al. 1977).  Depositional sequences 

have chronostratigraphic significance in that they were deposited during a time interval 

limited by the sequence boundaries (although the age of strata within a sequence may vary 

from place to place). 

Sequence stratigraphy is critically important to earth scientists who use the 

geometry of successions of strata and their associated unconformities to identify important 

environments, such as those in which organic matter might be concentrated.  For example, 

Dobrin (1977) illustrates the use of seismic reflection patterns to reconstruct depositional 
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histories and deduce depositional environments.  Processes such as delta formation, 

transgression and regression of sea level, and tilting of strata produce identifiable patterns 

in seismic sections.  Dobrin (1977) uses sequence stratigraphy to identify areas that are 

most promising for hydrocarbon accumulation, based on the geometric relationships of 

strata.  Other authors demonstrate the frequent use of sequence stratigraphy in predicting 

the location of hydrocarbon reservoirs (Morton and Galloway 1991), predicting systematic 

variations in basin fill (Gawthorpe et al. 1994), interpreting structural influences (Ambrose 

et al. 2009) and building chronostratigraphic frameworks (Qayyum et al. 2012). 

We aim to apply the principles of sequence stratigraphy to Mars to identify 

similarly important environments, including potential traps for organic material.  While we 

do not have seismic data to probe the subsurface of Mars, we can study sedimentary 

sequences in cross-section where they are exposed in the sloping walls of valleys and 

impact craters.  And in a manner similar to seismic stratigraphy, we can identify sequence 

boundaries and stratal geometries through image processing – identifying boundaries based 

on changes in lithology and composition as revealed by changes in color, brightness, 

erosional resistance (topography) and small-scale textures. 

 

5.3 Methods for Chronostratigraphic Analysis 

Chronostratigraphic analysis is made possible through the use of a seismic 

interpretation platform known as Sismage (Keskes et al. 2004), developed at Total S.A.  

Sismage contains a suite of algorithms known as Geotime, designed to extract 

chronostratigraphic information from seismic data.   However, rather than analyzing 

seismic sections we apply this tool to images of stratified deposits on Mars. 
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First, we identify targets in high-resolution orbital imagery.  We use orbital 

images obtained by the High Resolution Imaging Science Experiment (HiRISE) onboard 

the Mars Reconnaissance Orbiter to identify sedimentary outcrops on Mars with complex 

stratal geometries.  HiRISE is capable of acquiring images at a resolution of ~26 cm/pixel 

(McEwen et al. 2007).  HiRISE images are approximately 6 km wide, and at least 10 km 

long, which allows extensive stratigraphic sequences to be captured in a single image, 

resolving features down to ~1 m in thickness.  Initially, science targets were selected on the 

basis of complex stratal geometries, to test the application of Geotime.  A great amount of 

work has been done to classify layered deposits on Mars (Grotzinger and Milliken, 2012; 

Griffes et al. 2010; Stack et al. in prep), many of which are flat-lying.  Chronostratigraphic 

analysis of imagery works best when truncation surfaces and textural variations are 

recognizable.  This enables stratigraphic sections to be subdivided into sequences, defined 

by bounding unconformities. 

After targets are identified, the images are transformed into vertical cross-sections.  

Cross-sections can be obtained where stratigraphy is exposed in the walls of impact craters, 

channel systems, and crevasses in ice caps.  Digital Elevation Models (DEMs), derived 

from HiRISE stereo image pairs, can be used to correct for true stratigraphic thicknesses.  

HiRISE DEMs are used whenever possible, but the coverage is limited.  In some locations 

(discussed below), topography derived from the Mars Orbiter Laser Altimeter (MOLA) can 

be used to fit a slope, though the resolution is not always appropriate for the features of 

interest.  To produce vertical cross-sections, visible images are draped on DEMs.  Using 

the 3D visualization tool in Sismage®, the DEM is corrected to a vertical view, and a new 
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image is captured – essentially projecting the apparent view onto a vertical plane.  This 

image is then orthorectified and used for Geotime analysis. 

After transformation of orbital images into vertical cross-sections, several filtering 

steps may be required.  Unlike seismic sections, which contain relatively smooth 

reflections, images of the martian surface may contain a variety of features that obscure 

bedding.  It is important to remove surface “noise” such as slope-streaks and shadows.  In 

some cases it may be necessary to enhance the continuity along bedding (generally in the 

horizontal direction).  Individual beds are treated as timelines, so their continuity is critical. 

Images are then processed through Geotime.  Geotime is based on the concept of 

tracing of seismic reflectors – or changes in albedo, in HiRISE images – and integrating the 

time value of these surfaces where they converge (Figure 5.2A).  These accumulation 

values are taken as proxies for the relative duration of hiatus at any point.  Distinct 

geometries revealed by mapping convergence provide the basis for delineating sequences 

(Figure 5.2B).  Next, the relative age and duration of the sequences, and the magnitude of 

their bounding unconformities is assessed by assigning ages based on the convergence 

density; this results in a Wheeler diagram in which time rather than rock thickness is on the 

y-axis (Figure 5.2C).  Manual editing may be required depending on the quality of the 

Wheeler diagram output, to ensure that stratigraphic sequences are grouped or split 

correctly. 
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Figure 5.2: Geotime work-flow based on HiRISE image PSP_009337_2600 of the 
Martian North Polar Layered Deposits. A) Accumulation diagram showing convergence 
of layers. Thick black lines are layer boundaries. Thin black lines are artifacts of surface 
disturbances. B) Sequences identified and superimposed on (A). C) Corresponding 
Wheeler diagram. Black areas represent regions of erosion or non-deposition. Colored 
areas correspond to sequences in (B). This package shows evidence for erosion, infilling 
of topography, progradation, and draping. 

 We cannot measure absolute time on Mars, so we instead calculate relative time by 

assuming that each layer represents the same amount of time.  The same approach is 

applied to seismic data where no well control or biostratigraphy is present.  In the absence 

of absolute age constraints, this is an inherent assumption in all chronostratigraphic studies, 

and implies equal accumulation rates for all strata.  As long as the same vertical stretch is 

applied to all images, the relative modeled time can still be used for comparison across 

multiple sites. 

This work-flow allows us to test hypotheses for the processes controlling deposition 

and erosion. Chronostratigraphic data (Wheeler diagrams), derived from geometric 
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relationships, can be used to understand the relative spatial positions of deposition and 

non-deposition through time.  This provides insight into the dynamics of sedimentary 

accumulation, which is essential for prediction of sedimentary facies. 

 

5.4 North Polar Layered Deposits 

While these methods can be applied to many stratified deposits, the focus of this 

study is the NPLD due to their complex stratal geometries, relative lack of surface 

disturbances (such as impact craters and slope streaks that obscure strata), and inferred tie 

to climatic variations.  The NPLD is a ~3 km thick deposit consisting of sediment and ice 

in varying proportions, forming the bulk of the plateau of Planum Boreum, the northern 

plain of Mars (Figure 5.3).  The layered appearance is attributed to different fractions of 

dust and ice (Cutts and Lewis, 1982; Thomas et al. 1992), producing variations in albedo. 

Unconformities in the NPLD are common (Tanaka, 2005; Byrne, 2009), though 

their formation is not well understood.  Potential formation mechanisms include retreat and 

advance of the PLD margin, erosion and later unconformable deposition, changes in mass 

balance patterns, and even tectonic disturbance of the stratigraphy (Fishbaugh 2008).  The 

NPLD have been regarded as a “Rosetta Stone” for reading the record of recent climate 

change on Mars, but much is unknown about their physical characteristics, age, and the 

processes controlling deposition and erosion. 

Previous studies have focused on albedo variations in the NPLD as a record of 

climate change.  Laskar et al. (2002) used images from the Mars Orbiter Camera (MOC) to 

analyze brightness versus depth.  They found a dominant signal in brightness around  
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Figure 5.3: MOLA topography of the NPLD showing HiRISE footprints of target 
locations.  Targets are located near the margin of the NPLD, exposed in spiral troughs. 

~26 m, which they attributed to a 51 kyr insolation cycle.  Milkovitch and Head (2005) also 

performed a spectral analysis of vertical sections, and found a repetitive signal ~30 m thick 

in the upper part of the deposit.  Milkovitch and Head (2005) also suggest that this might 

correspond to the 51 kyr insolation cycle.  However, when deeper (lower elevation/older) 

sections were analyzed, the spectral signatures vary in thickness (Milkovitch and Head, 

2005), or differ little from those that stochastic processes would generate (Perron and 

Huybers, 2009). 
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The stratigraphic sections used in spectral analyses are all flat-lying, and it was 

assumed that the sections were complete records of the NPLD.  However, these analyses do 

not account for the missing time represented by periods of non-deposition and/or erosion.  

It is clear that non-deposition and erosion are part of the history of the NPLD, because 

many unconformities have been recognized.  Unconformities were first recognized from 

Viking data (Howard et al. 1982), and more unconformities have been identified in higher 

resolution datasets.  Tanaka (2005) used MOC images to map the distribution of 

unconformities and found that unconformities are concentrated at the periphery of the 

NPLD and in regions where different troughs and scarps cross-cut each other.  Fortezzo 

and Tanaka (2010) used Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) 

images (~6 m/pixel) to identify 308 unconformities.  Fortezzo and Tanaka (2010) report a 

mean latitude of 81.7oN, with lengths ranging from ~650 m to ~114 km, at elevations from 

-5010 m to -2609 m. 

In this study, we focus on images that contain unconformities, because the 

truncations provide a way to assess time. 

 

5.5 Chronostratigraphic Analysis of the NPLD 

This initial study shows that Sismage and Geotime can be applied to images of rock 

outcrops in addition to seismic data, which greatly expands the possible applications of this 

tool for chronostratigraphic analysis.  We have established a work-flow for image analysis, 

though the degree of image processing and filtering is unique to each image.  Filtering 

images improves the quality of the convergence model and ultimately the quality and 

accuracy of the Geotime output.  Additionally, we find that although HiRISE DEMs have 
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limited coverage, MOLA topography can be used to fit a slope, which enables the 

analysis of many more locations. 

Initial results show that the Geotime output for Mars outcrops resembles terrestrial 

examples (cf. Keskes et al. 2004, De Bruin et al. 2007; Qayyum et al. 2012).  This suggests 

that the patterns of deposition and erosion on Mars may be controlled by similar processes 

as those on Earth.  

We analyzed 7 NPLD locations (Table 5.1).  Visual inspection of HiRISE imagery 

reveals stratal relationships such as onlap, downlap, toplap, erosional truncation, and 

concordance (Figure 5.4).  These translate into Wheeler diagrams with discrete depositional 

sequences, often containing patterns of progradation, retrogradation, infilling of topography 

and draping.  While not uniform, deposition does appear to be relatively constant.  The 

locus of deposition shifts back and forth through time, but is not completely cut off.  For 

each increment in time there is some point in space where accumulation occurs (Figure 

5.5). 

Geotime results indicate that each of the selected NPLD locations contains 4 to 6 

depositional sequences.  The average modeled time of the sequences (measured as the 

distance from the first occurrence to the last occurrence of a particular sequence in a 

Wheeler diagram) ranges from 116 to 155 pixels, where each pixel represents a unit of 

time.   

The importance of these modeled time values is that they potentially highlight a 

timescale of deposition that is different than previously recognized, and this timescale 

accounts for “missing time” represented by erosion or non-deposition.  The key assumption  
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Table 5.1: NPLD targets identified in HiRISE imagery, with corresponding Geotime 
results. 

NPLD image number 
 

Latitude (o) 
 

Longitude (o) 
 

# Geotime 
sequences 

 

Average 
modeled time 
for sequences 

Ratio of deposit 
to space time 

volume 
ESP_016349_2630 83 99.2 5 142 0.53 
ESP_017735_2615 81.4 63.3 5 128.8 0.43 
PSP_009162_2630 83 106.2 6 116 0.52 
PSP_009293_2645 84.5 128.6 5 125.4 0.42 
PSP_009337_2600 79.8 24.1 4 155.75 0.27 
PSP_009504_2645 84.3 130.9 5 151.8 0.32 
PSP_009599_2615 81.5 64.4 4 150.75 0.31 

 

 

 

Figure 5.4: Stratal geometries identified in HiRISE image PSP_009293_2645.  
Depositional sequences are identified by stratal relationships including toplap, downlap, 
concordance and erosional truncation. 
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involved in this assessment is that the beds are given equal accumulation rates.  We 

propose that this may be a more complete record of the NPLD history, and future work 

relating to climate signals and cyclicity would benefit from this kind of analysis. 

We also evaluate the total space-time area by calculating the ratio of deposition 

(represented by colored sequences) to the total space-time area (the dimensions of the 

Wheeler diagram).  For the NPLD sites, these ratios range from 0.27 to 0.53.  The 

deposition ratios indicate that for a given space-time volume, the deposit that is preserved 

represents only about a quarter to a half of the possible volume (if deposition was uniform 

and continuous, the ratio would be 1).  This kind of chronostratigraphic analysis may serve 

as a new way to assess mass balance patterns in the NPLD, as well as to classify layered 

deposits on Mars and make comparisons between different depositional environments. 

This technique may help test formation mechanisms for unconformities in the 

NPLD.  Proposed mechanisms include retreat and advance of the PLD margin, erosion and 

unconformable deposition, changes in mass balance patterns, and tectonic disturbance 

(Fishbaugh et al. 2008).  None of the sites that were analyzed in this study show evidence 

for faulting.  Faulting would produce offset layers of equal thickness, rather than erosional 

truncation and stratal terminations as discussed above (and shown in Figure 5.4).  

Unconformities that result from differing mass balance patterns are expressed as wide-scale 

unconformable deposition, and can only be identified through PLD-wide mapping 

(Fishbaugh and Hvidberg 2006).  Wide-scale PLD unconformities resulting from mass 

balance differences are outside the scope of this study, which focuses on the abundant 

angular unconformities seen in individual HiRISE images.  Retreat and advance of the 
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NPLD margin is a likely candidate for formation of the angular unconformities, since 

all of the sites selected in this study lie on the margin of the polar cap.  These 

unconformities result from erosion and unconformable deposition, though the exact 

mechanism is still unknown. 

The sites selected in this study are generally exposed on the south-facing walls of 

spiral troughs.  Previous studies, using Viking and Mariner imagery, noted the exposure of 

layers on equator-facing (northern) slopes and the absence of exposed layers on pole-facing 

(southern) slopes (Howard, 1978; Cutts 1973; Soderblom et al. 1973).   Howard (1978) 

suggested that this was due to erosion on the northern slope and deposition on the southern 

slope, leading to northward migration of spiral troughs.  Squyres (1979) and Howard et al. 

(1982) propose that this migration is the result of preferential erosion of equator-facing 

slopes due to solar ablation, followed by transport of eroded material to pole-facing slopes 

via katabatic winds.  Smith and Holt (2010) use radar data to study the large-scale structure 

of the NPLD and suggest that trough migration is dominated by wind transport and 

atmospheric deposition. 

If ice and sediment are transported by katabatic winds, most of the exposed layers 

in this study represent flow transverse cross-sections, according to overall wind patterns 

from wind streak mapping Howard (2000).  However, one site lies on the western slope of 

a bisected trough, providing a cross-section that is potentially flow-parallel relative to the 

katabatic wind and inferred migration direction.  While Smith and Holt (2012) provide a 

simple model of trough migration exhibiting constant northward progress, using sequence 

stratigraphic analysis we find that migration was a more complex process.  In HiRISE 
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image PSP_009293_2645 (Figure 5.6), migration occurred northward, followed by 

infilling of topography.  This was followed by a thick package of ice and sediment that 

drapes the underlying sequences.  Then deposition proceeded northward, followed by 

another draping episode (Figure 5.6).  Chronostratigraphic techniques to trace the locus of 

deposition may provide a record of spiral trough migration and advance and retreat of the 

polar cap margin.  The hypothesis that spiral troughs migrate as the result of katabatic 

winds is further supported by THEMIS VIS images, which capture laminar flow down 

south-facing slopes, followed by hydraulic jumps and flow thickening on north-facing 

slopes (Smith and Holt 2010, 2012).  The majority of images that capture these events 

occur between solar longitude (Ls) 76 and 98, suggesting that the poleward migration of 

troughs occurs during late spring and early summer (Smith and Holt 2012).  Preliminary 

results using chronostratigraphic analysis also suggest that northward migration was not 

continuous, but rather occurs as fluctuating depositional events, which manifest themselves 

as genetically related sequences observed in Wheeler diagrams. 

 

5.6 Application to Other Regions on Mars  

In a survey of HiRISE imagery of other layered deposits, one particular location 

showed striking resemblance to the NPLDs.  Galle crater (51°S 31°W) is a 231 km in 

diameter impact crater located on the eastern rim of Argyre Planitia. These topographic 

features expose layered deposits, particularly in the southern part of the crater.  The 

geologic history of Galle crater is poorly constrained, but it contains a variety of 

morphological features, including layered deposits, fluvial channels breaching the crater 

rim, dunes, glacial features and gullies (Reiss et al. 2006).  The lowermost layered deposits 
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Figure 5.6: Stratigraphy exposed in the wall of a spiral trough, providing a cross-section 
that is parallel to the inferred migration direction.  North is to the left. A) HiRISE image 
PSP_009293_2645, draped on MOLA topography and 5x vertically exaggerated.  B) 
Sequences are identified based on convergence densities, and mapped on (A). C) Wheeler 
diagram, showing evidence of northward migration, infilling of topography and draping, 
followed by renewed northward migration and draping.  Tracing the locus of deposition 
may provide insight into the migration patterns of spiral troughs and processes acting on 
the NPLD margin. 

show evidence for complex stratal geometries, and multiple sequences are exposed in an 

interior crater mound.  Reiss et al. (2006) propose a possible lacustrine origin for the 

layered deposits, based on valley networks that breach the crater rim, and “unconformable 

contacts” which may result from alternating phases of deposition and erosion. 

Alternatively, Ansan and Mangold (2003) suggest that it may be an ancient polar layered 
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deposit, based on its inferred young age, easily eroded material, and geologic context in 

a region in which ice may be stable near the surface. 

 HiRISE imagery reveals many similarities between the lower layered deposits at 

Galle crater and the layers comprising the NPLD (Figure 5.7).  Both sites contain multiple 

truncation surfaces bounding depositional sequences.  The sequences can be traced for 

several kilometers, and terminate in angular unconformities at low to high angles.  

Individual layers are identified based on albedo differences, and the layers are of similar 

scale and morphology.  At both Galle crater and the NPLD, angular unconformities are 

common at the base of the sections, and are overlain by flat-lying layers that build most of 

the topographic relief. 

 Geotime results also indicate that Galle is similar to the NPLD.  The Wheeler 

diagram for Galle crater reveals multiple depositional sequences showing patterns of 

progradation, retrogradation, and draping (Figure 5.8).  Deposition is non-uniform, but 

continuous through the section.  In vertical section, 6 depositional sequences can be 

identified at Galle crater.  The sequences have an average modeled time of 125 pixels, and 

a deposition to total space-time area ratio of 0.36.  These values fall right in the middle of 

the range for the NPLD.  

 Based on similar scale, morphology and chronostratigraphic characteristics, the 

results suggest that Galle crater may represent an ancient polar layered deposit, as proposed 

by Ansan and Mangold (2003).  While Ansan and Mangold limit their analysis to the 

geologic context, age, and morphology of deposits, the same interpretation may be reached 

through analysis of stratal geometries.  If Galle represents an ancient polar layer deposit,  
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Figure 5.7: Comparison of the NPLD (A) and a layered deposit in Galle crater (B).  The 
images contain evidence for multiple angular unconformities, bounding sequences of 
similar scale and morphology.  A) HiRISE image PSP_010234_2600. B) HiRISE image 
PSP_03855_1275. 

 

Figure 5.8: Geotime results for Galle crater. A) HiRISE DEM of the layered mound in 
Galle crater, created from stereo images PSP_010234_2600 and PSP_003934_1275.  The 
view has been orthorectified and 5x vertically exaggerated.  B) Sequences identified and 
mapped on (A). C) Wheeler diagram, containing 6 depositional sequences, with evidence 
for progradation, retrogradation and draping.  The locus of deposition is variable, but 
there are no large hiatuses. 
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the multiple truncation surfaces present in the deposit may represent advance or retreat 

of the ice margin, or migration of topographic irregularities (troughs). 

 

5.7 Implications of a Polar Layered Deposit in Galle Crater 

If Galle contains an ancient polar deposit, the fact that the layers are of similar scale 

to those in the modern polar cap suggests that ice may still be present.  The PLDs are 

thought to be a mix of sediment and ice, with volume fractions of dust ranging from 2 to 

10% (Picardi et al. 2005; Plaut et al. 2007).  Assuming that Galle crater has a similar 

composition to the current PLDs, these low concentrations of dust suggest that if all of the 

ice were to sublime away, the stratigraphy would collapse. Therefore the retention of 

depositional sequences at the same scale as the modern PLDs may indicate a lack of 

compaction or sublimation at Galle crater, and points to preservation of ice in a non-polar 

region.  The possible presence of ice in a non-polar region has important implications for 

habitability, as well as for constraining the global water budget. 

Similar to the Earth, variations in orbital parameters are thought to drive climate 

changes on Mars.  While the timescale of variability is similar, the ranges of Mars’ 

variations are significantly greater.  Mars’ obliquity reaches more than 45o (Laskar et al. 

2002).  At these times of high obliquity (45o), ice is predicted to persist near the equator 

(Richardson and Wilson, 2002), which may explain the possible presence of ice in Galle 

crater.  An alternative hypothesis is that the rotation axis shifted due to true polar wander, 

which could also lead to the presence of polar deposits in some of the modern day mid-

latitudes (Schultz and Lutz 1988).  Schultz and Lutz (1988) suggest that the terrain between 
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Argyre and Hellas, including Galle crater, would have been within 45o of a pole over 

most of geologic time, and therefore should contain evidence of peripheral polar deposits. 

The possible presence of ice in Galle crater is further supported by the recognition 

of many glacial features in the southern mid-latitudes (Kargel and Strom 1992), and recent 

work that suggests that residual ice may remain buried beneath the surface, particularly east 

of the Hellas impact basin (Head et al. 2005; Holt et al. 2008).  Kargel and Strom (1992) 

suggest that the northern limit of southern hemisphere glaciation in the vicinity of Argye 

was ~40oS (encompassing Galle crater), and Galle crater lies in the same latitude belt as the 

proposed ice deposits east of Hellas.  Although it is not possible to confirm the presence of 

ice deposits at Galle crater based on orbital imagery, we believe that its similarities to the 

NPLD, and comparable latitude to other proposed ice deposits make it a good candidate for 

an ancient polar layered deposit.  However, surface elemental mapping via gamma-ray 

spectroscopy does not reveal a strong water signature at Galle crater (Boynton et al. 2007), 

so it is inferred that the ice must be buried.  Yet the stratification is still visible, which 

suggests that if ice is present, it must exist just below the surface, perhaps buried under a 

thin coating of dust.  Theoretical predictions imply that dust can insulate buried ice on Mars 

(Skorov et al. 2001).  A thin coating of dust, combined with the topographic expression of 

the layered deposits may explain the stratified appearance but lack of elemental signature 

of buried ice at Galle crater.   

It is also interesting to note that this deposit occurs as an interior crater mound.  

Numerous craters on Mars contain mounds, thought to be the result of substantial fill and 

partial exhumation.  The layers in the Galle crater mound appear to have no relation to the 
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current form of the mound – layers do not pinch out at the mound margins.  This 

suggests that the processes that formed the mound layers are not related to the current 

processes acting to remove material from the mound.  This has implications for other 

craters with central mounds, such as Gale crater, the landing site for the upcoming Mars 

Science Laboratory rover mission. 

 

5.8 Summary and Significance  

This study demonstrates that chronostratigraphic techniques can be applied to 

images of outcropping sedimentary rocks and ice.  The Mars NPLD provide an ideal 

location for initial testing of this method, due to their complex stratal geometries and 

relative lack of surface disturbances (such as impact craters and slope streaks that obscure 

primary stratification).  Chronstratigraphic analysis of the NPLD reveals depositional 

sequences with modeled time increments that are potentially distinct from previous studies 

of albedo variations.  We propose that future studies of climate signals and cyclicity in the 

NPLD would benefit from chronostratigraphic techniques, in order to build a more 

complete record of NPLD history. 

Chronostratigraphic analyses of the NPLD provide insight into the migration of 

spiral troughs.  Through the use of Wheeler diagrams, we suggest that spiral trough 

migration is not continuous, but rather occurs as fluctuating depositional events.  These 

fluctuations may be tied to longer-term climate variations. 

Comparison of the NPLDs to other layered deposits on Mars reveals that Galle 

crater has very similar physical attributes, both in HiRISE imagery and in Wheeler 

diagrams.  We suggest that Galle crater may represent an ancient polar layered deposit, and 
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that ice may still be present beneath the surface.  Furthermore, we suggest that the 

processes involved in constructing the mound are different than those currently acting to 

erode the mound. 

The techniques introduced in this study are important not just for understanding 

polar layered deposits, but as a globally-applicable tool for viewing and interpreting any 

stratified deposit (on Mars, and on Earth). The results of this study can be used to test 

models for sediment and ice accumulation, which provide further insight into 

environmental processes that influence the evolution of life. 
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