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Abstract

Genetic Algorithms are a common probabilistic optimization method based on
the model of natural evolution. One important operator in these algorithms is
the selection scheme for which a new description model is introduced in this
paper. With this a mathematical analysis of tournament selection, truncation
selection, linear and exponential ranking selection and proportional selection is
carried out that allows an exact prediction of the fitness values after selection.
The further analysis derives the selection intensity, selection variance, and the loss
of diversity for all selection schemes. For completion a pseudo-code formulation
of each method is included. The selection schemes are compared and evaluated
according to their properties leading to an unified view of these different selection
schemes. Furthermore the correspondence of binary tournament selection and
ranking selection in the expected fitness distribution is proven.



Foreword

This paper is the revised and extended version of the TIK-Report No. 11 from
April, 1995. The main additions to the first edition are the analysis of exponen-
tial ranking selection and proportional selection. Proportional selection is only
included for completeness - we believe that it is a very unsuited selection method
and we will show this (like it has be done by other researchers, too) based on
a mathematical analysis in chapter 7. Furthermore for each selection scheme a
pseudo-code notation is given and a short remark on time complexity is included.

The main correction concerns the approximation formula for the selection
variance of tournament selection. The approximation given in the first edition
was completely wrong. In this report the approximation formula is derived by a
genetic algorithm, or better speaking by the genetic programming optimization
method. The used method is described in appendix A and also applied to derive
an analytic approximation for the selection intensity and selection variance of
exponential ranking selection.

We hope that this report summarizes the most important facts for these five
selection schemes and gives all researches a well founded basis to chose the ap-
propriate selection scheme for their purpose.

Tobias Blickle Zirich, Dec., 1995
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Chapter 1

Introduction

Genetic Algorithms (GA) are probabilistic search algorithms characterized by
the fact that a number N of potential solutions (called individuals J; € J, where
J represents the space of all possible individuals) of the optimization problem
simultaneously sample the search space. This population P = {.Jy,Jo, ..., Ix}
is modified according to the natural evolutionary process: after initialization,
selection w : JV — JV and recombination = : JV — JV are executed in a loop
until some termination criterion is reached. Each run of the loop is called a
generation and P(7) denotes the population at generation 7.

The selection operator is intended to improve the average quality of the popu-
lation by giving individuals of higher quality a higher probability to be copied into
the next generation. Selection thereby focuses the search on promising regions in
the search space. The quality of an individual is measured by a fitness function
f +J — R. Recombination changes the genetic material in the population either
by crossover or by mutation in order to exploit new points in the search space.

The balance between exploitation and exploration can be adjusted either by
the selection pressure of the selection operator or by the recombination operator,
e.g. by the probability of crossover. As this balance is critical for the behavior
of the GA it is of great interest to know the properties of the selection and
recombination operators to understand their influence on the convergence speed.

Some work has been done to classify the different selection schemes such
as proportionate selection, ranking selection, tournament selection. Goldberg
[Goldberg and Deb, 1991] introduced the term of takeover time. The takeover
time is the number of generations that is needed for a single best individual to
fill up the whole generation if no recombination is used. Recently Bick [Bick,
1994] has analyzed the most prominent selection schemes used in Evolutionary
Algorithms with respect to their takeover time. In [Miihlenbein and Schlierkamp-
Voosen, 1993] the selection intensity in the so called Breeder Genetic Algorithm
(BGA) is used to measure the progress in the population. The selection intensity
is derived for proportional selection and truncation selection. De la Maza and
Tidor [de la Maza and Tidor, 1993] analyzed several selection methods according
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to their scale and translation invariance.

An analysis based on the behavior of the best individual (as done by Gold-
berg and Béck) or on the average population fitness (as done by Miihlenbein)
only describes one aspect of a selection method. In this paper a selection scheme
is described by its interaction on the distribution of fitness values. Out of this
description several properties can be derived, e.g. the behavior of the best or
average individual. The description is introduced in the next chapter. In chapter
3 an analysis of the tournament selection is carried out and the properties of
the tournament selection are derived. The subsequent chapters deal with trunca-
tion selection, ranking selection, and exponential ranking selection. Chapter 7 is
devoted to proportional selection that represents some kind of exception to the
other selection schemes analyzed in this paper. Finally all selection schemes are
compared.



Chapter 2

Description of Selection Schemes

In this chapter we introduce a description of selection schemes that will be used
in the subsequent chapters to analyze and compare several selection schemes,
namely tournament selection, truncation selection, and linear and exponential
ranking selection and fitness proportional selection. The description is based on
the fitness distribution of the population before and after selection as introduced
in [Blickle and Thiele, 1995]. It is assumed that selection and recombination
are done sequentially: first a selection phase creates an intermediate population
P'(7) and then recombination is performed with a certain probability p. on the
individuals of this intermediate population to get the population for the next
generation (Fig. 2.1). Recombination includes crossover and mutation or any
other operator that changes the “genetic material”. This kind of description
differs from the common paradigms where selection is made to obtain the indi-
viduals for recombination [Goldberg, 1989; Koza, 1992]. But it is mathematically
equivalent and allows to analyze the selection method separately.

For selection only the fitness values of the individuals are taken into account.
Hence, the state of the population is completely described by the fitness values
of all individuals. There exist only a finite number of different fitness values
f1, - fu(n < N) and the state of the population can as well be described by the
values s(f;) that represent the number of occurrences of the fitness value f; in
the population.

Definition 2.0.1 (Fitness distribution) The function s : R — Z assigns
to each fitness value f € R the number of individuals in a population P € JV
carrying this fitness value. s is called the fitness distribution of a population P.

The characterization of the population by its fitness distribution has also
been used by other researches, but in a more informal way. In [Miihlenbein
and Schlierkamp-Voosen, 1993] the fitness distribution is used to calculate some
properties of truncation selection. In [Shapiro et al., 1994] a statistical mechanics
approach is taken to describe the dynamics of a Genetic Algorithm that makes
use of fitness distributions, too.
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Figure 2.1: Flowchart of the Genetic Algorithm.

It is possible to describe a selection method as a function that transforms a
fitness distribution into another fitness distribution.

Definition 2.0.2 (Selection method) A selection method 2 is a function that
transforms a fitness distribution s into an new fitness distribution s':

s = Q(s, par_list) (2.1)
par_list is an optional parameter list of the selection method.

As the selection methods are probabilistic we will often make use of the ex-
pected fitness distribution.

Definition 2.0.3 (Expected fitness distribution) Q* denotes the expected
fitness distribution after applying the selection method S to the fitness distribution
s, i.€.

Q*(s, par_list) = E((s, par_list)) (2.2)

The notation s* = Q*(s, par_list) will be used as abbreviation.
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It is interesting to note that it is also possible to calculate the variance of the
resulting distribution.

Theorem 2.0.1 The variance in obtaining the fitness distribution s is

o2 = s* (1 — %) (2.3)

Proof: s*(f;) denotes the expected number of individuals with fitness value
fi after selection. It is obtained by doing N experiments “select an individual
from the population using a certain selection mechanism”. Hence the selection
probability of an individual with fitness value f; is given by p; = L}\f) To
each fitness value there exists a Bernoulli trial “an individual with fitness f; is
selected”. As the variance of a Bernoulli trial with N trials is given by o? =

Np(1 —p), (2.3) is obtained using p;. O

The index s in o, stands for “sampling” as it is the mean variance due to the
sampling of the finite population.

The variance of (2.3) is obtained by performing the selection method in N
independent experiments. It is possible to reduce the variance almost completely
by using more sophisticated sampling algorithms to select the individuals. We
will introduce Baker’s “stochastic universal sampling” algorithm (SUS) [Baker,
1987], which is an optimal sampling algorithm when we compare the different
selection schemes in chapter 8.

Definition 2.0.4 (Cumulative fitness distribution) Let n be the number of
unique fitness values and f1 < ... < f,1 < fo (n < N) the ordering of the
fitness values with f; denoting the worst fitness occurring in the population and
fn denoting the best fitness in the population.

S(f;) denotes the number of individuals with fitness value f; or worse and is
called cumulative fitness distribution, i.e.

o 0 1< 1
S(fi) =1 Zj=us(fy) + 1<i<n (2.4)
N : i1>n

Example 2.0.1 As an example of a discrete fitness distribution we use the initial
fitness distribution of the “wall-following-robot” from Koza [Koza, 1992]. This
distribution is typical of problems solved by genetic programming (many bad and
only very few good individuals exist). Figure 2.2 shows the distribution s(f) (left)
and the cumulative distribution S(f) (right).

We will now describe the distribution s(f) as a continuous distribution 5(f)
allowing the following properties to be easily derived. To do so, we assume



Figure 2.2: The fitness distribution s(f) and the cumulative fitness distribution
S(f) for the “wall-following-robot” problem.

continuous distributed fitness values. The range of the function 5(f) is fo < f <
fn, using the same notation as in the discrete case.

We denote all functions in the continuous case with a bar, e.g. we write 5(f)
instead of s(f). Similar sums are replaced by integrals, for example

S(f) = /f 5(z) dz (2.5)

denotes the continuous cumulative fitness distribution.

Example 2.0.2 As an example for a continuous fitness distribution we chose
the Gaussian distribution G(u,o) with

1 _ew?
G(p,0)(z) = e (2.6)
2o
The distribution sq(f) = NG(p,0)(f) with 0 = 30, = 100, N = 1000 and
fo = —o0, fn, = +o0 is shown in the interesting region f € [0,200] in Figure

2.3 (left). The right graph in this figure shows the cumulative fitness distribution
Sa(f)-

We will now introduce the aspects of the fitness distribution we want to com-
pare. The definitions given will all refer to continuous distributed fitness values.

2.1 Average Fitness

Definition 2.1.1 (Average fitness) M denotes the average fitness of the popu-
lation before selection and M* denotes the expected average fitness after selection:

- ") s (2.7)

== sy s (2.8)



s(f) s(f)

Figure 2.3: The fitness distribution 5¢(f) (left) and the cumulative fitness dis-
tribution Sg(f) (right).

2.2 Fitness Variance

Definition 2.2.1 (Fitness variance) The fitness variance 62 denotes the vari-
ance of the fitness distribution 5(f) before selection and (6*)? denotes the variance
of the fitness distribution 5*(f) after selection:

fn _ fn _
o= [ G = [T s - (2)
fn _ In _
@ =[SO d = [T s nd - )

Note the difference of this variance to the variance in obtaining a certain
fitness distribution characterized by theorem 2.0.1

2.3 Reproduction Rate

Definition 2.3.1 (Reproduction rate) The reproduction rate R(f) denotes
the ratio of the number of individuals with a certain fitness value f after and
before selection

o 2D 5 (f) >0
R(f)—{ Yy S(f) = 0 (2.11)

A reasonable selection method should favor good individuals by assigning
them a reproduction rate R(f) > 1 and punish bad individuals by a ratio R(f) <
1.



2.4 Loss of Diversity

During every selection phase bad individuals will be lost and be replaced by
copies of better individuals. Thereby a certain amount of “genetic material” is
lost that was contained in the bad individuals. The number of individuals that
are replaced corresponds to the strength of the “loss of diversity”. This leads to
the following definition.

Definition 2.4.1 (Loss of diversity) The loss of diversity p, is the proportion
of individuals of a population that is not selected during the selection phase.

Theorem 2.4.1 If the reproduction rate R(f) increases monotonously in f, the
loss of diwversity of a selection method is

1 Q Q*
pa=5 (S5(1.) = 5°(1)) (2.12)
where f, denotes the fitness value such that R(f,) =1

Proof: For all fitness values f € (fo, f.] the reproduction rate is less than one.

Hence the number of individuals that are not selected during selection is given
by f’; (5(z) — 5%(z)) dz. Tt follows that

pd:%/ (2)) da
1

(e

(S(72) = 5°( fz)

ZIHZI

O

The loss of diversity should be as low as possible because a high loss of diver-
sity increases the risk of premature convergence.

In his dissertation [Baker, 1989], Baker has introduced a similar measure called
“reproduction rate RR”. RR gives the percentage of individuals that is selected
to reproduce, hence RR = 100(1 — py).

2.5 Selection Intensity

The term “selection intensity” or “selection pressure” is often used in different
contexts and for different properties of a selection method. Goldberg and Deb
[Goldberg and Deb, 1991] and Bick [Béack, 1994] use the “takeover time” to
define the selection pressure. Whitley calls the parameter ¢ (see chapter 5) of his
ranking selection method selection pressure.

11



We use the term “selection intensity” in the same way it is used in popula-
tion genetic [Bulmer, 1980]. Miihlenbein has adopted the definition and applied
it to genetic algorithms [Miihlenbein and Schlierkamp-Voosen, 1993]. Recently
more and more researches are using this term to characterize selection schemes
[Thierens and Goldberg, 1994a; Thierens and Goldberg, 1994b; Bick, 1995;
Blickle and Thiele, 1995].

The change of the average fitness of the population due to selection is a rea-
sonable measure for selection intensity. In population genetic the term selection
intensity was introduced to obtain a normalized and dimension-less measure. The
idea is to measure the progress due to selection by the so called “selection dif-
ferential”, i.e. the difference between the population average fitness after and
before selection. Dividing this selection differential by the mean variance of the
population fitness leads to the desired dimension-less measure that is called the
selection intensity.

Definition 2.5.1 (Selection intensity) The selection intensity of a selection
method Q for the fitness distribution 5(f) is the standardized quantity

[=— (2.13)

By this, the selection intensity depends on the fitness distribution of the initial
population. Hence, different fitness distributions will in general lead to different
selection intensities for the same selection method. For comparison it is necessary
to restrict oneself to a certain initial distribution. Using the normalized Gaussian
distribution G(0, 1) as initial fitness distribution leads to the following definition.

Definition 2.5.2 (Standardized selection intensity) The standardized se-
lection intensity I is the expected average fitness value of the population after ap-

plying the selection method Q) to the normalized Gaussian distribution G(0,1)(f) =
2
et

lo= [~ r @GO & (2.14)

The “effective” average fitness value of a Gaussian distribution with mean p
and variance o2 can easily be derived as M* = oI + u. Note that this definition
of the standardized selection intensity can only be applied if the selection method
is scale and translation invariant. This is the case for all selection schemes exam-
ined in this paper except proportional selection. Likewise this definition has no
equivalent in the case of discrete fitness distributions. If the selection intensity
for a discrete distribution has to be calculated, one must refer to Definition 2.5.1.
In the remainder of this paper we use the term “selection intensity” as equiva-
lent for “standardized selection intensity” as our intention is the comparison of
selection schemes.
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2.6 Selection Variance

In addition to the selection intensity we introduce the term of “selection variance”.
The definition is analogous to the definition of the selection intensity, but here we
are interested in the the new variance of the fitness distribution after selection.

Definition 2.6.1 (Selection variance) The selection variance is the normal-
wzed expected variance of the fitness distribution of the population after applying
the selection method §) to the fitness distribution 5(f), i.e.

(5'*)2

2

V= (2.15)

Qi

For comparison the standardized selection variance is of interest.

Definition 2.6.2 (Standardized selection variance) The standardized selec-
tion variance Vo is the normalized expected variance of the fitness distribution of
the population after applying the selection method 2 to the normalized Gaussian
distribution G(0,1).

Vo= [ (F =1 TGO &f (2.16)

that is equivalent to
Vo= [ P2O(GO0))() df - 13 (2.17)

Note that there is a difference between the selection variance and the loss of
diversity. The loss of diversity gives the proportion of individuals that are not
selected, regardless of their fitness value. The standardized selection variance is
defined as the new variance of the fitness distribution assuming a Gaussian initial
fitness distribution. Hence a selection variance of 1 means that the variance is
not changed by selection. A selection variance less than 1 reports a decrease in
variance. The lowest possible value of V{, is zero, which means that the variance
of the fitness values of population after selection is itself zero. Again we will
use the term the “selection variance” as equivalent for “standardized selection
variance”.

13



Chapter 3

Tournament Selection

Tournament selection works as follows: Choose some number ¢ of individuals
randomly from the population and copy the best individual from this group into
the intermediate population, and repeat N times. Often tournaments are held
only between two individuals (binary tournament) but a generalization is possible
to an arbitrary group size ¢ called tournament size.

The pseudo code of tournament selection is given by algorithm 1.

Algorithm 1: (Tournament Selection)

Input: The population P(7) the tournament size ¢t € {1,2,..., N}
Output: The population after selection P(7)’

tournament(t,Jy, ..., Jy):
for 1 < 1to N do
J! < best fit individual out of ¢ randomly picked
individuals from {.Jy, ..., Jy };
od
return {J}, ..., Jy}

The outline of the algorithm shows that tournament selection can be imple-
mented very efficiently as no sorting of the population is required. Implemented
in the way above it has the time complexity O(N).

Using the notation introduced in the previous chapter, the entire fitness dis-
tribution after selection can be predicted. The prediction will be made for the
discrete (exact) fitness distribution as well as for a continuous fitness distribution.
These results were first published in [Blickle and Thiele, 1995]. The calculations
assume that tournament selection is done with replacement.

Theorem 3.0.1 The expected fitness distribution after performing tournament

14



selection with tournament size t on the distribution s is
. . S\ (S
Qr(s,t)(fi) =s*(fi) = N (( EV)> B <%> (3.1)

Proof: We first calculate the expected number of individuals with fitness f;
or worse, i.e. S*(f;). An individual with fitness f; or worse can only win the
tournament if all other individuals in the tournament have a fitness of f; or
worse. This means we have to calculate the probability that all ¢ individuals
have a fitness of f; or worse. As the probability to choose an individual with

fitness f; or worse is given by % we get
S
S*(fi)=N 3.2
(£) ( 3 ) (32)

Using this equation and the relation s*(f;) = S*(f;) — S*(fi_1) (see Definition
2.0.4) we obtain (3.1). O

Equation (3.1) shows the strong influence of the tournament size ¢ on the
behavior of the selection scheme. Obviously for ¢ = 1 we obtain (in average)
the unchanged initial distribution as Q.(s, 1)(f;) = N (% - %) =S(fi) —
S(fi-1) = s(fi)-

In [Bick, 1994] the probability for the individual number i to be selected
by tournament selection is given by p; = N7'((N — i+ 1) — (N —4)"), under
the assumption that the individuals are ordered according to their fitness value
f(J1) < f(Je) < ... < f(Jn). Note that Béck uses an “reversed” fitness function
where the best individual has the lowest index. For comparison with our results
we transform the task into an maximization task using j = N — i+ 1:

pi=N"'('-(-1") 1<j<N (3.3)

This formula is as a special case of (3.1) with all individuals having a different
fitness value. Then s(f;) = 1 for all ¢ € [1, N] and S(f;) = i and p; = Lj\{)
yields the same equation as given by Béck. Note that (3.3) is not valid if some
individuals have the same fitness value.

Example 3.0.1 Using the discrete fitness distribution from Ezample 2.0.1 (Fig-
ure 2.2) we obtain the fitness distribution shown in Figure 3.1 after applying
tournament selection with a tournament size t = 10. In addition to the ex-
pected distribution there are also the two graphs shown for s*(f) — os(f) and
s*(f)+os(f). Hence a distribution obtained from one tournament run will lie in
the given interval (the confidence interval) with a probability of 68%.

The high agreement between the theoretical derived results and a simulation is
verified in Figure 3.2. Here the distributions according to (3.1) and the average
of 20 simulation are shown.
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Figure 3.1: The resulting expected fitness distribution and the confidence interval
of 68% after applying tournament selection with a tournament size of 10.

In example 3.0.1 we can see a very high variance in the distribution that arises
from fact that the individuals are selected in N independent trials. In chapter 8.1
we will meet the so called “stochastic universal sampling” method that minimizes
this mean variance.

Theorem 3.0.2 Let 5(f) be the continuous fitness distribution of the population.
Then the expected fitness distribution after performing tournament selection with
tournament size t s

%5000 = (1) = st () (3.0

Proof: Analogous to the proof of the discrete case the probability of an indi-
vidual with fitness f or worse to win the tournament is given by

5 (f) = N (%) (35)

As 5(f) = 224 we obtain (3.4). O

Example 3.0.2 Figure 3.3 shows the resulting fitness distributions after applying
tournament selection on the Gaussian distribution from FExample 2.0.2.
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Figure 3.2: Comparison between theoretical derived distribution (—) and simu-
lation (- - -) for tournament selection (tournament size ¢ = 10).

3.1 Concatenation of Tournament Selection

An interesting property of the tournament selection is the concatenation of several
selection phases. Assume an arbitrary population with the fitness distribution
s. We apply first tournament selection with tournament size ¢; to this popula-
tion and then on the resulting population tournament selection with tournament
size to. The obtained fitness distribution is the same as if only one tournament
selection with the tournament size ¢, is applied to the initial distribution 5.

Theorem 3.1.1 Let s be a continuous fitness distribution and ti,t3 > 1 two
tournament sizes. Then the following equation holds

%

Qr(Q(5,t1),t2) (f) = Qp(5, 11 t2) () (3.6)
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Figure 3.3: Gaussian fitness distribution approximately leads again to Gaussian
distributions after tournament selection (from left to right: initial distribution,
t=2,t=>5,t=10).

we can write

t1—1 t1(t2—1)
= tot15(f) (% /: 5(x) dx) <% f: 5(x) dx)
1

g (% [t dx> i menn)
O

In [Goldberg and Deb, 1991] the proportion P, of best-fit individuals after 7
selections with tournament size ¢ (without recombination) is given to

P.=1—(1-P)" (3.7)

This can be obtained as a special case from Theorem 3.1.1, if only the best-fit
individuals are considered.

Corollary 3.1.1 Let 5(f) be a fitness distribution representable as

I g(z) dx ot
(/) = fal)) (W) 39)
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with 8> 1 and [ g(x)dx = N. Then the expected distribution after tournament
with tournament size t s

[ g(x)dz

b1
s*(f) = Btg(f) (T) (3.9)

Proof: If we assume that 5(f) is the result of applying tournament selection
with tournament size  on the distribution g(f), (3.9) is directly obtained using
Theorem 3.1.1. O

3.2 Reproduction Rate

Corollary 3.2.1 The reproduction rate of tournament selection is

Rur) = S0 = (%) * (3.10)

This is directly obtained by substituting (3.4) in (2.11).
Individuals with the lowest fitness have a reproduction rate of almost zero
and the individuals with the highest fitness have a reproduction rate of ¢.

3.3 Loss of Diversity

Theorem 3.3.1 The loss of diversity par of tournament selection s

1 t

par(t) =t =1 —t =1 (3.11)

Proof: S(f.) can be determined using (3.10) (refer to Theorem 2.4.1 for the
definition of f,):
S(f.) =Nt =1 (3.12)
)

Using Definition 2.4.1 and (3.12) we obtain:

par(t) =  (S(7) - 5°(£)
_ S(fz)_<5(fz)>t

N N
1 t
= {TF1 ¢
a

It turns out that the number of individuals lost increases with the tournament
size (see Fig. 3.4). About the half of the population is lost at tournament size
t=25.
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Figure 3.4: The loss of diversity pyr(t) for tournament selection.

3.4 Selection Intensity

To calculate the selection intensity we calculate the average fitness of the popula-
tion after applying tournament selection on the normalized Gaussian distribution
G(0,1). Using Definition 2.1.1 we obtain

0o 1 22 T 1 2 t—1
It :/ y % / 4 d d 3.13
0= et ([ te) e ew

These integral equations can be solved analytically for the cases t =1,...,5
([Blickle and Thiele, 1995; Bick, 1995; Arnold et al., 1992)):

Ir(1) = 0

ne) =

ne) = 5

Ir(4) = ﬂ\fi/%arctanﬂ

Ir(5) = %(%arctan\/_—i)

20



For a tournament size of two Thierens and Goldberg derive the same average
fitness value [Thierens and Goldberg, 1994al in a completely different manner.
But their formulation can not be extended to other tournament sizes.

For larger tournament sizes (3.13) can be accurately evaluated by numerical
integration. The result is shown on the left side of Figure 3.5 for a tournament
size from 1 to 30. But an explicit expression of (3.13) may not exist. By means
of the steepest descent method (see, e.g. [Henrici, 1977]) an approximation for
large tournament sizes can be given. But even for small tournament sizes this
approximation gives acceptable results.

The calculations lead to the following recursion equation:

Ir(t)* & \Jer(In(t) — In(Ir(H)F1)) (3.14)

with I7(t)® = 1 and k the recursion depth. The calculation of the constants ¢
is difficult. Taking a rough approximation with £ = 2 the following equation is
obtained that approximates (3.13) with an relative error of less than 2.4% for
t € [2,5], for tournament sizes t > 5 the relative error is less than 1%:

() ~ \/ 2(In(t) — In(\/4.14 In(t))) (3.15)

0.5

0 5 10 15 20 25 ECR 0 5 10 15 20 25 T

Figure 3.5: Dependence of the selection intensity (left) and selection variance
(right) on the tournament size t.

3.5 Selection Variance

To determine the selection variance we need to solve the equation

Vir(t) :/O:Ot(x—[T(t))Q \/12_7re—§ (/Oo \/12_7Te—y—fdy>t_l dr  (3.16)

For a binary tournament we have



Here again (3.16) can be solved by numerical integration. The dependence of
the selection variance on the tournament size is shown on the right of Figure 3.5.
To obtain a useful analytic approximation for the selection variance, we per-
form a symbolic regression using the genetic programming optimization method.
Details about the way the data was computed can be found in appendix A. The
following formula approximates the selection variance with an relative error of

less than 1.6% for t € {1,...,30}:

2,05+ ¢
Vi(t) ~ ,/ﬁ te{l,...,30) (3.17)
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Chapter 4

Truncation Selection

In Truncation selection with threshold T only the fraction T best individuals
can be selected and they all have the same selection probability. This selection
method is often used by breeders and in population genetic [Bulmer, 1980; Crow
and Kimura, 1970]. Miihlenbein has introduced this selection scheme to the
domain of genetic algorithms [Miihlenbein and Schlierkamp-Voosen, 1993]. This
method is equivalent to (j, A)-selection used in evolution strategies with 1" = &
[Bick, 1995].
The outline of the algorithm is given by algorithm 2.

Algorithm 2: (Truncation Selection)

Input: The population P(7), the truncation threshold 7' € [0, 1]
Output: The population after selection P(7)’

truncation(7,.Jy, ..., Jy):
J <+ sorted population J according fitness
with worst individual at the first position
for 1 < 1to N do
r < random{ [(1 = T)N],..., N}
J!«— J,
od
return {J],..., Jy}

As a sorting of the population is required, truncation selection has a time
complexity of O(N In N).

Although this method has been investigated several times we will describe
this selection method using the methods derived here, as additional properties
can be observed.

Theorem 4.0.1 The expected fitness distribution after performing truncation se-
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lection with threshold T on the distribution s is

0 : S(f)<(1-T)N

U (s, T)(fi) = s"(fi) = SEL=DN 0 S(f) < (1-T)N < S(fi)  (4.1)
S(%i) else

Proof: The first case in (4.1) gives zero offspring to individuals with a fitness
value below the truncation threshold. The second case reflects the fact that
threshold may lie within s;. Then only the fraction above the threshold (S; —
(1—T)N) may be selected. These fraction is in average copied + times. The last
case in (4.1) gives all individuals above the threshold the multiplication factor &

T
that is necessary to keep the population size constant. O

Theorem 4.0.2 Let 5(f) be the continuous distribution of the population. Then
the expected fitness distribution after performing truncation selection with thresh-

old T 1is

U S(f)>(1=T)N

om0 ={ Ty oY (4.2

Proof: As S(f) gives the cumulative fitness distribution, it follows from the
construction of truncation selection that all individuals with S(f) < (1 — T)N
are truncated. As the population size is kept constant during selection, all other
individuals must be copied in average % times. a

4.1 Reproduction Rate

Corollary 4.1.1 The reproduction rate of truncation selection is

min={ 3 1 o z0mON (13

else

4.2 Loss of Diversity

By construction of the selection method only the fraction 7" of the population
will be selected, i.e. the loss of diversity is

par(T)=1-T (4.4)
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4.3 Selection Intensity

The results presented in this subsection have been already derived in a different
way in [Crow and Kimura, 1970].

Theorem 4.3.1 The selection intensity of truncation selection is

INT) = - ——e % (4.5)

where f. is determined by T = [ —Z=e” 7 df .

Proof: The selection intensity is defined as the average fitness of the population
after selection assuming an initial normalized Gaussian distribution G(0, 1), hence
I=[%2 Q(G(0,1))(f) f df. As no individual with a fitness value worse than f.
will be selected, the lower integration bound can be replaced by f.. Here f. is

determined by
S(f)=1-T)N=1-T (4.6)

because N =1 for the normalized Gaussian distribution.
So we can compute

In(T) = : f¢—2—ﬂ677fdf
11 2

Here f. is determined by (4.6). Solving (4.6) for T yields

T = 1-

O
A lower bound for the selection intensity reported by [Miihlenbein and Voigt,

1995] is In(T) < /L.

Figure 4.1 shows on the left the selection intensity in dependence of parameter
T.

4.4 Selection Variance

Theorem 4.4.1 The selection variance of truncation selection is

Vo(T) =1 = In(T)(Ir(T) = f) (4.7)
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v(m)
1

o T

Figure 4.1: Selection intensity (left) and selection variance (right) of truncation
selection.

Sketch of proof: The substitution of (4.2) in the definition equation (2.17)
gives

© ,1 1 £
Vi(T) = 2= e T df — In(T))?
W= | P75 f — In(T))
After some calculations this equation can be simplified to (4.7). O

The selection variance is plotted on the right of Figure 4.1. (4.7) has also
been derived in [Bulmer, 1980)].
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Chapter 5

Linear Ranking Selection

Ranking selection was first suggested by Baker to eliminate the serious disadvan-
tages of proportionate selection [Grefenstette and Baker, 1989; Whitley, 1989].
For ranking selection the individuals are sorted according their fitness values and
the rank NV is assigned to the best individual and the rank 1 to the worst indi-
vidual. The selection probability is linearly assigned to the individuals according
to their rank:

1

pizﬁ<n+(n+—n)]@ill> ; ie{l....,N} (5.1)

Here ﬂ]% is the probability of the worst individual to be selected and ﬂ]% the
probability of the best individual to be selected. As the population size is held
constant, the conditions 7 = 2 — 7~ and = > 0 must be fulfilled. Note that all
individuals get a different rank, i.e. a different selection probability, even if they

have the same fitness value.

Koza [Koza, 1992] determines the probability by a multiplication factor 7,
that determines the gradient of the linear function. A transformation into the
form of (5.1) is possible by 7~ = ;25 and 5" = 2=

Whitley [Whitley, 1989] describes the ranking selection by transforming an
equally distributed random variable x € [0,1] to determine the index of the

selected individual

j=1 N (c—\/02—4(c—1)x>J (5.2)

where c is a parameter called “selection bias”. Back has shown that for 1 < ¢ < 2
this method is almost identical to the probabilities in (5.1) with n* = ¢ [Bick,
1994].
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Algorithm 3: (Linear Ranking Selection)

Input: The population P(7) and the reproduction rate of the worst
individual n~ € [0, 1]
Output: The population after selection P(7)’

linear_ranking(n=,Jy, ..., Jy):
J + sorted population J according fitness
with worst individual at the first position
S0« 0
for 1< 1to N do
s; < S;—1 + p; (Equation 5.1)
od
for i < 1 to N do
r < random/[0,s |
J! < Jysuch that 5, , <r < s
od
return {J],..., Jy}

The pseudo-code implementation of linear ranking selection is given by algo-
rithm 3. The method requires the sorting of the population, hence the complexity
of the algorithm is dominated by the complexity of sorting, i.e. O(N log N).

Theorem 5.0.2 The expected fitness distribution after performing ranking selec-
tion with n~ on the distribution s is

Nn- =1 1-—n"

(s, 7)(f) = 5°(f) = s(f)—— + ~—= (S = S(i)?)  (53)
Proof: We first calculate the expected number of individuals with fitness f;
or worse, i.e. S*(f;). As the individuals are sorted according to their fitness
value this number is given by the sum of the probabilities of the S*(f;) less fit

individuals:

S(f:)
S*(fi) = N> p
j=1

)+ TS
= n S5(fi) + J—1
N-1 =

oS+ T Ly iy
= n S(fi) + N_12 (fi) (S(fi) = 1)
Asnt =2 —n~ and s*(f;) = S*(f;) — S*(fi_1) we obtain

(S(f(S(fi) = 1) = S(fi-))(S(fi-1) = 1))

S (fl) = n (S(fz)_s(fl—l))+ N —1
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= (i) + S (SUR = SUfi)? = ()
= U (SU - SU )

O

Example 5.0.1 As an example we use again the fitness distribution of the “wall-
following-robot” from FExample 2.0.1. The resulting distribution after ranking se-
lection with n~ = 0.1 is shown in Figure 5.1. Here again the confidence interval
is shown. A comparison between theoretical analysis and the average of 20 simu-
lations is shown in Figure 5.2. Again a very high agreement with the theoretical
results is observed.

s* (f)
400

350
300
250
200
150 f
100 f

50

Figure 5.1: The resulting expected fitness distribution and the confidence interval
of 68% after applying ranking selection with = = 0.1.

Theorem 5.0.3 Let 5(f) be the continuous fitness distribution of the population.
Then the expected fitness distribution after performing ranking selection Qi with
n~ on the distribution 5 1s

1—n"
N

2
m *
o
dI
=
Il

|
*
>
Il

n-s(f) +2 S()s(f) (5.4)

. . . _ _ +_pn—
Proof: As the continuous form of (5.1) is given by p(z) = % (n~ + TFx) we
calculate S(f) using nt =2 —n:

5(F)
() = N[ p(e) da
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Figure 5.2: Comparison between theoretical derived distribution (—) and the

average of 20 simulations (- - -) for ranking selection with n~ = +.

N
S() 1—n~ [SU)
= n 2
n /0 dz + N /0 x dx
_ -3 L=n" a2
= S+ S ()
As 5*(f) = 5D (5.4) follows. O

daf
Example 5.0.2 Figure 5.3 shows the the initial continuous fitness distribution
sq and the resulting distributions after performing ranking selection.
5.1 Reproduction Rate

Corollary 5.1.1 The reproduction rate of ranking selection is

Rulf) =~ +25() (5.5

This equation shows that the worst fit individuals have the lowest reproduc-
tion rate R(fy) = n~ and the best fit individuals have the highest reproduction
rate R(f,) = 2 —n~ = n*. This can be derived from the construction of the
method as % is the selection probability of the worst fit individual and % the
one of the best fit individual.
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and the resulting distributions

Figure 5.3: Gaussian fitness distribution 5¢(f)
.5 and n~ =0 (from left to right).

after performing ranking selection with n~ =

5.2 Loss of Diversity

Theorem 5.2.1 The loss of diversity par(n~) of ranking selection is

1

par(n™) = (1 - 77_)1 (5.6)

Proof: Using Theorem 2.4.1 and realizing that S(f,) = 5 we calculate:
par(n”) = + (8(f) = 5°(f))
_ 1 (g & AT
- PJ (511;) ‘S(f;) PJ ‘S(j;) )
1
N

O

Baker has derived this result using his term of “reproduction rate” [Baker,
1989)].
Note that the loss of diversity is again independent of the initial distribution.
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5.3 Selection Intensity

Theorem 5.3.1 The selection intensity of ranking selection is

1
Ir(n)=01-n)—7 5.7
R )= =n)—= (5.7)
Proof: Using the definition of the selection intensity (Definition 2.5.2) and using
the Gaussian function for the initial fitness distribution we obtain

1 L |

) = [Tege® (v [ e Fa) o

77* 0 22 1 — 77* [oe) 22 T y2
—/ re 2 dx+ / xe*T/ e 2dydx
vV 21 J—c0 ™ —00 —00

22 y2 .
As the first summand is 0 and [*_ze 7 [ e Zdy dx = /7 we obtain (5.7).
O

The selection intensity of ranking selection is shown in Figure 5.4 (left) in
dependence of the parameter n~.

107) V)
1 1

0
0.2 0.4 0.6 0.8 1 - -
n 0.2 0.4 0.6 0.8 1y

Figure 5.4: Selection intensity (left) and selection variance (right) of ranking
selection.

5.4 Selection Variance

Theorem 5.4.1 The selection variance of ranking s

(1-n)

- =1—1Ig(n™)? (5.8)

Ve(n™)=1-

Proof: Substituting (5.4) into the definition equation (2.17) leads to

Vit ) = [ e ® (o v20 00 [ e San) - tato
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- no[® _2
Var) = = [ P

1—n" o0 2 f 2
+ 7 / f26*f7/ e 2 dydf

™

- IR(77_)2

Using the relations B.7 and B.8 we obtain

Vetn™) = n=+Q—n")—Ir(n)?
= 1—1Ir(n")?
O

The selection variance of ranking selection is plotted on the right of Figure

5.4.
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Chapter 6

Exponential Ranking Selection

Exponential ranking selection differs from linear ranking selection in that the
probabilities of the ranked individuals are exponentially weighted. The base of
the exponent is the parameter 0 < ¢ < 1 of the method. The closer ¢ is to 1
the lower is the “exponentiality” of the selection method. We will discuss the
meaning and the influence of this parameter in detail in the following. Again the
rank NV is assigned to the best individual and the rank 1 to the worst individual.
Hence the probabilities of the individuals are given by

CNfz

Pi=FN NS
E]‘:1C J

. ie{l,., N} (6.1)
The sum Y7, ¢/ normalizes the probabilities to ensure that ¥, p; = 1.

: N _ . .
As 2N N7 = <=1 we can rewrite the above equation:
Jj=1 c—1

pi=——c"" i€ {l,..,N} (6.2)

The algorithm for exponential ranking (algorithm 4) is similar to the algorithm
for linear ranking. The only difference lies in the calculation of the selection
probabilities.

Theorem 6.0.2 The expected fitness distribution after performing exponential
ranking selection with ¢ on the distribution s is

(s, e, N)(f) = ' () = Noomse 500 (200 1) (63)

cN—1
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Algorithm 4: (Exponential Ranking Selection)

Input: The population P(7) and the ranking base ¢ €]0, 1]
Output: The population after selection P(7)’

exponential ranking(c,Ji, ..., Jy):
J + sorted population J according to fitness
with worst individual at the first position
S0« 0
for 1< 1 to N do
s;  $i—1 + p; (Equation 6.2)
od
for i < 1 to N do
r < random[0,s [
J! < Jysuch that s, , <r < s
od
return {J],..., Jy}

Proof: We first calculate the expected number of individuals with fitness f;
or worse, i.e. S*(f;). As the individuals are sorted according to their fitness
value this number is given by the sum of the probabilities of the S*(f;) less fit
individuals:
S(fi)
S*(fi) = N Z Dj
j=1

5(fi)

c—1 .

= N > N
N —1 j=1 ‘

and with the substitution £k = N —j

c—1 N—-1

¢ k=N—5(f

=0 k=
Cc — ]_ CN N S(fz))

o

—1\c-1 -1
R
As S*(fz) = S*(fz) - S*(fz—l) we obtain

* c—1 _ ] B 4
s*(fi) = NCN— 1 (c S(fi-1) _ ¢ S(fz))

N—
-1 N—-1 N— S(f
—1 k

C
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c—1

= N
cN—1

S (Cs(fi) _ 1)
O

Example 6.0.1 As an example we use again the fitness distribution of the “wall-
following-robot” from Ezample 2.0.1. The resulting distribution after exponential
ranking selection with ¢ = 0.99 and N = 1000 is shown in Figure 6.1 as a

comparison to the average of 20 simulations. Again a very high agreement with
the theoretical results is observed.

s* (f)

100
80 |
60
40

20

Figure 6.1: Comparison between theoretical derived distribution (—) and the
average of 20 simulations (- - -) for ranking selection with ¢ = 0.99.

Theorem 6.0.3 Let 5(f) be the continuous fitness distribution of the popula-

tion. Then the expected fitness distribution after performing exponential ranking
selection Q2 with ¢ on the distribution s is

N _

~ e s(f) 50 (6.4)

C —

Qp(5,0)(f) =5"(f) =N

N-—=z

Proof: As the continuous form of (6.2) is given by p(x) = —&

< and [ ¢ =
. fo CN—a:

l—c”” we calculate:
nc

. cNlne 55 _x
S*(f) = NCN—l/o ¢ dx
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N

_ ¢ —215(f)
- _NCN -1 [C ]0
= N a (1 - C_S(f))
cN—1
As 5*(f) = dg;f(f), (6.4) follows. O
It is useful to introduce a new variable @ = ¢V to eliminate the explicit
dependence on the population size V:
— . alna )
Qp(s,a)(f) = 57(f) = ——5(f)a™™ (6.5)

The meaning of @ will become apparent in the next section.

6.1 Reproduction Rate

Corollary 6.1.1 The reproduction rate of exponential ranking selection s

Re(f) = 200 -5 (6.6)

a—1

This equation shows that the worst fit individuals have the lowest reproduc-
tion rate R(fy) = 222 and the best fit individuals have the highest reproduction

a—1

rate R(f,) = 2% Hence we obtain a natural explanation of the variable o, as
g((}’:‘))) = «: it describes the ratio of the reproduction rate of the worst and the best

individual. Note that ¢ < 1 and hence ¢ < 1 for large N, i.e. the interesting

region of values for o is in the range from 10=20,... 1.

6.2 Loss of Diversity

Theorem 6.2.1 The loss of diversity pqr(a) of exponential ranking selection is

1 —1Ino-t o
_ alna
pap(e) = o po— (6.7)
Proof: First we calculate from the demand R(f,) =1 :
S(f:) _ _Imgpg
— ——aho 6.8
N Ina (6.8)

Using Theorem 2.4.1 we obtain:
1 Q Q*x
pd,E(a) = N (S(fz) -5 (fz))
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Ina a—1

lnof‘l;t a (1 a—l)
alna

In o a—1

1 —In2=t
— alna

Ina a—1

The loss of diversity is shown in figure 6.2.

-pd(ot)

Figure 6.2: The loss of diversity py r(«) for exponential ranking selection. Note
the logarithmic scale of the a-axis.

6.3 Selection Intensity and Selection Variance

The selection intensity and the selection variance are very difficult to calculate for
exponential ranking. If we recall the definition of the selection intensity (definition
2.5.2) we see that the integral of the Gaussian function occurs as exponent in an
indefinite integral. Hence we restrict ourselves here to numerical calculation of
the selection intensity as well as of the selection variance. The selection intensity
and the selection variance of exponential ranking selection is shown in Figure 6.3
in dependence of the parameter a.

An approximation formula can be derived using the genetic programming
optimization method for symbolic regression (see Appendix A). The selection

38



0
= - = _ 0 = - . -
10 10 10 10 07 k 10 10 10 10 107 @

Figure 6.3: Selection intensity (left) and selection variance (right) of exponential
ranking selection. Note the logarithmic scale of the a-axis.

intensity of exponential ranking selection can be approximated with a relative
error of less than 6% for a € [1072°,0.8] by

Inln X
In(a) ~ 0.588 ;16153 (6.9)

Similar, an approximation for the selection variance of exponential ranking
selection can be found. The following formula approximates the selection variance
with an relative error of less than 5% for oo € [1072°,0.8]:

(6.10)

2.8414
Ve(a) ~ In <1.2 + )

2.225a — In«
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Chapter 7

Proportional Selection

Proportional selection is the original selection method proposed for genetic al-
gorithms by Holland [Holland, 1975]. We include the analysis of the selection
method mostly because of its fame.

Algorithm 5: (Proportional Selection)

Input: The population P(7)
Output: The population after selection P(7)’

proportional(Jy, ..., Jy):
5o 0
for 1< 1 to N do
S;  Si_1 + fﬁ
od
for i < 1 to N do
r < random/[0,s |
J! < J;such that s, | <r <s
od
return {J],..., Jy}

The probability of an individual to be selected is simply proportionate to its
fitness value, i.e.
_ i
Di

NM
Algorithm 5 displays the method using a pseudo code formulation. The time
complexity of the algorithm is O(N).

Obviously, this mechanism will only work if all fitness values are greater than
zero. Furthermore the selection probabilities strongly depend on the scaling of
the fitness function. As an example, assume a population of 10 individuals with
the best individual having a fitness value of 11 and the worst a fitness value of

(7.1)
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1. The selection probability for the best individual is hence p, ~ 16.6% and
for the worst p,, ~ 1.5%. If we now translate the fitness function by 100, i.e.
we just add a the constant value 100 to every fitness value, we calculate pj ~
10.4% and p!, ~ 9.5%. The selection probabilities of the best and the worst
individual are now almost identical. This undesirable property arises from the
fact that proportional selection is not translation invariant (see e.g. [de la Maza
and Tidor, 1993]). Because of this several scaling methods have been proposed
to keep proportional selection working, e.g. linear static scaling, linear dynamic
scaling, exponential scaling, logarithmic scaling [Grefenstette and Baker, 1989);
sigma truncation [Brill et al., 1992]. Another method to improve proportional
selection is the “over selection” of a certain percentage of the best individuals, i.e.
to force that 80 % of all individuals are taken from the best 20 % of the population.
This method was used in [Koza, 1992]. In [Miihlenbein and Schlierkamp-Voosen,
1993] it is already stated that “these modifications are necessary, not tricks to
speed up the algorithm”. The following analysis will confirm this statement.

Theorem 7.0.1 The expected fitness distribution after performing proportional
selection on the distribution s is

0(5)(f) = () = (1) 17 (7.2)
7.1 Reproduction Rate
Corollary 7.1.1 The reproduction rate of proportional selection is
Re(f) = L (7.3)

The reproduction rate is proportionate to the fitness value of an individual.
If all fitness values are close together (as it was in the example at the beginning
of this chapter) all individuals have almost the same reproduction rate R ~ 1.
Hence no selection takes place anymore.

7.2 Selection Intensity

As proportional selection is not translation invariant our original definition of
standardized selection intensity cannot be applied. We will cite here the results
obtained by Miihlenbein and Schlierkamp-Voosen [Miihlenbein and Schlierkamp-
Voosen, 1993].

Theorem 7.2.1 /Miihlenbein and Schlierkamp-Voosen, 1993/ The standardized
selection intensity of proportional selection is

Ip = (7.4)

g
M
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where & s the mean variance of the fitness values of the population before selec-
tion.

Proof: See [Miihlenbein and Schlierkamp-Voosen, 1993]. a

The other properties we are interested in like the selection variance an the
loss of diversity are difficult to investigate for proportional selection. The cru-
cial point is the explicit occurrence of the fitness value in the expected fitness
distribution after selection (7.2). Hence an analysis is only possible if we make
some further assumptions on the initial fitness distribution. This is why other
work on proportional selection assume some special functions to be optimized
(e.g. [Goldberg and Deb, 1991]).

Another weak point is that the selection intensity even in the early stage of
the optimization (when the variance is high) is too low. Measurements on a broad
range of problems showed sometimes a negative selection intensity. This means
that in some cases (due to sampling) there is a decrease in average population
fitness. Seldom a very high selection intensity occurred (I =~ 1.8) if a super-
individual was created. But the measured average selection intensity was in range
of 0.1 to 0.3.

All the undesired properties together led us to the conclusion that proportional
selection is a very unsuited selection scheme. Informally one can say that the
only advantage of proportional selection is that it is so difficult to prove the
disadvantages.
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Chapter 8

Comparison of Selection Schemes

In the subsequent sections the selection methods are compared according to their
properties derived in the preceding chapters. First we will compare the reproduc-
tion rates of selection methods and derive an unified view of selection schemes.
Section 8.2 is devoted to the comparison of the selection intensity and gives a
convergence prediction for simple genetic algorithm optimizing the ONEMAX
function. The selection intensity is also used in the subsequent sections to com-
pare the methods according to their loss of diversity and selection variance.

We will take into account proportional selection only in the first two subsec-
tions when the reproduction rate and the selection intensity are analyzed. In
other comparisons it is neglected as it withdraws itself an analysis of the proper-
ties we are interested in.

8.1 Reproduction Rate and Universal Selection

The reproduction rate simply gives the number of expected offspring of an indi-
vidual with a certain fitness value after selection. But in the preceding chapters
only the reproduction rate for the continuous case have been considered. Table
8.1 gives the equations for the discrete (exact) case. They have been derived
using the exact offspring equations (3.1), (4.1), (5.3), (6.3) and (7.2) and doing
some simple algebraic manipulations.

The examples in the preceding chapter showed a large mean variation of the
fitness distributions after selection. In the following, we will see that this mean
variation can be almost completely eliminated by using the reproduction rate and
the so called “stochastic universal sampling”. As can be seen from table 8.1 we
can calculate the expected distribution in advance without carrying out a “real”
selection method. This calculation also enables us to use stochastic universal
sampling (SUS) [Baker, 1987] for all selection schemes discussed herein.

The SUS algorithm can be stated to be an optimal sampling algorithm. It
has zero bias, i.e. no deviation between the expected reproduction rate and the
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Selection Method Reproduction Rate

Tournament Rr(f) = Tl}f) ((%)t ~ (S(J;ivl))t>
0 : S(fi)<(A-T)N
Truncation Rr(f;) = W . S(fin) < (1=T)N < S(f;)
% else

Linear Ranking Rr(f) % + 1];—5 (25(fi) — s(fi))

Exponential Ranking | Rg(f;) s(]}f‘) O;Iilf‘a’% <ozL1€i) — 1)

Proportional Rp(fi) fM

Table 8.1: Comparison of the reproduction rate of the selection methods for
discrete distributions.

algorithmic sampling frequency. Furthermore, SUS has a minimal spread, i.e.
the range of the possible values for s'(f;) is

s'(fi) e {ls"(fi)]; [ (f) 1} (8.1)

The outline of the SUS algorithm is given by algorithm 6. The standard
sampling mechanism uses one spin of a roulette wheel (divided into segments
for each individual with an the segment size proportional to the reproduction
rate) to determine one member of the next generation. Hence, N trials have to
be performed to obtain an entire population. As these trials are independent of
each other a relatively high variance in the outcome is observed (see also chapter 2
and theorem 2.0.1). This is also the case for tournament selection although there
is no explicitly used roulette wheel sampling. In contrary for SUS only a single
spin of the wheel is necessary as the roulette has N markers for the “winning
individuals” and hence all individuals are chosen at once.

By means of the SUS algorithm the outcome of a certain run of the selection
scheme is as close as possible to the expected behavior, i.e. the mean variation
is minimal. Even though it is not clear whether there any performance advan-
tages in using SUS, it makes the run of a selection method more “predictable”.
To be able to apply SUS one has to know the expected number of offspring of
each individual. Baker has applied this sampling method only to linear ranking
selection as here the expected number of offspring is known by construction (see
chapter 5). As we have derived this offspring values for the selection methods
discussed in the previous chapters it is possible to use stochastic universal sam-
pling for all these selections schemes. Hence, we may obtain a unified view of
selection schemes, if we neglect the way the reproduction rates were derived and
construct an “universal selection method” in the following way: First we compute
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the fitness distribution of the population. Next the expected reproduction rates
are calculated using the equations derived in the proceeding chapters and sum-
marized in table 8.1. In the last step SUS is used to obtain the new population
after selection. This algorithm is given in algorithm 7 and the SUS algorithm is
outlined by algorithm 6.

Algorithm 6: (Stochastic Universal Sampling)

Input: The population P(7) and the reproduction rate for each
fitness value R; € [0, N]
Output: The population after selection P(7)’

SUS(Ry,...,Ru, J1,..., JIn):
sum < 0
j+1
ptr < random][0,1)
for i+ 1to N do
sum < sum + R; where R; is the reproduction rate
of individual J;
while (sum > ptr) do
j—j+1
ptr < ptr + 1
od
od
return {J],..., Jy}

Algorithm 7: (Universal Selection Method)

Input: The population P(7)
Output: The population after selection P(7)’

universal_selection(J, ..., Jy):
s <« fitness_distribution( ./, ..., Jy)
r < reproduction_rate(s)
T+ SUS(r, J)

return J’

The time complexity of the universal selection method is O(N In N) as the
fitness distribution has to be computed. Hence, if we perform “tournament se-
lection” with this algorithm we pay the lower mean variation with a higher com-
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putational complexity.

8.2 Comparison of the Selection Intensity

Selection Method Selection Intensity

Tournament Ip(t) =~ \/2(lnt —In(v4.14 Int))

Truncation In(T)= g€ F
Linear Ranking Ir(n™) = (1—n7)g=
Exponential Ranking | Ip(«) ~ 0-5881;;;
Ip=2

Fitness Proportionate

Table 8.2: Comparison of the selection intensity of the selection methods.

As the selection intensity is a very important property of the selection method,
we give in table 8.3 some settings for the three selection methods that yield the
same selection intensity.

I 0.34 0.56 0.84 1.03 1.16
Qr:t - 2 3 4 5
Qr:n~ 0.4 0 - - -
Qr:T 0.8 0.66 0.47 0.36 0.30
Qp:«a 0.29 0.12 0.032 | 9.8-107% | 3.5-1073
Qp:c(N = 1000) 0.999 0.998 0.997 0.995 0.994
I 1.35 1.54 1.87 2.16

Qr:t 7 10 20 40

Qr:T 0.22 0.15 0.08 0.04

Qp:« 4.7-107*125-107° | 107 | 2.4-107'8

Qp:c(N = 1000) 0.992 0.989 0.979 0.960

Table 8.3: Parameter settings for truncation selection ), tournament selection
Qr, linear ranking selection (2g, and exponential ranking selection 2z to achieve
the same selection intensity I.

The importance of the selection intensity is based on the fact that the behavior
of a simple genetic algorithm can be predicted if the fitness distribution is nor-
mally distributed. In [Miihlenbein and Schlierkamp-Voosen, 1993] a prediction is
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made for a genetic algorithm optimizing the ONEMAX (or bit-counting) func-
tion. Here the fitness is given by the number of 1’s in the binary string of length
n. Uniform crossing-over is used and assumed to be random process which creates
a binomial fitness distribution. As a result, after each recombination phase the
input of the next selection phase approximates a Gaussian distribution. Hence,
a prediction of this optimization using the selection intensity should be possible.
For a sufficiently large population Miihlenbein calculates

p(r) = % (1 + sin(%r + arcsin(2py — 1))) (8.2)

where py denotes the fraction of 1’s in the initial random population and p(7)
the fraction of 1’s in generation 7. Convergence is characterized by the fact
that p(7.) = 1 so the convergence time for the special case of py = 0.5 is given
by 7. = %@ Miihlenbein derived this formula for truncation selection, where
only the selection intensity is used. Thereby it is straightforward to give the
convergence time for any other selection method, by substituting I with the
corresponding terms derived in the preceding sections.

For tournament selection we have

(t) ~ = - (8.3)
Tro(t) &= = .
8 2V 2(Int —Inv4.141Int)

for truncation selection

T/ f2
(1) =T er (8.4)
bl \/5
for linear ranking selection
_ /TN
me(n) = 57— (8.5)

and for exponential ranking selection

V/3.69° (56)

(o) = 2.671 T

8.3 Comparison of Loss of Diversity

Table 8.4 summarizes the loss of diversity for the selection methods. It is
difficult to compare these relations directly as they depend on different parameters
that are characteristic for the specific selection method, e.g., the tournament
size t for tournament selection, the threshold 7' for truncation selection, etc.
Hence, one has to look for an independent measure to eliminate these parameters
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Selection Method Loss of Diversity

Tournament par(t) = t_ﬁ _ t—ﬁ
Truncation par(T)=1-T
Linear Ranking par(n”) =(1—n);
Exponential Ranking | pgr(a) = 14{;5@2 o

Table 8.4: Comparison of the loss of diversity of the selection methods

and to be able to compare the loss of diversity. We chose this measure to be
the selection intensity: The loss of diversity of the selection methods is viewed
as a function of the selection intensity. To calculate the corresponding graph
one first computes the value of the parameter of a selection method (i.e. ¢ for
tournament selection, 7" for truncation selection, n~ for linear ranking selection,
and « for exponential ranking selection) that is necessary to achieve a certain
selection intensity. With this value the loss of diversity is then obtained using
the corresponding equations, i.e. (3.11), (4.4), (5.6), (6.7). Figure 8.1 shows
the result of this comparison: the loss of diversity for the different selection
schemes in dependence of the selection intensity. To achieve the same selection
intensity more bad individuals are replaced using truncation selection than using
tournament selection or one of the ranking selection schemes, respectively. This
means that more “genetic material” is lost using truncation selection.

If we suppose that a lower loss of diversity is desirable as it reduces the
risk of premature convergence, we expect that truncation selection should be
outperformed by the other selection methods. But in general it depends on the
problem and on the representation of the problem to be solved whether a low loss
of diversity is “advantageous”. But with figure 8.1 one has a useful tool at hand
to make the right decision for a particular problem.

Another interesting fact can be observed if we look again at table 8.4: The
loss of diversity is independent of the initial fitness distribution. Nowhere in
the derivation of these equations a certain fitness distribution was assumed and
nowhere the fitness distribution 5(f) occurs in the equations. In contrary, the
(standardized) selection intensity and the (standardized) selection variance are
computed for a certain initial fitness distribution (the normalized Gaussian dis-
tribution). Hence, the loss of diversity can be viewed as an inherent property of
a selection method.

8.4 Comparison of the Selection Variance

We use again the same mechanism to compare the selection variance we used
in the preceding section, i.e., the selection variance is viewed as a function of the
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Figure 8.1: The dependence of the loss of diversity ps on the selection intensity
for tournament selection (O—<), truncation selection (A — — A), linear ranking
selection (% - - %), and exponential ranking selection (O — - O). Note that for
tournament selection only the dotted points on the graph correspond to valid
(integer) tournament sizes.

selection intensity.

Figure 8.2 shows the dependence of the selection variance on the selection
intensity. It can be seen clearly that truncation selection leads to a lower selection
variance than tournament selection. The highest selection variance is obtained
by exponential ranking.

An interpretation of the results may be difficult as it depends on the opti-
mization task and the kind of problem to be solved whether a high selection
variance is advantageous or not. But again this graph may help to decide for
the “appropriate” selection method for a particular optimization problem. If we
accept the assumption that a higher variance is advantageous to the optimization
process, exponential ranking selection selection reveals itself to be the best selec-
tion scheme. In [Miihlenbein and Voigt, 1995] it is stated that “if two selection
selection methods have the same selection intensity, the method giving the higher
standard deviation of the selected parents is to be preferred”. From this point of
view exponential ranking selection should be the “best” selection method.
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Selection Method Selection Variance

Tournament Vir(t) =~ \/ 2.054¢
3.14¢3
Truncation Ve(T) =1—Ip(T)(Ip(T) — f.)

Linear Ranking Ve(n™) =1—1T%4(n")

(
Exponential Ranking | Vi («) = In (1.2 + 72.23'58531;&)

Table 8.5: Comparison of the selection variance of the selection methods.

8.5 The Complement Selection Schemes: Tour-
nament and Linear Ranking

If we compare the several properties of tournament selection and linear ranking
selection we observe that binary tournament behaves similar to a linear ranking

selection with a very small n~. And indeed it is possible to prove that binary
tournament and linear ranking with n~ = % have identical average behavior.

Theorem 8.5.1 The expected fitness distributions of linear ranking selection

with n~ = % and tournament selection with t = 2 are identical, i.e.
* 1 *
(s, 35) = i (5,2) (8.7)
Proof:
* 1 N% -1 — % 2 2
Qs (i) = sl —1T + v (S(F)* = S(fi1)%)

O

Goldberg and Deb [Goldberg and Deb, 1991] have also shown this result, but
only for the behavior of the best fit individual.
By this we see the complementary character of the two selection schemes. For

lower selection intensities (I < ﬁ) linear ranking selection is the appropriate

selection mechanism as for selection intensities (I > ﬁ) tournament selection is
better suited. At the border the two section schemes are identical.
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Figure 8.2: The dependence of the selection variance V' on the selection intensity
I for tournament selection (O—<), truncation selection (A — — A), ranking
selection (% - - %), and exponential ranking selection (O — - O). Note that for
tournament selection only the dotted points on the graph correspond to valid
(integer) tournament sizes.
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Chapter 9

Conclusion

In this paper a unified and systematic approach to analyze selection methods was
developed and applied to the selection schemes tournament selection, truncation
selection, linear and exponential ranking selection, and proportional selection.
This approach is based on the description of the population using fitness distri-
butions. Although this idea is not new, the consequent realization of this idea
led to a powerful framework that gave an unified view of the selection schemes
and allowed several up to now independently and isolated obtained aspects of
these selection schemes to be derived with one single methodology. Besides some
interesting features of selection schemes could be proven, e.g. the concatenation
of several tournament selections (theorem 3.1.1) and the equivalence of binary
tournament and linear ranking (theorem 8.5.1).

Furthermore the derivation of the major characteristics of a selection scheme,
i.e. the selection intensity, the selection variance and the loss of diversity, could
easily be achieved with this approach. The selection intensity was used to obtain
a convergence prediction of the simple genetic algorithm with uniform crossover
optimizing the ONEMAX function. The comparison of the loss of diversity and
the selection variance based on the selection intensity allowed for the first time
to compare “second order” properties of selection schemes. This comparison
gives a well grounded basis to decide which selection scheme should be used,
if the impact of these properties on the optimization process is known for the
particular problem.

The one exception in this paper is proportional selection, that withdraws
itself from a detailed mathematical analysis. But based on some basic analysis
and some empirical observations we regard proportional selection to be a very
unsuited selection scheme.

The presented analysis can easily be extended to other selection schemes and
other properties of selection schemes.
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Appendix A

Deriving Approximation
Formulas Using Genetic
Programming

In this chapter we describe the way the approximation formulas for the selection
variance of tournament selection (3.17), the selection intensity of exponential
ranking selection (6.9), and the selection variance of exponential ranking (6.10)
were obtained.

In general we use the same approach as Koza in his first book on genetic pro-
gramming [Koza, 1992]. Genetic Programming (GP) is an optimization method
based on natural evolution similar to genetic algorithms. The major difference
is that GP uses trees to represent the individuals where GA uses bit-strings.
The tree structure can represent functional dependencies or complete computer
programs. Hence we can use this optimization method to obtain an analytic
approximation of a data set. Given are a certain number of data points (z;,y;)
and we want to find an analytic expression that approximates the functional
dependence y = u(zx).

The fitness function is to minimize the maximum relative error over all data
points (z;,y;). If an arithmetic exception occurs during the evaluation of an
individual (such as division by zero) the individual is punished by a very high
error score (100.000).

The parameter for the optimization are:

e population size 10.000

e maximum tree size 15

e maximum number of generations 30

e tournament selection with tournament size 5

e reducing redundancy using marking crossover [Blickle and Thiele, 1994]
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e use of one step hill-climbing to adjust the RF'PC numbers

The last two items need further explanation: the marking crossover introduced
in [Blickle and Thiele, 1994] works as follows. During the evaluation of the fitness
function all edges in the tree of the individual are marked. The edges that remain
unmarked after calculating the fitness value are said to be redundant, because they
were never used for fitness calculation. The crossover operator now only selects
the edges for crossover that are marked, because only changes at these edges may
lead to individuals with a different fitness score. With this approach an increase
in performance of almost 50% for the 6-multiplexer problem was achieved [Blickle
and Thiele, 1994].

“One step hill-climbing” works in the following way: after evaluation the
fitness of an individual, successively all random constants in the trees are change
by a little amount +4. If this change leads to a better individual it is accepted,
otherwise rejected. In our experiments, the setting is 6 = 0.1.

The very large population size was chosen because only small trees were al-
lowed.

No further tuning of the parameters was made, as well as no comparison of
performance with other possible optimization methods (e.g. simulated annealing)
as this is beyond the scope of this paper. The intention was only to find one good
approximation for each data set. The problem was programmed on a SPARC
Station 20 using the YAGPLIC library [Blickle, 1995]. A run over 30 generations
took about 15 minutes CPU time. The given solution were found after 15 - 23
generations.

A.1 Approximating the Selection Variance of
Tournament Selection

The operators and terminal provided to the optimization method for this problem
were

F = {Plus, Subtract, Times, Divide, Log, Sqrt}
T = {tr RFPC}

were RFPC' is a random floating point number in the range from [-10,10] once
determined at creation time of the population. These sets were chosen with some
knowledge in mind about the possible dependency.

The following approximation was found with maximum relative error of 1.66%:
Vr(t) = Sqrt[Divide[Plus[Sqrt[Plus[Log[P1i],Pi]],t], Times| Times[t,Pi],Sqrt[t]]]]. Af-
ter simplifying this expression and some local fine tuning of the constants (3.17)
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is obtained that approximates the selection variance of tournament selection with
an relative error of less than 1.6% for t € {1,...,30}:

[2.05 4+t

Table A.1 displays the numerical calculated values for the selection variance,

the approximation by (3.17) and the relative error of the approximation for the
tournament sizes t = 1,...,30

A.2 Approximating the Selection Intensity of
Exponential Ranking Selection

The operators and terminal provided to the optimization method for this problem
were

F =

T

{Plus, Subtract, Times, Divide, Log, Sqrt, Exp}
= {a, RFPC}

were RFPC' is a random floating point number in the range from [-10,10] once
determined at creation time of the population.
The GP found the following approximation with an relative error of 6.3 %:
Iz(a)=Divide[Log[Log[Divide|[r, a]]], Times[Sqrt[Power[Plus[8.040000, 5.468000],
« ]|, Exp[Times[3.508000, 0.150000]]]].

After some local fine tuning of the real constants and some simplifications

(6.9) is obtained, that approximates the selection intensity of exponential ranking
selection with and relative error of less than 5.8%.

Inln =
Ip(a) =~ 0.588

[0

3.69¢ (6.9)

Table A.2 displays again the numerical calculated values for the selection
intensity, the approximation by (6.9) and the relative error of the approximation.

A.3 Approximating the Selection Variance of
Exponential Ranking Selection

The operators and terminal provided to the optimization method for this problem
were

F =

T —

{Plus, Subtract, Times, Divide, Log, Sqrt, Exp}
— {a, RFPC)}
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were RFPC is a random floating point number in the range from [-10,10] once
determined at creation time of the population.

One solution with an accuracy of 5.4% found by GP was

VE(a) &~ Log[Subtract[Divide[2.840000,Subtract[ Times[Exp[0.796000],a],Log|«]]],-
1.196000]].

Further manual tuning of the constants led to approximation formula 6.10:

9.8414
Vi) ~In (124 —=°2% ) (.10
pa) & In < t22%a _In a) (6.10)

Table A.3 displays again the numerical calculated values for the selection
variance, the approximation by (6.10) and the relative error of the approximation.
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Tournament size t

Vir(t)

Approximation (3.17)

rel. Error in %

OO Tt i W N

DO RN DN RN DN = = e = = e = O
=W N O © 000 Ui Wwihh+— O

25
26
27
28
29
30

1
0.6816901138160949
0.5594672037973512
0.4917152368747342
0.4475340690206629
0.4159271089832759
0.3919177761267493
0.3728971432867331
0.357353326357783
0.3443438232607686
0.3332474427030835
0.3236363870477149
0.3152053842122778
0.3077301024704087
0.3010415703137873
0.2950098090102839
0.2895330036877659
0.2845301297414324
0.2799358049283933
0.2756966156185853
0.2717684436810235
0.2681144875238161
0.2647037741277227
0.2615098815029825
0.2585107005876581
0.2556866644747772
0.2530210522851858
0.2504992994478195
0.2481086538596352
0.245837896441101

0.985314748118875

0.6751186081382552
0.5561984979283774
0.4906341319420119
0.4480145502588547
0.4175510364657733
0.394389935195578

0.3760023889838275
0.3609311128657064
0.3482720218045281
0.3374316422588417
0.3280026037472064
0.3196949671601049
0.3122960960698358
0.3056460664995608
0.299621986989894

0.2941276564766719
0.2890865414042389
0.2844368844693661
0.2801282213768255
0.2761188509706837
0.2723739652629051
0.2688642452925616
0.2655647916870945
0.2624542995840844
0.2595144145665026
0.2567292244751288
0.2540848544627421
0.2515691413740026
0.249171369706327

1.468525188112524
0.964001904186694
0.5842533479688358
0.2198640293503141
0.1073619354261157
0.3904355949452292
0.6307851338769677
0.832735179927804
1.00119020701134
1.140777989441309
1.255583395274936
1.349111803935622
1.424335741931216
1.483765664383183
1.52952171388625
1.563398178210858
1.586918496469898
1.601381079377116
1.607897047011976
1.60742116775606
1.600777202362149
1.588678694101006
1.571746069185771
1.55057627681493
1.525507063135685
1.49704721581323
1.465558757444203
1.431363290367017
1.394746801667437
1.355963955713685

Table A.1: Approximation of the selection variance of tournament selection.

o7




Table A.2: Approximation of the selection intensity of exponential ranking selec-

tion.

« Ip(a) Approximation (6.9) | rel. error in %
1.107%0 2.21187 | 2.26634 2.46276
1.10~% 2.19127 | 2.23693 2.08369
1.107'® 2.16938 2.20597 1.6866
1.107'7 2.14604 2.17329 1.26989
1.10°16 2.12104 2.13869 0.83183
1.10~1 2.09416 2.10192 0.370482
1.107" 2.0651 2.06269 0.116247
1.10713 2.03349 2.02067 0.630581
1.10712 1.99889 1.97541 1.17477
1.107 1 1.96069 1.92637 1.75086
1.1071° 1.91813 1.87286 2.36022
1.107° 1.87015 1.81399 3.00251
1.10°8 1.81525 1.74857 3.67343
1.1077 1.7513 1.67495 4.35951
1.1075 1.67494 1.59077 5.02548
0.00001 1.58068 1.49248 5.58
0.0001 1.4585 1.37426 5.77587
0.001 1.28826 1.22496 4.91391
0.01 1.02756 1.01518 1.20517
0.0158489 | 0.958452 | 0.959374 0.0961498
0.0251189 | 0.88211 0.895999 1.57453
0.0398107 | 0.797944 | 0.823028 3.14361
0.0630957 | 0.705529 | 0.738058 4.61058
0.1 0.604719 | 0.638636 5.60873
0.125893 | 0.55122 0.58292 5.75089
0.158489 | 0.495745 | 0.523127 5.52332
0.199526 | 0.438398 | 0.459482 4.8093
0.251189 | 0.379315 | 0.392562 3.49231
0.316228 | 0.318668 | 0.323416 1.49006
0.398107 | 0.256659 | 0.253675 1.16253
0.501187 | 0.193519 | 0.185613 4.08562
0.630957 | 0.129509 | 0.122102 5.71875
0.794328 | 0.0649044 | 0.0663754 2.26635
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Table A.3: Approximation of the selection variance of exponential ranking selec-

tion.

VE(Oé)

Approximation (6.10)

rel. error in %

.107%0
.10719
10718
10717
10—16
10—15
10—14
10713
10712
10711
10—10
1079
.107°8
.1077
.10°¢
0.00001
0.0001
0.001
0.01
0.0158489
0.0251189
0.0398107
0.0630957
0.1
0.125893
0.158489
0.199526
0.251189
0.316228
0.398107
0.501187
0.630957
0.794328

e el e e e el e e e e )

0.224504
0.227642
0.231048
0.234767
0.238849
0.243361
0.248386
0.254032
0.260441
0.267807
0.276403
0.286619
0.299052
0.314661
0.335109
0.363607
0.407156
0.482419
0.624515
0.664523
0.70839

0.755421
0.804351
0.853263
0.876937
0.899606
0.920882
0.940366
0.957663
0.972403
0.98425

0.992927
0.998221

0.232462
0.235033
0.237881
0.241055
0.244614
0.248632
0.253204
0.258454
0.264544
0.271695
0.280208
0.290515
0.303252
0.319393
0.340517
0.36936
0.411119
0.47699
0.595566
0.631164
0.672819
0.721681
0.778705
0.843853
0.878753
0.914171
0.948648
0.979962
1.00499
1.0198
1.02009
1.00213
0.964101

3.54445
3.24672
2.95725
2.67849
241344
2.16573
1.93978
1.74096
1.57569
1.45147
1.37665
1.35936
1.40448
1.50382
1.61388
1.58242
0.973227
1.12538
4.63544
5.01997
5.02134
4.46638
3.18843
1.1029
0.207166
1.61901
3.01517
4.21072
4.94227
4.87463
3.6411
0.927139
3.41803
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Appendix B

Used Integrals

_z?
/xe 2
o0 32
/ e 2 du
—00
o0 z2 T y2
/ e 2 / e 2dydx
—0o0 —00
o0 32
/ re 2z
—00
o.¢] z2 T y2
/ re 2 / e 2dydx
—00 —00
00 22 T 2 2
/ re 2 (/ ery> dx
—0oQ — 00
o 9 32
/ re” 2 do
—o0
o0 9 z2 T y2
/ x e’T/ e 2dydx
— 00 — 00

0o 22 x y2 t—1
/ te 2 (/ e_Tdy> dx
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Appendix C

Glossary

Q=== o0
T
S

2=

SN oNeN®
N =

=

T
e

Parameter of Exponential Ranking (o = ¢V)
Basis for Exponential Ranking

Selection Probability of worst fit Individual in Ranking Selection
Fitness Value

Fitness Value of Individual J

Gaussian Distribution with Mean p and Variance o2
Selection Intensity

Individual

Space of all Possible Individuals

Average Population Fitness

Population Size

Selection Method

Exponential Ranking Selection

Tournament Selection

Truncation Selection

Proportional Selection

Ranking Selection

Crossover Probability

Loss of Diversity

Population

Reproduction Rate

Set of Real Numbers
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N N TR QU @ ®»

N =&

(Discrete) Fitness Distribution

(Continuous) Fitness Distribution
Cumulative (Discrete) Fitness Distribution
Cumulative (Continuous) Fitness Distribution
Mean Variance of the Population Fitness
Tournament Size

Truncation Threshold

Generation

Convergence Time (in Generations) for the ONEMAX Example
Selection Variance

Set of Integers
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