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Abstract

Genetic Algorithms are a common probabilistic optimization method based on
the model of natural evolution� One important operator in these algorithms is
the selection scheme for which a new description model is introduced in this
paper� With this a mathematical analysis of tournament selection� truncation
selection� linear and exponential ranking selection and proportional selection is
carried out that allows an exact prediction of the �tness values after selection�
The further analysis derives the selection intensity� selection variance� and the loss
of diversity for all selection schemes� For completion a pseudo�code formulation
of each method is included� The selection schemes are compared and evaluated
according to their properties leading to an uni�ed view of these di�erent selection
schemes� Furthermore the correspondence of binary tournament selection and
ranking selection in the expected �tness distribution is proven�



Foreword

This paper is the revised and extended version of the TIK�Report No� �� from
April� ���	� The main additions to the �rst edition are the analysis of exponen�
tial ranking selection and proportional selection� Proportional selection is only
included for completeness � we believe that it is a very unsuited selection method
and we will show this 
like it has be done by other researchers� too� based on
a mathematical analysis in chapter �� Furthermore for each selection scheme a
pseudo�code notation is given and a short remark on time complexity is included�
The main correction concerns the approximation formula for the selection

variance of tournament selection� The approximation given in the �rst edition
was completely wrong� In this report the approximation formula is derived by a
genetic algorithm� or better speaking by the genetic programming optimization
method� The used method is described in appendix A and also applied to derive
an analytic approximation for the selection intensity and selection variance of
exponential ranking selection�
We hope that this report summarizes the most important facts for these �ve

selection schemes and gives all researches a well founded basis to chose the ap�
propriate selection scheme for their purpose�

Tobias Blickle Zurich� Dec�� ���	
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Chapter �

Introduction

Genetic Algorithms �GA� are probabilistic search algorithms characterized by
the fact that a number N of potential solutions 
called individuals Ji � J� where
J represents the space of all possible individuals� of the optimization problem
simultaneously sample the search space� This population P � fJ�� J�� ���� JNg
is modi�ed according to the natural evolutionary process� after initialization�
selection � � JN �� JN and recombination � � JN �� JN are executed in a loop
until some termination criterion is reached� Each run of the loop is called a
generation and P 
�� denotes the population at generation � �

The selection operator is intended to improve the average quality of the popu�
lation by giving individuals of higher quality a higher probability to be copied into
the next generation� Selection thereby focuses the search on promising regions in
the search space� The quality of an individual is measured by a �tness function
f � J �� R� Recombination changes the genetic material in the population either
by crossover or by mutation in order to exploit new points in the search space�

The balance between exploitation and exploration can be adjusted either by
the selection pressure of the selection operator or by the recombination operator�
e�g� by the probability of crossover� As this balance is critical for the behavior
of the GA it is of great interest to know the properties of the selection and
recombination operators to understand their in�uence on the convergence speed�

Some work has been done to classify the di�erent selection schemes such
as proportionate selection� ranking selection� tournament selection� Goldberg
�Goldberg and Deb� ����� introduced the term of takeover time� The takeover
time is the number of generations that is needed for a single best individual to
�ll up the whole generation if no recombination is used� Recently Back �Back�
����� has analyzed the most prominent selection schemes used in Evolutionary
Algorithms with respect to their takeover time� In �Muhlenbein and Schlierkamp�
Voosen� ����� the selection intensity in the so called Breeder Genetic Algorithm
�BGA� is used to measure the progress in the population� The selection intensity
is derived for proportional selection and truncation selection� De la Maza and
Tidor �de la Maza and Tidor� ����� analyzed several selection methods according
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to their scale and translation invariance�
An analysis based on the behavior of the best individual 
as done by Gold�

berg and Back� or on the average population �tness 
as done by Muhlenbein�
only describes one aspect of a selection method� In this paper a selection scheme
is described by its interaction on the distribution of �tness values� Out of this
description several properties can be derived� e�g� the behavior of the best or
average individual� The description is introduced in the next chapter� In chapter
� an analysis of the tournament selection is carried out and the properties of
the tournament selection are derived� The subsequent chapters deal with trunca�
tion selection� ranking selection� and exponential ranking selection� Chapter � is
devoted to proportional selection that represents some kind of exception to the
other selection schemes analyzed in this paper� Finally all selection schemes are
compared�

	



Chapter �

Description of Selection Schemes

In this chapter we introduce a description of selection schemes that will be used
in the subsequent chapters to analyze and compare several selection schemes�
namely tournament selection� truncation selection� and linear and exponential
ranking selection and �tness proportional selection� The description is based on
the �tness distribution of the population before and after selection as introduced
in �Blickle and Thiele� ���	�� It is assumed that selection and recombination
are done sequentially� �rst a selection phase creates an intermediate population
P �
�� and then recombination is performed with a certain probability pc on the
individuals of this intermediate population to get the population for the next
generation 
Fig� ����� Recombination includes crossover and mutation or any
other operator that changes the �genetic material�� This kind of description
di�ers from the common paradigms where selection is made to obtain the indi�
viduals for recombination �Goldberg� ����� Koza� ������ But it is mathematically
equivalent and allows to analyze the selection method separately�
For selection only the �tness values of the individuals are taken into account�

Hence� the state of the population is completely described by the �tness values
of all individuals� There exist only a �nite number of di�erent �tness values
f�� ���� fn
n � N� and the state of the population can as well be described by the
values s
fi� that represent the number of occurrences of the �tness value fi in
the population�

De�nition �	� �Fitness distribution� The function s � R �� Z�
� assigns

to each �tness value f � R the number of individuals in a population P � JN

carrying this �tness value� s is called the �tness distribution of a population P �

The characterization of the population by its �tness distribution has also
been used by other researches� but in a more informal way� In �Muhlenbein
and Schlierkamp�Voosen� ����� the �tness distribution is used to calculate some
properties of truncation selection� In �Shapiro et al�� ����� a statistical mechanics
approach is taken to describe the dynamics of a Genetic Algorithm that makes
use of �tness distributions� too�
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Figure ���� Flowchart of the Genetic Algorithm�

It is possible to describe a selection method as a function that transforms a
�tness distribution into another �tness distribution�

De�nition �	� �Selection method� A selection method � is a function that
transforms a �tness distribution s into an new �tness distribution s��

s� � �
s� par list� 
����

par list is an optional parameter list of the selection method�

As the selection methods are probabilistic we will often make use of the ex�
pected �tness distribution�

De�nition �	� �Expected �tness distribution� �� denotes the expected
�tness distribution after applying the selection method � to the �tness distribution
s� i�e�

��
s� par list� � E
�
s� par list�� 
����

The notation s� � ��
s� par list� will be used as abbreviation�
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It is interesting to note that it is also possible to calculate the variance of the
resulting distribution�

Theorem �	� The variance in obtaining the �tness distribution s� is

��s � s�
�
�� s�

N

�

����

Proof� s�
fi� denotes the expected number of individuals with �tness value
fi after selection� It is obtained by doing N experiments �select an individual
from the population using a certain selection mechanism�� Hence the selection
probability of an individual with �tness value fi is given by pi �

s��fi�
N
� To

each �tness value there exists a Bernoulli trial �an individual with �tness fi is
selected�� As the variance of a Bernoulli trial with N trials is given by �� �
Np
�� p�� 
���� is obtained using pi� �

The index s in �s stands for �sampling� as it is the mean variance due to the
sampling of the �nite population�
The variance of 
���� is obtained by performing the selection method in N

independent experiments� It is possible to reduce the variance almost completely
by using more sophisticated sampling algorithms to select the individuals� We
will introduce Baker�s �stochastic universal sampling� algorithm 
SUS� �Baker�
������ which is an optimal sampling algorithm when we compare the di�erent
selection schemes in chapter ��

De�nition �	� �Cumulative �tness distribution� Let n be the number of
unique �tness values and f� � ��� � fn�� � fn �n � N� the ordering of the
�tness values with f� denoting the worst �tness occurring in the population and
fn denoting the best �tness in the population�

S
fi� denotes the number of individuals with �tness value fi or worse and is
called cumulative �tness distribution� i�e�

S
fi� �

���
��

� � i � �Pj�i
j�� s
fj� � � � i � n

N � i � n


����

Example �	� As an example of a discrete �tness distribution we use the initial
�tness distribution of the �wall	following	robot
 from Koza �Koza� ������ This
distribution is typical of problems solved by genetic programming �many bad and
only very few good individuals exist�� Figure � shows the distribution s
f� �left�
and the cumulative distribution S
f� �right��

We will now describe the distribution s
f� as a continuous distribution �s
f�
allowing the following properties to be easily derived� To do so� we assume

�
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Figure ���� The �tness distribution s
f� and the cumulative �tness distribution
S
f� for the �wall�following�robot� problem�

continuous distributed �tness values� The range of the function �s
f� is f� � f �
fn� using the same notation as in the discrete case�
We denote all functions in the continuous case with a bar� e�g� we write �s
f�

instead of s
f�� Similar sums are replaced by integrals� for example

�S
f� �
Z f

f�

�s
x� dx 
��	�

denotes the continuous cumulative �tness distribution�

Example �	� As an example for a continuous �tness distribution we chose
the Gaussian distribution G
	� �� with

G
	� ��
x� �
�p
�
�

e�
�x����

��� 
����

The distribution �sG
f� � NG
	� ��
f� with � � ��� 	 � ���� N � ���� and
f� � ��� fn �  � is shown in the interesting region f � ��� ���� in Figure
�� �left�� The right graph in this �gure shows the cumulative �tness distribution
�SG
f��

We will now introduce the aspects of the �tness distribution we want to com�
pare� The de�nitions given will all refer to continuous distributed �tness values�

��� Average Fitness

De�nition ��� �Average �tness� �M denotes the average �tness of the popu	
lation before selection and �M� denotes the expected average �tness after selection�

�M �
�

N

Z fn

f�

�s
f� f df 
����

�M� �
�

N

Z fn

f�

�s�
f� f df 
����

�
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Figure ���� The �tness distribution �sG
f� 
left� and the cumulative �tness dis�
tribution �SG
f� 
right��

��� Fitness Variance

De�nition ��� �Fitness variance� The �tness variance ��� denotes the vari	
ance of the �tness distribution �s
f� before selection and 
����� denotes the variance
of the �tness distribution �s�
f� after selection�

��� �
�

N

Z fn

f�

�s
f� 
f � �M�� df �
�

N

Z fn

f�

f ��s
f� df � �M� 
����


����� �
�

N

Z fn

f�

�s�
f� 
f � �M��� df �
�

N

Z fn

f�

f ��s�
f� df � �M�� 
�����

Note the di�erence of this variance to the variance in obtaining a certain
�tness distribution characterized by theorem �����

��� Reproduction Rate

De�nition ��� �Reproduction rate� The reproduction rate �R
f� denotes
the ratio of the number of individuals with a certain �tness value f after and
before selection

�R
f� �

�
�s��f�
�s�f�

� �s
f� � �

� � �s
f� � �

�����

A reasonable selection method should favor good individuals by assigning
them a reproduction rate �R
f� � � and punish bad individuals by a ratio �R
f� �
��

��



��� Loss of Diversity

During every selection phase bad individuals will be lost and be replaced by
copies of better individuals� Thereby a certain amount of �genetic material� is
lost that was contained in the bad individuals� The number of individuals that
are replaced corresponds to the strength of the �loss of diversity�� This leads to
the following de�nition�

De�nition ��� �Loss of diversity� The loss of diversity pd is the proportion
of individuals of a population that is not selected during the selection phase�

Theorem ��� If the reproduction rate �R
f� increases monotonously in f � the
loss of diversity of a selection method is

pd �
�

N

�
�S
fz�� �S�
fz�

	

�����

where fz denotes the �tness value such that �R
fz� � ��

Proof� For all �tness values f � 
f�� fz� the reproduction rate is less than one�
Hence the number of individuals that are not selected during selection is given
by
R fz
f�

�s
x�� �s�
x�� dx� It follows that

pd �
�

N

Z fz

f�


�s
x�� �s�
x�� dx

�
�

N


Z fz

f�

�s
x� dx�
Z fz

f�

�s�
x� dx

�

�
�

N

�
�S
fz�� �S�
fz�

	
�

The loss of diversity should be as low as possible because a high loss of diver�
sity increases the risk of premature convergence�
In his dissertation �Baker� ������ Baker has introduced a similar measure called

�reproduction rate RR�� RR gives the percentage of individuals that is selected
to reproduce� hence RR � ���
�� pd��

��� Selection Intensity

The term �selection intensity� or �selection pressure� is often used in di�erent
contexts and for di�erent properties of a selection method� Goldberg and Deb
�Goldberg and Deb� ����� and Back �Back� ����� use the �takeover time� to
de�ne the selection pressure� Whitley calls the parameter c 
see chapter 	� of his
ranking selection method selection pressure�

��



We use the term �selection intensity� in the same way it is used in popula�
tion genetic �Bulmer� ������ Muhlenbein has adopted the de�nition and applied
it to genetic algorithms �Muhlenbein and Schlierkamp�Voosen� ������ Recently
more and more researches are using this term to characterize selection schemes
�Thierens and Goldberg� ����a� Thierens and Goldberg� ����b� Back� ���	�
Blickle and Thiele� ���	��
The change of the average �tness of the population due to selection is a rea�

sonable measure for selection intensity� In population genetic the term selection
intensity was introduced to obtain a normalized and dimension�less measure� The
idea is to measure the progress due to selection by the so called �selection dif�
ferential�� i�e� the di�erence between the population average �tness after and
before selection� Dividing this selection di�erential by the mean variance of the
population �tness leads to the desired dimension�less measure that is called the
selection intensity�

De�nition ��� �Selection intensity� The selection intensity of a selection
method � for the �tness distribution �s
f� is the standardized quantity

I �
�M� � �M

��

�����

By this� the selection intensity depends on the �tness distribution of the initial
population� Hence� di�erent �tness distributions will in general lead to di�erent
selection intensities for the same selection method� For comparison it is necessary
to restrict oneself to a certain initial distribution� Using the normalized Gaussian
distribution G
�� �� as initial �tness distribution leads to the following de�nition�

De�nition ��� �Standardized selection intensity� The standardized se�
lection intensity I	 is the expected average �tness value of the population after ap	
plying the selection method � to the normalized Gaussian distribution G
�� ��
f� �
�p
��
e�

f�

� �

I	 �
Z �

��
f �

�

G
�� ���
f� df 
�����

The �e�ective� average �tness value of a Gaussian distribution with mean 	
and variance �� can easily be derived as �M� � �I  	� Note that this de�nition
of the standardized selection intensity can only be applied if the selection method
is scale and translation invariant� This is the case for all selection schemes exam�
ined in this paper except proportional selection� Likewise this de�nition has no
equivalent in the case of discrete �tness distributions� If the selection intensity
for a discrete distribution has to be calculated� one must refer to De�nition ��	���
In the remainder of this paper we use the term �selection intensity� as equiva�
lent for �standardized selection intensity� as our intention is the comparison of
selection schemes�
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��� Selection Variance

In addition to the selection intensity we introduce the term of �selection variance��
The de�nition is analogous to the de�nition of the selection intensity� but here we
are interested in the the new variance of the �tness distribution after selection�

De�nition ��� �Selection variance� The selection variance is the normal	
ized expected variance of the �tness distribution of the population after applying
the selection method � to the �tness distribution �s
f�� i�e�

V �

�����

���

���	�

For comparison the standardized selection variance is of interest�

De�nition ��� �Standardized selection variance� The standardized selec�
tion variance V	 is the normalized expected variance of the �tness distribution of
the population after applying the selection method � to the normalized Gaussian
distribution G
�� ���

V	 �
Z �

��

f � I	�

� �
�

G
�� ���
f� df 
�����

that is equivalent to

V	 �
Z �

��
f � �

�

G
�� ���
f� df � I�	 
�����

Note that there is a di�erence between the selection variance and the loss of
diversity� The loss of diversity gives the proportion of individuals that are not
selected� regardless of their �tness value� The standardized selection variance is
de�ned as the new variance of the �tness distribution assuming a Gaussian initial
�tness distribution� Hence a selection variance of � means that the variance is
not changed by selection� A selection variance less than � reports a decrease in
variance� The lowest possible value of V	 is zero� which means that the variance
of the �tness values of population after selection is itself zero� Again we will
use the term the �selection variance� as equivalent for �standardized selection
variance��
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Chapter �

Tournament Selection

Tournament selection works as follows� Choose some number t of individuals
randomly from the population and copy the best individual from this group into
the intermediate population� and repeat N times� Often tournaments are held
only between two individuals 
binary tournament� but a generalization is possible
to an arbitrary group size t called tournament size�

The pseudo code of tournament selection is given by algorithm ��

Algorithm �� 
Tournament Selection�

Input� The population P 
�� the tournament size t � f�� �� ���� Ng
Output� The population after selection P 
���

tournament
t�J�� ���� JN��
for i� � to N do

J �i � best �t individual out of t randomly picked
individuals from fJ�� ���� JNg�

od
return fJ ��� ���� J �Ng

The outline of the algorithm shows that tournament selection can be imple�
mented very e!ciently as no sorting of the population is required� Implemented
in the way above it has the time complexity O
N��
Using the notation introduced in the previous chapter� the entire �tness dis�

tribution after selection can be predicted� The prediction will be made for the
discrete 
exact� �tness distribution as well as for a continuous �tness distribution�
These results were �rst published in �Blickle and Thiele� ���	�� The calculations
assume that tournament selection is done with replacement�

Theorem �	� The expected �tness distribution after performing tournament

��



selection with tournament size t on the distribution s is

��T 
s� t�
fi� � s�
fi� � N

�

S
fi�

N

�t
�


S
fi���

N

�t�A 
����

Proof� We �rst calculate the expected number of individuals with �tness fi
or worse� i�e� S�
fi�� An individual with �tness fi or worse can only win the
tournament if all other individuals in the tournament have a �tness of fi or
worse� This means we have to calculate the probability that all t individuals
have a �tness of fi or worse� As the probability to choose an individual with
�tness fi or worse is given by

S�fi�
N

we get

S�
fi� � N



S
fi�

N

�t

����

Using this equation and the relation s�
fi� � S�
fi� � S�
fi��� 
see De�nition
������ we obtain 
����� �

Equation 
���� shows the strong in�uence of the tournament size t on the
behavior of the selection scheme� Obviously for t � � we obtain 
in average�

the unchanged initial distribution as ��T 
s� ��
fi� � N
�
S�fi�
N

� S�fi���
N

	
� S
fi��

S
fi��� � s
fi��
In �Back� ����� the probability for the individual number i to be selected

by tournament selection is given by pi � N�t

N � i  ��t � 
N � i�t�� under
the assumption that the individuals are ordered according to their �tness value
f
J�� � f
J�� � ��� � f
JN�� Note that Back uses an �reversed� �tness function
where the best individual has the lowest index� For comparison with our results
we transform the task into an maximization task using j � N � i  ��

pj � N�t
jt � 
j � ��t� � � j � N 
����

This formula is as a special case of 
���� with all individuals having a di�erent

�tness value� Then s
fi� � � for all i � ��� N � and S
fi� � i and pi �
s��fi�
N

yields the same equation as given by Back� Note that 
���� is not valid if some
individuals have the same �tness value�

Example �	� Using the discrete �tness distribution from Example ���� �Fig	
ure �� we obtain the �tness distribution shown in Figure ��� after applying
tournament selection with a tournament size t � ��� In addition to the ex	
pected distribution there are also the two graphs shown for s�
f� � �s
f� and
s�
f� �s
f�� Hence a distribution obtained from one tournament run will lie in
the given interval �the con�dence interval� with a probability of ����

The high agreement between the theoretical derived results and a simulation is
veri�ed in Figure ��� Here the distributions according to ����� and the average
of � simulation are shown�

�	
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Figure ���� The resulting expected �tness distribution and the con�dence interval
of ��" after applying tournament selection with a tournament size of ���

In example ����� we can see a very high variance in the distribution that arises
from fact that the individuals are selected in N independent trials� In chapter ���
we will meet the so called �stochastic universal sampling� method that minimizes
this mean variance�

Theorem �	� Let �s
f� be the continuous �tness distribution of the population�
Then the expected �tness distribution after performing tournament selection with
tournament size t is

�
�
T 
�s� t��
f� � �s

�
f� � t�s
f�



�S
f�

N

�t��

����

Proof� Analogous to the proof of the discrete case the probability of an indi�
vidual with �tness f or worse to win the tournament is given by

�S�
f� � N



�S
f�

N

�t

��	�

As �s�
f� � d �S��f�
df
� we obtain 
����� �

Example �	� Figure ��� shows the resulting �tness distributions after applying
tournament selection on the Gaussian distribution from Example ����

��
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Figure ���� Comparison between theoretical derived distribution 
#� and simu�
lation 
� � �� for tournament selection 
tournament size t � ����

��� Concatenation of Tournament Selection

An interesting property of the tournament selection is the concatenation of several
selection phases� Assume an arbitrary population with the �tness distribution
�s� We apply �rst tournament selection with tournament size t� to this popula�
tion and then on the resulting population tournament selection with tournament
size t�� The obtained �tness distribution is the same as if only one tournament
selection with the tournament size t�t� is applied to the initial distribution �s�

Theorem ��� Let �s be a continuous �tness distribution and t�� t� � � two
tournament sizes� Then the following equation holds

�
�
T 
�

�
T 
�s� t��� t��
f� � �

�
T 
�s� t� t��
f� 
����

Proof�

�
�
T 
�

�
T 
�s� t��� t��
f� � t��

�
T 
�s� t��
f�



�

N

Z f

f�

�
�
T 
�s� t��
x� dx

�t���

� t�t��s
f�



�

N

Z f

f�

�s
x� dx

�t��� 
 �
N

Z f

f�

t��s
x�
�
�

N

Z x

f�

�s
y� dy
�t���

dx

�t���

As Z f

f�

t��s
x�
�
�

N

Z x

f�

�s
y� dy
�t���

dx � N



�

N

Z f

f�

�s
x� dx

�t�

��
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Figure ���� Gaussian �tness distribution approximately leads again to Gaussian
distributions after tournament selection 
from left to right� initial distribution�
t ��� t � 	� t � ����

we can write

�
�
T 
�

�
T 
�s� t��� t��
f� � t�t��s
f�



�

N

Z f

f�

�s
x� dx

�t����
 �
N

Z f

f�

�s
x� dx

�t��A
t���

� t�t��s
f�



�

N

Z f

f�

�s
x� dx

�t��� 
 �
N

Z f

f�

�s
x� dx

�t��t����

� t�t��s
f�



�

N

Z f

f�

�s
x� dx

�t�t���
� �

�
T 
�s� t� t��
f�

�

In �Goldberg and Deb� ����� the proportion P� of best��t individuals after �
selections with tournament size t 
without recombination� is given to

P� � �� 
�� P��
t� 
����

This can be obtained as a special case from Theorem ������ if only the best��t
individuals are considered�

Corollary ��� Let �s
f� be a �tness distribution representable as

�s
f� � �g
f�

�
R ff� g
x� dx

N

�
A
���


����

��



with � � � and R fnf� g
x� dx � N � Then the expected distribution after tournament
with tournament size t is

�s�
f� � � t g
f�

�
R ff� g
x� dx

N

�
A
�t��


����

Proof� If we assume that �s
f� is the result of applying tournament selection
with tournament size � on the distribution g
f�� 
���� is directly obtained using
Theorem ������ �

��� Reproduction Rate

Corollary ��� The reproduction rate of tournament selection is

�RT 
f� �
�s�
f�

�s
f�
� t



�S
f�

N

�t��

�����

This is directly obtained by substituting 
���� in 
������
Individuals with the lowest �tness have a reproduction rate of almost zero

and the individuals with the highest �tness have a reproduction rate of t�

��� Loss of Diversity

Theorem ��� The loss of diversity pd�T of tournament selection is

pd�T 
t� � t�
�

t�� � t�
t

t�� 
�����

Proof� �S
fz� can be determined using 
����� 
refer to Theorem ����� for the
de�nition of fz��

�S
fz� � N t�
�

t�� 
�����

Using De�nition ����� and 
����� we obtain�

pd�T 
t� �
�

N

�
�S
fz�� �S�
fz�

	

�
�S
fz�

N
�


�S
fz�

N

�t

� t�
�

t�� � t�
t

t��

�

It turns out that the number of individuals lost increases with the tournament
size 
see Fig� ����� About the half of the population is lost at tournament size
t � 	�

��
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Figure ���� The loss of diversity pd�T 
t� for tournament selection�

��� Selection Intensity

To calculate the selection intensity we calculate the average �tness of the popula�
tion after applying tournament selection on the normalized Gaussian distribution
G
�� ��� Using De�nition ����� we obtain

IT 
t� �
Z �

��
t x

�p
�


e�
x�

�


Z x

��

�p
�


e�
y�

� dy

�t��
dx 
�����

These integral equations can be solved analytically for the cases t � �� � � � � 	

�Blickle and Thiele� ���	� Back� ���	� Arnold et al�� �������

IT 
�� � �

IT 
�� �
�p



IT 
�� �
�

�
p



IT 
�� �
�



p


arctan

p
�

IT 
	� �
��p




�

�

arctan

p
�� �

�
�

��



For a tournament size of two Thierens and Goldberg derive the same average
�tness value �Thierens and Goldberg� ����a� in a completely di�erent manner�
But their formulation can not be extended to other tournament sizes�
For larger tournament sizes 
����� can be accurately evaluated by numerical

integration� The result is shown on the left side of Figure ��	 for a tournament
size from � to ��� But an explicit expression of 
����� may not exist� By means
of the steepest descent method 
see� e�g� �Henrici� ������ an approximation for
large tournament sizes can be given� But even for small tournament sizes this
approximation gives acceptable results�
The calculations lead to the following recursion equation�

IT 
t�
k 	

q
ck
ln
t�� ln
IT 
t�k���� 
�����

with IT 
t�
� � � and k the recursion depth� The calculation of the constants ck

is di!cult� Taking a rough approximation with k � � the following equation is
obtained that approximates 
����� with an relative error of less than ���" for
t � ��� 	�� for tournament sizes t � 	 the relative error is less than �"�

IT 
t� 	
r
�
ln
t�� ln


q
���� ln
t��� 
���	�
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Figure ��	� Dependence of the selection intensity 
left� and selection variance

right� on the tournament size t�

��� Selection Variance

To determine the selection variance we need to solve the equation

VT 
t� �
Z �

��
t 
x� IT 
t��

� �p
�


e�
x�

�


Z x

��

�p
�


e�
y�

� dy

�t��
dx 
�����

For a binary tournament we have

VT 
�� � �� �




��



Here again 
����� can be solved by numerical integration� The dependence of
the selection variance on the tournament size is shown on the right of Figure ��	�
To obtain a useful analytic approximation for the selection variance� we per�

form a symbolic regression using the genetic programming optimization method�
Details about the way the data was computed can be found in appendix A� The
following formula approximates the selection variance with an relative error of
less than ���" for t � f�� � � � � ��g�

VT 
t� 	
s
���	  t

����t
�
�

� t � f�� � � � � ��g 
�����

��



Chapter �

Truncation Selection

In Truncation selection with threshold T only the fraction T best individuals
can be selected and they all have the same selection probability� This selection
method is often used by breeders and in population genetic �Bulmer� ����� Crow
and Kimura� ������ Muhlenbein has introduced this selection scheme to the
domain of genetic algorithms �Muhlenbein and Schlierkamp�Voosen� ������ This
method is equivalent to 
	� ���selection used in evolution strategies with T � �

�

�Back� ���	��
The outline of the algorithm is given by algorithm ��

Algorithm �� 
Truncation Selection�

Input� The population P 
��� the truncation threshold T � ��� ��
Output� The population after selection P 
���

truncation
T �J�� ���� JN��
�J � sorted population J according �tness

with worst individual at the �rst position
for i� � to N do

r� randomf �
�� T �N �� � � � � Ng
J �i � �Jr

od
return fJ ��� ���� J �Ng

As a sorting of the population is required� truncation selection has a time
complexity of O
N lnN��
Although this method has been investigated several times we will describe

this selection method using the methods derived here� as additional properties
can be observed�

Theorem �	� The expected �tness distribution after performing truncation se	

��



lection with threshold T on the distribution s is

��

s� T �
fi� � s�
fi� �

���
��

� � S
fi� � 
�� T �N
S�fi�����T �N

T
� S
fi��� � 
�� T �N � S
fi�

s�fi�
T

� else


����

Proof� The �rst case in 
���� gives zero o�spring to individuals with a �tness
value below the truncation threshold� The second case re�ects the fact that
threshold may lie within si� Then only the fraction above the threshold 
Si �

��T �N� may be selected� These fraction is in average copied �

T
times� The last

case in 
���� gives all individuals above the threshold the multiplication factor �
T

that is necessary to keep the population size constant� �

Theorem �	� Let �s
f� be the continuous distribution of the population� Then
the expected �tness distribution after performing truncation selection with thresh	
old T is

�
�


�s� T �
f� �

�
�s�f�
T

� �S
f� � 
�� T �N
� � else


����

Proof� As �S
f� gives the cumulative �tness distribution� it follows from the
construction of truncation selection that all individuals with �S
f� � 
� � T �N
are truncated� As the population size is kept constant during selection� all other
individuals must be copied in average �

T
times� �

��� Reproduction Rate

Corollary ��� The reproduction rate of truncation selection is

�R

f� �

�
�
T

� �S
f� � 
�� T �N
� � else


����

��� Loss of Diversity

By construction of the selection method only the fraction T of the population
will be selected� i�e� the loss of diversity is

pd�

T � � �� T 
����

��



��� Selection Intensity

The results presented in this subsection have been already derived in a di�erent
way in �Crow and Kimura� ������

Theorem ��� The selection intensity of truncation selection is

I

T � �
�

T

�p
�


e�
f�c
� 
��	�

where fc is determined by T �
R�
fc

�p
��
e�

f�

� df �

Proof� The selection intensity is de�ned as the average �tness of the population
after selection assuming an initial normalized Gaussian distributionG
�� ��� hence
I �

R�
�� ��
G
�� ���
f� f df � As no individual with a �tness value worse than fc

will be selected� the lower integration bound can be replaced by fc� Here fc is
determined by

�S
fc� � 
�� T �N � �� T 
����

because N � � for the normalized Gaussian distribution�
So we can compute

I

T � �
Z �

fc

�

T

�p
�


e�
f�

� f df

�
�

T

�p
�


e�
f�c
�

Here fc is determined by 
����� Solving 
���� for T yields

T � ��
Z fc

��

�p
�


e�
f�

� df

�
Z �

fc

�p
�


e�
f�

� df

�

A lower bound for the selection intensity reported by �Muhlenbein and Voigt�

���	� is I

T � �
q

��T
T
�

Figure ��� shows on the left the selection intensity in dependence of parameter
T �

��� Selection Variance

Theorem ��� The selection variance of truncation selection is

V

T � � �� I

T �
I

T �� fc� 
����

�	
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Figure ���� Selection intensity 
left� and selection variance 
right� of truncation
selection�

Sketch of proof� The substitution of 
���� in the de�nition equation 
�����
gives

V

T � �
Z �

fc

f �
�

T

�p
�


e�
f�

� df � I

T ��
�

After some calculations this equation can be simpli�ed to 
����� �

The selection variance is plotted on the right of Figure ���� 
���� has also
been derived in �Bulmer� ������

��



Chapter �

Linear Ranking Selection

Ranking selection was �rst suggested by Baker to eliminate the serious disadvan�
tages of proportionate selection �Grefenstette and Baker� ����� Whitley� ������
For ranking selection the individuals are sorted according their �tness values and
the rank N is assigned to the best individual and the rank � to the worst indi�
vidual� The selection probability is linearly assigned to the individuals according
to their rank�

pi �
�

N

�
�  
� � ��

i� �
N � �

�
� i � f�� � � � � Ng 
	���

Here ��

N
is the probability of the worst individual to be selected and ��

N
the

probability of the best individual to be selected� As the population size is held
constant� the conditions � � �� � and � � � must be ful�lled� Note that all
individuals get a di�erent rank� i�e� a di�erent selection probability� even if they
have the same �tness value�

Koza �Koza� ����� determines the probability by a multiplication factor rm
that determines the gradient of the linear function� A transformation into the
form of 
	��� is possible by � � �

rm��
and � � �rm

rm��
�

Whitley �Whitley� ����� describes the ranking selection by transforming an
equally distributed random variable � � ��� �� to determine the index of the
selected individual

j � b N

�
c� ��
�
c�

q
c� � �
c� ���

�
c 
	���

where c is a parameter called �selection bias�� Back has shown that for � � c � �
this method is almost identical to the probabilities in 
	��� with � � c �Back�
������

��



Algorithm �� 
Linear Ranking Selection�

Input� The population P 
�� and the reproduction rate of the worst
individual � � ��� ��

Output� The population after selection P 
���

linear ranking
��J�� ���� JN��
�J � sorted population J according �tness

with worst individual at the �rst position
s� � �
for i� � to N do

si � si��  pi 
Equation 	���
od
for i� � to N do

r� random���sN �
J �i � �Jl such that sl�� � r � sl

od
return fJ ��� ���� J �Ng

The pseudo�code implementation of linear ranking selection is given by algo�
rithm �� The method requires the sorting of the population� hence the complexity
of the algorithm is dominated by the complexity of sorting� i�e� O
N logN��
Theorem �	� The expected �tness distribution after performing ranking selec	
tion with � on the distribution s is

��R
s� 
��
fi� � s�
fi� � s
fi�

N� � �
N � �  

�� �

N � �
�
S
fi�

� � S
fi���
�
	


	���

Proof� We �rst calculate the expected number of individuals with �tness fi
or worse� i�e� S�
fi�� As the individuals are sorted according to their �tness
value this number is given by the sum of the probabilities of the S�
fi� less �t
individuals�

S�
fi� � N

S�fi�X
j��

pj

� �S
fi�  
� � �

N � �
S�fi�X
j��

j � �

� �S
fi�  
� � �

N � �
�

�
S
fi� 
S
fi�� ��

As � � �� � and s�
fi� � S�
fi�� S�
fi��� we obtain

s�
fi� � �
S
fi�� S
fi����  
�� �

N � � 
S
fi�
S
fi�� ��� S
fi���
S
fi���� ���

��



� �s
fi�  
�� �

N � �
�
S
fi�

� � S
fi���
� � s
fi�

	

� s
fi�
N� � �
N � �  

�� �

N � �
�
S
fi�

� � S
fi���
�
	

�

Example �	� As an example we use again the �tness distribution of the �wall	
following	robot
 from Example ����� The resulting distribution after ranking se	
lection with � � ��� is shown in Figure ���� Here again the con�dence interval
is shown� A comparison between theoretical analysis and the average of � simu	
lations is shown in Figure ��� Again a very high agreement with the theoretical
results is observed�
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Figure 	��� The resulting expected �tness distribution and the con�dence interval
of ��" after applying ranking selection with � � ����

Theorem �	� Let �s
f� be the continuous �tness distribution of the population�
Then the expected �tness distribution after performing ranking selection �R with
� on the distribution �s is

�
�
R
�s� 

��
f� � �s�
f� � ��s
f�  �
�� �

N
�S
f��s
f� 
	���

Proof� As the continuous form of 
	��� is given by �p
x� � �
N

�  �����

N
x� we

calculate �S
f� using � � �� ��

�S�
f� � N

Z �S�f�

�
�p
x� dx

��
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Figure 	��� Comparison between theoretical derived distribution 
#� and the
average of �� simulations 
� � �� for ranking selection with � � �

N
�

� �
Z �S�f�

�
dx  �

�� �

N

Z �S�f�

�
x dx

� � �S
f�  
�� �

N
�S
f��

As �s�
f� � d �S��f�
df
� 
	��� follows� �

Example �	� Figure ��� shows the the initial continuous �tness distribution
�sG and the resulting distributions after performing ranking selection�

��� Reproduction Rate

Corollary ��� The reproduction rate of ranking selection is

�RR
f� � �  �
�� �

N
�S
f� 
	�	�

This equation shows that the worst �t individuals have the lowest reproduc�
tion rate �R
f�� � � and the best �t individuals have the highest reproduction
rate �R
fn� � � � � � �� This can be derived from the construction of the

method as ��

N
is the selection probability of the worst �t individual and ��

N
the

one of the best �t individual�

��
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Figure 	��� Gaussian �tness distribution �sG
f� and the resulting distributions
after performing ranking selection with � � ��	 and � � � 
from left to right��

��� Loss of Diversity

Theorem ��� The loss of diversity pd�R

�� of ranking selection is

pd�R

�� � 
�� ��

�

�

	���

Proof� Using Theorem ����� and realizing that S
fz� �
N
�
we calculate�
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Baker has derived this result using his term of �reproduction rate� �Baker�
������
Note that the loss of diversity is again independent of the initial distribution�
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��� Selection Intensity

Theorem ��� The selection intensity of ranking selection is

IR

�� � 
�� ��

�p




	���

Proof� Using the de�nition of the selection intensity 
De�nition ��	��� and using
the Gaussian function for the initial �tness distribution we obtain

IR

�� �

Z �

��
x
�p
�


e�
x�

�
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As the �rst summand is � and
R�
�� xe�

x�

�
R x
�� e�

y�

� dy dx �
p

 we obtain 
	����

�

The selection intensity of ranking selection is shown in Figure 	�� 
left� in
dependence of the parameter ��
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Figure 	��� Selection intensity 
left� and selection variance 
right� of ranking
selection�

��� Selection Variance

Theorem ��� The selection variance of ranking is

VR

�� � �� 
�� ���



� �� IR
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	���

Proof� Substituting 
	��� into the de�nition equation 
����� leads to
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Using the relations B�� and B�� we obtain

VR

�� � �  
�� ��� IR


���

� �� IR

���

�

The selection variance of ranking selection is plotted on the right of Figure
	���
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Chapter �

Exponential Ranking Selection

Exponential ranking selection di�ers from linear ranking selection in that the
probabilities of the ranked individuals are exponentially weighted� The base of
the exponent is the parameter � � c � � of the method� The closer c is to �
the lower is the �exponentiality� of the selection method� We will discuss the
meaning and the in�uence of this parameter in detail in the following� Again the
rank N is assigned to the best individual and the rank � to the worst individual�
Hence the probabilities of the individuals are given by

pi �
cN�iPN
j�� c

N�j � i � f�� ���� Ng 
����

The sum
PN

j�� c
N�j normalizes the probabilities to ensure that

PN
i�� pi � ��

As
PN

j�� c
N�j � cN��

c�� we can rewrite the above equation�

pi �
c� �
cN � �c

N�i � i � f�� ���� Ng 
����

The algorithm for exponential ranking 
algorithm �� is similar to the algorithm
for linear ranking� The only di�erence lies in the calculation of the selection
probabilities�

Theorem �	� The expected �tness distribution after performing exponential
ranking selection with c on the distribution s is

��E
s� c� N�
fi� � s�
fi� � N
cN

cN � �c
�S�fi�

�
cs�fi� � �

	

����

��



Algorithm �� 
Exponential Ranking Selection�

Input� The population P 
�� and the ranking base c ���� ��
Output� The population after selection P 
���

exponential ranking
c�J�� ���� JN��
�J � sorted population J according to �tness

with worst individual at the �rst position
s� � �
for i� � to N do

si � si��  pi 
Equation ����
od
for i� � to N do

r� random���sN �
J �i � �Jl such that sl�� � r � sl

od
return fJ ��� ���� J �Ng

Proof� We �rst calculate the expected number of individuals with �tness fi
or worse� i�e� S�
fi�� As the individuals are sorted according to their �tness
value this number is given by the sum of the probabilities of the S�
fi� less �t
individuals�

S�
fi� � N

S�fi�X
j��

pj

� N
c� �
cN � �

S�fi�X
j��

cN�j

and with the substitution k � N � j

S�
fi� � N
c� �
cN � �

N��X
k�N�S�fi�

ck

� N
c� �
cN � �

�
N��X

k��

ck �
N�S�fi���X

k��

ck

�
A

� N
c� �
cN � �



cN � �
c� � � cN�S�fi�

c� �

�

� N



�� cN

cN � �c
�S�fi�

�

As s�
fi� � S�
fi�� S�
fi��� we obtain

s�
fi� � N
c� �
cN � �

�
c�S�fi��� � c�S�fi�

	

�	



� N
c� �
cN � �c

�S�fi�
�
cs�fi� � �

	

�

Example �	� As an example we use again the �tness distribution of the �wall	
following	robot
 from Example ����� The resulting distribution after exponential
ranking selection with c � ���� and N � ���� is shown in Figure ��� as a
comparison to the average of � simulations� Again a very high agreement with
the theoretical results is observed�
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Figure ���� Comparison between theoretical derived distribution 
#� and the
average of �� simulations 
� � �� for ranking selection with c � �����

Theorem �	� Let �s
f� be the continuous �tness distribution of the popula	
tion� Then the expected �tness distribution after performing exponential ranking
selection �E with c on the distribution �s is

�
�
E
�s� c�
f� � �s

�
f� � N
cN

cN � � ln c �s
f� c
� �S�f� 
����

Proof� As the continuous form of 
���� is given by �p
x� � cN�xR N
�

cN�x
and

R
cx �

�
ln c

cx we calculate�

�S�
f� � N
cN ln c

cN � �
Z �S�f�

�
c�x dx

��



� �N cN

cN � ��c
�x�

�S�f�
�

� N
cN

cN � �
�
�� c�S�f�

	

As �s�
f� � d �S��f�
df
� 
���� follows� �

It is useful to introduce a new variable � � cN to eliminate the explicit
dependence on the population size N �

�
�
E
s� ��
f� � �s

�
f� �
� ln�

�� � �s
f��
� �S�f�

N 
��	�

The meaning of � will become apparent in the next section�

��� Reproduction Rate

Corollary ��� The reproduction rate of exponential ranking selection is

�RE
f� �
� ln�

�� ��
� �S�f�

N 
����

This equation shows that the worst �t individuals have the lowest reproduc�
tion rate �R
f�� �

	 ln	
	�� and the best �t individuals have the highest reproduction

rate �R
fn� �
ln	
	�� � Hence we obtain a natural explanation of the variable �� as

�R�f��
�R�fn�

� �� it describes the ratio of the reproduction rate of the worst and the best

individual� Note that c � � and hence cN 
 � for large N � i�e� the interesting
region of values for � is in the range from ������ � � � � ��

��� Loss of Diversity

Theorem ��� The loss of diversity pd�E
�� of exponential ranking selection is

pd�E
�� �
�� ln 	��

	 ln	

ln�
� �

�� � 
����

Proof� First we calculate from the demand R
fz� � � �

�S
fz�

N
� � ln

	��
	 ln	

ln�

����

Using Theorem ����� we obtain�
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The loss of diversity is shown in �gure ����
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Figure ���� The loss of diversity pd�E
�� for exponential ranking selection� Note
the logarithmic scale of the ��axis�

��� Selection Intensity and Selection Variance

The selection intensity and the selection variance are very di!cult to calculate for
exponential ranking� If we recall the de�nition of the selection intensity 
de�nition
��	��� we see that the integral of the Gaussian function occurs as exponent in an
inde�nite integral� Hence we restrict ourselves here to numerical calculation of
the selection intensity as well as of the selection variance� The selection intensity
and the selection variance of exponential ranking selection is shown in Figure ���
in dependence of the parameter ��
An approximation formula can be derived using the genetic programming

optimization method for symbolic regression 
see Appendix A�� The selection

��
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Figure ���� Selection intensity 
left� and selection variance 
right� of exponential
ranking selection� Note the logarithmic scale of the ��axis�

intensity of exponential ranking selection can be approximated with a relative
error of less than �" for � � ������� ���� by

IE
�� 	 ��	��
ln ln �

	

����	

����

Similar� an approximation for the selection variance of exponential ranking
selection can be found� The following formula approximates the selection variance
with an relative error of less than 	" for � � ������� �����

VE
�� 	 ln
�
���  

������

����	�� ln�
�


�����

��



Chapter �

Proportional Selection

Proportional selection is the original selection method proposed for genetic al�
gorithms by Holland �Holland� ���	�� We include the analysis of the selection
method mostly because of its fame�

Algorithm 	� 
Proportional Selection�

Input� The population P 
��
Output� The population after selection P 
���

proportional
J�� ���� JN��
s� � �
for i� � to N do

si � si��  
fi
M

od
for i� � to N do

r� random���sN �
J �i � Jl such that sl�� � r � sl

od
return fJ ��� ���� J �Ng

The probability of an individual to be selected is simply proportionate to its
�tness value� i�e�

pi �
fi

NM

����

Algorithm 	 displays the method using a pseudo code formulation� The time
complexity of the algorithm is O
N��
Obviously� this mechanism will only work if all �tness values are greater than

zero� Furthermore the selection probabilities strongly depend on the scaling of
the �tness function� As an example� assume a population of �� individuals with
the best individual having a �tness value of �� and the worst a �tness value of

��



�� The selection probability for the best individual is hence pb 	 ����" and
for the worst pw 	 ��	"� If we now translate the �tness function by ���� i�e�
we just add a the constant value ��� to every �tness value� we calculate p�b 	
����" and p�w 	 ��	"� The selection probabilities of the best and the worst
individual are now almost identical� This undesirable property arises from the
fact that proportional selection is not translation invariant 
see e�g� �de la Maza
and Tidor� ������� Because of this several scaling methods have been proposed
to keep proportional selection working� e�g� linear static scaling� linear dynamic
scaling� exponential scaling� logarithmic scaling �Grefenstette and Baker� ������
sigma truncation �Brill et al�� ������ Another method to improve proportional
selection is the �over selection� of a certain percentage of the best individuals� i�e�
to force that �� " of all individuals are taken from the best �� " of the population�
This method was used in �Koza� ������ In �Muhlenbein and Schlierkamp�Voosen�
����� it is already stated that �these modi�cations are necessary� not tricks to
speed up the algorithm�� The following analysis will con�rm this statement�

Theorem �	� The expected �tness distribution after performing proportional
selection on the distribution s is

��P 
s�
fi� � s�
f� � s
f�
f

M

����

��� Reproduction Rate

Corollary ��� The reproduction rate of proportional selection is

�RP 
f� �
f
�M


����

The reproduction rate is proportionate to the �tness value of an individual�
If all �tness values are close together 
as it was in the example at the beginning
of this chapter� all individuals have almost the same reproduction rate R 	 ��
Hence no selection takes place anymore�

��� Selection Intensity

As proportional selection is not translation invariant our original de�nition of
standardized selection intensity cannot be applied� We will cite here the results
obtained by Muhlenbein and Schlierkamp�Voosen �Muhlenbein and Schlierkamp�
Voosen� ������

Theorem ��� �Muhlenbein and Schlierkamp�Voosen� ����� The standardized
selection intensity of proportional selection is

IP �
��
�M


����

��



where �� is the mean variance of the �tness values of the population before selec	
tion�

Proof� See �Muhlenbein and Schlierkamp�Voosen� ������ �

The other properties we are interested in like the selection variance an the
loss of diversity are di!cult to investigate for proportional selection� The cru�
cial point is the explicit occurrence of the �tness value in the expected �tness
distribution after selection 
����� Hence an analysis is only possible if we make
some further assumptions on the initial �tness distribution� This is why other
work on proportional selection assume some special functions to be optimized

e�g� �Goldberg and Deb� �������
Another weak point is that the selection intensity even in the early stage of

the optimization 
when the variance is high� is too low� Measurements on a broad
range of problems showed sometimes a negative selection intensity� This means
that in some cases 
due to sampling� there is a decrease in average population
�tness� Seldom a very high selection intensity occurred 
I 	 ���� if a super	
individual was created� But the measured average selection intensity was in range
of ��� to ����
All the undesired properties together led us to the conclusion that proportional

selection is a very unsuited selection scheme� Informally one can say that the
only advantage of proportional selection is that it is so di!cult to prove the
disadvantages�

��



Chapter 	

Comparison of Selection Schemes

In the subsequent sections the selection methods are compared according to their
properties derived in the preceding chapters� First we will compare the reproduc�
tion rates of selection methods and derive an uni�ed view of selection schemes�
Section ��� is devoted to the comparison of the selection intensity and gives a
convergence prediction for simple genetic algorithm optimizing the ONEMAX
function� The selection intensity is also used in the subsequent sections to com�
pare the methods according to their loss of diversity and selection variance�

We will take into account proportional selection only in the �rst two subsec�
tions when the reproduction rate and the selection intensity are analyzed� In
other comparisons it is neglected as it withdraws itself an analysis of the proper�
ties we are interested in�

	�� Reproduction Rate and Universal Selection

The reproduction rate simply gives the number of expected o�spring of an indi�
vidual with a certain �tness value after selection� But in the preceding chapters
only the reproduction rate for the continuous case have been considered� Table
��� gives the equations for the discrete 
exact� case� They have been derived
using the exact o�spring equations 
����� 
����� 
	���� 
���� and 
���� and doing
some simple algebraic manipulations�

The examples in the preceding chapter showed a large mean variation of the
�tness distributions after selection� In the following� we will see that this mean
variation can be almost completely eliminated by using the reproduction rate and
the so called �stochastic universal sampling�� As can be seen from table ��� we
can calculate the expected distribution in advance without carrying out a �real�
selection method� This calculation also enables us to use stochastic universal
sampling 
SUS� �Baker� ����� for all selection schemes discussed herein�

The SUS algorithm can be stated to be an optimal sampling algorithm� It
has zero bias� i�e� no deviation between the expected reproduction rate and the

��



Selection Method Reproduction Rate

Tournament RT 
fi� �
N

s�fi�

��
S�fi�
N

	t � �S�fi���
N

	t�

Truncation R

fi� �

�����
����

� � S
fi� � 
�� T �N
S�fi�����T �N

s�fi�T
� S
fi��� � 
�� T �N � S
fi�

�
T

� else

Linear Ranking RR
fi� �
N����
N��  ����

N�� 
�S
fi�� s
fi��

Exponential Ranking RE
fi� �
N

s�fi�
	 ln	
	�� �

�S�fi�

N

�
��

s�fi�

N � �
�

Proportional RP 
fi� �
fi
M

Table ���� Comparison of the reproduction rate of the selection methods for
discrete distributions�

algorithmic sampling frequency� Furthermore� SUS has a minimal spread� i�e�
the range of the possible values for s�
fi� is

s�
fi� � fbs�
fi�c� ds�
fi�eg 
����

The outline of the SUS algorithm is given by algorithm �� The standard
sampling mechanism uses one spin of a roulette wheel 
divided into segments
for each individual with an the segment size proportional to the reproduction
rate� to determine one member of the next generation� Hence� N trials have to
be performed to obtain an entire population� As these trials are independent of
each other a relatively high variance in the outcome is observed 
see also chapter �
and theorem ������� This is also the case for tournament selection although there
is no explicitly used roulette wheel sampling� In contrary for SUS only a single
spin of the wheel is necessary as the roulette has N markers for the �winning
individuals� and hence all individuals are chosen at once�
By means of the SUS algorithm the outcome of a certain run of the selection

scheme is as close as possible to the expected behavior� i�e� the mean variation
is minimal� Even though it is not clear whether there any performance advan�
tages in using SUS� it makes the run of a selection method more �predictable��
To be able to apply SUS one has to know the expected number of o�spring of
each individual� Baker has applied this sampling method only to linear ranking
selection as here the expected number of o�spring is known by construction 
see
chapter 	�� As we have derived this o�spring values for the selection methods
discussed in the previous chapters it is possible to use stochastic universal sam�
pling for all these selections schemes� Hence� we may obtain a uni�ed view of
selection schemes� if we neglect the way the reproduction rates were derived and
construct an �universal selection method� in the following way� First we compute

��



the �tness distribution of the population� Next the expected reproduction rates
are calculated using the equations derived in the proceeding chapters and sum�
marized in table ���� In the last step SUS is used to obtain the new population
after selection� This algorithm is given in algorithm � and the SUS algorithm is
outlined by algorithm ��

Algorithm �� 
Stochastic Universal Sampling�

Input� The population P 
�� and the reproduction rate for each
�tness value Ri � ��� N �

Output� The population after selection P 
���

SUS
R�� � � � � Rn� J�� � � � � JN��
sum� �
j � �
ptr� random�����
for i� � to N do

sum� sum Ri where Ri is the reproduction rate
of individual Ji

while 
sum � ptr� do
J �j � Ji
j � j  �
ptr � ptr  �

od
od
return fJ ��� ���� J �Ng

Algorithm �� 
Universal Selection Method�

Input� The population P 
��
Output� The population after selection P 
���

universal selection
J�� � � � � JN��
s� �tness distribution
J�� � � � � JN�
r� reproduction rate
s�
J � � SUS
r� J�
return J �

The time complexity of the universal selection method is O
N lnN� as the
�tness distribution has to be computed� Hence� if we perform �tournament se�
lection� with this algorithm we pay the lower mean variation with a higher com�

�	



putational complexity�

	�� Comparison of the Selection Intensity

Selection Method Selection Intensity

Tournament IT 
t� 	
q
�
ln t� ln
p���� ln t��

Truncation I

T � �
�
T

�p
��
e�

f�c
�

Linear Ranking IR

�� � 
�� �� �p

�

Exponential Ranking IE
�� 	 ��	�� ln ln
�
�

�
��

Fitness Proportionate IP �
��
�M

Table ���� Comparison of the selection intensity of the selection methods�

As the selection intensity is a very important property of the selection method�
we give in table ��� some settings for the three selection methods that yield the
same selection intensity�

I ���� ��	� ���� ���� ����

�T �t � � � � 	

�R�
� ��� � � � �

�
�T ��� ���� ���� ���� ����

�E�� ���� ���� ����� ��� � ���� ��	 � ����
�E�c
N � ����� ����� ����� ����� ����	 �����

I ���	 ��	� ���� ����

�T �t � �� �� ��

�
�T ���� ���	 ���� ����

�E�� ��� � ���� ��	 � ���� ��� ��� � �����
�E�c
N � ����� ����� ����� ����� �����

Table ���� Parameter settings for truncation selection �
� tournament selection
�T � linear ranking selection �R� and exponential ranking selection �E to achieve
the same selection intensity I�

The importance of the selection intensity is based on the fact that the behavior
of a simple genetic algorithm can be predicted if the �tness distribution is nor�
mally distributed� In �Muhlenbein and Schlierkamp�Voosen� ����� a prediction is

��



made for a genetic algorithm optimizing the ONEMAX 
or bit�counting� func�
tion� Here the �tness is given by the number of ��s in the binary string of length
n� Uniform crossing�over is used and assumed to be random process which creates
a binomial �tness distribution� As a result� after each recombination phase the
input of the next selection phase approximates a Gaussian distribution� Hence�
a prediction of this optimization using the selection intensity should be possible�
For a su!ciently large population Muhlenbein calculates

p
�� �
�

�



�  sin


Ip
n
�  arcsin
�p� � ���

�

����

where p� denotes the fraction of ��s in the initial random population and p
��
the fraction of ��s in generation � � Convergence is characterized by the fact
that p
�c� � � so the convergence time for the special case of p� � ��	 is given

by �c �
�
�

p
n

I
� Muhlenbein derived this formula for truncation selection� where

only the selection intensity is used� Thereby it is straightforward to give the
convergence time for any other selection method� by substituting I with the
corresponding terms derived in the preceding sections�
For tournament selection we have

�T�c
t� 	 


�

s
n

�
ln t� lnp���� ln t� 
����

for truncation selection

�
�c
T � � T


p

np
�

e
f�c
� 
����

for linear ranking selection

�
�c

�� �



p

n

�
�� ��

��	�

and for exponential ranking selection

�E�c
�� 	 �����
p
n����	

ln ln �
	


����

	�� Comparison of Loss of Diversity

Table ��� summarizes the loss of diversity for the selection methods� It is
di!cult to compare these relations directly as they depend on di�erent parameters
that are characteristic for the speci�c selection method� e�g�� the tournament
size t for tournament selection� the threshold T for truncation selection� etc�
Hence� one has to look for an independent measure to eliminate these parameters

��



Selection Method Loss of Diversity

Tournament pd�T 
t� � t�
�

t�� � t�
t

t��

Truncation pd�

T � � �� T

Linear Ranking pd�R

�� � 
�� ���

�

Exponential Ranking pd�E
�� �
��ln ���

� ln�

ln	
� 	

	��

Table ���� Comparison of the loss of diversity of the selection methods

and to be able to compare the loss of diversity� We chose this measure to be
the selection intensity� The loss of diversity of the selection methods is viewed
as a function of the selection intensity� To calculate the corresponding graph
one �rst computes the value of the parameter of a selection method 
i�e� t for
tournament selection� T for truncation selection� � for linear ranking selection�
and � for exponential ranking selection� that is necessary to achieve a certain
selection intensity� With this value the loss of diversity is then obtained using
the corresponding equations� i�e� 
������ 
����� 
	���� 
����� Figure ��� shows
the result of this comparison� the loss of diversity for the di�erent selection
schemes in dependence of the selection intensity� To achieve the same selection
intensity more bad individuals are replaced using truncation selection than using
tournament selection or one of the ranking selection schemes� respectively� This
means that more �genetic material� is lost using truncation selection�
If we suppose that a lower loss of diversity is desirable as it reduces the

risk of premature convergence� we expect that truncation selection should be
outperformed by the other selection methods� But in general it depends on the
problem and on the representation of the problem to be solved whether a low loss
of diversity is �advantageous�� But with �gure ��� one has a useful tool at hand
to make the right decision for a particular problem�
Another interesting fact can be observed if we look again at table ���� The

loss of diversity is independent of the initial �tness distribution� Nowhere in
the derivation of these equations a certain �tness distribution was assumed and
nowhere the �tness distribution �s
f� occurs in the equations� In contrary� the

standardized� selection intensity and the 
standardized� selection variance are
computed for a certain initial �tness distribution 
the normalized Gaussian dis�
tribution�� Hence� the loss of diversity can be viewed as an inherent property of
a selection method�

	�� Comparison of the Selection Variance

We use again the same mechanism to compare the selection variance we used
in the preceding section� i�e�� the selection variance is viewed as a function of the

��
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Figure ���� The dependence of the loss of diversity pd on the selection intensity I
for tournament selection 
�#��� truncation selection 
� $ $ ��� linear ranking
selection 
� � � ��� and exponential ranking selection 
� $ � ��� Note that for
tournament selection only the dotted points on the graph correspond to valid

integer� tournament sizes�

selection intensity�

Figure ��� shows the dependence of the selection variance on the selection
intensity� It can be seen clearly that truncation selection leads to a lower selection
variance than tournament selection� The highest selection variance is obtained
by exponential ranking�

An interpretation of the results may be di!cult as it depends on the opti�
mization task and the kind of problem to be solved whether a high selection
variance is advantageous or not� But again this graph may help to decide for
the �appropriate� selection method for a particular optimization problem� If we
accept the assumption that a higher variance is advantageous to the optimization
process� exponential ranking selection selection reveals itself to be the best selec�
tion scheme� In �Muhlenbein and Voigt� ���	� it is stated that �if two selection
selection methods have the same selection intensity� the method giving the higher
standard deviation of the selected parents is to be preferred�� From this point of
view exponential ranking selection should be the �best� selection method�
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Table ��	� Comparison of the selection variance of the selection methods�

	�� The Complement Selection Schemes
 Tour�

nament and Linear Ranking

If we compare the several properties of tournament selection and linear ranking
selection we observe that binary tournament behaves similar to a linear ranking
selection with a very small �� And indeed it is possible to prove that binary
tournament and linear ranking with � � �

N
have identical average behavior�

Theorem 
�� The expected �tness distributions of linear ranking selection
with � � �

N
and tournament selection with t � � are identical� i�e�

��R
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Goldberg and Deb �Goldberg and Deb� ����� have also shown this result� but
only for the behavior of the best �t individual�
By this we see the complementary character of the two selection schemes� For

lower selection intensities 
I � �p
�
� linear ranking selection is the appropriate

selection mechanism as for selection intensities 
I � �p
�
� tournament selection is

better suited� At the border the two section schemes are identical�

	�



0.25 0.5 0.75 1 1.25 1.5 1.75 2
I 0

 0.2

 0.4

 0.6

 0.8

1

Φ(I)

Figure ���� The dependence of the selection variance V on the selection intensity
I for tournament selection 
�#��� truncation selection 
� $ $ ��� ranking
selection 
� � � ��� and exponential ranking selection 
� $ � ��� Note that for
tournament selection only the dotted points on the graph correspond to valid

integer� tournament sizes�
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Chapter 


Conclusion

In this paper a uni�ed and systematic approach to analyze selection methods was
developed and applied to the selection schemes tournament selection� truncation
selection� linear and exponential ranking selection� and proportional selection�
This approach is based on the description of the population using �tness distri�
butions� Although this idea is not new� the consequent realization of this idea
led to a powerful framework that gave an uni�ed view of the selection schemes
and allowed several up to now independently and isolated obtained aspects of
these selection schemes to be derived with one single methodology� Besides some
interesting features of selection schemes could be proven� e�g� the concatenation
of several tournament selections 
theorem ������ and the equivalence of binary
tournament and linear ranking 
theorem ��	����
Furthermore the derivation of the major characteristics of a selection scheme�

i�e� the selection intensity� the selection variance and the loss of diversity� could
easily be achieved with this approach� The selection intensity was used to obtain
a convergence prediction of the simple genetic algorithm with uniform crossover
optimizing the ONEMAX function� The comparison of the loss of diversity and
the selection variance based on the selection intensity allowed for the �rst time
to compare �second order� properties of selection schemes� This comparison
gives a well grounded basis to decide which selection scheme should be used�
if the impact of these properties on the optimization process is known for the
particular problem�
The one exception in this paper is proportional selection� that withdraws

itself from a detailed mathematical analysis� But based on some basic analysis
and some empirical observations we regard proportional selection to be a very
unsuited selection scheme�
The presented analysis can easily be extended to other selection schemes and

other properties of selection schemes�
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Appendix A

Deriving Approximation

Formulas Using Genetic

Programming

In this chapter we describe the way the approximation formulas for the selection
variance of tournament selection 
������ the selection intensity of exponential
ranking selection 
����� and the selection variance of exponential ranking 
�����
were obtained�
In general we use the same approach as Koza in his �rst book on genetic pro�

gramming �Koza� ������ Genetic Programming 
GP� is an optimization method
based on natural evolution similar to genetic algorithms� The major di�erence
is that GP uses trees to represent the individuals where GA uses bit�strings�
The tree structure can represent functional dependencies or complete computer
programs� Hence we can use this optimization method to obtain an analytic
approximation of a data set� Given are a certain number of data points 
xi� yi�
and we want to �nd an analytic expression that approximates the functional
dependence y � u
x��
The �tness function is to minimize the maximum relative error over all data

points 
xi� yi�� If an arithmetic exception occurs during the evaluation of an
individual 
such as division by zero� the individual is punished by a very high
error score 
���������
The parameter for the optimization are�

 population size ������
 maximum tree size �	
 maximum number of generations ��
 tournament selection with tournament size 	
 reducing redundancy using marking crossover �Blickle and Thiele� �����
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 use of one step hill�climbing to adjust the RFPC numbers

The last two items need further explanation� the marking crossover introduced
in �Blickle and Thiele� ����� works as follows� During the evaluation of the �tness
function all edges in the tree of the individual are marked� The edges that remain
unmarked after calculating the �tness value are said to be redundant� because they
were never used for �tness calculation� The crossover operator now only selects
the edges for crossover that are marked� because only changes at these edges may
lead to individuals with a di�erent �tness score� With this approach an increase
in performance of almost 	�" for the ��multiplexer problem was achieved �Blickle
and Thiele� ������

�One step hill�climbing� works in the following way� after evaluation the
�tness of an individual� successively all random constants in the trees are change
by a little amount ��� If this change leads to a better individual it is accepted�
otherwise rejected� In our experiments� the setting is � � ����

The very large population size was chosen because only small trees were al�
lowed�

No further tuning of the parameters was made� as well as no comparison of
performance with other possible optimization methods 
e�g� simulated annealing�
as this is beyond the scope of this paper� The intention was only to �nd one good
approximation for each data set� The problem was programmed on a SPARC
Station �� using the YAGPLIC library �Blickle� ���	�� A run over �� generations
took about �	 minutes CPU time� The given solution were found after �	 � ��
generations�

A�� Approximating the Selection Variance of

Tournament Selection

The operators and terminal provided to the optimization method for this problem
were

F � fP lus� Subtract� T imes�Divide� Log� Sqrtg
T � ft� 
� RFPCg

were RFPC is a random �oating point number in the range from �������� once
determined at creation time of the population� These sets were chosen with some
knowledge in mind about the possible dependency�

The following approximation was found with maximum relative error of ����"�
VT 
t� 	 Sqrt�Divide�Plus�Sqrt�Plus�Log�Pi��Pi���t��Times�Times�t�Pi��Sqrt�t����� Af�
ter simplifying this expression and some local �ne tuning of the constants 
�����
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is obtained that approximates the selection variance of tournament selection with
an relative error of less than ���" for t � f�� � � � � ��g�

VT 
t� 	
s
���	  t

����t
�
�


�����

Table A�� displays the numerical calculated values for the selection variance�
the approximation by 
����� and the relative error of the approximation for the
tournament sizes t � �� � � � � ���

A�� Approximating the Selection Intensity of

Exponential Ranking Selection

The operators and terminal provided to the optimization method for this problem
were

F � fP lus� Subtract� T imes�Divide� Log� Sqrt� Expg
T � f��RFPCg

were RFPC is a random �oating point number in the range from �������� once
determined at creation time of the population�
The GP found the following approximation with an relative error of ��� "�

IE
���Divide�Log�Log�Divide�
� ����� Times�Sqrt�Power�Plus���������� 	���������
� ��� Exp�Times���	������ ���	���������
After some local �ne tuning of the real constants and some simpli�cations


���� is obtained� that approximates the selection intensity of exponential ranking
selection with and relative error of less than 	��"�

IE
�� 	 ��	��
ln ln �

	

����	

����

Table A�� displays again the numerical calculated values for the selection
intensity� the approximation by 
���� and the relative error of the approximation�

A�� Approximating the Selection Variance of

Exponential Ranking Selection

The operators and terminal provided to the optimization method for this problem
were

F � fP lus� Subtract� T imes�Divide� Log� Sqrt� Expg
T � f��RFPCg

		



were RFPC is a random �oating point number in the range from �������� once
determined at creation time of the population�
One solution with an accuracy of 	��" found by GP was
VE
�� 	 Log�Subtract�Divide����������Subtract�Times�Exp��������������Log�������

�����������
Further manual tuning of the constants led to approximation formula �����

VE
�� 	 ln
�
���  

������

����	�� ln�
�


�����

Table A�� displays again the numerical calculated values for the selection
variance� the approximation by 
����� and the relative error of the approximation�
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Tournament size t VT 
t� Approximation 
����� rel� Error in "
� � ����	�����������	 �����	�	������	��
� ������������������ ����	����������		� �����������������
� ��		�����������	�� ��		�������������� ��	���	���������	�
� �������	���������� ������������������ ������������	�����
	 �����	������������ ��������		��	��	�� ����������	�����	�
� ����	�����������	� �����		������	���� �������		����	����
� ������������������ ����������	��		�� �������	����������
� ������������������ �����������������	 �������	���������
� ���	��	�����	���� �������������	���� ����������������
�� ������������������ ��������������	��� �����������������
�� �����������������	 ������������	����� ���			����	������
�� ������������������ ������������������ �������������	���
�� ����	��	���������� ������������������ �������	���������
�� ������������������ ����������������	� �������	���������
�	 ��������	��������� ����	���������	��� ��	��	���������	
�� ����	������������� ����������������� ��	������������	�
�� �����	����������	� ���������	�������� ��	��������������
�� �����	������������ ��������	��������� �����������������
�� �������	���������� ������������������ �����������������
�� ����	�����	���	�	� ����������������		 ������������	���
�� �����������������	 ���������	�������� �����������������
�� �����������	������ ����������	�����	� ��	��������������
�� ������������������ ����������	���	��� ��	����������	���
�� �����	�����	�����	 ����		�����������	 ��		�	����������
�	 ���	�	�����	���	�� ������	����	������ ��	�		�������	��	
�� ���		������������� ���	�	�����	��	��� ����������	�����
�� ���	�����	���	��	� ���	���������	���� ����			��	�������
�� ���	�������������	 ���	�����	�������� �����������������
�� ���������	��	���	� ���	�	������������ �����������������
�� ����	������������ ����������������� ���		����		�����	

Table A��� Approximation of the selection variance of tournament selection�
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� IE
�� Approximation 
���� rel� error in "
�� ����� ������� ������� �������
�� ���� ������� ������� �������
�� ����� ������� ����	�� ������
�� ����� ������� ������� �������
�� ����� ������� ������� �������
�� ����� ������� ������� ��������
�� ����� ����	� ������� ��������
�� ����� ������� ������� �����	��
�� ����� ������� ����	�� �������
�� ����� ������� ������� ���	���
�� ����� ������� ������� �������
�� ��� ������	 ������� �����	�
�� ���� ����	�	 �����	� �������
�� ���� ���	�� ������	 ���	�	�
�� ���� ������� ��	���� 	���	��
������� ��	���� ������� 	�	�
������ ���	�	 ������� 	���	��
����� ������� ������� �������
���� �����	� ����	�� ����	��
����	���� ���	��	� ���	���� ���������
����	���� ������� ����	��� ��	��	�
��������� �������� �������� �������
�������	� ����		�� ������	� �����	�
��� �������� �������� 	������
����	��� ��		��� ��	���� 	��	���
���	���� ����	��	 ��	����� 	�	����
�����	�� �������� ���	���� ������
���	���� �������	 �����	�� �������
�������� �������� �������� �������
�������� ���	��	� ���	���	 �����	�
��	����� �����	�� ����	��� ����	��
������	� �����	�� �������� 	�����	
�������� ��������� �������	� ������	

Table A��� Approximation of the selection intensity of exponential ranking selec�
tion�
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� VE
�� Approximation 
����� rel� error in "
�� ����� �����	�� �������� ��	���	
�� ���� �������� ����	��� �������
�� ����� �������� �������� ���	��	
�� ����� �������� ������		 �������
�� ����� �������� �������� �������
�� ����� �������� �������� ����	��
�� ����� �������� ���	���� �������
�� ����� ���	���� ���	��	� �������
�� ����� �������� �����	�� ��	�	��
�� ����� �������� �������	 ���	���
�� ����� �������� �������� ������	
�� ��� �������� �����	�	 ���	���
�� ���� ������	� ������	� �������
�� ���� �������� �������� ��	����
�� ���� ����	��� �����	�� �������
������� �������� ������� ��	����
������ ������	� �������� ��������
����� �������� ������� ����	��
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Table A��� Approximation of the selection variance of exponential ranking selec�
tion�
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Appendix B

Used Integrals
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Appendix C

Glossary

� Parameter of Exponential Ranking 
� � cN�
c Basis for Exponential Ranking
� Selection Probability of worst �t Individual in Ranking Selection
f Fitness Value
f
J� Fitness Value of Individual J
G
	� �� Gaussian Distribution with Mean 	 and Variance ��

I Selection Intensity
J Individual
J Space of all Possible Individuals
M Average Population Fitness
N Population Size
� Selection Method
�E Exponential Ranking Selection
�T Tournament Selection
�
 Truncation Selection
�P Proportional Selection
�R Ranking Selection
pc Crossover Probability
pd Loss of Diversity
P Population
R Reproduction Rate
R Set of Real Numbers

��



s 
Discrete� Fitness Distribution
�s 
Continuous� Fitness Distribution
S Cumulative 
Discrete� Fitness Distribution
�S Cumulative 
Continuous� Fitness Distribution
�� Mean Variance of the Population Fitness
t Tournament Size
T Truncation Threshold
� Generation
�c Convergence Time 
in Generations� for the ONEMAX Example
V Selection Variance
Z Set of Integers
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