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Abstract—With the growing complexity of embedded systems
software, high code quality can only be achieved using a
compiler. Sophisticated compilers provide a vast spectrum of
various optimizations to improve code aggressively w. r. t. dif-
ferent objective functions, e. g., average-case execution time
(ACET) or code size. Due to the complex interactions between
the optimizations, the choice for a promising sequence of code
transformations is not trivial. Compiler developers address this
problem by proposing standard optimization levels, e. g., O3 or
Os. However, previous studies have shown that these standard
levels often miss optimization potential or might even result in
performance degradation.

In this paper, we propose the first adaptive WCET-aware
compiler framework for an automatic search of compiler opti-
mization sequences which yield highly optimized code. Besides
the objective functions ACET and code size, we consider the
worst-case execution time (WCET) which is a crucial parameter
for real-time systems. To find suitable trade-offs between these
objectives, stochastic evolutionary multi-objective algorithms
identifying Pareto optimal solutions are exploited. A compari-
son based on statistical performance assessments is performed
which helps to determine the most suitable multi-objective
optimizer. The effectiveness of our approach is demonstrated
on real-life benchmarks showing that standard optimization
levels can be significantly outperformed.

I. INTRODUCTION

Modern systems require both highly efficient hardware

and aggressively optimized software. In particular, resource-

restricted embedded systems rely on software tailored to-

wards given specifications. With the growing complexity of

embedded software, code generation and optimization must

be automatically carried out by compilers. Modern compilers

provide a vast portfolio of optimizations which exhibit

complex mutual interactions and affect different objective

functions, such as average-case execution time, code size,

or energy dissipation in a hardly predictable fashion.

Since compiler optimizations are not considered sepa-

rately, the search for suitable optimization sequences and

optimization parameters that promise a positive effect on a

single or multiple objective functions is not straightforward.

1The research leading to these results has partially been funded by the
European Community’s ArtistDesign Network of Excellence and by the
European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement no 216008.

To cope with this problem, compiler developers construct

standard optimization levels, like O3 or Os, which are based

on their experiences. However, there is no guarantee that

these optimization levels will also perform well on untested

architectures or for unseen applications. Previous studies

like [1], [2], [3], [4] have indicated the poor performance

of standard optimization levels and pointed out that more

sophisticated approaches are required for finding effective

compilation optimizations.

Concerning the code generation for embedded systems

acting as service-oriented hard real-time systems, the opti-

mization problem becomes even more complex. Embedded

systems are characterized by both efficiency requirements

and critical timing constraints. Average-case performance,

power consumption and resource utilization are objectives

describing the efficiency of a system. Timing constraints are

expressed by the worst-case execution time. Especially for

safety-critical application domains such as automotive and

avionics, the satisfaction of the WCET must be guaranteed

to avoid system failure.

As a consequence, system designers of real-time systems

must consider different objectives in a synergetic manner.

Concerning the compiler-based code generation, there is no

single compiler optimization sequence which satisfies all

objectives. Therefore, multiple trade-offs must be considered

enabling the system designer to choose among different

solutions which best suit the system specifications.

This paper proposes a novel modular and flexible frame-

work to explore the performance of compiler optimizations

with conflicting goals. Since typical state-of-the-art compil-

ers provide a vast number of optimizations, the search space

is too large to be exhaustively explored. To cope with this

complexity problem, we apply evolutionary multi-objective

(EMO) algorithms which efficiently find a good approxi-

mation of Pareto fronts representing the best compromise

between the considered objectives. The advantages of our

framework are twofold. First, our techniques reduce the

complexity of compiler design/usage by relieving compiler

writers/users from the tedious task of searching for appropri-

ate optimization sequences. Second, the automatically deter-

mined optimization sequences clearly outperform commonly

used standard optimization levels, leading to higher system
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performance compared to traditional system design.

The main contributions of this paper are as follows:

1) We propose the first fully functional adaptive WCET-

aware compiler to perform a multi-objective compiler

optimization level search for service-oriented real-time

systems. To the best of our knowledge, trade-offs with

the objective WCET have not been considered yet.

2) Our framework approximates Pareto optimal solutions

for the most crucial objectives in resource-restricted

real-time systems: the WCET, ACET, and code size.

3) In contrast to other works, we consider optimizations

applied on both abstraction levels of the code, the

source code and assembly level, allowing the full

exploitation of the optimization potential.

4) In a first large study, different evolutionary multi-

objective optimizers are evaluated. Since the compar-

ison of their performance is not straightforward, we

conduct a performance assessment based on reliable

statistical approaches.

5) To validate the effectiveness of the discovered opti-

mization sequences, a cross-validation on a test set

of benchmarks is conducted, allowing to predict how

effective these sequences will be on unseen programs.

The rest of this paper is organized as follows. Section II

gives a survey of related work. In Section III, concepts

of adaptive compilers used for a search of the compiler

optimization level space as well as the considered objective

functions are discussed. Evaluating the objectives generates

data that is used by evolutionary optimizers to explore

the large multi-objective search spaces. These algorithms

and statistical approaches for their performance assessment

are presented in Section IV. Section V introduces our

experimental environment, while results achieved on real-life

benchmarks are discussed in Section VI. Finally, Section VII

concludes the paper and gives directions for future work.

II. RELATED WORK

The search for good compiler optimization sequences,

also called iterative compilation, has been thoroughly studied

in the past. The general idea behind iterative compilation

is to explore the compiler optimization space by starting

with a set of randomly chosen optimization sequences used

to generate a binary executable. Random sequences are

used since good sequences as starting point are usually

not known. Measuring a single objective function, e. g., the

ACET [1], [2], [3] or code size [4], the fitness of each

sequence is determined and subsequent generations of opti-

mization sequences yielding a higher fitness are computed.

To reduce the cost of iterative compilation resulting from

the search in the large space, Kulkarni [1] uses genetic

algorithms to avoid an exhaustive search. To accelerate the

search, Leather [2] applies fixed sampling plans. Agakov [3]

uses machine learning approaches to focus on promising

areas of the search space.

Frontend
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Compiler Optimizations

Machine
Code
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Optimized
Code

Pool of Optimizations

Figure 1. Workflow of an Adaptive Compiler

All these aforementioned publications consider a single

objective function. This approach is, however, not sufficient

for modern embedded systems where a trade-off between

different, conflicting optimization criteria is required. The

only work addressing compiler optimization level explo-

ration was presented by Hoste [5]. However, Hoste’s and

our work differ in several ways. Most important, our main

focus is the worst-case behavior of real-time systems, thus

the trade-off between the WCET and other crucial objective

functions (ACET, code size) is evaluated. Moreover, we

don’t rely on the performance of a single EMO algorithm,

but evaluate different algorithms by a statistical performance

assessment to find that algorithm that performs best for a

multi-objective exploration of compiler optimizations.

WCET-aware compilation is a novel research area with

an increasing academic and industrial interest as the number

of embedded systems acting as real-time systems is rapidly

growing. Similar to the traditional compilation, the published

works in the context of the WCET-aware compiler opti-

mizations consider a single objective function, the WCET.

For example, the authors of [6] presented an algorithm for

static locking of I-caches based on a genetic algorithm.

Other works regard a WCET-aware software based cache

partitioning for multi-task systems [7] or a WCET-aware

register allocation [8]. Besides, fast scratchpad memories

(SPM) for WCET minimization have bee exploited [9].

All these works have in common that novel optimizations

driven by WCET data are applied to achieve a WCET

minimization. However, none of them studies the impact

of standard ACET compiler optimizations on the program’s

worst-case performance. The only work addressing this gap

was presented in [10]. The authors apply a genetic algorithm

to find a sequence of standard assembly level optimizations

yielding the highest WCET minimization. However, in con-

trast to our work the authors focus on a single objective

function to be optimized and do not consider trade-offs

with other objectives. Moreover, just a single evolutionary

algorithm is applied. Finally, exclusively assembly level

optimizations are considered, neglecting the evaluation of

source code optimizations on the program’s WCET.

III. COMPILER OPTIMIZATION SEQUENCE

EXPLORATION

This section discusses the exploration of the compiler

optimization sequence search space. In Section III-A, we

briefly introduce the general structure of adaptive compilers.
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Section III-B provides an overview of the adaptive WCET-

aware C compiler WCC [11] which is employed for our

experiments. The compiler generates optimization sequences

for the search of promising solutions via evolutionary algo-

rithms. Optimization sequence encoding and their perfor-

mance evaluation are presented in Section III-C and III-D,

respectively. Based on this information, evolutionary multi-

objective algorithms, which will be discussed in the next

section, select promising sequences with conflicting goals.

A. Adaptive Compilers

The general workflow of an adaptive compiler is depicted

in Figure 1. Similar to standard compilers, the source code

is translated by a compiler frontend into an intermediate rep-

resentation enabling an easier application of optimizations.

However, in contrast to standard compilers, the optimizations

are not performed in a fixed order. The search algorithm

selects optimization sequences (of arbitrary order) that are

exploited for code generation. Next, the code is evaluated

and one or more objective functions are determined depend-

ing on whether a single- or multi-objective optimization is

applied. Subsequently, the determined objective functions

serve as input for the search algorithm that refines its

selection of optimization sequences by choosing those opti-

mizations for the next generation that exhibit an improved

performance. This process is repeated until a termination

condition is satisfied. Finally, the best optimization sequence

is applied to generate optimized code.

Due to the enormous number of supported optimizations

within modern compilers, the main problem with iterative

compilation is the large search space making an exhaustive

evaluation infeasible.

B. Structure of the WCC Compiler

The adaptive WCET-aware compiler WCC used in this

work differs in two major aspects from other adaptive

compilers. First, it is tightly coupled to a static WCET

analyzer, the tool aiT [12], allowing an efficient estimation

of the program’s WCET in a transparent manner. Second,

the compiler is more flexible than other compilers since it

allows an arbitrary order of equivalent optimizations as will

be explained in the following.

Internally, the input program is managed by three dif-

ferent intermediate representations (IRs). After processing

the input by a compiler frontend, it is transformed into a

high-level intermediate representation. Using a code selector,

the source code level is lowered into assembly level by

translating the high-level IR into a virtual low-level IR.

Virtual means that no physical registers but place hold-

ers identifying dependencies among instructions are used.

These registers are not restricted in their number, thus

provide a higher flexibility for the optimizations. Next, a

register allocation assigns each virtual register a physical

CPU register, thus the virtual low-level IR is translated

into a physical one. The latter is used by the compiler

backend to generate the final machine code. This compiler

structure yields high optimization potential since analyses

and optimizations can be performed on different abstraction

levels of the code. Consequently, the available optimizations

are subdivided into equivalent classes according to the three

different compiler’s intermediate representations.

Available Compiler Optimizations

The optimizations available within WCC are both stan-

dard average-case execution time (ACET) optimizations

and WCET-driven optimizations aiming at an automatic

improvement of the worst-case performance. In this study,

we exclusively focus on the ACET optimizations for two

reasons. First, we want to explore the impact of standard

compiler optimizations on the program’s worst-case perfor-

mance to show which trade-offs w. r. t. other objectives can

be achieved. Using standard optimizations, the results of

this study are more general and allow to draw conclusions

for similar (standard) compiler frameworks. Second, WCET-

aware optimizations are typically too time-consuming since

they perform a costly static WCET estimation multiple times

to keep their worst-case timing model up-to-date. This makes

them not suitable for an iterative search.

WCC provides 21 standard source code optimizations that

are applied on the high-level IR. In addition, some of the

optimizations are parametric. For example, function inlining

allows the specification of the maximal size of the callee

function to be inlined. We consider each optimization used

with a different parameter as a distinct optimization. In total,

30 source code optimizations are distinguished: 18 non-

parametric and 3 parametric (4 parameters each).

The next class of optimizations are assembly level op-

timizations operating on a virtual low-level IR. The total

number of distinguished optimizations is 9. The register

allocation supports two different modes: a standard graph

coloring based register allocation and a parametric optimal

allocation leading to three different choices in total for this

optimization class. Finally, a local instruction scheduling

can be applied on the physical low-level representation. For

details on the optimizations, refer to [13].

Based on this data, WCC’s compiler optimization level

search space consists of 3030 ∗ 99 ∗ 3 ∗ 2 (≈ 1053) possible

permutations. This huge number emphasizes that an exhaus-

tive search is beyond any feasible computation.

C. Encoding of Optimization Sequences

According to Figure 1, the search algorithm maintains a

population of optimization sequences. After compiling the

code, the objectives are determined and depending on their

values, some sequences are selected for the next generation.

In addition, an evolutionary algorithm, inspired by biological

evolution, performs the operators mutation and crossover to

generate the next generation. For the exploration of compiler
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optimization sequences, genetic algorithms are typically

used. Each sequence is encoded as a string where each

character denotes a specific optimization.

Using this string encoding, our algorithm performs a one-

character mutation by randomly choosing an optimization

class and within this class one character (optimization)

is randomly replaced by another optimization. Note that

mutation might result in classes where same characters

(optimizations) occur multiple times. Such optimization se-

quences are intended since equal optimizations applied at

different positions in the optimization chain might have a

different impact on the code, thus such sequences represent

unequal individuals. The second variation operator crossover

is performed in a standard, well known manner by swapping

two strings at a randomly chosen position.

Hence, the goal of the genetic algorithm is twofold. First,

the algorithm specifies which optimizations are included in

each sequence. Second, it defines for each sequence the

order of performed optimizations in each class. In contrast

to WCC’s standard optimization levels, the order is arbitrary.

D. Objective Functions

The search algorithm requires information about the ob-

jective values when a particular optimization sequence is

applied. Since we are interested in the worst-case behavior

of real-time systems, the WCET has to be estimated for

each generated machine code. This objective is provided

by a static WCET analyzer which is tightly integrated into

the WCC compiler. The analyzer does not run the program

but performs static program analyses to estimate the WCET.

This data is automatically made available to the compiler.

Further objectives used to construct the Pareto fronts are the

program’s ACET and the resulting code size. The ACET is

determined by an instruction set simulator, while the code

size can be easily extracted from the binary executable.

IV. MULTI-OBJECTIVE EXPLORATION OF COMPILER

OPTIMIZATIONS

The discussion of the multi-objective exploration of com-

piler optimization sequences presented in this section begins

with an introduction to this topic and a definition of basic

terms in Section IV-A. The main characteristics of different

popular EMO algorithms applied in this study are briefly

presented in Section IV-B. Since the comparison of the

quality of EMO algorithms for a specific problem, such as

the compiler optimization level exploration, is not trivial,

a performance assessment based on statistical methods is

performed. Principles of the performance assessment are

provided in Section IV-C.

A. Multi-Objective Optimization

In many real-life problems, the considered objectives

exhibit conflicts. In case of code generation for embedded

real-time systems, a trade-off between the WCET, ACET,
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Figure 2. Pareto Fronts

and code size has to be taken into account. As a conse-

quence, optimizing the application w. r. t. a single objective

might yield unacceptable results for other objectives, thus

an ideal multi-objective solution simultaneously optimizing

each objective does not exist. To cope with this problem, a

set of solutions is determined having the characteristics that

on the one hand each solution satisfies the objectives at a

tolerable level and on the other hand none of the solutions

is dominated by another solution. Solutions meeting these

characteristics are called Pareto optimal solutions.

Pareto Front Approximation

Without a loss of generality, we assume that all objectives

are to be minimized. A translation into a maximization prob-

lem can be easily achieved by multiplying the objectives by

−1. Furthermore, we assume that K represents the number

of objectives under consideration, X denotes the search

space and Z the objective space. With f : X → Z , function

f assigns each solution vector x ∈ X a corresponding ob-

jective vector z = f(x) ∈ Z . Typically, f comprises one or

more objective functions f1, f2, ..., fk with f = (f1, ..., fk).
If all objective functions are to be minimized, a feasible

solution x dominates another feasible solution y ∈ X , if and

only if, fi(x) ≤ fi(y), for i = 1, ..., K and fj(x) < fj(y)
for at least one objective function j. The dominance relation

(x ≺ y) is called Pareto dominance. Solutions that are not

dominated by any other solution in the objective space are

called Pareto optimal. They can not be improved w. r. t. any

other objective function without worsening at least one of the

other objectives. In the context of the compiler optimization

sequence exploration, an optimization sequence is called

Pareto optimal if there are no other optimization sequences

that achieve a better performance for all objective functions.

The entirety of all Pareto optimal solutions in the search

space constitutes the Pareto optimal set, while the set of all

Pareto optimal objective vectors is referred to as the Pareto

optimal front. In practice, the number of Pareto optimal

solutions is often too large and the determination of a single

Pareto optimum might be even NP hard [14]. Additionally,

a proof of optimality is computationally infeasible for many

real-life problems. Therefore, the goal is to find a Pareto

front approximation that minimally deviates from the Pareto

optimal front. The relationship between a Pareto optimal

front, its approximation, and dominated solutions for a

minimization problem involving two objective functions f1

118



and f2 is depicted in Figure 2.

The Pareto front approximation can be finally used by to

find suitable optimization levels. By constructing an approx-

imation set for a large number of benchmarks, particular

points from this set that satisfy given trade-offs between

the considered objectives can be chosen. The optimization

sequences that represent these points will be implemented as

optimization levels into the compiler and can be used in the

future for new applications. This is also the scenario that we

address in this paper. Moreover, Pareto front approximations

can be also used to tune a single application.

B. Evolutionary Multi-Objective Algorithms

In the past, it was shown that randomized evolutionary

multi-objective algorithms are best suited for the approx-

imation of Pareto fronts. The algorithms basically differ

in the fitness assignment, their strategy to maintain elitist

solutions which will survive in the next generation, and

their promotion of diversity, i. e., if a uniform distribution

of solutions over the Pareto front can be attained.

In this study, we are interested in the evolutionary algo-

rithm that performs best for our compiler problem. Other

works [5] studying the impact of multi-objective optimiza-

tions in the context of iterative compilation explored a

single EMO algorithm. Thus, it is not clear if the selected

algorithm is suitable or if another optimizer would perform

better in this problem domain. To cover a broad spectrum

of principles used by evolutionary algorithms, we conduct

a large study where three popular and credible algorithms,

which have been exploited for different application domains

in the past, are evaluated. The following algorithms are used:

Indicator Based Evolutionary Algorithm (IBEA) [15], Non-

dominated Sorting Genetic Algorithm 2 (NSGA-II) [16], and

Strength Pareto Evolutionary Algorithm 2 (SPEA-2) [17].

These state-of-the-art optimization algorithms were chosen

since each of them exhibits a different functionality.

C. Statistical Performance Assessment

The typical dilemma with multi-objective optimizations

is to find a suitable multi-objective algorithm for a given

problem. Modules that serve as a representation of a par-

ticular problem as well as for the evaluation and variation

of the solutions are called variators. To approximate Pareto

optimal solutions, each of these modules can be arbitrarily

combined with any evolutionary multi-objective algorithm.

This leads to the question: which combination performs best

for a given scenario?

For our scenario dealing with the exploration of compiler

optimizations, a manual combination and evaluation of the

WCC compiler and the considered EMO algorithms is time-

consuming and error-prone. Moreover, a reliable comparison

of the quality of the stochastic multi-objective optimizers

is not trivial. An example are crossing Pareto fronts where

a visual comparison is not intuitive anymore. Therefore,

automatic and reliable performance assessment is required.

Since many EMO algorithms, as well as those that we

consider in this study, are based on a randomized search,

the evaluation of the approximated Pareto optimal solutions

generated for a specific seed is not sufficient. To deal with

the stochastic nature of the algorithms, each algorithm has to

be run multiple times for each problem with different seeds

to generate a sample of different Pareto approximation sets

which can be statically analyzed, i. e., a statistical hypothesis

testing is conducted to indicate if the results are significantly

different [14]. A result is considered significantly different

if it is unlikely that it occurred by chance. A measure of

evidence to accept that the result is unlikely to have arisen

by chance is known as the significance level α. A widely

used value for α is 5%.

For statistical testing, we apply dominance ranking [14].

Its main idea is to rank the points of the approximation sets

based on the dominance relation. The approximation sets of

all considered optimizers are collected into a pool and each

set z is assigned a rank representing its dominance relation,

i. e., how many sets in the pool are dominated by z. The

lower the rank, the better the considered set is w. r. t. the

pool. Finally, ranks between the optimizers are compared

by statistical means to determine statistical significance.

V. EXPERIMENTAL ENVIRONMENT

To indicate the efficacy of the found multi-objective opti-

mization sequences, we performed an evaluation on a large

number of real-life benchmarks using a cross-validation.

One set of benchmarks, the training set, is used during

the multi-objective search. The determined sequences are

subsequently evaluated on unseen benchmarks, the test set.

This approach enables an estimation of the generalization

ability, i. e., the results suggest which improvements of the

objective functions can be expected for unseen programs.

Benchmarking was performed on programs from the

suites DSPstone, MediaBench, MiBench, UTDSP, Net-

Bench, and MRTC WCET Benchmarks. The large variety of

benchmark suites emphasizes our focus on generality. Cover-

ing a large number of different service-oriented applications,

future software should benefit in a similar fashion from our

optimization sequences. For our study, the training and test

set each contain 35 arbitrarily selected benchmarks.

The workflow for the multi-objective exploration of com-

piler optimizations is depicted in Figure 3. As mentioned

in Section III, the WCET-aware C compiler WCC for the

Infineon TriCore TC1796 processor is used to generate code

transformed by different optimizations. Besides the previ-

ously discussed intermediate code representations, it can

be seen that different optimizations are applied at different

abstraction levels of the code. WCET-aware optimizations

are excluded for previously mentioned reasons. The consid-

ered C programs are annotated with flow facts. This data
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Figure 3. Workflow for the Multi-Objective Exploration of Compiler
Optimizations

provides information about the code structure, such as the

number of loop iterations, and is mandatory for a static

WCET analysis. During optimization, WCC automatically

takes care that flow facts are kept valid and consistent.

The communication between WCC via a variator and the

different evolutionary multi-objective algorithms (cf. right-

hand side of Figure 3) is fully automated. The process starts

with a random generation of compiler optimizations repre-

senting the initial population. For each selected optimization

sequence, the considered objectives are determined and

passed to the EMO algorithms which in turn compute the

approximated Pareto front based on the Pareto dominance.

These approximation sets are retrieved by the variator which

uses the selected Pareto solutions to generate the next gener-

ation of optimization sequences. These sequences are passed

to the compiler to generate optimized code. In addition,

the evolutionary algorithms provide the approximated Pareto

front for the statistical performance assessment. Both, the

collection of the evolutionary optimizers and the perfor-

mance assessment are part of the PISA framework [18].

The following experimental parameters were used. Each

EMO algorithm was invoked 5 times with a different random

seed. For each run, we consider one population consisting

of 50 individuals and an archive size (set of elitist solutions

from previous runs used for creation of new generations)

of 25 individuals. The evolutionary algorithms are each run

for 50 generations. Each full run takes about 6 days on an

Intel Quad-Core Xeon 2.4 GHz machine. These optimization

times might seem long. However, it should be noted that

these tests have to be performed once off-line, while the

results (optimization sequences) can be re-used without addi-

tional overhead for a large number of devices. Therefore, the

high performance requirements imposed on today’s systems

fully justify the observed optimization times. To breed a new

generation of optimizations, we use a one-character mutation

probability of 10% and a one-point cross-over probability of

90%. These are common settings for the exploration of the

compiler optimization space [10].

VI. RESULTS

The multi-objective optimizations are carried out for pairs

of objective functions. The consideration of 2-dimensional

Table I
DOMINANCE RANKING RESULTS FOR WCET&ACET AND

WCET&CODE SIZE USING MANN-WHITNEY RANK SUM TEST

WCET↔ACET WCET↔Code Size

IBEA NSGA-II SPEA2 IBEA NSGA-II SPEA2

IBEA — 0.760 0.949 — 0.5 0.5

NSGA-II 0.240 — 0.011 0.5 — 0.016

SPEA2 0.051 0.899 — 0.5 0.984 —

Pareto fronts is intentional. Since the impact of standard

optimizations is unknown so far for the trade-off between

the WCET and other objectives, this paper is the first

case study which investigates this issue. The results help

to understand the fundamental interferences between the

objectives. Starting with the investigation of more than two

objectives may hide some objective interferences leading to

a lack of the fundamental understanding.

Statistical Evaluation

Table I presents results for dominance ranking using

the Mann-Whitney rank sum test for the possible com-

binations of the considered algorithms IBEA, NSGA-II,

and SPEA2. Columns 2-4 indicate results for the objective

functions WCET↔ACET, while columns 5-7 present results

for the objectives WCET↔code size. The statistical tests

are performed pairwise using a significance level α=0.05.

The tests are performed w. r. t. the alternative hypothesis

that the dominance ranks for the algorithms in the first

column are significantly better than those for the algorithm

in the following columns. The results are expressed by

the probability value, called p-values, which allow to draw

conclusions about the statistical significance: if the p-value

is less than the significance level α, then the null hypothesis

is rejected. This implies that the alternative hypothesis can

be accepted, i. e., there is a statistically significant difference

between the ranking of the corresponding algorithms.

For the objectives WCET↔ACET, the p-value of 0.011

in the fourth row and fourth column denotes that the

difference between NSGA-II and SPEA2 is significant, i. e.,

NSGA-II outperforms SPEA2. For other optimizer pairs, no

significant differences were observered. The results for the

objectives WCET↔code size lead to the same conclusion.

NSGA-II outperforms SPEA2 since the dominance ranking

results significantly differ (p-value=0.016) for α=5%. Hence,

NSGA-II seems to be the most promising EMO for the

given problems. There are also differences between other

combinations of the algorithms but they are not significant.

These results are conform with results reported in [19].

Dominance ranking is computationally cheap since it is

based on simple sorting of the approximation sets. There-

fore, the run time of this approach is negliable.

Analysis of Pareto Front Approximations

Figure 4 visualizes the Pareto front approximation gener-

ated by the algorithm NSGA-II which achieved best perfor-

mance assessment results for the objective functions WCET
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Figure 4. NSGA-II Pareto Front Approximation for WCET↔ACET

and ACET. The horizontal axis indicates the relative WCET

w. r. t. the non-optimized code, i. e., 100% represents the

WCET with all disabled WCC optimizations. In a simi-

lar fashion, the vertical axis represents the relative ACET

w. r. t. to the non-optimized code. Furthermore, the figure

shows the results of the Pareto front approximation for the

1st, 20th, and 50th generation. Based on this figure, the

following can be concluded:

• It is worthwhile to invest time in the evolutionary

search. While the first generation achieves WCET and

ACET reductions of 36.9% and 35.0%, respectively,

on average for all benchmarks of the training set, the

50th generation reduces the WCET and ACET of up to

42.9% and 42.8%, respectively.

• The discovered sequences significantly outperform the

standard optimization levels having the coordinates

(due to space constraints not included in the figure)

O1:(96.0, 89.1), O2:(95.9, 90.4), and O3:(88.4, 84.7).
For example, O3 is outperformed by 31.3% and 27.5%

for WCET and ACET, respectively.

• Standard compiler optimizations have a similar impact

on the WCET and ACET. This observation provides

an important answer to the question which concerns

all designers of real-time systems: which impact can

be expected from standard ACET optimizations on the

system’s worst-case behavior? Our case study finally

eliminates this uncertainty showing that similar effects

on the average-case and worst-case behavior are likely.

• The results emphasize the importance of the develop-

ment of WCET-driven optimizations. If a high WCET

minimization is desired, novel optimizations are re-

quired which focus on an aggressive WCET reduction

at the cost of a degraded ACET.

The Pareto front approximation computed by NSGA-

II for the objectives WCET and code size is depicted in

Figure 5. The relative WCET w. r. t. the non-optimized code

(corresponds to 100%) is represented by the horizontal axis,

while the relative code size w. r. t. to the non-optimized

code is shown on the vertical axis. Again, Pareto front

approximations of the 1st, 20th, and 50th generation are

visualized. Compared to the Pareto front approximations for

WCET↔ACET, the interpretation equals in two points:

• The evolutionary search pays off for both objective

functions. For the first generation, a WCET reduction

of 21.2% at the cost of the code size increase of 197.4%
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Figure 5. NSGA-II Pareto Front Approximation for WCET↔Code Size

is achieved. If code size is the crucial objective, a code

size reduction of 0.4% with a simultaneous WCET

increase of 4.5% can be observed. For the 50th gener-

ation, the following extreme solutions were observed:

a WCET reduction of 30.6% with a simultaneous code

size increase of 133.4%, or a code size reduction of

16.9% with a WCET degradation of 9.6%.

• The Pareto solutions outperform WCC’s standard op-

timization levels depicted in Figure 5. The standard

optimization levels perform well for the code size

reduction. Using O2, which does not include code ex-

panding optimizations, a code size reduction of 14.9%

can be achieved on average, while NSGA-II reduces

the code size by up to 16.9%. Moreover, WCC’s max-

imal WCET reduction of 13.6% found by O3 can be

outperformed by the found Pareto solutions by 17.0%,

amounting to a WCET reduction of 30.6%.

However, there is also one major difference compared to

the results of the objective pair WCET↔ACET. The WCET

and the code size are typical conflicting goals. If a high im-

provement of one objective function is desired, a significant

degradation of the other objective must be accepted. This

is an important conclusion for memory-restricted real-time

systems. To achieve a high WCET reduction, the system

must be possibly equipped with additional memory to cope

with the resulting code expansion.

An analysis of the optimization sequences which represent

extreme solutions of the Pareto front approximation revealed

that for WCET↔ACET there are no distinct optimizations

which account for the good performance. In contrast, for the

objective pair WCET↔code size, significant size expansions

are often due to aggressively applied loop unrolling.

Cross-Validation

To estimate the generalization ability of the discovered

sequences, we perform a cross-validation, i. e., we apply

optimization sequences found by NSGA-II in the 50th gen-

eration for the training set on unseen benchmarks from the

test set. For each objective pair, we picked out three different

sequences: two sequences which represent the extreme solu-

tions of the Pareto front approximation, i. e., Pareto solutions

located at each end of the front approximation, and one

point from the middle of the front. All measurements are

compared with the performance achieved when benchmarks

from the test set are compiled with the highest optimization
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Figure 6. Cross-Validation for WCET↔ACET

level O3. Figure 6 shows the results for WCET↔ACET.

The figures present the average performance achieved for

all benchmarks in the test set. Using the WCET-oriented

optimization sequence, which is represented in Figure 4

by the Pareto solution with the WCET,ACET coordinate

(57.06, 62.82), our optimization sequences can outperform

O3 by 28.0% and 18.0% for the WCET and ACET reduc-

tion, respectively. The optimization sequence, denoted as

WCET-ACET Trade-off, was determined by NSGA-II as a

compromise between the WCET and ACET for the training

set (cf. coordinate (58.7, 60.9) in Figure 4). For the test

set, the results are slightly worse, since a relative WCET

estimation of 76.2% and a relative ACET of 80.5% were

observed. However, the results still outperform O3. The

ACET-oriented scenario for the test set could even improve

both objectives compared to the trade-off. Analogously,

Figure 7 reflects the performance of the sequences found for

WCET↔code size in Figure 5. Either we choose a balanced

compromise between the WCET and code size and slightly

outperform O3 (see bars labeled as WCET-Code Size Trade-

off ) or we focus on the reduction of one objective but also

tolerate a degradation of the other one.

VII. CONCLUSIONS

The search for good compiler optimization sequences is

challenging since optimizations exhibit complex interactions

which have unpredictable effects on different objective func-

tions. We propose the first adaptive WCET-aware compiler

framework for service-oriented real-time systems which

automatically finds Pareto optimal solutions that represent

trade-offs between the WCET, ACET, and code size. To find

the best evolutionary multi-objective optimizer for the search

of the compiler optimization space, a statistical performance

assessment is performed. The discovered optimization se-

quences significantly outperform standard optimization lev-

els: the highest standard optimization level O3 can be

outperformed for the WCET and ACET on average by up

to 31.33% and 27.43%, respectively. Moreover, for a trade-

off between the WCET and code size, an improvement of

one objective function can be only achieved at the cost

of the other one. Providing the discovered optimization

sequences, compiler writers and compiler users can select

those solutions that best suit their system specifications.

In the future, we want to explore Pareto fronts with more

than two dimensions. In addition, energy dissipation as a

further objective will be included for the approximation of
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Figure 7. Cross-Validation for WCET↔Code Size

Pareto fronts. We also intend to investigate the performance

of further EMO optimizers and the impact of different

variator settings, e. g., mutation probability, on Pareto fronts.
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