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IDEAL SECRET SHARING SCHEMES ON GRAPH-BASED 3-HOMOGENEOUS

ACCESS STRUCTURES

SHAHROOZ JANBAZ∗, ALI ZAGHIAN AND BAGHER BAGHERPOUR

Abstract. The characterization of the ideal access structures is one of the main open problems in

secret sharing and is important from both practical and theoretical points of views. A graph-based

3−homogeneous access structure is an access structure in which the participants are the vertices of a

connected graph and every subset of the vertices is a minimal qualified subset if it has three vertices

and induces a connected graph. In this paper, we introduce the graph-based 3−homogeneous access

structures and characterize the ideal graph-based 3-homogeneous access structures. We prove that

for every non-ideal graph-based 3-homogeneous access structure over the graph G with the maximum

degree d there exists a secret sharing scheme with an information rate 1
d+1

. Furthermore, we mention

three forbidden configurations that are useful in characterizing other families of ideal access structures.

1. Introduction

Secret sharing schemes were introduced by Shamir [16] and Blakley [2]. A perfect secret sharing

scheme is a method of sharing a secret among a set of participants P in such a way that only pre-

specified subsets of P are able to reconstruct the secret by pooling their shares and the other subsets

of P are unable to obtain any information about the secret in an information theoretical sense. A

subset of P is called qualified if is able to reconstruct the secret. The collection of all qualified subsets

of P is called access structure and is denoted by Γ. If A /∈ Γ, then A is called a non-qualified subset.

Assume that 2P denotes the all subsets of P . A qualified subset A ∈ Γ is a minimal qualified subset
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if for all B ∈ 2P with B ⊂ A, it holds B /∈ Γ. The collection of all minimal qualified subsets of

P is called the basis of Γ and is denoted by Γ0. In general, access structures have the monotone

increasing property, that is, every superset of a qualified subset is a qualified subset. A non-qualified

subset B ∈ 2P is called maximal non-qualified if for all B′ ∈ 2P with B ⊂ B′, it holds B′ ∈ Γ. The

information rate of a secret sharing scheme is the ratio between the length (in bit) of the secret and

the maximum length (in bit) of the shares given to the participants. A secret sharing scheme is ideal

if its information rate is equal to one. Also, an access structure is ideal if there exists an ideal secret

sharing scheme to realize it.

An r-homogeneous access structure is an access structure in which every minimal qualified subset

has exactly r participants. The graph-based access structures (those in which the participants set

and the basis of the access structure are the vertex set and the edge set of a graph G, respectively)

are one of the famous r-homogeneous access structures by which the ideal 2-homogeneous access

structures have been exactly characterized [6, 17]. Nevertheless, the characterization of the ideal

access structures is one of the long standing open problems in secret sharing. Due to the difficulty

of this problem, the ideality of the several particular classes of access structures has been studied.

Mart́ı-Farré and Padró characterized all ideal 3−homogeneous access structures in which the number

of minimal qualified subsets contained in any set of four participants is not equal to three [9, 12].

The ideal secret sharing schemes on the access structures with three or four minimal qualified subsets

were characterized in [8]. In [10], the authors studied the ideality of the rank-three access structures

(those in which every minimal qualified subset has at most three participants) and characterized the

ideal rank-three access structures in some cases. In [19], the authors gave an ideal secret sharing

scheme to realize the compartmented access structures by using the bivariate interpolation.

1.1. Motivation and Contribution. Graphs are important tools in secret sharing and they have

been used in characterizing the ideal 2-homogeneous access structures and computing information

rate of non-ideal 2-homogeneous access structures [1]. Unfortunately, the graphs have not been used

in studying the 3-homogeneous access structures, while the graphs may facilitate the problem of char-

acterizing the ideal 3-homogeneous access structures. This motivated us to study the 3-homogeneous

access structure using the graph-based 3-homogeneous access structures. We say that an access

structure is the graph-based 3−homogeneous access structure (briefly GB-3h access structure) on a

graph G if the participants set is the vertex set V (G) and the basis of the access structure is the set

of the subsets A ⊆ V (G) such that |A| = 3 and the induced subgraph of G over A is connected. The

GB-3h access structure and its basis are denoted by G|3 and Γ0(G|3), respectively. In this study,

we completely characterize the ideal GB-3h access structures. We give a general lower bound for the

information rate of the non-ideal GB-3h access structures and present three forbidden configurations

for GB-3h access structures to be ideal. These forbidden configurations can be useful in characteriz-

ing other families of ideal access structures. We stress that the GB-3h access structures have not been

studied by now and this work is the first work that characterizes the ideal GB-3h access structures.
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1.2. Paper organization. The rest of the paper is organized as the follows: Some definitions and

general results are expressed in section 2. Section 3 is devoted to our results. Section 4 concludes

the paper.

2. Preliminary

Let S be the set of all secrets and p ∈ P be an arbitrary participant. The set of all possible shares

given to the participant p is denoted by K(p). A secret sharing scheme can be seen as a distribution

rule by which the dealer distributes a secret s ∈ S, according to some probability distribution, among

the participants in P by giving a share to each participant of P . Thus, each secret sharing scheme

induces random variables on the sets S and K(p), where p ∈ P . The Shannon entropy of the random

variable taking values in S is denoted by H(S). Also, for each A = {pi1 , . . . , pir} ⊆ P , the Shannon

entropy of the random variable taking values in K(A) = K(pi1) × · · · ×K(pir) is denoted by H(A)

(for more details see [3]). If Γ is an access structure, p1 · · · pk ∈ Γ means {p1, . . . , pk} ∈ Γ. In terms

of the entropy, a perfect secret sharing scheme for an access structure Γ must verify the following

properties:

(1) If A ∈ Γ, then H(S|A) = 0.

(2) If A /∈ Γ, then H(S|A) = H(S).

The information rate of a secret sharing scheme Σ, for an access structure Γ and the set of the

secrets S, is defined as

ρ(Σ,Γ, S) =
H(S)

maxp∈PH(p)
.

When the probability distributions on S and K(p) are uniform, the information rate is

ρ(Σ,Γ, S) =
log |S|

maxp∈P log |K(p)|
.

The optimal information rate of Γ is defined as ρ(Γ) = sup ρ(Σ,Γ, S), where the suprmum is taken

over all secret sharing schemes and all possible sets of the secrets |S| ≥ 2. The dual of the access

structure Γ is equal to the access structure Γ∗ = {A ⊂ P : P \ A /∈ Γ}. Given an access structure

Γ, it holds ρ(Γ) = ρ(Γ∗) [7]. A (t, n)−threshold access structure is an access structure whose basis

consists of all subsets with t participants of a set of n participants.

Definition 2.1. Let P be a set of participants that is compartmented into the disjoint subsets

C1, . . . , Cm. For i = 1, . . . ,m, let ai and a are the positive integers for which
∑m

i=1 ai ≥ a. An

access structure Γ is called the compartmented access structure with upper bounds (in briefly CAS-

UP access structure) on the participants set P if Γ0 consists of all subsets A ⊆ P such that |A| = a

and for each i ∈ {1, . . . ,m} it holds |A ∩ Ci| ≤ ai.

Both the threshold and the CAS-UP access structures are ideal [19]. Let Γ be an access structure

on the participants set P and A ⊂ P . The restriction of Γ at A (is denoted by Γ(A)) is an access
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structure on A such that for every B ⊂ A we have B ∈ Γ(A) if and only if B ∈ Γ. The contraction

of Γ at A (is denoted by Γ.A) is an access structure on P \A such that for every B ⊂ P \A we have

B ∈ Γ.A if and only if B ∪A ∈ Γ.

Proposition 2.2. [7, Theorems 6 and 7] Let Γ be an access structure on the set of participants P

and A ⊂ P . Then ρ(Γ(A)) ≥ ρ(Γ) and ρ(Γ.A) ≥ ρ(Γ).

To find lower bound on the information rate of the access structures several methods have been

introduced. The λ−decomposition method is one of them, which was introduced by Stinson in [18]. A

λ−decomposition of an access structure Γ is the family Γ0,1, . . . ,Γ0,r ⊂ Γ0 such that Γ0,1∪· · ·∪Γ0,r =

Γ0, and every element of Γ0 is covered at least λ times by the family Γ0,1, . . . ,Γ0,r. The following

proposition is a direct consequence of theorem 2.1 of [18].

Proposition 2.3. [18, Theorem 2.1] Let Γ be an access structure on the set of participants P . Assume

that Γ0 is the basis of Γ and Γ0,1, . . . ,Γ0,r ⊂ Γ0 is the λ−decomposition of Γ. Suppose that Γi is the

access structure with basis Γ0,i and Pi =
∪

A∈Γ0,i
A. Also suppose that for every i ∈ {1, . . . , r} we

have ρ(Γi) = 1. Then

ρ(Γ) ≥ λ

max{rp : p ∈ P}
,

where rp = |{i ∈ {1, . . . , r} : p ∈ Pi}|.

Given a graph G, the degree of the vertex v (denoted by deg(v)) is the number of the vertices of

the graph G which are adjacent to v. The maximum degree of the graph G is denoted by ∆(G). For a

graph G, the set N(v) (neighbours of v), consists of the all vertices w ∈ V (G) such that vw ∈ E(G).

Definition 2.4. Let {G1, . . . , Gn} be a set of connected graphs with disjoint vertex sets. We say that

the graph G is the union of the graphs G1, . . . , Gn (denoted by G = G1 ⊔ · · · ⊔ Gn) if the following

conditions hold:

(1) V (G) = ∪n
i=1V (Gi),

(2) for each vv′ ∈ E(G), if there exists i ∈ {1, . . . , n} such that v, v′ ∈ V (Gi), then vv′ ∈ E(Gi).

Definition 2.5. Suppose Γ is an access structure with basis Γ0 and the participants set P . The access

structure Γ is called the star access structure if there exists B ⊂ P such that for every A1, A2 ∈ Γ0

it holds A1 ∩ A2 = B. Given a star access structure Γ with A1 ∩ A2 = B for each A1, A2 ∈ Γ0, the

elements of B are called central elements and each p /∈ B is called a marginal element.

Definition 2.6. Let us denote by |A| the number of elements of A ⊆ P . Suppose Γ is a r−homogeneous

access structure with basis Γ0 and the participants set P . We say that the access structure Γ is semi-

star if there exists A ⊂ P such that for every A1, A2 ∈ Γ0 it holds A ⊆ A1 ∩ A2 and the access

structure Γ(P \A) is isomorphic to the (r − |A|, |P | − |A|)−threshold access structure.
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It can be easily seen that the semi-star access structures and threshold access structures are a

family of the CAS-UP access structures. Therefore, the semi-star access structures are ideal. The

graph G in which V (G) = {vc, v1, . . . , vn} and

E(G) = {vcvi : i ∈ {1, . . . , n}} ∪ {vj−1vj : for some j ∈ {2, . . . , n}

such that {vj−1vj , vjvj+1} ⊈ E(G)}

is a large family of the graphs (say the semi-star graphs) whose GB-3h access structures are the semi-

star access structure. In Figure 2, the graphs G′
1, G5 and G7 are semi-star. If the graph G has at

most four vertices, then G|3 is ideal. In Figure 2, we state the optimal information rate of the GB-3h

access structures on the non-complete multipartite graphs with five vertices. Using the lemmas 3.1,

3.2 and 3.3 and the results of the paper [7], it can be concluded that if a non-complete multipartite

graph G with V (G)| = 5, is isomorphic to the one of the graphs of Z = {G11, G10, G7, G5}, then G|3
is ideal, otherwise G|3 is not ideal.

3. Our results

In lemmas 3.1, 3.2 and 3.3, we mention three forbidden configurations for GB-3h access structures

to be ideal. These forbidden configurations will be used in the proof of our main results.

Lemma 3.1. Let G be a connected graph and |V (G)| ≥ 5. If the graph G has at least one connected

induced subgraph isomorphic to P4, then the access structure G|3 is not ideal.

Proof. Without loss of generality suppose that F is a connected induced subgraph of the graph

G,V (F ) = {v1, . . . , v4} and E(F ) = {v1v2, v2v3, v3v4}. Since the graph G has at least five vertices,

it can be said that there exists a vertex (say v5) such that v5 is adjacent to some vertices of V (F ).

Let us denote the induced subgraph of G over the set {v1, . . . , v5} by F ′. To prove the lemma we

distinguish some cases:

(1) Vertex v5 is adjacent to one vertex of V (F ). By symmetry it suffices to consider two cases: If

v4v5 ∈ E(G), then

Γ0(F
′∣∣
3
) = {v1v2v3, v2v3v4, v3v4v5}.

The basis of access structure F ′|3 .{v3} is equal to {v1v2, v2v4, v4v5}. Since ρ(F ′|3 .{v3}) ≤ 2/3,

proposition 2.2 implies that G|3 is a non-ideal access structure (in this case, F ′ is isomorphic to

the graph G1, therefore the access structure G1|3 is not ideal, see Figure 2). If v5v3 ∈ E(G),

then

Γ0(F
′∣∣
3
) = {v1v2v3, v2v3v4, v2v3v5, v3v4v5}.

The basis of access structure F ′|3 .{v3} is {v1v2, v2v4, v2v5, v4v5}. Since ρ(F ′|3 .{v3}) ≤ 2/3,

proposition 2.2 implies that G|3 is a non-ideal access structure (in this case, F ′ is isomorphic to

the graph G2, therefore the access structure G2|3 is not ideal, see Figure 2).
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(2) Vertex v5 is adjacent to two vertices of V (F ). By symmetry, it suffices to consider the following

cases: If v5v4, v5v3 ∈ E(G), then Γ0(F
′|3) is equal to {v1v2v3, v2v3v4, v2v3v5, v3v4v5}. We proved

that in this case the access structure G|3 is not ideal (in this case, F ′ is isomorphic to the graph

G4, therefore the access structure G4|3 is not ideal, see Figure 2). If v4v5, v2v5 ∈ E(G), then

Γ0(F
′∣∣
3
) = {v1v2v3, v1v2v5, v2v3v4, v2v3v5, v3v4v5, v2v4v5}.

The basis of access structure F ′|3 .{v3} is {v1v2, v2v4, v5v4, v2v5}. Since ρ(F ′|3 .{v3}) ≤ 2/3,

proposition 2.2 implies that G|3 is a non-ideal access structure (in this case, F ′ is isomorphic to

the graph G3, therefore the access structure G3|3 is not ideal, see Figure 2). If v4v5, v1v5 ∈ E(G),

then

Γ0(F
′∣∣
3
) = {v1v2v3, v2v3v4, v3v4v5, v4v5v1, v5v1v2}.

The basis of access structure F ′|3 .{v2} is {v1v3, v1v5, v3v4}. Obviously, ρ(F ′|3 .{v2}) ≤ 2/3 and

proposition 2.2 implies that G|3 is a non-ideal access structure (in this case, F ′ is isomorphic to

the graph G12, therefore the access structure G12|3 is not ideal, see Figure 2). Finally, suppose

v5v3, v2v5 ∈ E(G), then

Γ0(F
′∣∣
3
) = {v1v2v3, v1v2v5, v2v3v4, v3v4v5, v2v3v5}.

The basis of access structure F ′|3 .{v2} is {v1v3, v1v5, v3v4, v3v5}, therefore G|3 is a non-ideal

access structure (in this case, F ′ is isomorphic to the graph G13, therefore the access structure

G13|3 is not ideal, see Figure 2).

(3) Vertex v5 is adjacent to three vertices of V (F ). By symmetry, it suffices to consider two cases:

If v4v5, v3v5, v5v2 ∈ E(G), then

Γ0(F
′∣∣
3
) = {v1v2v3, v1v2v5, v2v3v4, v3v4v5, v2v3v5, v2v4v5}.

The basis of the access structure F ′|3 .{v5} is {v1v2, v2v3, v2v4, v3v4}. Since ρ(F ′|3 .{v5}) ≤ 2/3,

proposition 2.2 implies that G|3 is a non-ideal access structure (in this case, F ′ is isomorphic to the

graphG8, therefore the access structure G8|3 is not ideal, see Figure 2). If v4v5, v3v5, v5v1 ∈ E(G),

then

Γ0(F
′∣∣
3
) = {v1v2v3, v1v2v5, v1v5v3, v1v4v5, v2v3v4, v3v4v5, v2v3v5}.

The basis of the access structure F ′|3 .{v1} is {v5v3, v4v5, v2v3, v2v5}. Since ρ(F ′|3 .{v1}) ≤ 2/3,

proposition 2.2 implies that G|3 is a non-ideal access structure (in this case, F ′ is isomorphic to

the graph G14, therefore the access structure G14|3 is not ideal, see Figure 2).

(4) Finally, suppose v5 is adjacent to all vertices of V (F ). In this case

Γ0(F
′∣∣
3
) = {v1v2v3, v1v2v5, v1v5v3, v1v4v5, v2v3v4, v3v4v5, v2v3v5, v2v4v5}.
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The basis of the access structure F ′|3 .{v1} is {v5v3, v4v5, v2v3, v2v5}. Since the access structure

F ′|3 .{v1} is not ideal, the access structure G|3 is not ideal (in this case, F ′ is isomorphic to the

graph G15, therefore G15|3 is not ideal, see Figure 2).

Thus, if a connected graph G has at least one induced subgraph isomorphic to P4 and |V (G)| ≥ 5,

then the access structure G|3 can not be ideal. □

Lemma 3.2. Let G be a connected graph and |V (G)| ≥ 5. If the graph G has at least one subgraph

(say Gf ) isomorphic to P3 and a vertex which is not adjacent to any vertex of Gf , then the access

structure G|3 is not ideal.

Proof. Suppose V (Gf ) = {v1, v2, v3}. Let v4 be the last vertex on the path which is not connected

to any vertex of the set V (Gf ). Let v4v5 ∈ E(G), where v5 is adjacent to some vertices of the set

V (Gf ). Suppose F is the induced subgraph of the graph G over the vertex set {v1, v2, v3, v4, v5}. We

distinguish two cases: (1) the induced subgraph Gf is isomoprhic to P3, (2) the induced subgraph

Gf is isomorphic to K3 (i.e.; the complete graph with three vertices). First, we consider E(Gf ) =

{v1v2, v2v3}. For this cases, we distinguish two cases:

(1) If v5 is adjacent to at most two vertices of Gf , then there exists an induced subgraph of F such

that it is isomorphic to P4. By lemma 3.1, the access structure G|3 is not ideal.

(2) If v5 is adjacent to all vertices of Gf , then

Γ0(G|3 (F )) = {v5v4v1, v5v4v3, v5v1v3, v5v1v2, v5v2v3, v1v2v3, v5v2v4}.

The basis of access structure F |3 .{v1} is {v2v3, v5v2, v5v3, v5v4}, therefore G|3 is not ideal (in

this case, the graph F is isomorphic to the graph G6, therefore the access structure G6|3 is not

ideal, see Figure 2).

Now, suppose Gf is isomorphic to K3. The proof of this case is similar to the proof of the previous

case (in this case, the graph F is isomorphic to the graph G9, therefore the access structure G9|3 is

not ideal, see Figure 2). Hence, if G has at least one subgraph (say Gf ) isomorphic to P3 and G|3 is

ideal, then each vertex of V (G) \ V (Gf ) must be adjacent to some vertices of Gf . □

The following lemma can easily be proved using the lemmas 3.1 and 3.2.

Lemma 3.3. Let G be a connected graph, |V (G)| ≥ 5, and G|3 be an ideal access structure. Suppose

A ⊆ V (G), |A| = 5, and induced subgraph of the graph G over A is connected. If G|3 (A) is not

semi-star, then the basis of the access structure G|3 (A) has at least nine elements.

Remark 3.4. The mentioned forbidden configurations (the lemmas 3.1, 3.2 and 3.3) not only are

useful in characterizing the ideal GB-3h access structures but also can be useful in characterizing

other families of ideal access structures. For example, consider the access structure Γ with the

participants set P = {p1, . . . , p6} and the basis

Γ0 = {p1p2p3, p2p3p4, p1p2p4, p2p4p5, p6p2}.
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Let A = {p1, . . . , p5}. The basis of the access structure Γ(A) is equal to the following set

{p1p2p3, p2p3p4, p1p2p4, p2p4p5}.

The access structure Γ(A) is isomorphic to the access structure G|3, where V (G) = {v1, . . . , v5} and

E(G) = {v2v1, v2v3, v2v4, v4v5}. Since in the graph G the vertex v5 is not adjacent to any vertex of

{v1, v2, v3} and the subgraph of G over the set {v1, v2, v3} is isomorphic to P3, lemma 3.2 implies

that G|3 is not ideal. Therefore, Γ is not ideal.

A sufficient condition for the GB-3h access structures to be threshold is expressed in lemma 3.5.

Lemma 3.5. Let G be a connected graph with n vertices and n ≥ 3. The access structure G|3 is a

(3, n)-threshold access structure if and only if G is isomorphic to a complete multipartite graph with

partition sets of size at most two.

Proof. Suppose the access structure G|3 is a (3, n)-threshold access structure. We show that G is

isomorphic to a complete multipartite graph with partition sets of size at most two. Otherwise, there

exists {v1, v2, v3} ⊂ V (G) such that the induced subgraph of G over {v1, v2, v3} is not connected.

Thus, G|3 is not a (3, n)-threshold access structure, a contradiction. Now, since G is a complete

multipartite graph with partition sets (say Vi, where i = 1 . . . ,m) of size at most two, for every

A ⊂ V (G) with |A| = 3, there exists a connected induced subgraph of G with three vertices over A.

Therefore, the access structure G|3 is a (3, n)-threshold access structure. □

Lemma 3.6. Let G be the complete multipartite graph with |V (G)| = n ≥ 3. Then the access

structure G|3 is ideal.

Proof. Without loss of generality suppose V1, . . . , Vm−1, and Vm are the partition sets of the complete

multipartite graph G. Let A ⊂ V (G) and |A| = 3. If for every i ∈ {1, . . . ,m} it holds A ⊈ Vi, then

the induced subgraph of G over A is connected and we have A ∈ G|3. Evidently, if there exists

i ∈ {1, . . . ,m} such that B ⊆ Vi and |B| ≥ 3, then B /∈ G|3. Therefore, Γ0(G|3) is equal to

{A ⊆ V (G) : |A| = 3, |A ∩ Ci| ≤ 2, i = 1, . . . ,m}, where Ci = Vi for i = 1, . . . ,m. Hence, G|3 is

isomorphic to the CAS-UP access structure and is ideal. □

In theorem 3.7, we present a full characterization of the ideal GB-3h access structures. In the

proof of theorem 3.7, we assume that the access structure G|3 is not semi-star and |V (G)| ≥ 5.

Theorem 3.7. Let G be a connected graph and G be the complement graph of G. Then the access

structure G|3 is ideal if and only if the following conditions hold:

(1) There exist suitable graphs G1, . . . , Gm such that G = G1 ⊔ · · · ⊔Gm and for each i ∈ {1, . . . ,m}
the induced subgraph of G over V (Gi) is isomorphic to the complete multipartite graph with

partition sets of size at most two,
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(2) for every {v, v′, v′′} ⊂ V (G), if there exist at least two integers i, j ∈ {1, . . . ,m} such that

{v, v′, v′′} ∩ V (Gi) ̸= ∅ and {v, v′, v′′} ∩ V (Gj) ̸= ∅, then the induced subgraph of G over the

vertex set {v, v′, v′′} is not connected.

Proof. We prove that if the graph G satisfies the expressed conditions, then the access structure G|3
is isomorphic to the CAS-UP access structure. To this end, we compartment the vertices of G as

C1, . . . , Cm, where for each i ∈ {1, . . . ,m} it holds Ci = V (Gi) and Gi is a suitable graph which

satisfies the conditions 1 and 2. First, we show that for every A ⊂ V (G) with |A| ≥ 3, if there exists

a compartment Cj such that A ⊆ Cj , then the induced subgraph of G over A is not connected. Since

A ⊆ Cj , so in the graph G we have A ⊆ V (Gj). For each i ∈ {1, . . . ,m}, the induced subgraph of

the graph G over V (Gi) is a complete multipartite graph with partition sets of size at most two, by

lemma 3.5 it can be said that the induced subgraph of G over A is connected. Therefore, the induced

subgraph of G over A is not connected.

Now, by condition 2, it can be easily seen that for each subset B ⊂ V (G) with |B| = 3, if there exist

at least two compartments Ci1 and Ci2 such that B ∩ Ci1 ̸= ∅ and B ∩ Ci2 ̸= ∅, then the induced

subgraph of G over B is connected. Thus, it can be inferred that Γ0(G|3) is equal to the following

set

{A ⊂ P : |A| = 3, |A ∩ Ci| ≤ 2, i ∈ {1, . . . ,m}}.

In the other words, the access structure G|3 is isomorphic to the CAS-UP access structure in which

a = 3 and ai ≤ 2 for i = 1, . . . ,m. Therefore, G|3 is an ideal access structure.

At the follows, we prove that if G|3 is an ideal access structure, then the graph G must satisfy the

conditions 1 and 2. Let us consider the condition 1. Suppose to the contrary that G does not satisfy

the condition 1. For this condition, we distinguish two cases:

(1) There exists at least one j ∈ {1, . . . ,m} such that the induced subgraph of the graph G over

V (Gj) is not a complete multipartite graph. Then, there exists {v1, . . . , v4} ⊂ V (Gj) such

that the induced subgraph of the graph G over the set {v1, . . . , v4} (say F ) is isomorphic to

a non-complete multipartite graph. It can be said that F is isomorphic to P4 or without loss

of generality we can assume E(F ) = {v1v2, v1v3, v1v4, v3v4}. Suppose F is isomorphic to P4.

Without loss of generality, suppose E(F ) = {v1v2, v2v3, v3v4}. Then, in the graph G we have

{v1v3, v1v4, v2v4} ⊂ E(G). Since G is connected and |V (G)| ≥ 5, lemma 3.1 implies that access

structure G|3 is not ideal, a contradiction. If E(F ) = {v1v2, v1v3, v1v4, v3v4}, then in the graph

G, the vertex v1 is not adjacent to any vertex of the set {v2, v3, v4} and {v2v3, v2v4} ⊂ E(G). By

lemma 3.2 it can be said that the access structure G|3 is not ideal, a contradiction.

(2) There exists at least one j ∈ {1, . . . ,m} such that the induced subgraph of the graph G over

V (Gj) is a complete multipartite graph but Gj has at least one partition set of size at least three.

Since Gj is a complete multipartite graph and has at least one partition set of size at least three,

there exists {v1, v2, v3} ⊂ V (Gj) such that in the graph G there does not exist any edge between
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the vertices of the set {v1, v2, v3}. Therefore, {v1v2, v2v3, v3v1} ⊂ E(G). Since Gj has at least

two partition sets in the graph G, it can be said that there exists at least one vertex (say v4) such

that in the graph G the vertex v4 is not adjacent to any vertex of the set {v1, v2, v3}. Therefore
the lemma 3.2 implies that the access structure G|3 is not ideal. This is a contradiction.

Now, we consider the condition 2. If G is a complete multipartite graph, then the lemma 3.6 implies

that G|3 is isomorphic to the CAS-UP access structure. Therefore, the graph G satisfies the condition

2. Let G be a non-complete multipartite graph. Suppose to the contrary that there exists an induced

subgraph, with the vertex set A = {v1, v2, v3}, of G such that it satisfies the condition 2 but it is

connected. Then the induced subgraph of G over A is not connected. Now, we distinguish two cases:

(1) There exist two integers i, j ∈ {1, . . . ,m} such that A∩ V (Gi) ̸= ∅ and A∩ V (Gj) ̸= ∅. Without

loss of generality, suppose A ∩ V (Gi) = {v1, v2} and A ∩ V (Gj) = {v3}. For this case, we

distinguish two cases:

Case 1) There exists at least one k ∈ {i, j} such that |V (Gk)| ≥ 3. Without loss of generality

suppose |V (Gi)| ≥ 3 and v4 ∈ V (Gi). Since {v1, v2, v4} /∈ Γ0(G|3) and A /∈ Γ0(G|3), there

exists at least one A′ ⊂ {v1, . . . , v4} such that A′ ∈ Γ0(G|3) (otherwise the vertices of the set

{v1, . . . , v4} can be compartmented as C ′ = {v1, . . . , v4} in the access structure G|3 and this

is a contradiction, because we assumed that the vertices of the graph G are compartmented

as Ci = V (Gi), where i = 1, . . . ,m). Suppose the induced subgraph of G over {v1, . . . , v4}
is connected. Since V (G) ≥ 5 and the graph G is connected, there exists at least one vertex

v5 ∈ V (G) such that v5 is adjacent to some vertices of the set {v1, . . . , v4}. Let W = {v1, . . . , v5}.
The induced subgraph of G over W is connected and A, {v1, v2, v4} /∈ Γ0(G|3), lemma 3.3 implies

that G|3 is not ideal. This gives a contradiction. Now, suppose that the induced subgraph of

G over {v1, . . . , v4} is not connected. Since A′ ∈ Γ0(G|3), the induced subgraph of G over A′ is

connected. The induced subgraph of G over {v1, . . . , v4} is not connected, therefore there exists

a vertex of {v1, . . . , v4} such that it is not adjacent to any vertex of the set A′ in the graph G.

Since G is a connected graph and V (G) ≥ 5, lemma 3.2 implies that the access structure G|3 is

not ideal, a contradiction.

Case 2) For each k ∈ {i, j} it holds |V (Gk)| = 2. Note that if |V (Gj)| = 1 and |V (Gi)| = 2, then

the vertices of the set V (Gi)∪V (Gj) can be compartmented as C ′ = V (Gi)∪V (Gj) in the access

structure G|3 and this is a contradiction, because we assumed that the vertices of the graph G

are compartmented as Ci = V (Gi), where i = 1, . . . ,m. Let v4 ∈ V (Gj). Then, there exist

two subsets D,D′ ⊂ V (Gi) ∪ V (Gj) such that D is a minimal qualified subset while D′ /∈ G|3
and |D′| = 3 (otherwise the vertices v1, . . . , v4 can be partitioned as Ci = {v1, v2, v3}, Cj = {v4}
in the access structure G|3 and this is a contradiction, because we assumed the vertices of the

set {v1, . . . , v4} are compartmented as Ci = V (Gi), Cj = V (Gj) in the access structure G|3).
Suppose the induced subgraph of the graph G over {v1, . . . , v4} is connected. The graph G is

connected and |V (G)| ≥ 5, therefore there exists a vertex v5 ∈ V (G) such that v5 is adjacent to
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some vertices of the set {v1, . . . , v4} in the graph G. Since D′, A /∈ Γ0(G|3), lemma 3.3 implies

that the access structure G|3 is not ideal and this gives a contradiction. Now, suppose the

induced subgraph of the graph G over {v1, . . . , v4} is not connected. D ∈ Γ0(G|3), therefore the

induced subgraph of G over D is connected. The induced subgraph of G over {v1, . . . , v4} is not

connected, thus there exists a vertex of {v1, . . . , v4} such that it is not adjacent to any vertex of

the set D in the graph G. Since G is the connected graph and V (G) ≥ 5, lemma 3.2 implies that

the access structure G|3 is not ideal, a contradiction.

(2) There exist three integers i, j, k ∈ {1, . . . ,m} such that A ∩ V (Gi) ̸= ∅, A ∩ V (Gj) ̸= ∅ and

A ∩ V (Gk) ̸= ∅. The proof of this case is similar to the proof of the previous case.

Hence, every GB-3h access structure with at least five elements is ideal if and only if it satisfies the

conditions 1 and 2. □

Remark 3.8. Since the semi-star access structures are a family of the CAS-UP access structures,

using the theorem 3.7 it can be concluded that the ideal GB-3h access structures are isomorphic to

the CAS-UP access structures.

Remark 3.9. Using the theorem 3.7, it can be said that the access structures G10|3 and G11|3 (see

Figure 2) are ideal. This shows that there are non-complete multipartite graphs whose GB-3h access

structures are ideal.

In Figure 1, we present a non-complete multipartite graph (say Gs) in which each vertex of the set

{v8, v9, v10, v11} is adjacent to all vertices of {v1, . . . , v7}. It can be verified thatGs = G1⊔G2⊔G3⊔G4,

where

V (G1) = {v1, v3, v4, v6}, E(G1) = {v1v3, v1v4, v3v6, v4v6},

V (G2) = {v2, v5, v7}, E(G1) = {v2v7, v5v7, v2v5},

V (G3) = {v9, v11}, E(G1) = {v9v11},

V (G4) = {v10, v8}, E(G1) = {v10v8}.

The access structure Gs|3 satisfies the theorem 3.7, therefore Gs|3 is an ideal GB-3h access structure

with basis

{A ⊆ V (Gs) : |A| = 3, |A ∩ Ci| ≤ 2, i = 1, . . . , 4},

where Ci = V (Gi) for i = 1, . . . , 4.

In theorem 3.10, we present a general lower bound for the information rate of the non-ideal GB-3h

access structures.

Theorem 3.10. Let G be a connected graph and ∆(G) = d. If the access structure G|3 is not ideal,

then there exists a secret sharing scheme for G|3 with information rate 1/(d+ 1).
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Figure 1. A simple example of GB-3h access structures

Proof. We give a covering set (say Π′) for G|3 such that each element of Γ0(G|3) is covered at least

one time by Π′. For each vertex v ∈ V (G) (assume deg(v) = l and l ≤ d), suppose kv1,l is the induced

star subgraph of G such that V (kv1,l) = N(v)∪ {v} and deg(v) = l. For every v ∈ V (G), we consider

Γ0(k
v
1,l

∣∣∣
3
) one time in the set Π′. Clearly, the covering set Π′ has |V (G)| elements and each element

of Γ0(G|3) is covered at least one time by the covering set Π′. Since ∆(G) = d, each vertex of the

graph G appears at most d+ 1 times in the covering set Π′. By proposition 2.3, it can be said that

there exists a secret sharing scheme with information rate 1/(d+ 1) for the access structure G|3. □

4. Conclusion

In this paper, we introduced the GB-3h access structures and characterized the ideal GB-3h

access structures. We presented a general lower bound for the information rate of non-ideal GB-3h

access structures and mentioned three forbidden configurations for GB-3h access structures to be

ideal. These forbidden configurations can be useful in characterizing other families of ideal access

structures.

We say that an access structure is a graph-based r−homogeneous access structure on a graph G

if the participants set is the vertex set V (G) and the basis of the access structure is the set of

subsets A ⊆ V (G) such that |A| = r and the induced subgraph of G over A is connected. When

r = 2, the graph-based 2-homogeneous access structures are isomorphic to the famous graph-based

access structures and their ideal cases have exactly been characterized. For r = 3, we exactly

characterized the ideal graph-based 3-homogeneous access structures in this paper. However, for

r ≥ 4, the characterization of ideal graph-based r-homogeneous access structures is an interesting

problem which can be followed by the researchers.
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Figure 2. The optimal information rate of the GB-3h access structures on the con-

nected non-complete multipartite graphs with four and five vertices
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