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A SPANNING UNION OF CYCLES IN RECTANGULAR GRID GRAPHS, THICK

GRID CYLINDERS AND MOEBIUS STRIPS

JELENA D̄OKIĆ , OLGA BODROŽA-PANTIĆ ∗ AND KSENIJA DOROSLOVAČKI

Abstract. Motivated to find the answers to some of the questions that have occurred in recent papers

dealing with Hamiltonian cycles (abbreviated HCs) in some special classes of grid graphs we started the

investigation of spanning unions of cycles, the so-called 2-factors, in these graphs (as a generalizations of

HCs). For all the three types of graphs from the title and for any integer m ≥ 2 we propose an algorithm

for obtaining a specially designed (transfer) digraph D∗
m. The problem of enumeration of 2-factors is

reduced to the problem of enumerating oriented walks in this digraph. Computational results we gathered

for m ≤ 17 reveal some interesting properties both for the digraphs D∗
m and for the sequences of numbers

of 2-factors. We prove some of them for arbitrary m ≥ 2.

1. Introduction

We consider the following (labeled) graphs: Rectangular grid graph RGm(n) = Pm × Pn, Thick grid

cylinder TkCm(n) = Pm×Cn and Moebius strip (of fixed width) MSm(n) (see Figures 1- 3) where Pn and

Cn denote the path and cycle with n vertices, respectively. Thick grid cylinder TkCm(n) (Moebius strip

MSm(n)) can be obtained from the rectangular grid graph RGm(n + 1) by contraction of vertices A ≡
B1, B2, . . . , Bm−1, Bm ≡ B with vertices D ≡ D1, . . . , Dm−1, Dm ≡ C (C ≡ Dm, Dm−1, · · · , D2, D1 ≡ D),

respectively, which does not produce multiple overlapping vertical edges. Note that all observed graphs

have m · n vertices.
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Figure 1. Rectangular Grid Graph Pm × Pn.
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Figure 2. Identification of vertices Bi with vertices Di in constructing the tick grid cylinder

TkCm(n) = Pm × Cn.
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Figure 3. Identification of vertices Bi with vertices Dm−i+1 in constructing the Moebius strip MSm(n).

A spanning r-regular subgraph of a graph is called an r-factor. For r = 2, it represents a spanning

union of (disjoint) cycles. Hence, Hamiltonian cycles are connected 2-factors. All possible 2-factors of

RG4(3) = P4 × P3 and TkC2(2) = P2 × C2 are shown in Figure 4. With the exception of the last case,

for both of the aforementioned graphs, all 2-factors are Hamiltonian cycles.

The problems of enumerating and generating Hamiltonian paths in different classes of graphs arise in

chemistry, biophysics (polymer melting and protein folding), theoretical physics (study of magnetic sys-

tems with O(n) symmetry)[13], engineering (path planning problems for robots and machine tools)[21]

and bioinformatics (security and intellectual property protection by using the microelectrode dot ar-

ray (MEDA) biochips) [14], as well as in the theory of algorithms [20]. They might be useful for the

development of statistical algorithms that provide unbiased sampling of such paths [18].

A brief overview of the chronology of research on counting Hamiltonian cycles in different graph families

can be found in [25]. The enumeration of HCs on specific grid graphs has been studied extensively in
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a)

b)

Figure 4. 2-factors in a) P4 × P3 b) P2 × C2.

[1]-[6], [15], [16] and [22]. The intrinsic properties of these grids naturally impose the transfer matrix

approach on the problem of enumeration of HCs and related topics[11, 17]. From the computational

data obtained from some recent papers a few interesting phenomena (concerning the rectangular grid

graphs, thin and thick grid cylinders and their triangular variants) have arisen and were formulated as

conjectures. More precisely, the numbers of the so-called contractible and non-contractible HCs (see

Figure 5a-b) for thin cylinder graph (Cm×Pn) are asymptotically equal (when n→∞) [4] and the same

is valid for its triangular variant [2].

For the thick grid cylinder Pm×Cn the contractible HCs are more numerous than the non-contractible

ones if and only if m is even. Indeed, the total number of HCs is

hm(n) ∼

{
am,cnθ

n
m,c, if m is even,

am,ncθ
n
m,nc, if m is odd ,

where θm,c, θm,nc, am,c and am,nc are the positive dominant characteristic roots and their coefficients

for the two types of HCs, respectively [3]. Additionally, the coefficient am,nc for non-contractible HCs

is equal to 1 (computational data for m ≤ 10) [1]. Also, positive dominant characteristic root θm,c for

contractible HCs in a thick grid cylinder is equal to the same one associated with rectangular grid graph

Pm × Pn (computational data for m ≤ 10) [1, 5].

The aim of this paper is to find the generating functions for the number of 2-factors in the considered

graphs. We were wondering if the same or similar properties related to HCs would remain valid for

2-factors or not. We wanted to see if some conclusions for 2-factors could help proving the mentioned

conjectures for HCs. Additionally, we expand our research to the new class of grid graphs - Moebius

strips MSm(n).

We distinguish two types of cycles of a 2-factor on the cylindrical surface of TkCm(n) (viewed as

closed Jordan curves): the contractible (abbr. c-type) and the non-contractible (abbr. nc-type) ones (see

Figure 5 a-b). The first ones divide the surface into one finite (called the interior) and one infinite region

(called the exterior). One could imagine them being pasted onto the cylindrical surface of TkCm(n).

The latter ones divide the cylindrical surface into two infinite regions resembling a bracelet around an

arm. In Figure 5)d), the shown 2-factor consists of two contractible cycles and one non-contractible cycle.
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Figure 5. Types of cycles in TkCm(n) : a) contractible; b) non-contractible; c) four (con-

tractible) cycles in RG4(9); d) one non-contractible and two contractible cycles in TkC4(8)

For graphs TkCm(n) andMSm(n) it is useful to observe the so-called Rolling imprints (RI) (introduced

in [1]): Imagine that we at first “cut” the surface of the observed graph (with a given 2-factor) along the

line AB (producing on this way the vertices Di, i=1, 2,. . . ,m on the right side, again). Afterwards, we

unroll (unwind) and flatten it. Then, we produce infinitely many copies Rk ≡ A(k)B(k)C(k)D(k)(k ∈ Z)

of this rectangle picture (with adding the superscript “(k)” on all vertex labels), and line them up to the

left and to the right of the first one (R0 ≡ A0B0C0D0) using translation and glide-reflection, taking care

that corresponding vertices (B
(k)
i and D

(k−1)
i for TkCm(n), or B

(k)
i and D

(k−1)
m−i+1 for MSm(n)) of adjacent

copies are contracted (see Figure 6c)-d)).
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imprints for the example b) related to MS4(9)
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Note that, for each contractible cycle for any type of observed graphs, there exist an infinite number

of congruent cycles (polygons) in the infinite grid graph (RI). For a non-contractible cycle in TkCm(n)

there exists a unique infinite path which crosses lines A(k)B(k) an odd number of times.

In case of MSm(n), due to topological reasons, there are three possible types of cycles: c-type and two

nc-types shown in Figure 7a) and b). The first of these nc-cycles is called the long nc-cycle. Its image

in RI is the union of two infinite paths that cross the line A(k)B(k) an even number of times. The second

one is called the short non-contractible cycle (abbr. short nc-type). Its image in Rolling imprints is the

unique infinite path which crosses line A(k)B(k) an odd number of times. A 2-factor of MSm(n) can have

at most one short nc-type cycle (due to topological reasons, too). Additionally, the long nc-cycle divides

the surface of MSm(n) into two parts, while the short one cannot divide that surface. For example, the

2-factor shown in Figure 7d) is the union of one c-cycle, two long nc-cycles and one short nc-cycle.
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Figure 7. Type of cycles in Moebius strip MSm(n): a) long nc-type cycle; b) short nc-type

cycle; c) a long nc-cycle can cross the vertical side [AB] more than 2 times; d) an example of

2-factor with one short and two long nc-type cycles and one contractible cycle.

The rest of the paper is organized as follows. In Section 2, we derive necessary and sufficient conditions

for the existence of a 2-factor of a certain type in the grid graphs under consideration. Then, we present a

characterization of a 2-factor for each graph G = Gm(n) ∈ G def
= {RGm(n), TkCm(n),MSm(n)} obtained

by the vertex-coding approach. In Section 3, using this we propose applying the transfer matrix method in

order to obtain the numbers of 2-factors, labeled by fG
m(n), for the considered graph Gm(n) ∈ G. Actually,
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this enumeration problem is reduced to the problem of enumerating oriented walks in a specially designed

digraph D∗
m (so-called transfer digraph). Computational results we gathered for m ≤ 17 (partially given

in Section 4, the rest of them in the extended version of this paper [9]) reveal some interesting properties

of the digraphs D∗
m. We prove some of them for arbitrary m ≥ 2 in Section 3. The properties referring

to the asymptotic behaviour of the numbers of 2-factors fG
m(n) were observed to be similar to the ones

that appeared while studying Hamiltonian cycles. In Section 4, we propose a few conjectures.

2. Code matrix

Definition 2.1.

• We orient a (contractible) cycle C in RGm(n) clockwise and call it the base figure.

• If a contractible cycle C in TkCm(n) or MSm(n) is disjoint with segment [AB], then we orient

the corresponding cycle in RI that lies entirely in the rectangle R0\[A(1)B(1)] clockwise and call it

the base figure. Otherwise, let Bi (1 ≤ i ≤ m) be the vertex from the intersection C ∩ [AB] with

minimal index i. The base figure is the corresponding cycle in rolling imprints that contains the

vertex B
(0)
i oriented clockwise, too.

• For a non-contractible cycle C in TkCm(n) (or short nc-cycle C in MSm(n)), let Bi (1 ≤ i ≤ m)

be the vertex from the intersection C ∩ [AB] with minimal index i (1 ≤ i ≤ m). We orient the

part of image of C in RI from B
(0)
i to D

(0)
i ≡ B

(1)
i (D

(0)
m−i+1 ≡ B

(1)
i ) in this direction and call it

the base figure.

• Finally, let Bi (1 ≤ i ≤ m) denote the vertex of segment [AB] with minimal index i (1 ≤ i ≤ m)

which belong to a long nc-cycle C in MSm(n). The base figure is the part of the infinite path

(in RI) containing the vertex B
(0)
i which is determined by vertices B

(0)
i and D

(1)
m−i+1 ≡ B

(2)
i and

oriented from B
(0)
i to D

(1)
m−i+1.

In this way, we establish a bijection between the set of all edges of the union of base figures for the

considered 2-factor and the set of all of its edges. The edges of base figures, considered as oriented

segments in rolling imprints, can be treated as unit vectors of 4 possible directions (↑, ↓, → and ←). Let

♯C(↑), ♯C(↓), ♯C(→) and ♯C(←) denote the number of edges of corresponding direction which we pass

when walking through the base figure of a cycle C.

Proposition 2.2. If C is a c-cycle (for all three graphs RGm(n), TkCm(n) and MSm(n)), then

♯C(↑) = ♯C(↓) and ♯C(→) = ♯C(←).(2.1)

If C is an nc - cycle for TkCm(n), then

♯C(↑) = ♯C(↓) and ♯C(→)− ♯C(←) = n.(2.2)

If C is a short nc - cycle for MSm(n), then

♯C(↓)− ♯C(↑) = m+ 1− 2i and ♯C(→)− ♯C(←) = n.(2.3)

If C is a long nc - cycle for MSm(n), then

♯C(↑) = ♯C(↓) and ♯C(→)− ♯C(←) = 2n.(2.4)
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Proof. Straightforward. □

Let us denote the total numbers of 2-factors in RGm(n), TkCm(n) and MSm(n) by fRG
m (n), fTkC

m (n)

and fMS
m (n), respectively. The total number of 2-factors in TkCm(n) which contain odd (even) number

of non-contractible cycles is labeled by fTkC
1,m (n) (fTkC

0,m (n)). Similarly, label fMS
1,m (n) (fMS

0,m (n)) represents

the total numbers of 2-factors in MSm(n) which contain (do not contain) a short cycle. Thus, we have

fTkC
m (n) = fTkC

1,m (n) + fTkC
0,m (n) and fMS

m (n) = fMS
1,m (n) + fMS

0,m (n).

Theorem 2.3.

a) fRG
m (n) = 0 if and only if both m and n (m,n ≥ 2) are odd;

b) fTkC
0,m (n) = 0 if and only if both m and n (m,n ≥ 1) are odd;

c) fTkC
1,m (n) = 0 if and only if m is even and n is odd (m,n ≥ 1);

d) fMS
0,m (n) = 0 if and only if both m and n (m,n ≥ 1) are odd;

e) fMS
1,m (n) = 0 if and only if both m and n (m,n ≥ 1) are even.

Proof. We derive sufficiency of the corresponding condition (relative to parity of m and n) by contrapo-

sition.

a) If there exists a 2-factor in RGm(n), then by using (2.1) we conclude that the number of its edges

must be even. Consequently, it is not possible for both m and n to be odd.

b) If there exists a 2-factor in TkCm(n) with an even number of nc-cycles, then by using (2.1) and (2.2)

we obtain the same conclusion as in case a).

c) If there exists a 2-factor in TkCm(n) with an odd number of nc-cycles, then by using (2.1) and (2.2)

we conclude that the number of its edges m · n must be of the same parity as n. It further implies that

m is odd or n is even, which is the negation of the given condition.

d) Suppose that there exists a 2-factor in MSm(n) without a short nc-cycle. By using (2.1) and (2.4) we

arrive at the same conclusion as in cases a) and b).

e) If there exists a 2-factor in MSm(n) with a short nc-cycle, then from (2.1), (2.3) and (2.4) the number

of edges (m · n) must be of the same parity as m+ n+ 1. This implies that m and n can only not both

be even.

The proofs of necessity of these conditions go by construction of 2-factors for each of the three remaining

combinations of m and n for each item separately. For example, one of the possible 2-factors for each

of the three admitted combinations in case e) (2-factors with a short nc-cycle on MSm(n)) are show in

Figures 8. The rest of the proof is left to the readers as an exercise. □

Let us consider all graphs: RGm(n), TkCm(n) and MSm(n) simultaneously. First, “cut and develop in

the plane” the surfaces of given graphs as shown in Figures 1 - 3. Observe the corresponding rectangular

grid graphs, whereby the described identifications of vertices have been performed. In this way, we can

use the words: left, right, upper and lower to mark the positions of adjacent vertices in the considered

graph G, with respect to each other.

We label each vertex of G ≡ Gm(n) by an ordered pair (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n} where

i represents the ordinal number of the row viewed from top to down, while j represents the ordinal
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Figure 8. The existence of 2-factors in MSm(n) with a short nc-cycle.

number of the column, viewed from left to right. The vertices labeled by A1, A2, . . . , An in Figures 1 - 3

belong to the first row, and the vertices labeled by B1, B2, . . . , Bm belong to the first column.

Let us observe an arbitrary 2-factor of G. One of six possible labels shown in Figure 9 is assigned

to each vertex (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}. We call this label an alpha-letter of the vertex and

denote it by αi,j . By reading alpha-letters for vertices from the same column in the grid graph under

consideration, from top to down, we obtain an alpha word. For instance, in the first 2-factor shown in

Figures 8, for the first three and for the last (nth) column the corresponding alpha words are abm−2f ,

e(ac)(m−1)/2, em and e(df)(m−1)/2, respectively.

For each alpha-letter αi,j , denote by αi,j (α
′
i,j) the alpha label shown in Figure 9 obtained by applying

reflection symmetry with the horizontal (vertical) axis as its line of symmetry onto αi,j . Thus, a = c, b =

b, c = a, d = f, e = e and f = d and a′ = d, b′ = b, c′ = f, d′ = a, e′ = e and f ′ = c.

Figure 9. Six possible situations for given 2-factor in any vertex

Definition 2.4. For any alpha-word α ≡ α1α2 · · ·αk−1αk (k ∈ N), the alpha word α ≡ αkαk−1 · · ·α2α1

(obtained by reflection over horizontal axis) is called horizontal conversion of the word α.

The alpha word α′ ≡ α′
1α

′
2 · · ·α′

k−1α
′
k (obtained by reflection over vertical axis) is called vertical con-

version of the word α.

If we know the alpha-letter of a vertex (i, j) in Gm(n), then the alpha-letter of its adjacent vertex can

not be just about any letter from the set {a, b, c, d, e, f}. Instead, it is determined by the digraphs Dlr

and Dud, as shown in Figure 10, depending on the mutual position of the two adjacent vertices.
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Figure 10. Digraphs Dud and Dlr and

For example, for 1 ≤ j ≤ n − 1 and 1 ≤ i ≤ m − 1 , if αi,j = a, then αi,j+1 ∈ {d, e, f} and

αi+1,j ∈ {b, c, f}. But, if j = n and G = MSm(n), then αi,n = a implies αm−i+1,1 ∈ {d, e, f} because

of Dm−i+1 ≡ Bi and αm−i+1,n = c. Note that for graph RGm(n) alpha-letters for the corner vertices

(A,B,C and D) have to be α1,1 = a, αm,1 = c, α1,n = d and αm,n = f , respectively, which is not valid

for the other graphs.

Now, with each 2-factor of the observed graph G we associate the code matrix [αi,j ]m×n where αi,j

is the alpha-letter of the vertex (i, j) (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Lemma 2.5. (Characterisation of 2-factors) The code matrix [αi,j ]m×n associated with a 2-factor of a

grid graph G ∈ G satisfies the following properties:

(1) Column conditions: For every fixed j (1 ≤ j ≤ n),

(a) the ordered pairs (αi,j , αi+1,j), where 1 ≤ i ≤ m− 1, must be arcs in the digraph Dud.

(b) α1,j ∈ {a, d, e} and αm,j ∈ {c, e, f}.
(2) Adjacency of column condition: For every fixed j, where 1 ≤ j ≤ n − 1, the ordered pairs

(αi,j , αi,j+1), where 1 ≤ i ≤ m, must be arcs in the digraph Dlr.

(3) First and Last Column conditions:

(a) If G = RGm(n), then the alpha-word of the first column consists of the letters from the set

{a, b, c} and of the last column of the letters from the set {b, d, f}.
(b) If G = TkCm(n), then the ordered pairs (αi,n, αi,1), where 1 ≤ i ≤ m, must be arcs in the

digraph Dlr.

(c) If G = MSm(n), then the ordered pairs (αi,n, αm−i+1,1), where 1 ≤ i ≤ m, must be arcs

in the digraph Dlr.

The converse is also true. Every matrix [αi,j ]m×n with entries from {a, b, c, d, e, f} that satisfies conditions
1–3 determines a unique 2-factor on the grid graph G.

Proof. The properties above can easily be proved directly, by checking all the possible edge arrangements

(their compatibility) for adjacent vertices of G and constraints imposed by the structure of the considered

graph G. Vice versa, alpha-letters and the possibility of their contact, expressed by digraphs Dud and

Dlr, make sure that the subgraph of the graph G determined by the matrix (marked with bold lines) is

a spanning 2-regular graph, i.e. a union of cycles (a 2-factor). □
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3. Enumeration of 2-factors

Now, we can create for each integer m (m ∈ N) a digraph Dm
def
= (V (Dm), E(Dm)) (com-

mon for all graphs from G), in the following way: the set of vertices V (Dm) consists of all possi-

ble words α1,jα2,j · · ·αm,j over alphabet {a, b, c, d, e, f} (called alpha-words) which fulfill Condition 1

(Column conditions) from Lemma 2.5; an arc joins the vertex v = α1,jα2,j · · ·αm,j and the vertex

u = α1,j+1α2,j+1 · · ·αm,j+1, i.e. (v, u) ∈ E(Dm), or v → u if and only if for the vertex v and u

Condition 2 (Adjacency of column condition) from Lemma 2.5 is satisfied (vertex v might be the previous

column for vertex u in a code matrix).

The subset of V (Dm) which consists of all the possible first (last) columns in a code matrix [αi,j ]m×n

for RGm(n) (Condition 3a) is denoted by Fm (Lm). From Condition 1b, the first column of [αi,j ]m×n is

an alpha-word from {a, b, c}m, with α1,1 = a and αm,1 = c. Similarly, the last column of [αi,j ]m×n is

an alpha-word from {b, d, f}m, with α1,n = d and αm,n = f .

Lemma 3.1. The cardinality of sets Fm and Lm (m ∈ N) are equal to the (m − 1)th member of the

Fibonacci sequence Fm−1.

Proof. The cardinal number of the set Fm is equal to the number of all oriented walks of length m − 1

starting with vertex a and ending with vertex c in the subdigraph of Dud induced by the set {a, b, c}.
Note that characteristic polynomial of the adjacency matrix of this digraph is λ(λ2 − λ − 1), i.e. the

required sequence | Fm | (m ∈ N) obeys the same recurrence relation as the Fibonacci sequence. Since

| F1 |= 0 = F0 and | F2 |= 1 = F1 (| F3 |= 1 = F2; F2 = {ac}, F3 = {abc}), by induction, we conclude

our assertion. The proof for the set Lm can be carried out analogously. □

Let Pm = [pij ] be the square binary matrix of order | V (Dm) | for which pi,j = 1 if and only if the i-th

and j-th vertex of the digraph Dm can be obtained from each other by horizontal conversion; otherwise

pi,j = 0. Note that matrix Pm is a symmetric one. The following lemma is essential for the enumeration

of 2-factors.

Lemma 3.2. If fG
m(n) (m ≥ 2) denotes the number of 2-factors of G ∈ G, then

fG
m(n) =



∑
vi∈Fm

∑
vj∈Lm

a
(n−1)
i,j =

∑
vi∈Fm

a
(n)
i,i = a

(n+1)
1,2 , if G = RG,

tr(T n
m) =

∑
vi∈V (Dm)

a
(n)
i,i , if G = TkC,

tr(Pm · T n
m) =

∑
vi, vj ∈ V (Dm)

vi = vj

a
(n)
i,j , if G = MS,

where Tm = [aij ] is the adjacency matrix of the digraph Dm (transfer matrix) and vertices v1, v2 ∈ V (Dm)

are words dbm−2f and abm−2c, respectively.
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Proof. Using Lemma 2.5 the problem of enumeration of 2-factors in G ∈ G (with m×n vertices) reduces

to the enumeration of all the possible code matrices for Gm(n), i.e. all oriented walks of the length

n − 1 in the digraph Dm for which the initial and final vertices satisfy The First and Last conditions

from Lemma 2.5. Note that the set Fm consists of all the direct successors of all the vertices from Lm
(including vertex dbm−2f), and the set Lm consists of all the direct predecessors of all the vertices from

Fm (including vertex abm−2c. So, in this way, for G = RGm(n) our problem of enumeration of all oriented

walks of length n − 1 in the digraph Dm with initial vertices in Fm and the final vertices in Lm can

be reduced to enumeration of all the closed oriented walks of length n in the digraph Dm with initial

vertex from the set Fm or the number of all oriented walks of length n+ 1 with initial vertex dbm−2f

and the final vertex abm−2c. Recall that the (i, j)-entry a
(k)
i,j of k-th power of the adjacency matrix Tm

of the digraph Dm represents the number of all oriented walks of length k (k ∈ N) which start with

vertex vi and end with vertex vj (vi, vj ∈ V (Dm))[19]. This implies the assertion of Lemma 3.2. □

Proposition 3.3. For vertical conversion the following applies:

a) v → v′, where v ∈ V (Dm),

b) If v → w, then w′ → v′, where v, w ∈ V (Dm).

Proof. Straightforward. □

From Definition 2.4 we have (v′)′ = v for any vertex v ∈ V (Dm). For example, vertical conversion pairs

for D3 are: abf and dbc, edf and eac, dfe and ace, abc and dbf , afe and dce, edc and eaf ; while the

vertical conversion of eee ∈ V (D3) is this vertex itself (see Figure 11).

Lemma 3.4. The number of vertices in Dm is | V (Dm) |= 1

2
(3m + (−1)m).

Proof. The number of all the words of length m over alphabet {a, b, c, d, e, f} that satisfy Column con-

ditions of Lemma 2.5) is equal to the number of all the oriented walks of length m − 1 in Dud starting

with a vertex from {a, d, e} and finishing with a vertex from {c, e, f}. Characteristic polynomial of the

adjacency matrix of this digraph is P (λ) = λ4(1 + λ)(λ− 3). Thus, the required sequence, labeled with

cm (m ∈ N), obeys the recurrence relation cm = 2cm−1 +3cm−2, with initial conditions c1 = 1 (the word

e), c2 = 5 (the words ac, bd, ee, dc and af). Using standard procedure for solving recurrence relations we

obtain cm =
(−1)m + 3m

2
, which implies | V (Dm) |≤ (−1)m + 3m

2
. In order to prove strict equality note

that for any word w (with properties described above), from Proposition 3.3 a) we have w → w′ and

w′ → w. This implies that the word w appears as a column in the code matrix of some 2-factor of the

graph TkCm(2). □

For each vertex α1α2 · · ·αm ∈ V (Dm) we introduce a binary word called an outlet (inlet) word

depending on whether the situations shown in Figure 9 matched to its letters have an edge “on the right”

(“on the left”) or not.

Definition 3.5. The outlet word ( inlet word) of the word α ≡ α1α2 · · ·αm ∈ V (Dm) is the binary

word o(α) ≡ o1o2 · · · om (i(α) ≡ i1i2 · · · im) where
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Figure 11. Digraphs D3, D∗
3 and R∗∗

3 .

oj
def
=

{
0, if αj ∈ {b, d, f}
1, if αj ∈ {a, c, e}

and ij
def
=

{
0, if αj ∈ {a, b, c}
1, if αj ∈ {d, e, f}

, 1 ≤ j ≤ m

Lemma 3.6. Digraph Dm for m ≥ 2 is disconnected. Each of its components is a strongly connected

digraph.

Proof. Let v → w, where v, w ∈ Dm and w ≡ α1α2 · · ·αm. Notice that o(v) ≡ i(w) and the total number

of bold edges in all situations shown in Figure 9 for all α1, α2, . . . , αm is equal to 2m. Considering that

each vertical edge is calculated twice in that sum, we conclude that the numbers of 1s in o(v) and in

o(w) have the same parity. Consequently, any two vertices of Dm having different parity of the number

of 1’s in their outlet words (for example, the words abm−2c and abm−2f) can not belong to the same

component of Dm, i.e. Dm is disconnected.

To prove the second assertion of the lemma, observe an arbitrary oriented walk w0w1 · · ·wk−1wk (of

length k ∈ N). Then using Proposition 3.3 conclude that there exists an oriented walk wkw
′
kw

′
k−1 · · ·

w′
1w

′
0w0 which starts and finishes with wk and w0, respectively. Consequently, all components are strongly

connected digraphs. □

Let Dm = Am ∪ Bm, m ≥ 2 where Am is the component of the digraph Dm which contains the vertex

em (m ≥ 2), i.e. with the outlet word 11 · · · 1 - the unique vertex with loop. The fact that the word

dbm−2f (m ≥ 2) (with the outlet word 00 · · · 0) belongs to Am depends on the parity of m. Now, let Rm

denote the component of Dm which contains the vertex dbm−2f (m ≥ 2). Its vertices are all the possible

columns of the code matrices for RGm(n), n ∈ N .

Lemma 3.7. Am ≡ Rm if and only if m is even.
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Proof. For m = 2k (k ∈ N) em → (df)k → abm−2c→ dbm−2f which implies Am ≡ Rm. For m odd, the

outlet words of vertices in V (Am) have odd, while outlet words of vertices in V (Rm) have even numbers

of 1s. Consequently, Am ̸≡ Rm. □

In order to reduce the transfer matrix Tm, note that two vertices from Dm with the same outlet word

have the same set of direct successors. For all vertices from V (Dm) having the same corresponding

outlet word we replace them with just one vertex, labeled by their common outlet word. Arcs from

E(Dm) starting from these contracted vertices and finishing with the same vertex are substituted with

only one arc. This way, we obtain the digraph D∗
m, with adjacency (transfer) matrix T ∗

m. For example, in

Figure 11 vertices abc, afe, edc ∈ V (D3) with the common outlet word 101 are contracted at 101 ∈ V (D∗
3).

(Here the double-headed arrow represents two different edges, one for each direction.)

Note that two different vertices from V (Dm) with the same outlet word can not have the same direct

predecessor. This implies that there exist no multiple edges in D∗
m, i.e. entries of T ∗

m are from the set

{0, 1}.

Theorem 3.8. Adjacency matrix T ∗
m of the digraph D∗

m is a symmetric binary matrix, i.e. T ∗
m = (T ∗

m)T .

Proof. Let us prove that v → w if and only if w → v, for any two vertices v, w ∈ V (D∗
m).

Suppose that v is a direct predecessor of w, i.e. v → w. This implies that there exist vertices

x, y ∈ V (Dm) such that x → y, where o(x) = v and o(y) = w. Using reflection symmetry (with the

vertical axis) we have v = o(x) = i(y) = o(y′) and y → y′. Consequently, w → v. □

Since the vertices from V (Dm) which are contracted belong to the same component, Lemma 3.6 implies

Theorem 3.9. Digraph D∗
m for m ≥ 2 is disconnected. Each of its components is a strongly connected

digraph.

The component which contains the vertex 0m ≡ 00 · · · 0 is denoted by R∗
m. The component containing

the unique loop (1m → 1m) is labeled by A∗
m and the union of the remaining components by B∗m. Digraphs

D∗
m for m = 4 and m = 5 are shown in Figure 12 and 13, respectively.
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Figure 12. Digraph D∗
4
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5

Theorem 3.10. For the number of vertices in digraph D∗
m we have

| V (D∗
m) |=

{
2m, if m is even

2m − 1, if m is odd

Proof. At first, note that any word x ∈ V (Dm) whose outlet word has the prefix (01)k (1 ≤ k ≤ ⌊m
2
⌋)

must have the prefix (dc)k. Similarly, any word x ∈ V (Dm) whose outlet word has the suffix (10)s

(1 ≤ s ≤ ⌊m
2
⌋) must have the suffix (af)s. If this suffix is of length m− 1, then the first letter must be

e, i.e. the word 010101...010 ̸∈ V (D∗
m).

To prove that there exists at least one vertex x ∈ V (Dm) with o(x) = v, where v is a binary word

of length m different from 010101...010 (in case m-odd), we start from the word v and demonstrate the

construction of x.

Let k and s be the maximum non-negative integers for which (01)k is the prefix and (10)s is the suffix

of v. Then v ≡ (01)kw(10)s, where the subword w is different from 0 and it has neither prefix 01 nor suffix

10. We replace the prefix (01)k with (dc)k, and the suffix (10)s with (af)s. If the word w ≡ 0m−2(k+s)

(m− 2(k + s) > 1), then the word dbm−2(k+s+1)f can be inserted instead of w. Another case is that the

word w has at least one letter 1. Let t and p be the maximum non-negative integers for which 0t is a

prefix and 0p is a suffix of w. Clearly, t ̸= 1, p ̸= 1 and w ≡ 0tα0p where the subword α has the first and
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the last letter 1. In case t ≥ 2 (p ≥ 2), then the subword 0t (0p) is substituted with dbt−2f (dbp−2f).

Consider now all the maximal zero-subwords of α. Every one of them, of length q ≥ 2, we replace by

word dbm−2f . If q = 1, then the subword 01, obtained by extending this letter 0 with the first letter

1 below, is replaced by word dc. Finally, replacing the remaining letters 1 with letters e we obtain the

vertex x ∈ Dm. □

Theorem 3.11. The number of edges in D∗
m is | E(D∗

m) |= 1

2
(3m + (−1)m).

Proof. Consider all the vertices from V (Dm) with the same outlet word v ∈ V (D∗
m). Observe that they

have different inlet words, which represent all possible direct predecessors for v in D∗
m. In this way, the

bijection between the set E(D∗
m) and V (Dm) is established. Lemma 3.4 implies our assertion. □

For the binary word v ≡ b1b2 · · · bm−1bm ∈ {0, 1}m, we introduce the label v
def
= bmbm−1 · · · b2b1.

Proposition 3.12.

For arbitrary x, y ∈ V (Dm), o(x) = o(x). Consequently, if o(x) = o(y), then o(x) = o(y).

Proof. Straightforward. □

Let P∗
m = [pij ] be the square binary matrix of order | V (D∗

m) | whose entry pi,j = 1 if and only if the

i-th and j-th vertices of the digraph D∗
m satisfy vi = vj (and vj = vi); otherwise pi,j = 0. Note that the

matrix P∗
m is a symmetric one. We can improve the process of enumeration of 2-factors using the new

transfer-matrix T ∗
m.

Theorem 3.13.

fG
m(n) =



a
(n)
1,1 , if G = RG,

tr((T ∗
m)n) =

∑
vi ∈ V (D∗

m)

a
(n)
i,i , if G = TkC,

tr(P∗
m · (T ∗

m)n) =
∑

vi, vj ∈ V (D∗
m)

vi = vj

a
(n)
i,j , if G = MS,

where T ∗
m = [aij ] is the adjacency matrix of the digraph D∗

m and v1 ≡ 00 · · · 0.

Proof. Let Wy
x(n) denote the number of oriented walks of length n in the observed digraph (Dm or D∗

m)

which start with vertex x and finish with vertex y. The (i, j)-entry a
(n)
i,j of n-th power of T ∗

m represents

the number of all the oriented walks of the length n in D∗
m which start with vi ∈ V (D∗

m) and finish with

vj ∈ V (D∗
m), i.e. Wvj

vi (n). Note that for arbitrary x1, x2, y ∈ V (Dm),

(3.1) if o(x1) = o(x2), then Wy
x1
(n) =Wy

x2
(n).
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Consequently, the number Wvj
vi (n) is equal to the number of all the oriented walks of the length n in

Dm which start with a vertex x ∈ V (Dm) which is assigned to the vertex vi ∈ V (D∗
m) (o(x) = vi) and

finish with vertices y ∈ V (Dm) which are assigned to vj ∈ V (D∗
m) (o(y) = vj), i.e.

(3.2) Wvj
vi (n) =

∑
y ∈ V (Dm)

o(y) = vj

Wy
x(n), where x ∈ V (Dm) and o(x) = vi.

Now, from Lemma 3.2, having in mind that the set of direct predecessors of abm−2c is Lm, and using

(3.2) we have

fRG
m (n) =Wabm−2c

dbm−2f (n+ 1) =
∑

y ∈ Lm
Wy

dbm−2f
(n) =W0m

0m (n) = a
(n)
1,1 .

By using (3.2),(3.1) and Proposition 3.12 we have

(3.3) Wvi
vi (n) =

∑
x ∈ V (Dm)

o(x) = o(x1) = vi

Wx
x1
(n) =

∑
x ∈ V (Dm)

o(x) = vi

Wx
x (n).

and

(3.4) Wvi
vi (n) =

∑
x ∈ V (Dm)

o(x) = o(x1) = vi

Wx
x1
(n) =

∑
x ∈ V (Dm)

o(x) = vi

Wx
x (n).

Applying Lemma 3.2 again and (3.3) to TkCm(n) we obtain

fTkC
m (n) =

∑
x ∈ V (Dm)

Wx
x (n) =

∑
vi ∈ V (D∗

m)

∑
x ∈ V (Dm)

o(x) = vi

Wx
x (n) =

∑
vi ∈ V (D∗

m)

a
(n)
i,i = tr((T ∗

m)n).

For MSm(n) Lemma 3.2 and (3.4) yield that

fMS
m (n) =

∑
x ∈ V (Dm)

Wx
x (n) =

∑
vi ∈ V (D∗

m)

∑
x ∈ V (Dm)

o(x) = vi

Wx
x (n) =

∑
vi ∈ V (D∗

m)

Wvi
vi (n), i.e.

fMS
m (n) = tr(P∗

m · (T ∗
m)n). □

Theorem 3.14. The subdigraph of D∗
m induced by the set of vertices having odd numbers of 0’s is a

bipartite digraph.

http://dx.doi.org/10.22108/toc.2022.131614.1940

http://dx.doi.org/10.22108/toc.2022.131614.1940


Trans. Comb. 13 no. 1 (2024) 41-66 J. D̄okić, O. Bodroža-Pantić and K. Doroslovački 57

Proof. Having in mind Theorem 3.8, it is sufficient to prove that this subdigraph does not contain any

odd-length oriented cycle. Assume the opposite: that there exist an odd integer n and an oriented cycle

of length n in it. This implies the existence of a 2-factor in TkCm(n).

Case I: m-even Every vertex of the considered oriented cycle observed as a binary word has an odd number

of 1’s. It implies that corresponding 2-factor in TkCm(n) contains odd number of non-contractible cycles.

Using Proposition 2.2 we conclude that the number of all the edges in the observed 2-factor has the same

parity as n, i.e. is odd. On the other side, this number must be m · n, i.e. even. Contradiction.
Case II: m-odd Now, the corresponding 2-factor in TkCm(n) contains an even number of non-contractible

cycles (related binary words have even number of 1’s). Applying Proposition 2.2 again, we conclude that

the number of edges of the considered 2-factor is even, whilem·n is odd which leads to a contradiction. □

Corollary 3.15. The subdigraph of Dm induced by the set of vertices whose outlet words have an odd

number of 0’s is a bipartite digraph.

Proof. It is sufficient to prove that two vertices connected with an arc do not have the same outlet

word. Suppose the opposite, that there exist two vertices v and w with v → w and o(v) = o(w). Then,

o(w) = o(v) = i(w) holds. Note that the only vertex in Dm with the same inlet and outlet word is em,

which does not belong to the considered subdigraph. Contradiction. □

Corollary 3.16. For odd m, both Rm and R∗
m are bipartite digraphs.

When m is even, vertex 0m is both a direct successor and a direct predecessor for 1m in D∗
m (for

example see Figure 12). The following theorem is a consequence of Lemma 3.7.

Theorem 3.17. A∗
m ≡ R∗

m if and only if m is even.

Theorem 3.18. For even m, all palindromes from V (D∗
m) belong to the component A∗

m (i.e. R∗
m).

Proof. We prove this theorem, by strong induction, for all k ∈ N where m = 2k. The base case is

obviously correct (00↔ 11). Assume that the statement holds for all palindromes ww of length less then

2k. Consider a palindrome vv ∈ V (D∗
m), where vv ̸= 0m.

Case 1: vv = 1ww1.

Let xx be one of the alpha words from V (Dm−2) whose outlet word is ww, i.e. o(xx) = ww. Then

there exist such palindromes wjwj ∈ V (D∗
m−2) and alpha words xjxj ∈ V (Dm−2) with o(xjxj) = wjwj ,

1 ≤ j ≤ t (t ∈ N) for which there exist walks ww → w1w1 → w2w2 → · · · → wtwt and xx → x1x1 →
x2x2 → · · · → xtxt in D∗

m−2 and Dm−2, respectively, and wtwt = 0m−2 (inductive hypothesis). Now, the

walk exxe→ ex1x1e→ ex2x2e→ · · · → extxte→ db2(k−1)f in Dm (xtxt ∈ Lm−2) justifies the existence

of the walk vv = 1ww1→ 1w1w11→ 1w2w21→ · · · → 1wtwt1→ 0m in R∗
m (see Figure 14a).

Case 2: vv = 0s1ww10s where s ≥ 1 (including the possibility that w is an empty word).

If w is not an empty word, then there exist such walks ww → w1w1 → w2w2 → · · · → wtwt and

xx→ x1x1 → x2x2 → · · · → xtxt (both of length t ∈ N) in D∗
2(k−s−1) and D2(k−s−1), respectively, where

o(xx) = ww, o(xjxj) = wjwj for all 1 ≤ j ≤ t and wtwt = 02(k−s−1) (inductive hypothesis).
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Figure 14. Constructions walks to vertex 02k in digraph D∗
2k.

Case 2.1: t is odd.

Required walk (of length t + 1) in Dm is dbs−1cxxabs−1f → abs−1fx1x1db
s−1c → dbs−1cx2x2ab

s−1f →
abs−1fx3x3db

s−1c → dbs−1cx4x4ab
s−1f → · · · → abs−1fxtxtdb

s−1c → dbm−2f . The fact dbm−2f ∈ Lm
implies the statement (see Figure 14b).

Case 2.2: t is even.

Required walk (of length t + 2) in Dm is dbs−1cxxabs−1f → abs−1fx1x1db
s−1c → dbs−1cx2x2ab

s−1f →
abs−1fx3x3db

s−1c→ dbs−1cx4x4ab
s−1f → · · · → dbs−1cxtxtab

s−1f → abs−1f(ac)k−s−1dbs−1c→
dbsf(df)k−s−2dbsf . Since dbs(fd)k−s−1bsf ∈ Lm, the statement holds (see Figure 14c).

Case 2.3: vv = 0k−1110k−1.

The walk (of length 2) dbk−2cabk−2f → abk−2fdbk−2c→ dbm−2f in Rm implies the existence of the walk

0k−1110k−1 → 10m−21→ 0m in R∗
m. Consequently, 0k−1110k−1 ∈ R∗

m. □

Further reduction of the transfer matrices is possible just in the case G = RGm(n) using the following

Theorem 3.19. If v ∈ V (R∗
m), then v ∈ V (R∗

m).

Proof. If o(x) = v (x ∈ V (Rm)), then there exists an integer n ≥ 1 for which Wdbm−2f
x (n) ̸= 0. By using

the property of reflection symmetry (dbm−2f = dbm−2f), we obtain that Wdbm−2f
x (n) =Wdbm−2f

x (n) ̸= 0,

which implies x ∈ V (Rm). Since v = o(x), we conclude that v ∈ V (R∗
m). □

Now, we can contract the vertices v and v into one vertex for all v, v ∈ V (R∗) resulting in a new digraph

R∗∗
m . For example, for m = 5 digraph R∗

5 is bipartite and has 6 (unordered) pairs of different vertices

{v, v} which are rounded in Figure 13. During contraction of vertices v and v we retain arcs starting

from just one of these two vertices and delete the ones starting from another vertex. Multiple (double)

arcs appear when v and v have a common direct predecessor (see Figure 11). The symmetry of the

rectangular grid RGm(n) leads us to the conclusion that W0m
v (n) = W0m

v (n) for any vertex v ∈ V (R∗).

Consequently, the number W0m
0m (n) remains the same in both digraph R∗ and R∗∗, i.e.

Theorem 3.20. The number fRG
m (n) is equal to entry a

(n)
1,1 of the n-th power of the adjacency matrix for

R∗∗ where v1 ≡ 0m.
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This way we obtain the recurrence relations for fRG
m (n) of lower order then the ones we got using the

digraph R∗(see Tabular 2). Note that for odd m, R∗ is a bipartite digraph and vertices v and v are at

an even distance (of the same colour), so R∗∗ has no loops. On the contrary, when m is even new loops

can appear. For example, for m = 4 (see Figure 12) one more loop appears when the vertices 1100 and

0011 are contracted.

Computing the generating functions FG
m(x)

def
=

∞∑
n≥1

fG
m(n)xn is a matter of routine [7, 8, 23]. We wrote

computer programs for the computation of the adjacency matrices of these digraphs Dm, D∗
m, Rm, R∗

m,

R∗∗
m and initial members of required sequences fG

m(n).

4. Computational results

4.1. Cardinality of sets of vertices for components of D∗
m.

Some properties of the digraphs Dm, D∗
m and R∗

m, and their related sequences fG
m(n), spotted upon

analyzing the computational data for m ≤ 12 (in case of RGm(n) for m ≤ 17) have been discussed and

proved in the previous section for arbitrary m ∈ N . Beside numerical results we further present a few

more properties concerning the cardinality of sets of vertices for components of D∗
m. Due to limited space

these properties are here formulated as conjectures and will be the subjects of separate papers [10].

Conjecture 4.1. For each m ≥ 2, digraph D∗
m has exactly

⌊m
2

⌋
+ 1 components, i.e. D∗

m = A∗
m ∪ B∗m,

where B∗m consists of exactly
⌊m
2

⌋
components B∗(1)m ,B∗(2)m , . . . ,B∗(⌊m/2⌋)

m (| V (B∗(1)m ) |≥| V (B∗(2)m ) |≥ · · ·

≥| V (B∗(⌊m/2⌋)
m ) |). All the components B∗(k)m (1 ≤ k ≤

⌊m
2

⌋
) are bipartite digraphs and

| V (B∗(k)m ) | =



(
m+ 1

(m+ 1)/2− k

)
, if m is odd,

2 ·
(

m

m/2− k

)
, if m is even,

and

| V (A∗
m) | =


(

m

(m− 1)/2

)
, if m is odd,(

m

m/2

)
, if m is even.

The vertices v and v belong to the same component. If v ∈ B∗(s)m , 1 ≤ s ≤
⌊m
2

⌋
, then v is placed in the

same class if and only if m is odd.

Conjecture 4.2. For m − odd, the word 0m belongs to V (B∗(1)m ), i.e. R∗
m ≡ B

∗(1)
m . The number of all

palindromes from V (B∗(1)m ) is equal to

(
(m+ 1)/2

⌊(m+ 1)/4⌋

)
.

Conjecture 4.3. For m − odd, the number of vertices in R∗
m is equal to the binomial coefficients (in

OEIS A001791):

| V (R∗
m) |=

(
m+ 1

(m− 1)/2

)
(4.1)
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Table 1. The numbers of vertices of Dm, D∗
m, components of D∗

m and the order of the recurrence

relations (the same) for both thick cylinder graphs TkCm(n) and Moebius strips MSm(n).

m 2 3 4 5 6 7 8 9 10 11 12

| V (Dm) | 5 13 41 121 365 1093 3281 9841 29525 88573 265721

| V (D∗
m) | 4 7 16 31 64 127 256 511 1024 2047 4096

| V (A∗
m) | 2 3 6 10 20 35 70 126 252 462 924

| V (B∗(1)m ) | 2 4 8 15 30 56 112 210 420 792 1584

| V (B∗(2)m ) | - - 2 6 12 28 56 120 240 495 990

| V (B∗(3)m ) | - - - - 2 8 16 45 90 220 440

| V (B∗(4)m ) | - - - - - - 2 10 20 66 132

| V (B∗(5)m ) | - - - - - - - - 2 12 24

| V (B∗(6)m ) | - - - - - - - - - - 2

order 4 5 13 19 49 69 178 249 649 - -

while the number of vertices in digraph R∗∗
m is equal to

| V (R∗∗
m ) |= 1

2

[(
m+ 1

(m− 1)/2

)
+

(
(m+ 1)/2

⌊(m+ 1)/4⌋

)]
.(4.2)

For m − even, the number of vertices in R∗
m is equal to the Central binomial coefficients (in OEIS

A000984):

| V (R∗
m) |=

(
m

m/2

)
(4.3)

while the number of vertices in digraph R∗∗
m is equal to A005317 in OEIS, i.e.

| V (R∗∗
m ) |= 2(m−2)/2 +

1

2

(
m

m/2

)
.(4.4)

For m-odd, equations (4.1) and (4.2) are trivial consequences of Conjecture 4.1 and Conjecture 4.2.

Equation (4.3) is a consequence of Theorem 3.17 and Conjecture 4.1. Using Theorem 3.18 the equality

(4.4) is easy to prove from (4.3). Also, we noticed that the members of the sequence | V (Rm) | for even
m ≤ 10 coincide with the initial members of the sequence A082758 in OEIS [24].

4.2. Asymptotic behaviour of the numbers of 2-factors fG
m(n).

The properties referring to asymptotic behaviour of numbers of 2-factors fRG
m (n) and fTkC

m (n) (when

n→∞) were observed to be similar to the ones that appeared while studying Hamiltonian cycles.

Since the adjacency matrix T ∗
m of D∗

m (m ≥ 2) is symmetric (Theorem 3.8), i.e. Hermitian, the

spectrum of D∗
m contains only real numbers. Each of the components of D∗

m is a strongly connected

digraph (Theorem 3.9) and, therefore, has an irreducible adjacency matrix [8] (which is a block in the

diagonal block matrix T ∗
m). From Perron-Frobenius theorems [12] the maximum modulus eigenvalues for

these nonnegative and irreducible matrices are algebraically simple eigenvalues. If the set of all maximum

modulus eigenvalues for a nonnegative and irreducible matrix has exactly k ≥ 2 distinct elements, they are
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Table 2. The numbers of vertices of Fm, Lm,Rm, R∗
m andR∗∗

m and the order of the recurrence

relations for RGm(n).

m 2 3 4 5 6 7 8 9 10 11 12 13

| Fm |=| Lm | 1 1 2 3 5 8 13 21 34 55 89 144

| V (Rm) | 3 6 19 60 141 532 1107 4608 8953 ≪ ≪ ≪
| V (R∗

m) | 2 4 6 15 20 56 70 210 252 792 924 3003

| V (R∗∗
m ) | 2 3 5 9 14 31 43 110 142 406 494 1519

order 2 1 5 3 13 9 35 25 96 - - -

m 14 15 16 17

| Fm |=| Lm | 233 377 610 987

| V (R∗
m) | 3433 ≪ ≪ ≪

| V (R∗∗
m ) | 1780 5755 6563 21942

precisely the kth roots of 1 times the maximum eigenvalue θ [12]. Since all eigenvalues of our considered

matrices are real numbers, for bipartite digraphs there exist exactly two simple eigenvalues of maximal

modulus (θ and −θ), i.e. k must be two.

Let θm (we also use the labels θTkC
m and θMS

m to emphasize corresponding grid graph) and θRG
m be the

maximum eigenvalues of the adjacency matrices of D∗
m and R∗

m, respectively. Computational results for

m ≤ 12 show that the maximum eigenvalue θm of T ∗
m is simple and unique maximum modulus eigenvalue.

Additionally, θm is attached to the component A∗
m for all m ≥ 2, i.e.

Conjecture 4.4. The maximum eigenvalue of A∗
m is the unique maximum modula eigenvalue of D∗

m.

According to the foregoing we have

fTkC
m (n) ∼ aTkC

m θnm, where aTkC
m = 1 .

(Note that the property for the coefficients of maximum eigenvalue being equal to 1 appeared by Hamil-

tonian cycles when m was odd [1] and [3].) For instance,

fTkC
9 (99) = 1750738462181652771338808207772701955030703442028258017318088093361136

0786760679564966706639273723674798766385930557092858331879012953635968

195685205,
fTkC
9 (100) = 5503488851650192832857551518533018608271730034860817348840930779798339

9866850567422183774919747362024619387408919222429539996042852109168447

1910843826,
fTkC
10 (99) = 5472946695895734348165268778293176272799246831355358749477747452490650

1214615708064019534391418227552525368357696963283863359292333457421226

269199598481596902807547077 and
fTkC
10 (100) = 2645316310319933683496095009841718024759437947764204153951092048286901

7777259031349223534872931966971355650359749930614841881983326875548074

53750119675251682976586688605
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while

θ999 = 1.75073846218165923653 · · · · 10148,
θ1009 = 5.503355253 · · · · 10149,
θ9910 = 5.47294669589622318 · · · · 10166, and

θ10010 = 2.645121801666474501 · · · · 10168.
The coefficient aTkC

m is equal to 1 because of Theorem 3.13 and the fact that the trace of n-th power

of matrix T ∗
m is equal to the sum of n-th powers of all of its eigenvalues (the value fTkC

m (n) has the

unique representation as a linear combination of n standard solutions of the recurrence relation for T ∗
m

corresponding to all its eigenvalues).

Recall, that for Hamiltonian cycles in TkCm(n), contractible HCs are more numerous than non-

contractible ones if and only if m is even [3]. The similar assertion can be formulated for 2-factors

dividing them into 2-factors with even and odd number of nc-cycles. Note that in case m is even, the

digraph A∗
m determines 2-factors in TkCm(n) with an even number of nc-cycles (however not all of them).

For odd m A∗
m determines 2-factors with odd numbers of nc-cycles and this kind of 2-factors are then

dominant assuming Conjecture 4.4. More precisely,

fTkC
m (n) ∼


fTkC
1,m (n) , for m odd

fTkC
0,m (n) , for m even

(n→ +∞).

Assuming that all components B∗(k)m are bipartite (Conjecture 4.1) we have that, for n odd, the only

2-factors obtained from component A∗
m are counted in fTkC

m (n). (Therefore, more digits coincide in

fTkC
9 (99) and θ999 , or fTkC

10 (99) and θ9910, than in fTkC
9 (100) and θ1009 , or fTkC

10 (100) and θ10010 .)

Table 3. The approximate values of θm = θTkC
m = θMS

m and aTkC
m = aMS

m = 1 for 1 ≤ m ≤ 12,

where ≈(n) means the estimate based on the first n entries of the sequence.

m θTkC
m = θMS

m aTkC
m = aMS

m

2 1.6180339887498948482045868344 1

3 2.4142135623730950488016887242 1

4 3.6941816601239106665999753656 1

5 5.6532020378824433814716902315 1

6 8.6709538972300632454385724873 1

7 13.3121782399972542081592050166 1

8 20.4516932294114966231186908391 1

9 31.4344796371815965829996668429 1

10 48.3308526218584373943242746007 1

11 ≈(100) 74.32697213 1

12 ≈(50) 114.326 1
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Table 4. The approximate values of θRG
m and aRG

m for 2 ≤ m ≤ 17, where ≈(n) means the

estimate based on the first n entries of the sequence.

m θRG
m aRG

m

2 (1 +
√
5)/2

√
5/5

3 1.73205080756887729352744634151 0.2886751345948128822545743903

4 3.69418166012391066659997536564 0.3118537771565198570113824680

5 4.62518160134423951692596223359 0.2689660737850244855426998625

6 8.67095389723006324543857248731 0.2520573399762828621654010912

7 11.5193830042298614862975296130 0.2420402401081641797612878583

8 20.4516932294114966231186908391 0.2149686611014229925654013297

9 28.0703410924057870863760633239 0.2185598738607493954133759244

10 48.3308526218584373943242746007 0.1885668461094284796839894294

11 ≈(600) 67.7256340927618460544544369622 ≈(600) 0.1987190117694364038206719883

12 ≈(600) 114.3265540751374759033150378963 ≈(600) 0.1683321933349066394611832136

13 ≈(200) 162.5256416517095900095387075181 ≈(200) 0.1818325481375590304998965322

14 ≈(200) 270.594404874261731 ≈(200) 0.152084575433189642

15 ≈(200) 388.7591582316368266038304859009 ≈(200) 0.1672787181981763741720923489

16 ≈(200) 640.690454998007 ≈(200) 0.1386133711863155

17 ≈(100) 927.945466754283 ≈(100) 0.154581709489037

Recall, that contractible Hamiltonian cycles in TkCm(n) and RGm(n) have the same positive dom-

inant eigenvalue when m is even [3]. In case of 2-factors this property is more obvious if we assume

Conjecture 4.4 and apply Theorem 3.17 (see Tabular 3 and Tabular 4), i.e.

fRG
m (n) ∼


aRG
m θnm , for m even

aRG
m (θRG

m )n + aRG
m

(
−θRG

m

)n
, for m odd

(n→ +∞),

where aRG
m are positive numbers.

The novelty appears with the Moebius strip MSm(n). According to the Conjecture 4.4 we have

fMS
m (n) ∼ aMS

m θnm.

Numerical data show that the coefficient of the maximal eigenvalue is again one, i.e. aMS
m = 1.
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For example,

fMS
9 (99) = 1750738462181665701723082146927338193581515086747844712341253685406319

1553795793184785069123799306157361712365337734920832932311990627148209

033567981,

fMS
9 (100) = 5503488851650163776931116763714293076427970032180999497847873716909388

7001537742285391720378803648896975631451618649151832275727205508702975

7535019482,

fMS
10 (99) = 5473392413551435904097524137222257556522154835755962205364841172527434

5587572680168475798796527038604871940909874270974422734365157886590851

507415380950441091624785881, and

fMS
10 (100) = 2645121801666648913048490842342065467547225492026995244876289719579663

8721230465776899400708104186158155469514422006233945602999944685195281

33438673321151104001586481523.

Here, if we assume Conjecture 4.4 is true, then in case m-even, digraph A∗
m determines the majority

of the 2-factors without a short nc-cycle (though generally not all of them). For m-odd, A∗
m determines

the 2-factors which contain a short nc-cycle and this kind of 2-factors are then dominant. More precisely,

fMS
m (n) ∼

{
fMS
1,m (n) , if m is odd

fMS
0,m (n) , if m is even

, when n→ +∞ .

Assuming Conjecture 4.1 we have that for both m and n odd the only 2-factors obtained from component

A∗
m (containing a short nc-cycle) are counted in fMS

m (n). (Therefore more digits coincide in numbers

fMS
9 (99) and θ999 than in fMS

9 (100) and θ1009 . On the other hand, for both m and n even, the only the

2-factors obtained from component A∗
m (without a short nc-cycle) are counted in fMS

m (n). (Therefore,

more digits coincide in fMS
10 (100) and θ10010 than in fMS

10 (99) and θ9910.

4.3. Generating functions.

Our results for the rectangular grid graph RGm(n) ≡ Pm × Pn for m ≤ 7 confirm the data previously

obtained in another way (by coding cells) in 1994 [6]. We got the generating functions FRG
m (x), FTkC

m (x)

and FMS
m (x) for 2 ≤ m ≤ 10. These generating functions and the first 30 members of the sequences

fRG
m (n) (2 ≤ m ≤ 17), fTkC

m (n) (2 ≤ m ≤ 12) and fMS
m (n) (2 ≤ m ≤ 12) are exposed in the extended

version of this paper[9].

By observing the denominators of the generating functions for the components B∗(k)m , where k ≥ 2, one

can notice that each of them consists of the factors of the denominator of the generating functions for

B∗(1)m or A∗
m.
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