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Figure 1: Our PBD-based crowd simulation method animates both sparse and dense groups of agents at interactive rates.

ABSTRACT
Exploiting the e�ciency and stability of Position-Based Dynam-
ics (PBD), we introduce a novel crowd simulation method that
runs at interactive rates for hundreds of thousands of agents. Our
method enables the detailed modeling of per-agent behavior in
a Lagrangian formulation. We model short-range and long-range
collision avoidance to simulate both sparse and dense crowds. On
the particles representing agents, we formulate a set of positional
constraints that can be readily integrated into a standard PBD solver.
We augment the tentative particle motions with planning veloci-
ties to determine the preferred velocities of agents, and project the
positions onto the constraint manifold to eliminate colliding con-
�gurations. The local short-range interaction is represented with
collision and frictional contact between agents, as in the discrete
simulation of granular materials. We incorporate a cohesion model
for modeling collective behaviors and propose a new constraint for
dealing with potential future collisions. Our new method is suitable
for use in interactive games.
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1 INTRODUCTION
Crowd simulation is ubiquitous in visual e�ects, animations, and
games. E�ciently simulating the motions of numerous agents with
realistic interactions among them has been a major focus of re-
search in recent decades [Thalmann 2007]. Among various mod-
eling considerations, collision avoidance remains challenging and
time consuming. Collision avoidance algorithms can be classi�ed
into discrete and continuum approaches [Golas et al. 2013]. Con-
tinuum approaches, such as the technique proposed by Narain et
al. [2009], have proven e�cient for large-scale dense crowds, but
are less suitable for sparse crowds. Force-based discrete approaches,
such as the recently proposed power-law model [Karamouzas et al.
2014], are well suited for sparse crowds, but can be computationally
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expensive and may require smaller time steps due to explicit time
integration.

In this paper, we use Position-Based Dynamics (PBD) [Müller
et al. 2007], as an alternative discrete algorithm for simulating both
dense and sparse crowds. While more carefully designed models,
such as the social force model [Helbing and Molnar 1995] and the
power law model [Karamouzas et al. 2014], can yield some realistic
crowd behaviors, they occasionally require elaborate numerical
treatments to remain stable and robust. Given the success of PBD
in simulating various solid and �uid materials in real-time physics,
our work further extends the idea to crowd simulation.

Our objective is therefore to o�er a numerical framework for
crowd simulation that is robust, stable, and easy to implement,
ideally for use in interactive games. Due to the �exibility of PBD
in de�ning positional constraints among particles, our proposed
framework provides a new platform for artistic design and control
of agent behaviors in crowd modeling and animation. Furthermore,
we adopt the PBD approach since it is an unconditionally stable
implicit scheme. Even though it may not always converge to the so-
lution manifold, a nonlinear Gauss-Seidel-like constraint projection
enables the algorithm to produce satisfactory results with modest
computational cost suitable for real-time applications. Additionally,
the resulting solution scheme is easy to implement and does not
require any linear solves.

1.1 Contributions
This paper, which extends [Weiss et al. 2017], makes the following
contributions:

• We show how crowds can be simulated within the PBD
framework by augmenting it with non-passive agent-based
planning velocity.

• We adopt position-based frictional contact constraints of
granular materials to model local collision avoidance among
nearby agents. An XSPH viscosity term is also added to
approximate coherent and collective group behavior.

• We develop a novel long-range collision avoidance con-
straint to deal with anticipatory collisions. Our model per-
mits the natural development of agent groups.

• We demonstrate multi-species crowd coupling by support-
ing spatially varying Lagrangian physical properties.

1.2 Overview
The remainder of the paper is organized as follows: Section 2 sur-
veys relevant prior work on crowd simulation and PBD. Section 3
overviews our algorithmic approach. Section 4 discusses algorith-
mic details and detailed constraint design. We present our simu-
lation results in Section 5. Section 6 concludes the paper with a
discussion of our method’s limitations and future work.

2 RELATEDWORK
Position-Based Dynamics (PBD) was �rst introduced by Müller et
al. [2007] for the fast simulation of deformable objects through the
Gauss-Seidel projection of positional constraints. Since then, PBD
and Nucleus, a closely-related constraint solver by Stam [2009],
have become popular in physics-based animation for their simplic-
ity and robustness. Macklin et al. [2014] presented a uni�ed PBD

solver for various natural phenomena. XPBD was proposed recently
to eliminate the iteration count and time step dependence of PBD
[Macklin et al. 2016]. Even though PBD traditionally de�nes geo-
metric constraints among particles, it can also approximate force
responses from continuum mechanics. Bender et al. [2014a] formu-
lated continuum energies as PBD constraints. The close relationship
between PBD and popular continuum-mechanics-based discretiza-
tion was further explored in the recent work on optimization-based
methods for real-time animation [Bouaziz et al. 2014; Liu et al. 2013;
Narain et al. 2016; Wang 2015]. A more complete survey of PBD is
provided by Bender et al. [2014b].

E�cient, natural, and stable collision avoidance in sparse and
dense distributions of agents remains a very active area of research
in crowd simulation. In multi-agent simulations, it is essential to
capture both individual local behaviors and aggregate collective
behaviors. Continuum approaches—such as ‘Continuum Crowds’
[Treuille et al. 2006], a crowd model that uses continuum dynam-
ics to simulate pedestrian �ow—are particularly suitable for dense
crowds and complex environments [Jiang et al. 2010]. Unfortunately,
the traditional regime of pure continuum models tends to smooth
out local agent behaviors, motivating research on hybrid methods.
For example, Narain et al. [2009] simulated dense crowds with a
hybrid, Eulerian-Lagrangian particle-in-cell approach and the uni-
lateral incompressibility constraint (UIC), which has proven to be
an e�ective assumption for crowds. Subsequently, frictional forces
were taken into account in modeling crowd turbulence [Golas et al.
2014; Helbing et al. 2007], which is essential in extra high-density
scenarios. This also inspired us to treat dense agent collisions with
a frictional contact model similar to PBD dry sand simulation in
[Macklin et al. 2014]. To robustly model multiple densities, Golas
et al. [2013] proposed a hybrid scheme for simulating high-density
and low-density crowds with seamless transitions.

Other techniques for collision avoidance have been proposed.
Many researchers adopted force-based models [Helbing et al. 2000;
Reynolds 1987, 1999]. An interaction energy between pedestrians
was modeled with a power law in recent and concurrent work by
Karamouzas et al. [2014; 2017]. As an alternative to forces, the re-
ciprocal velocity obstacle was proposed in robotics for multi-agent
navigation [Van den Berg et al. 2008]. Guy et al. [2009] extended
velocity obstacles and used a parallel optimization framework for
collision avoidance. Ren et al. [2016] augment velocity obstacles
with velocity connections to keep agents moving together, thus
allowing more coherent behaviors. He et al. [2016] simulated dy-
namic group behaviors based on the least e�ort principle. Guy et
al. [2010] simulated large-scale crowds by optimization based on
the Principle of Least E�ort. Bruneau and Pettré [2015] presented
a mid-term planning system to �ll in the gap between long-term
planning and short-term collision avoidance.

3 ALGORITHM OVERVIEW
Our simulation loop per time step is similar to that for PBD, with
several modi�cations. We outline our procedure in Algorithm 1 and
highlight the di�erent steps.

Assume that we haveN agents. Each agent i , where i = 1, 2, . . . ,N ,
is represented with a �xed-sized particle with position xi ∈ R2 and
velocity vi ∈ R

2. For multi-species considerations, we treat each
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Algorithm 1 Position-Based Crowd simulation loop

1: for all agent i do . §4.1
2: calculatevpi from a velocity planner
3: calculate a blending velocityvbi fromv

p
i andvn

i
4: x∗i ← xni + ∆tv

b
i

5: end for
6: for all agent i do
7: �nd neighboring agents Si = {si1, si2, ..., sim }
8: end for
9: while iteration count< max stability iterations do

10: for all agent i do
11: compute position correction ∆xi . §4.2
12: xni ← xni + ∆xi
13: x∗i ← x∗i + ∆xi
14: end for
15: end while
16: while iteration count< max iterations do
17: for all agent i do
18: compute position correction ∆xi . §4.2, §4.4, §4.5
19: x∗i ← x∗i + ∆xi
20: end for
21: end while
22: for all agent i do
23: vn+1

i ← (x∗i − x
n
i )/∆t

24: Add XSPH viscosity tovn+1
i . §4.3

25: Clampvn+1
i . §4.6

26: xn+1i ← x∗i
27: end for

particle as a circle with radius ri and massmi . When we are step-
ping from time n to time n + 1 in a traditional PBD simulation loop
for passive physical simulations, a forward Euler position predic-
tion is �rst performed as x∗i = xni + ∆t(vn

i + ∆t fext(xni )), where
fext represents external forces such as gravity. In position-based
crowds, x∗i needs to be computed di�erently to take into account
the velocity planning of each agent. In particular, we compute x∗i
based on a blending scheme between a preferred velocity and the
current velocity vn

i (see Section 4.1). It is apparent that the pre-
dicted x∗i for a particle completely ignores the existence of any
other particles and just passively advects in the velocity �eld. To
resolve this, PBD de�nes constraint functions on the desired loca-
tion of the particles. Both equality and inequality constraints are
supported, and they can be expressed as Ck (x1,x2, ...,xN ) = 0 and
Ck (x1,x2, ...,xN ) ≥ 0 respectively. Hence, the task is to search for
a correction ∆xi such that xn+1i = x∗i +∆xi satis�es the constraints.
Once the new positions are computed, agent velocities can be up-
dated as vn+1

i = (xn+1i − xni )/∆t . This update guarantees stable
agent velocities as long as the constraint projection is stable.

4 METHOD
Our position-based formulation includes several modi�cations to
the standard PBD scheme as well as additional constraints for short-
range and long-range collision avoidance between agents.

4.1 Velocity Blending
Agent level roadmap velocity planning describes high-level agent
behaviors. Local behavior may be in�uenced by factors such as
social or cognitive goals, while global behavior may be speci�ed by
a particular walking path. We note that the roadmap planning is
an orthogonal component to our constraint based scheme.

In the physics-based simulation of solids and �uids, particles gen-
erally retain their existing velocities. In particular, as demonstrated
in [Bouaziz et al. 2014], the implicit Euler time integration of a
physical system can be formulated as an minimization problem that
balances the ‘momentum potential’ ‖M1/2(x−(xn+∆tvn ))‖2F /2∆t

2

and other potential energies, whereM is the mass matrix. In a multi-
agent crowd simulation, it is similarly more desirable to include the
inertia e�ect before predicting an agent’s desired velocity. Denoting
the preferred velocity given the planner withv

p
i , we calculate the

agent velocityvbi as a linear blending betweenv
p
i and the current

velocityvn
i , as follows:

vbi = (1 − α)v
n
i + αv

p
i , (1)

where α ∈ [0, 1]. We set α = 0.0385 in all our simulations. A more
adaptive choice, such as the density-based blending factor as in
[Narain et al. 2009], can also be used in our framework.

4.2 Frictional Contact
We model local particle contacts with an inequality distance con-
straint as in standard position-based methods:

C(xi ,x j ) = ‖xi − x j ‖ − (ri + r j ) ≥ 0, (2)

where ri and r j are the radii of agents i and j. To model frictional
behavior between neighboring agents, we further adopt kinematic
frictions as described in [Macklin et al. 2014].

4.3 Cohesion
To encourage more coherent agent motions, we add the arti�cial
XSPH viscosity [Macklin and Müller 2013; Schechter and Bridson
2012] to the updated agent velocities. Speci�cally,

vi ← vi + c
∑
j
(vi −vj )W (xi − x j ,h), (3)

where W (r ,h) is the Poly6 kernel for SPH [Macklin and Müller
2013]. For our simulations, with particles with radius 1, we use
h = 7 and c = 217.

4.4 Long Range Collision
Karamouzas et al. [2014] describe an explicit force-based scheme for
modeling crowds. We design a similar scheme as a position-based
constraint. As in their power law setting, the leading term is the
time to collision τ, de�ned as the time when two disks representing
particles i and j touch each other in the future. As in [Karamouzas
et al. 2014], it can be shown that

τ =
b −
√
b2 − ac

a
, (4)
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Figure 2: Avoidance model for predictive collision avoidance. (a) Starting with particles in current positions xni and xnj , PBD
estimates their positions x∗i and x∗j at the next time step. To further predict behaviors in the future, we estimate a discrete
time to collision τ̂ using their trajectories. This results in x̂i, j = xni, j + τ̂vi, j . When further advanced in time by ∆t , particles
collide at x̃i and x̃ j . (b) Projecting these collision constraints resolves the collision between x̃i and x̃ j . (c) We compute the
relative displacement d from time τ̂ to τ̃. (d) d is decomposed into contact normal (dn ) and tangential (dt ) components. (e) The
tangential contribution of the relative displacement is distributed to x∗i and x∗j , which results in an avoidance resolution of
future contacts.

where

a =
1
∆t2
‖x∗i − x

∗
j ‖

2, (5)

b = −
1
∆t
(xi − x j ) · (x

∗
i − x

∗
j ), (6)

c = ‖xi − x j ‖
2 − (ri + r j )

2. (7)

No potential energies associated with forces are required in
our framework. To facilitate collision-free states in the future, we
directly apply a collision-free constraint on future positions. Recall
that in our simulation loop, the predicted position of particles i and
j in the next time step are

x∗i, j = xni, j + ∆tvi, j , (8)

wherevbi, j is de�ned in (1) , and we use the i, j subscripts to denote
that the above is de�ned exclusively in the context of i or j.

We estimate a future collision state between i and j using τ. We
�rst compute the exact time to collision using (4). Valid cases are
those with τ > 0 and τ < τ0, where τ0 is a �xed constant. We used
τ0 = 20 in all our experiments. After pruning out invalid cases, we
process the remaining colliding pairs in parallel (Section 5.1). We
de�ne τ̂ = ∆t ∗ bτ/∆tc, where b·c denotes the �oor operator. This
is simply clamping τ to �nd a discrete time spot slightly before the
predicted contact. With τ̂, we have

x̂i, j = xni, j + τ̂vi, j . (9)

Note x̂i, j are similar to xni, j in the traditional collision constraint
case (2) and are still in a collision free state. Stepping forward will
cause the actual penetration. We de�ne the colliding positions with

˜xi, j = xni, j + τ̃vi, j , (10)

where τ̃ = ∆t + τ̂. We enforce a collision free constraint on x̃i and
x̃ j . Note that x̃i, j is a function of x∗i, j ; therefore, it is still essentially
a constraint on x∗i, j . Due to its anticipatory nature, high sti�ness
on this constraint is not necessary. To prevent over-sti� behav-
iors, instead of using the overlap between the predicted particle

locations, we de�ne the sti�ness to be k exp(−τ̂2/τ0), where k is a
user-speci�ed constant.

4.5 Avoidance Model
We further present a novel avoidance model for crowd collision. The
long-range collision constraint from Section 4.4 will cause agents
to slow down due to motion along the contact normal from the
collision resolve, which is often not desirable in dense scenarios
(Fig. 1). However, we observe that the tangential component of that
collision response is often desired, e�ectively causing the agents to
simply slide in response to the predicted collision. Hence, we pre-
serve only the tangential movement in such collisions. We calculate
the total relative displacement as

d = (x̃i − x̂i ) − (x̃ j − x̂ j ), (11)
which can be decomposed into contact normal and tangential com-
ponents as follows:

dn = (d · n)n, (12)
dt = d − dn , (13)

where n = (x̃i − x̃ j )/‖x̃i − x̃ j ‖ is the contact normal. To this end,
we preserve only the tangential component in the positional cor-
rection to x∗i, j . This provides an avoidance behavior and prevents
agents from being pushed back in a dense �ow. Fig. 2 illustrates
this process.

4.6 Maximum Speed and Acceleration Limiting
After the constraint solve, we further clamp the maximum speed
and acceleration of the agents to better approximate real human
capabilities.

4.7 Walls and Obstacles
Agents can interact with walls and other static obstacles in the
environment. We prevent agents locomoting into walls and other
static obstacles by a traditional collision response (2), between the
agent’s predicted position and the nearest point on the obstacle.
The obstacle’s collision point is assigned in�nite mass.
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Figure 4: Groups passing each other using the avoidance model. Left: Groups of agents organize into a boundary front in
preparation for collision avoidance. Middle: Agents huddle together in noticeable thick lanes. Right: Agents successfully pass
each other.

Figure 3: Two groups of agents passing through each other
using our long range collision avoidance.

5 EXPERIMENTS AND RESULTS
5.1 Setup and Parameter settings
We implemented our framework in CUDA, using an NVIDIA GeForce
GT 750M. We set ∆t = 1/48 sec for all the experiments (2 substeps
per frame). We solve each constraint group in parallel, employing
a Jacobi solver, with a delta averaging coe�cient of 1.2. To �nd
neighboring agents, we use two hash-grids, for short and long range
collisions. This is more e�cient than using one grid for both, since
the long range grid covers a bigger collision radius. Each grid is
constructed e�ciently and in parallel. See [Green 2008; Macklin
et al. 2014] for additional details.

In our simulations, we use 1 stability iteration to resolve contact
constraints possibly remaining from the previous time step, and
6 iterations in the constraint solve loop. Additional iterations can
increase stability and smoothness, but at increased computational
cost.

For agent rendering and locomotion synthesis, we used Unreal
Engine 4.15. For smooth locomotion, we clamped the agent’s skele-
tal positional acceleration and rotational velocity. Additionally, we
applied a uniform motion scaling of about 30. We rendered the
motion at about 5 times the simulation rate.

We demonstrated the robustness of our position-based frame-
work in a variety of scenarios. To simplify the experiment setup
and unless otherwise stated, we modeled all agents using a disk
with radius 0.5, and use the same width for our humanoid agents in
the rendering stage. For smoother motion, we allow an expansion
of the agent’s disk radius by 5% during collision checks. For each
benchmark, we used a simple preferred velocity planner, where the
preferred velocity of each agent points to the closest user-scripted
goal. We also slightly varied the preferred velocity of each agent
around a mean of 1.4, to achieve a more realistic simulation. Table 1
presents timing information.

# agents LR A ms/frame
Sparse passing 1,600 On - 11.27
Sparse passing 1,600 - On 11.61
Dense, low count 1,600 On - 12.03
Dense, low count 1,600 - On 11.34
Dense, high count 10,032 On - 14.06
Dense, high count 10,032 - On 13.63
Bears and Rabbits 1,152 - On 11.86
Dense Ellipsoid 1,920 - On 10.06
Proximal Behavior 50 On - 10.12
Proximal Behavior 50 - On 10.13
Target Locomotion 192 On - 10.42
Bottleneck 480 - - 11.99
Bottleneck 3,600 - - 17.76
Bottleneck 100,048 - - 43.66

Table 1: Timings. LR: long range collision constraint; A:
avoidance model constraint. All experiments use ∆t = 1/48,
with 6 iterations per time step. These timings do not include
rendering times.

5.2 Benchmarks and Analysis
5.2.1 Sparse Passing (Low Count, Long Range Collision): We

experimented with two groups of agents locomoting in opposite
directions (Fig. 3). The agents in each group are positioned in a
loose grid formation with an initial separation distance. To avoid
collisions, the agents use the constraint of Section 4.4. In this sce-
nario, the agents organize into narrow lanes, and pass each other
easily.

5.2.2 Sparse Passing (Low Count, Avoidance): This scenario is
identical to 5.2.1, but the agents employ the constraint of Section 4.5
to avoid collisions. In this scenario, the agents form thicker lanes
(Fig. 4), which accumulate into di�erent groups.

5.2.3 Dense Passing (Low Count, Long Range Collision): A total
of 1,600 agents are split into two groups, with a separating distance
of 2.5 (Fig. 5). We used a higher and denser crowd of agents. To
avoid collision, the agents employ the constraint of Section 4.5.
Because of the dense agent setting, the two agent groups do not
easily pass each other, and some bottleneck groups are formed.
Eventually, the agents pass, avoiding unrealistic collisions.

5.2.4 Dense Passing (Low Count, Avoidance): This experimental
setup is identical to 5.2.3. To avoid collision, the agents employ the
constraint of Section 4.5. In this scenario, the agents form thicker
lanes, which form into di�erent groups (Fig. 5).
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Figure 6: High density and high agent count. Top Row: Agent groups avoid each other using Long Range Collision. Bottom
Row: Using the Avoidance model.

Figure 5:High density agent simulation. Top: Long range col-
lision. Bottom: Avoidance model.

5.2.5 Dense Passing (High Count, Long Range Collision): A total
of 10,032 agents are split into two groups (Fig. 6) with a separating
distance of 3.5. This experiment setup is identical to 5.2.5.

5.2.6 Dense Passing (High Count, Avoidance): This experiment
setup is identical to 5.2.5. To avoid collision, the agents employ the

Figure 7: A group of smaller agents (rabbits) passing through
a group of larger ones (bears).

constraint of Section 4.5. In this scenario, the agents form thicker
lanes, which form into di�erent groups.

5.2.7 Bears and Rabbits: In this experiment, we showcased
how a Lagrangian PBD scheme may be employed to model agents
of di�erent sizes (Fig. 7). We modeled a group of rabbits passing
through a group of bears, totaling 1,152 agents. The rabbits had size
1.0, while the bears had a size ranging from 2.5 to 4.0. To simulate
that bears are less prone to change their path than rabbits, we
assigned the bears a mass that is approximately 30 times greater
than that of the rabbits.

5.2.8 Dense Ellipsoid: This simulation comprises 1,920 agents.
To reach their goals, an ellipsoid-shaped group of agents (Fig. 8),
with an initial separation distance of 3.3, must locomote through a
larger, rectangular group of agents, with a separation distance of
3.0. Throughout the entire simulation, the small group retains its
shape and successfully passes the larger group.
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Figure 9: Proxemic group behavior. Left: Initial state. Center: Agents avoid each other using the long-range collision model,
while creating lanes. Right: Agents avoid each other using the avoidance model.

Figure 10: A group of agents passing through a narrow corridor. Left: Agents huddle on approaching corridor’s entrance.
Middle: A semi-circular arch forms as agents enter a narrow corridor. Right: Agents successfully exit.

Figure 8: A small ellipsoid shaped group passing through a
larger group.

5.2.9 Proximal Behavior, Avoidance Model: Two groups of 50
agents start in tightly packed formations, and must pass each other
in a narrow hallway with limited collision avoidance space (Fig. 9).
This benchmark demonstrates that our novel avoidance model
creates proxemic behavior in agent groups [He et al. 2016].

5.2.10 Proximal Behavior, Long Range Collision: Here, we used
the same setting as 5.2.9. We observed lane formation and splitting
of the original group.

5.2.11 Target Locomotion, Long Range Collision: 192 agents
start in a uniform random grid setting at a separation distance of
5.5. The locomotion targets are in a similar, but in a translated grid
pattern, randomly perturbed with additive uniformly distributed
random noise. The objective of this benchmark was to show that
agents are able to reach their respective goal with minimal interfer-
ence.

Figure 11: Explicit force-based power law [Karamouzas et al.
2014]. Left: In a sparse setting, the agents successfully avoid
collisions. Right: In a dense setting, the agents collide, over-
lap, and are not able to pass smoothly.

5.2.12 Bo�leneck: We demonstrated our method on a bottle-
neck scenario with varying number of agents. Agents must pass
through a narrow corridor to reach their goal (Fig. 10). In this
scenario, we observed jamming and arching near the corridor’s en-
trance, as well as the formation of pockets, a phenomena observed
in realistic crowds, which was also reported in [Golas et al. 2014;
Guy et al. 2010].

5.3 Comparison
The method described in [Karamouzas et al. 2014] is considered the
state-of-the-art model for explicit force-based modeling of pedes-
trian behavior, and it has been validated against human behavior.
We implemented this method based on code obtained from the
authors. For the comparison, we chose the same parameter settings
and time-step as in our method (Section 5.1). Using 1,344 agents,
we preformed experiments in the two following settings (Fig. 11):
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5.3.1 Crowd Passing (Sparse): For the sparse setting, we used a
separating distance of approximately 4.5 between agents. Agents
preformed well and avoided collisions, managing to pass with min-
imal interference to the opposing group. Lane patterns emerged.

5.3.2 Crowd Passing (Dense): In the dense setting, we used a
separation distance of approximately 3.3. In this setting, the agents
were not able to maintain their trajectory or avoid collisions with
the opposing group. Some of these collisions were not resolved,
leading to an unrealistic state for almost half of the simulation. Our
supplemental video o�ers additional details.

From the above experiments, we noticed that the power law
method does not provide a collision-free model for dense crowds.
Nevertheless, careful parameter tuning or increasingly small time
steps may help, albeit at the expense of e�ciency and ease of use.

6 DISCUSSION
In this paper, we adapted Position-Based Dynamics (PBD) as an
alternative discrete algorithm for simulating multi-agent dynamics.
Our machinery demonstrated interesting group interactions, such
as groups passing each other seamlessly, as well as the formation of
tra�c lanes and subgroups with minimal interference. We demon-
strated our novel PBD method on groups of agents of various sizes,
arranged in varying densities, using di�erent mixtures of PBD con-
straints. We presented novel long range collision constraints with
adaptive sti�ness, which serve as a realistic preconditioner for the
actual collision from frictional contact, with a su�cient sti�ness
that enforces non penetration. Our solution is �exible and produces
interesting patterns and emergent behavior. Compared to existing
methods, the advantages of PBD are large time steps, guaranteed
stability, and ease of control. In addition, our approach allows sim-
ple integration into a preexisting PBD framework. By adding new
constraints, our robust, parallel framework can easily incorporate
more complex crowd behaviors with minimal run time cost.

Nonetheless, our approach has some limitations. We do not pre-
tend to simulate real pedestrians (cf. [Shao and Terzopoulos 2007;
Yu and Terzopoulos 2007]). Designing metrics to evaluate such re-
alism is a problem in and of itself, and it is outside the scope of our
present work, but we will investigate this topic in future work, in-
cluding further quantitative analysis of time-to-collision and other
anticipatory position analysis. Even though PBD is a simple and
stable framework, it requires a certain amount of parameter tuning.
We also plan to explore other constraints, such as clamping the
magnitude of turning and backwards motion of agents. We believe
that such a constraint will lead to more realistic results. Finally,
experimenting with other online locomotion synthesis methods
such as motion �elds [Lee et al. 2010] can lead to more interesting
agent interactions.
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